材料力学积欠补考辅导(土木06-07二)要点
材料力学期末复习总结土木工程
材料力学期末复习总结土木工程第一章绪论第一节材料力学的任务1、组成机械与结构的各组成部分,统称为构件。
2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。
3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。
第二节材料力学的基本假设1、连续性假设:材料无空隙地充满整个构件。
2、均匀性假设:构件内每一处的力学性能都相同3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。
木材是各向异性材料。
第三节内力1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。
2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。
3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。
4、内力的分类:轴力F N ‘; 剪力F S;扭矩T;弯矩M第四节应力1、一点的应力:一点处内力的集(中程)度。
2、应力单位:Pa第五节变形与应变1、变形:构件尺寸与形状的变化称为变形。
除特别声明的以外,材料力学所研究的对象均为变形体。
2、弹性变形:外力解除后能消失的变形成为弹性变形。
3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。
4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。
对构件进行受力分析时可忽略其变形。
5、线应变:线应变是无量纲量,在同一点不同方向线应变一般不同。
6第六节杆件变形的基本形式1、材料力学的研究对象:等截面直杆。
2、杆件变形的基本形式:拉伸(压缩)、扭转、弯曲第二章拉伸、压缩与剪切第一节轴向拉伸(压缩)的特点1、受力特点:外力合力的作用线与杆件轴线重合。
2、变形特点:沿杆件的轴线伸长和缩短。
第二节拉压杆的内力和应力1、内力:拉压时杆横截面上的为轴力2、轴力正负号规定:拉为正、压为负。
土木材力复习
第一章绪论1、材料力学的任务构件的承载能力:强度、刚度、稳定性。
强度:构件抵抗破坏(断裂或塑性变形)的能力。
刚度——构件抵抗变形的能力。
稳定性——构件保持原来平衡形态的能力。
构件在正常工作时应满足强度、刚度、稳定性要求2、杆件变形的基本形式(掌握每种基本变形的受力特点和变形特点)基本变形1.轴向拉伸或压缩:在一对其作用线与直杆轴线重合的外力作用下,直杆在轴线方向发生的伸长或缩短变形。
2.剪切:在一对相距很近的、大小相同、指向相反的横向外力作用下,直杆的主要变形是横截面沿外力作用方向发生相对错动。
3.扭转:在一对转向相反、作用面垂直于直杆轴线的外力偶作用下,直杆的相邻横截面将绕轴线发生相对转动。
1.4.弯曲:在一对转向相反、作用面在杆件纵向平面内的外力偶作用下,直杆的相邻横截面将绕垂直杆轴线的轴发生相对转动。
组合变形:当杆件同时发生两种或两种以上基本变形时称为组合变形。
M MPF第二章 轴向拉伸和压缩一、轴向拉伸或压缩时横截面上的内力(1)内力:由外力作用引起的构件内部相互之间的作用力。
(2)截面法:截面法是求内力的基本方法,在需求内力的截面处,用一假想平面,沿该截面将杆件截开,取其一部分,将弃去部分对留下部分的作用,代之以内力,然后考虑留下部分的平衡,由平衡条件求出该截面上的内力。
(3)轴力:因为外力与轴线重合,故分布内力系的合力作用线必然与轴线重合,若设为N F ,N F 称为轴力。
轴力符号规定:拉为正,压为负。
二、轴向拉伸或压缩时横截面上的应力正应力公式AF N=σ三、拉压杆件的变形.胡克定律1)轴向变形 胡克定律: l lE AF E ∆=→=N εσ∴EA lF l N =∆(胡克定律的另一种形式)EA ——杆件抗拉(或抗压)刚度 2)横向变形试验证明:当应力不超过比例极限时,横向应变与纵向应变之比的绝对值是一个常数。
μεε='μ——横向变形因数(泊松比)为材料常数(弹性常数) ∴-='εμε(hu 克定律的适用范围:弹性极限内)四、材料拉伸和压缩时的力学性能了解几个重要的力学性能指标值:弹性极限p σ、屈服极限s σ、强度极限b σ、弹性模量E 、剪力弹性模量G构件强度计算时,塑性材料以屈服极限 s σ作为极限应力,脆性材料以强度极限b σ为极限应力。
材料力学 复习提纲与考核重点要点
材料力学复习提纲与考核重点第二章1、重要公式拉伸、压缩时横截面上正应力计算公式σ=FN AFN≤[σ] A∆l线应变计算公式ε= l强度条件σ=拉伸、压缩时杆的伸长量计算公式∆l=FNl EAεy泊松比计算公式μ=|| εx胡克定律σ=Eε注意正应力的正负号确定方法2、考题类型一个大题拉伸与压缩时杆的强度计算,可能的题型包含了强度校核、设计截面和确定许用载荷。
第三章1、重要公式PnP Me=702 P单位马力,n单位r/min n外加扭矩计算公式 Me=954 P单位KW,n 单位r/min切应力的计算公式τ=Tρ Ip最大切应力计算公式τmax=记忆常用截面的Ip和Wt实心圆截面Ip=TmaxWtWt=Ipρmax扭转截面系数πd432,Wt=πd316空心圆截面Ip=πd432(1-α),Wt=4πd316(1-α4) α=d D扭转强度条件τmax=Tmax≤[τ] Wt相对扭转角计算公式ϕ=Tl GIpTili GIpi多段扭转变形的扭转角ϕ=∑单位长度扭转角计算公式ϕ'=dϕT =dxGIp扭转刚度条件ϕ'max≤[ϕ']胡克定律τ=Gγ2、考题类型一个大题一段或两段扭转杆件的强度计算和刚度计算的综合解题过程中需注意杆件的变形形式,给出杆件的扭矩图,方可找到最大的扭矩,以及杆件的扭转角计算形式,尤其注意分清扭矩的正负号。
常见题型为给定杆件的扭转受力情况,要求进行强度校核和刚度校核,或是根据给定的受力情况进行按照刚度进行截面设计,然后再进行刚度校核第四、五、六章及附录1、重要公式弯曲时横截面上正应力计算公式σ=Mzy Iz最大正应力σmax=MmaxIWz=z 弯曲截面系数 Wzymax各种常见截面的Iz和Wz圆截面Iz=πd464,Wz=πd332bh3bh2矩形截面 Iz=,Wz= 126弯曲正应力强度条件σmax≤[σ]FSSz* Izb弯曲切应力计算公式τ=截面几何性质 Sy=zdA Sz=A⎰⎰AydAIz=⎰Ay2dA Sz*=⎰A*ydA形心计算公式 yc=SySz zc=AAIy1=Iy+b2A平行移轴定理 Iz1=Iz+aA2Ix1y1=Ixy+abAIy、Iz为相对于过过形心的主轴的惯性矩d2wM(x)挠曲线微分方程 =2dyEI积分法求梁的挠度不同支座形式的位移边界条件和光滑连续条件(略)叠加原理EI∑w''=EI(∑w)''=M(x) iii=1i=1nn叠加法求梁的挠度2、考题类型两个大题一个问题综合强度计算和挠度计算,横截面为矩形或圆形,需画出梁的内力图(剪力图和弯矩图),进行强度校核、设计截面或确定许用载荷,并根据给出的挠度表格(叠加法)或使用积分法计算某一位置的挠度或梁的最大挠度。
材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
(完整版)材料力学复习重点汇总
6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
材料力学复习指导
材料力学复习指导一、 绪论1. 材料力学的主要任务在满足强度、刚度和稳定性的条件下,以最大限度的经济为准则,为构件确定合理的形状、尺寸,合理选择材料,并为构件设计提供必要的理论基础和计算方法。
2. 可变形固体的基本假设(1)均匀连续性假设;(2)各向同性假设;(3)小变形假设。
二、 轴向拉伸与压缩1. 截面法求轴力,画轴力图(1)方法 (2)符号规定 (3)轴力图的画法2. 横截面上应力分布,斜截面上的应力 N F A σ= ; ασσα2cos = , αστα2sin 21= 3. 材料的力学性质(1)低碳钢拉伸时的几个阶段及特点,强度指标,塑性指标;压缩屈服极限与拉伸相同。
(2)铸铁压缩时的力学性质及破坏现象;拉伸强度极限低于压缩时。
4. 强度计算等直杆 Nmax max []F Aσσ=≤ (1)强度校核;(2)截面设计;(3)许可载荷计算。
5. 变形计算(1)纵向应变,横向应变,虎克定律 LL ∆=ε ,εεμ'=; N F L L EA ∆= 或 εσE = (2)求变形N i i iF l L EA ∆=∑ (3)求位移:求各杆的内力 求各杆的变形 作位移图 求位移6. 拉压超静定求解:(1)受力分析,列平衡方程,并确定是否为超静定问题。
(2)变形协调条件,代入胡克定律,得到补充方程。
(3)联立求解。
三、 剪切1. 剪切的实用计算剪切面通常在与外力相平行的方位,剪应力S SF A τ=, S A 为剪切面面积; 2. 挤压的实用计算挤压面通常在与外力相垂直的方位,挤压应力bs bs bsF A σ= ,bs A 为挤压面面积四、 扭转1. 扭转变形的受力及变形特点2. 扭矩及扭矩图(1)截面法,(2)符号规定,(3)扭矩图的画法。
3. 扭转剪应力与变形(1)横截面上剪应力:pI T ρτρ= ,方向与该截面扭矩方向一致,且与极半径垂直。
2d =ρ处剪应力最大。
324d I p π= (2) 斜截面上剪应力: 剪应力互等定理;纯剪切状态;αττα2cos = 横截面上剪应力最大(低碳钢破坏面);45°斜截面拉应力最大(铸铁破坏面)。
上海市考研土木工程复习资料材料力学重点难点梳理
上海市考研土木工程复习资料材料力学重点难点梳理材料力学是土木工程考研中的一门重要科目,它涉及到材料的性质、力学行为以及力学原理和方法等内容。
在考研复习中,理清材料力学的重点和难点,对于提高复习效果和顺利通过考试至关重要。
本文将对上海市考研土木工程复习资料力学的重点难点进行梳理和总结。
一、弹性力学弹性力学是材料力学中的基础内容,掌握好弹性力学的理论和方法对于理解和应用其他力学理论具有重要意义。
在复习过程中,应重点关注以下几个方面的内容:1. 应力与应变:了解应力与应变的概念与表示方式,学会计算各种应力应变的关系,如正应力、剪应力、正应变、剪应变等。
2. 线性弹性力学:重点学习线性弹性力学的基本原理和假设,理解胡克定律的内容和应用,学会基于胡克定律进行应力和应变计算。
3. 弹性体力学:掌握弹性体力学理论和方法,学会利用应力应变关系推导应力场,熟悉弹性体的位移场、应变场和应力场。
4. 弯曲问题:重点了解梁的受力分析,学会计算不同截面形状的梁的弯矩、剪力和挠度,熟悉弯曲理论和应用。
二、塑性力学塑性力学是材料力学中的另一个重要内容,它关注材料的塑性行为和塑性变形。
复习塑性力学时,可以重点关注以下几个方面:1. 塑性变形:了解材料的塑性行为,学习材料的屈服准则和屈服面的表达方式,了解塑性变形的概念和分类。
2. 塑性力学:掌握塑性力学理论和方法,学会利用屈服准则和应力应变关系计算塑性变形,熟悉塑性体的位移场、应变场和应力场。
3. 塑性力学的应用:熟悉材料中常见的塑性问题,如材料的冷加工和热加工,了解常见塑性成形工艺的原理和方法。
三、疲劳与断裂力学疲劳与断裂是土木工程中一个重要的问题,学习疲劳与断裂力学可以帮助我们预测和评估材料在使用过程中的疲劳寿命和断裂行为。
在复习过程中,可以着重关注以下几个内容:1. 疲劳寿命:学习疲劳破坏的概念和分类,了解疲劳寿命的预测方法,学会应用疲劳寿命曲线进行疲劳强度计算。
2. 断裂力学:了解断裂力学的基本理论和方法,学习断裂韧性和断裂强度的评估,掌握断裂与塑性变形的关系。
材料力学复习要点word精品文档9页
第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。
(例如:行车结构中的横梁、吊索等)理论力学—研究刚体,研究力与运动的关系。
材料力学—研究变形体,研究力与变形的关系。
2、变形:在外力作用下,固体内各点相对位置的改变。
(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。
(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。
4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。
三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法若:构件横截面尺寸不足或形状不合理,或材料选用不当—不满足上述要求,不能保证安全工作.若:不恰当地加大横截面尺寸或选用优质材料—增加成本,造成浪费研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。
因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织2、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织优质钢材的显微组织3、各向同性假设:认为在物体内各个不同方向的力学性能相同(沿不同方向力学性能不同的材料称为各向异性材料。
材料力学知识点总结
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆::拉为“+”,压为“-” :使单元体顺时针转动为“+”:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ, E tg ==σα七.组合变形ε滑移线与轴线45,剪只有s ,无八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,cr <σp ,>p柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓>p ——大柔度杆:22λπσE cr=o <<p ——中柔度杆:cr=a-b<0——小柔度杆:cr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学最难的知识点总结
材料力学最难的知识点总结弹性力学弹性力学是材料力学中的一个重要分支,它研究材料在外力作用下的弹性变形规律。
在弹性力学中,最困难的知识点之一是材料的应力-应变关系。
材料的应力-应变关系是指在材料受到外力作用时,应力与应变之间的关系。
这一关系在工程实践中是非常重要的,因为它可以帮助工程师预测和分析材料的性能。
材料的应力-应变关系通常可以用弹性模量来描述,弹性模量是材料在弹性变形阶段的应力-应变关系的斜率。
然而,在实际工程中,材料的应力-应变关系往往是复杂的,因为材料在受到外力作用下可能发生塑性变形或者断裂。
此外,不同类型的材料,如金属、聚合物和陶瓷,它们的应力-应变关系也有所不同。
在学习材料的应力-应变关系时,学生需要掌握材料的本构方程和屈服准则。
材料的本构方程描述了材料的应力-应变关系,在不同的外力作用下,材料的应力-应变关系可能会发生变化。
屈服准则则是用来描述材料在何种条件下会发生塑性变形的规律。
这些知识点需要学生具备扎实的数学和物理基础,以及对材料学的深刻理解,才能够正确地理解和应用。
另一个困难的知识点是材料的疲劳和断裂。
材料在长期的外力作用下会发生疲劳破坏,这是工程实践中经常会遇到的问题。
疲劳破坏的机制非常复杂,涉及到材料的微观结构和外力的作用方式,因此很难进行准确的预测和分析。
疲劳破坏可以通过疲劳强度和疲劳寿命来描述,而这两个参数又与材料的强度、韧性、变形能力等相关联,因此学生需要全面了解材料的性能和疲劳破坏的机理,才能够正确地理解和分析疲劳现象。
断裂是材料工程中另一个重要的问题。
在很多情况下,材料的强度很难满足工程要求,导致断裂问题成为制约产品寿命和安全性的重要因素。
断裂现象也涉及到材料的微观结构和外力的作用方式,因此很难进行准确的预测和分析。
在学习断裂现象时,学生需要掌握裂纹扩展的机理和规律,同时也需要了解不同类型的断裂模式,如脆性断裂和韧性断裂。
这些都需要学生具备扎实的材料力学和材料学知识,才能够正确地理解和分析断裂现象。
材料力学补考复习资料要点
材料力学补考复习资料一、填空题:请将正确答案写在划线内(每空2分,计16分)1.矩形截面梁、圆形截面梁、环形截面梁最大切应力与截面上平均切应力的关系分别为 、 、 。
2.用主应力表示的广义虎克定律为 ;― ; ―。
3.斜弯曲产生的条件是:①― ;②― 。
二、单项选择题:请将正确答案的序号填入划线内(每小题5分,计10分) 1.长为l ,直径为d 的两根不同材料制成的圆轴,在其两端作用相同的扭转力偶矩M ,则―――――――――――。
⑴ 最大切应力τmax 相同; ⑵最大切应力τmax 不同; ⑶ 最大切应力τmax 有时相同,有时不同;⑷ 弹性变形时τmax 不同,塑性变形时τmax 相同。
2.长度系数的物理意义是―――――――。
⑴ 压杆绝对长度的大小; ⑵ 对压杆材料弹性模数的修正 ⑶ 将压杆两端约束对其临界力的影响折算成杆长的影响; ⑷ 对压杆截面面积的修正。
三、简单计算题(每小题7分,计14分) 1.试画出压杆的临界应力总图,并在图上注出各种压杆柔度的分界点及对应的临界力的值,注出各种柔度压杆临界力的公式。
2.试求图式单元体指定斜截面上的应力。
四、(15分)结构受力如图,试画梁AB 的弯矩图。
已知梁、杆的材料相同,杆的截面面积为A ,梁的横截面的惯性矩I=Al 2。
五、(15分)矩形截面受压柱如图所示,其中1F 的作用线与柱轴线重合,2F 的作用点位于y轴上,kN 8021==F F ,mm 240=b ,2F 的偏心距mm 100=e 。
求 (1)柱的横截面上不出现拉应力时的h 最小尺寸;(2)当h 确定后求柱横截面上的最大压应力。
六、(15分)画出所示梁的剪力图和弯矩图,在图上注明控制截面的F s 和M 的值,给出maxmax,MF S 的大小。
七、(15分)图示压杆截面尺寸如图,在xoy 平面内两端为球形铰,在xoz 平面内,A 、B 、C 三处均受球形约束作用。
试比较该压杆在xoz 平面内和在xoy 平面内的稳定性。
材料力学重点总结材料力学重点
材料力学阶段总结一. 材料力学(de)一些基本概念1.材料力学(de)任务:解决安全可靠与经济适用(de)矛盾. 研究对象:杆件强度:抵抗破坏(de)能力 刚度:抵抗变形(de)能力 稳定性:细长压杆不失稳.2. 材料力学中(de)物性假设连续性:物体内部(de)各物理量可用连续函数表示. 均匀性:构件内各处(de)力学性能相同. 各向同性:物体内各方向力学性能相同.3. 材力与理力(de)关系, 内力、应力、位移、变形、应变(de)概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体.内力:附加内力.应指明作用位置、作用截面、作用方向、和符号规定.应力:正应力、剪应力、一点处(de)应力.应了解作用截面、作用位置(点)、作用方向、和符号规定.正应力⎩⎨⎧拉应力压应力应变:反映杆件(de)变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲.4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内. 5. 材料(de)力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段. 拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12塑性材料与脆性材料(de)比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1(de)系数,使用材料时确定安全性与经济性矛盾(de)关键.过小,使构件安全性下降;过大,浪费材料. 许用应力:极限应力除以安全系数. 塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学(de)研究方法1) 所用材料(de)力学性能:通过实验获得.2)对构件(de)力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用(de)未来状态.3)截面法:将内力转化成“外力”.运用力学原理分析计算.8.材料力学中(de)平面假设寻找应力(de)分布规律,通过对变形实验(de)观察、分析、推论确定理论根据.1) 拉(压)杆(de)平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等. 2) 圆轴扭转(de)平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度.横截面上正应力为零. 3) 纯弯曲梁(de)平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁(de)纵向纤维;正应力成线性分布规律.9 小变形和叠加原理 小变形:① 梁绕曲线(de)近似微分方程 ② 杆件变形前(de)平衡③切线位移近似表示曲线④力(de)独立作用原理叠加原理:①叠加法求内力②叠加法求变形.10 材料力学中引入和使用(de)(de)工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载.2) 单元体,应力单元体,主应力单元体.3) 名义剪应力,名义挤压力,单剪切,双剪切.4) 自由扭转,约束扭转,抗扭截面模量,剪力流.5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量.6) 相当应力,广义虎克定律,应力圆,极限应力圆.7) 欧拉临界力,稳定性,压杆稳定性.8)动荷载,交变应力,疲劳破坏.二. 杆件四种基本变形(de)公式及应用1. 四种基本变形:2. 四种基本变形(de)刚度,都可以写成:刚度 = 材料(de)物理常数×截面(de)几何性质 1)物理常数:某种变形引起(de)正应力:抗拉(压)弹性模量E ; 某种变形引起(de)剪应力:抗剪(扭)弹性模量G . 2)截面几何性质:拉压和剪切:变形是截面(de)平移: 取截面面积 A ; 扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩ρI ;梁弯曲:各截面绕轴转动一角度:取对轴(de)惯性矩Z I . 3. 四种基本变形应力公式都可写成:应力=截面几何性质内力对扭转(de)最大应力:截面几何性质取抗扭截面模量maxρ=ρI W p对弯曲(de)最大应力:截面几何性质取抗弯截面模量max y I W ZZ =4. 四种基本变形(de)变形公式,都可写成:变形=刚度长度内力⨯因剪切变形为实用计算方法,不考虑计算变形.弯曲变形(de)曲率221dxyd x ±=ρ)(,一段长为 l (de)纯弯曲梁有: z x EI l M x l=ρ=θ)(补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆(de)轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲(de)组合变形问题;杆(de)压缩问题,要注意它(de)长细比λ(柔度).这里(de)简单压缩是指“小柔度压缩问题”. 2、关于“剪切”实用性(de)强度计算法,作了剪应力在受剪截面上均匀分布(de)假设.要注意有不同(de)受剪截面: a.单面受剪:受剪面积是铆钉杆(de)横截面积; b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积.c.圆柱面受剪:受剪面积以冲头直径d 为直径,冲板厚度 t 为高(de)圆柱面面积. 3.关于扭转表中公式只实用于圆形截面(de)直杆和空心圆轴.等直圆杆扭转(de)应力和变形计算公式可近似分析螺旋弹簧(de)应力和变形问题是应用杆件基本变形理论解决实际问题(de)很好例子. 4.关于纯弯曲纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立.横力弯曲(剪切弯曲)可以视作剪切与纯弯曲(de)组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出(de)正应力公式可以在剪切弯曲中使用.5.关于横力弯曲时梁截面上剪应力(de)计算问题为计算剪应力,作为初等理论(de)材料力学方法作了一些巧妙(de)假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上(de)是集中力还是分布力,在梁(de)宽度上都是均匀分布(de).故剪应力在宽度上不变,方向与荷载(剪力)平行.2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有Q bdh h n=τ⎰)(,因 )(h τ=τ (de)函数形式未知,无法积分.但由剪应力互等定理,考虑微梁段左、右内力(de)平衡,可以得出:bI QS z Z *=τ剪应力在横截面上沿高度(de)变化规律就体现在静矩*z S 上, *z S 总是正(de).剪应力公式及其假设: a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q(de)方向一致; 假设2:横截面上同一层高上(de)剪应力相等. 剪应力公式:b I y QS y z z )()(*=τ ,⎥⎦⎤⎢⎣⎡-=22*22y y b y S Z)()( 平均ττ2323max=⋅=bh Q b. 非矩形截面积假设1: 同一层上(de)剪应力τ作用线通过这层两端边界(de)切线交点,剪应力(de)方向与剪力(de)方向.假设2:同一层上(de)剪应力在剪力Q 方向上(de)分量y τ相等.剪应力公式:z z y I y b y QS y )()()(*=τ2322*)(32)(y R y S z -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ℜ•=222134)(R y Q y y πτ 平均ττ34max =c.薄壁截面假设1:剪应力τ与边界平行,与剪应力谐调. 假设2:沿薄壁t,τ均匀分布. 剪应力公式:zz tI QS *=τ学会运用“剪应力流”概念确定截面上剪应力(de)方向. 三.梁(de)内力方程,内力图,挠度,转角遵守材料力学中对剪力 Q 和弯矩 M (de)符号规定.在梁(de)横截面上,总是假定内力方向与规定方向一致,从统一(de)坐标原点出发划分梁(de)区间,且把梁(de)坐标原点放在梁(de)左端(或右端),使后一段(de)弯矩方程中总包括前面各段.均布荷载 q 、剪力Q 、弯矩M 、转角θ、挠度 y 间(de)关系:由: ,M dxyd EI =22 Q dx dM =, q dx dQ = 有 )()(x q dxyd EI x Q dx dMdxy d EI ===4433设坐标原点在左端,则有:q: q dxyd EI =44, q 为常值Q : A qx dxyd EI +=33:M B Ax x q dx y d EI ++=2222 :θC Bx x A x qdx dy EI +++=2326:y D Cx x B x A x q y EI ++++=⋅2342624 其中A 、B 、C 、D 四个积分常数由边界条件确定. 例如,如图示悬臂梁:则边界条件为:430080600000lq D y lq C B M A Q l x l x x x =→=-=→=θ=→==→=====|||| 8624434ql x ql x q y EI +-=⋅EIql yx 84==截面法求内力方程:内力是梁截面位置(de)函数,内力方程是分段函数,它们以集中力偶(de)作用点,分布(de)起始、终止点为分段点;1)在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2)在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3)剪力等于脱离梁段上外力(de)代数和.脱离体截面以外另一端,外力(de)符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上(de)外力、外力偶对截面形心截面形心(de)力矩(de)代数和.外力矩及外力偶(de)符号依弯矩符号规则确定.梁内力及内力图(de)解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M(de)关系作内力图;关系:()()()()()()⎪⎩⎪⎨⎧+=+====⎰⎰dcdcCDCDxdxQMMxdxqQQxQdxdMxqdxdQdxMd,22规定:①荷载(de)符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正.剪力图和弯矩图(de)规定:剪力图(de) Q轴向上为正,弯矩图(de) M轴向下为正.5)作剪力图和弯矩图:①无分布荷载(de)梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载(de)梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③ Q=0(de)截面,弯矩可为极值;④集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图(de)斜率也突变,弯矩图有尖角;⑤集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥在剪力为零,剪力改变符号,和集中力偶作用(de)截面(包括梁固定端截面),确定最大弯矩(maxM);⑦指定截面上(de)剪力等于前一截面(de)剪力与该两截面间分布荷载图面积值(de)和;指定截面积上(de)弯矩等于前一截面(de)弯矩与该两截面间剪力图面积值(de)和.共轭梁法求梁(de)转角和挠度:要领和注意事项:1)首先根据实梁(de)支承情况,确定虚梁(de)支承情况2)绘出实梁(de)弯矩图,作为虚梁(de)分布荷载图.特别注意:实梁(de)弯矩为正时,虚分布荷载方向向上;反之,则向下.3)虚分布荷载()x q (de)单位与实梁弯矩()xM单位相同()mKN⋅若为,虚剪力(de)单位则为2mKN⋅,虚弯矩(de)单位是3mKN⋅4)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等.计算时需要这些图形(de)面积和形心位置.叠加法求梁(de)转角和挠度:各荷载对梁(de)变形(de)影响是独立(de).当梁同时受n 种荷载作用时,任一截面(de)转角和挠度可根据线性关系(de)叠加原理,等于荷载单独作用时该截面(de)转角或挠度(de)代数和.四. 应力状态分析 1.单向拉伸和压缩应力状态划分为单向、二向和三向应力状态.是根据一点(de)三个主应力(de)情况而确定(de). 如:x σ=σ1,032==σσ 单向拉伸有:EXX σε=,x z Y v εεε-==主应力只有x σ=σ1,但就应变,三个方向都存在.若沿 α 和 2π+α 取出单元体,则在四个截面上(de)应力为: ⎪⎪⎩⎪⎪⎨⎧ασ-=τασ=σασ=τασ=σπ+απ+ααα22222222Sin Sin Sin Cos x x x x ,, 看起来似乎为二向应力状态,其实是单向应力状态.2.二向应力状态. 有三种具体情况需注意1)已知两个主应力(de)大小和方向,求指定截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ασ-σ=τασ-σ+σ+σ=σαα22222212121Sin Cos由任意互相垂直截面上(de)应力,求另一任意斜截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ατ+ασ-σ=τατ-ασ-σ+σ+σ=σαα2222222Cos Sin Sin Cos x y xx yx Y x由任意互相垂直截面上(de)应力,求这一点(de)主应力和主方向⎪⎪⎩⎪⎪⎨⎧σ-στ-=ατ-σ-σ±σ+σ=⎭⎬⎫σσyx xxy x y x tg 222202221)((角度 α 和 0α 均以逆时针转动为正)2) 二向应力状态(de)应力圆 应力圆在分析中(de)应用:a) 应力圆上(de)点与单元体(de)截面及其上应力一一对应;b) 应力圆直径两端所在(de)点对应单元体(de)两个相互垂直(de)面; c)应力圆上(de)两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角(de)两倍2;d) 应力圆与正应力轴(de)两交点对应单元体两主应力;e)应力圆中过圆心且平行剪应力轴而交于应力圆(de)两点为最大、最小剪应力及其作用面.极点法:确定主应力及最大(小)剪应力(de)方向和作用面方向.3) 三方向应力状态,三向应力圆,一点(de)最大应力(最大正应力、最大剪应力)广义虎克定律:弹性体(de)一个特点是,当它在某一方向受拉时,与它垂直(de)另外方向就会收缩.反之,沿一个方向缩短,另外两个方向就拉长. 主轴方向:[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=ε213313223211111v E v E v E )( 或()()()()[]()()()()[]()()()()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧ε+ε+ε+-+=σε+ε+ε--+=σε+ε+ε--+=σ213313223211121112111211v v v V E v v v v E v v v v E非主轴方向:()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=εy x z z x z y y z y x x v E v E v E 111体积应变:()32132121σσσεεε++-=++Ev五. 强度理论1.计算公式.强度理论可以写成如下统一形式:[]σσ≤r其中:r σ:相当应力,由三个主应力根据各强度理论按一定形式组合而成.[]σ:许用应力,[]nσσ=,0σ:单向拉伸时(de)极限应力,n :安全系数.1)最大拉应力理论(第一强度理论)11σ=σr , 一般:[]nbσσ=2) 最大伸长线应变理论(第二强度理论)()3212σσσσ+-=v r ,一般:[]nbσσ=3) 最大剪应力理论(第三强度理论)313σσσ+=r , 一般:[]nsσσ=4) 形状改变比能理论(第四强度理论)()()()[]213232221421σσσσσσσ-+-+-=r , 一般:[]nsσσ=5) 莫尔强度理论[][]31σσσ-σ=σ-+M , []n+=σσ, 0+σ:材料抗拉极限应力强度理论(de)选用:1)一般,脆性材料应采用第一和第二强度理论;塑性材料应采用第三和第四强度理论.2)对于抗拉和抗压强度不同(de)材料,可采用最大拉应力理论3)三向拉应力接近相等时,宜采用最大拉应力理论;4)三向压应力接近相等时,宜应用第三或第四强度理论.六.分析组合形变(de)要领材料服从虎克定律且杆件形变很小,则各基本形变在杆件内引起(de)应力和形变可以进行叠加,即叠加原理或力作用(de)独立性原理.分析计算组合变形问题(de)要领是分与合:分:即将同时作用(de)几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应力和位移.合:即将各基本变形引起(de)应力和位移叠加,一般是几何和.分与合过程中发现(de)概念性或规律性(de)东西要概念清楚、牢记.斜弯曲:平面弯曲时,梁(de)挠曲线是荷载平面内(de)一条曲线,故称平面弯曲;斜弯曲时,梁(de)挠曲线不在荷载平面内,所以称斜弯曲.斜弯曲时几个角度间(de)关系要清楚:ϕ力作用角(力作用平面):α斜弯曲中性轴(de)倾角:斜弯曲挠曲线平面(de)倾角:θϕ=αtg I I tg y zϕ=θtg I I tg yzθ=α∴即:挠度方向垂直于中性轴一般,α≠ϕθ≠ϕ或即:挠曲线平面与荷载平面不重合.强度刚度计算公式:[]σ≤⎪⎪⎭⎫ ⎝⎛ϕ+ϕ=σsin cos max max c z zW W W M 22z y f f f +=ϕ==cos zz y y EI pl EI l P f 3333ϕ==sin yy z z EI pl EI l P f 3333拉(压)与弯曲(de)组合:拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别偏心拉压问题,有时要求截面上下只有一种应力,这时载荷(de)作用中心与截面形心不能差得太远,而只能作用在一个较小(de)范围内这个范围称为截面(de)核心.强度计算公式及截面核心(de)求解:[]σ≤±=σzW M A N max minmax012020=++yp zp iz z iy y⎪⎪⎩⎪⎪⎨⎧-=-=pyzpz y z i a y i a 22扭转与弯曲(de)组合形变:机械工程中常见(de)一种杆件组合形变,故常为圆轴. 分析步骤:根据杆件(de)受力情况分析出扭矩和弯矩和剪力.找出危险截面:即扭矩和弯矩均较大(de)截面.由扭转和弯曲形变(de)特点,危险点在轴(de)表面.剪力产生(de)剪应力一般相对较小而且在中性轴上(弯曲正应力为零).一般可不考虑剪力(de)作用.弯扭组合一般为复杂应力状态,应采用合适(de)强度理论作强度分析,强度计算公式:[]σ≤τ+σ=σ2234r[]σ≤⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=σ2234P T r W M A P[]σ≤τ+σ=σ2243r[]σ≤⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=σ2243PT r W M A P 扭转与拉压(de)组合:杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析.强度计算公式[]σ≤+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=τ+σ=σ22222231244T T r M M WW M W M[]σ≤+=τ+σ=σ2222475013T r M M W.七.超静定问题:总结:分析步骤关键点:变形协调条件—力力—简单超静定梁问题拉压压杆的超静定问⎪⎭⎪⎬⎫求解简单超静定梁主要有三个步骤:1) 解得超静定梁(de)多余约束而以其反力代替;2) 求解原多余约束处由已知荷载及“多余”约束反力产生(de)变形; 3)由原多余支座处找出变形协调条件,重立补充方程.能量法求超静定问题:⎰⨯=ldx U 022刚度内力⎰⎰⎰⎰A +I M +EI M +EA N =ρτl l l ldx G kQ dx G dx dx U 002202022222卡氏第一定理:应变能对某作用力作用点上该力作用方向上(de)位移(de)偏导数等于该作用力,即:i iP U=δ∂∂注1:卡氏第一定理也适用于非线性弹性体; 注2:应变能必须用诸荷载作用点(de)位移来表示.卡氏第二定理:线弹性系统(de)应变能对某集中荷载(de)偏导数等于该荷载作用点上沿该荷载方向上(de)位移,即i iP Uδ=∂∂*若系统为线性体,则:U U=*注1: 卡氏第二定理仅适用于线弹性系统;卡氏第二定理(de)应变能须用独立荷载表示.注2: 用卡氏定理计算,若得正号,表示位移与荷载同向;若得负号,表示位移与荷载反向.计算(de)正负与坐标系无关.八.压杆稳定性(de)主要概念压杆失稳破坏时横截面上(de)正应力小于屈服极限(或强度极限),甚至小于比例极限.即失稳破坏与强度不足(de)破坏是两种性质完全不同(de)破坏.临界力是压杆固有特性,与材料(de)物性有关(主要是E),主要与压杆截面(de)形状和尺寸,杆(de)长度,杆(de)支承情况密切相关.计算临界力要注意两个主惯性平面内惯矩I和长度系数μ(de)对应.压杆(de)长细比或柔度表达了欧拉公式(de)运用范围.细长杆(大柔度杆)运用欧拉公式判定杆(de)稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线经验公式是最简单实用(de)一种.折剪系数ψ 是柔度 λ (de)函数,这是因为柔度不同,临界应力也不同.且柔度不同,安全系数也不同.压杆稳定性(de)计算公式:欧拉公式及ψ系数法(略)九. 动荷载、交变应力及疲劳强度 1.动荷载分析(de)基本原理和基本方法:1)动静法,其依据是达朗贝尔原理.这个方法把动荷(de)问题转化为静荷(de)问题.2) 能量分析法,其依据是能量守恒原理.这个方法为分析复杂(de)冲击问题提供了简略(de)计算手段.在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理(de)结果.构件作等加速运动或等角速转动时(de)动载荷系d k 为:stdd k σσ=这个式子是动荷系数(de)定义式,它给出了 d k (de)内涵和外延. d k (de)计算式,则要根据构件(de)具体运动方式,经分析推导而定.构件受冲击时(de)冲击动荷系数 d k 为:stdst d d k ∆∆σσ==这个式子是冲击动荷系数(de)定义式,其计算式要根据具体(de)冲击形式经分析推导而定.两个d k 中包含丰富(de)内容.它们不仅能给出动(de)量与静(de)量之间(de)相互关系,而且包含了影响动载荷和动应力(de)主要因素,从而为寻求降低动载荷对构件(de)不利影响(de)方法提供了思路和依据.2.交变应力与疲劳失效基本概念:应力循环,循环周期,最大、最小循环应力,循环特征(应力比),持久极限,条件持久极限,应力集中系数,构件(de)尺寸系数,表面质量系数,持久极限曲线等.应力寿命曲线:表示一定循环特征下标准试件(de)疲劳强度与疲劳寿命之间关系(de)曲线,称应力寿命曲线,也称S —N 曲线:持久极限曲线:构件(de)工作安全系数:m a r k n σψ+σβεσ=σσ=σσσ-σ1max构件(de)疲劳强度条件为:nn ≥σ十.平面图形(de)几何性质:意义总结:计算公式、物理心主惯矩及其计算公式惯性主轴、主惯矩、形惯矩、惯积的转轴公式公式惯矩、惯积的平行移轴性积及其求解惯性矩、极惯性矩、惯静矩、形心及其求解⎪⎪⎪⎭⎪⎪⎪⎬⎫1.静矩:平面图形面积对某坐标轴(de)一次矩.定义式:⎰=Ay zdA S ,⎰=Az ydA S量纲为长度(de)三次方.2. 惯性矩:平面图形对某坐标轴(de)二次矩.⎰=Ay dA z I 2,⎰=Az dA y I 2量纲为长度(de)四次方,恒为正.相应定义:惯性半径AI i y y =,AI i zz=为图形对y 轴和对 z轴(de)惯性半径.3. 极惯性矩:⎰=Ap dA I 2ρ因为222zy +=ρ所以极惯性矩与(轴)惯性矩有关系:()z y Ap I I dA z y I +=+=⎰224. 惯性积:⎰=Ayz yzdA I定义为图形对一对正交轴y 、z轴(de)惯性积.量纲是长度(de)四次方. yz I 可能为正,为负或为零. 5. 平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I A a I I C C CC z y yzz z y y 226. 转轴公式:αα2sin 2cos 22211yz zy zy Ay I I I I I dA z I ---+==⎰αα2sin 2cos 221yz zy zy z I I I I I I +--+=αα2cos 2sin 211yz zy z y I I I I +-=7. 主惯性矩(de)计算公式:()2242120yzz y z y y I I I I I I +-++=()2242120yzz y zy z I I II I I +--+=截面图形(de)几何性质都是对确定(de)坐标系而言(de),通过任意一点都有主轴.在强度、刚度和稳定性研究中均要进行形心主惯性矩(de)计算.。
材料力学知识要点word精品文档24页
第一章 绪 论一 、基本概念:强度:构件抵抗破环的能力 1.构件应满足的三个要求: 刚度:构件抵抗变形的能力稳定性:构件保持原有平衡的能力连续性假设: 固体物质不留空隙的空满固体所占的空间 2.变形固体的三个基本假设 均匀性假设: 固体内各处有相同的力学性能各向同性假设: 在任一方向,固体的力学性能都相同 注:各向同性材料:金属等 各向异性材料:木材,胶合材料,复合材料 3,两个限制条件:线弹性:材料变形处于线弹性阶段。
?小变形:变形及变形引起的位移,都远小于物体的最小尺寸4,原始尺寸原理:小变形条件下,常用变形前构件的尺寸代替变形后的构件尺寸来计算, 即不考虑变形带来的影响。
(一处例外:压杆稳定)5,圣维南原理:如用与外力系静力等效的合力来代替原力系,则除在原力系作用区域内有 明显,差别外,在离外力作用区域略远处,这种代替带来的误差很小,可以不计。
6,材力中的力:表面力 集中力 分布载荷 作用方式:体积力 外力 按种类分内力:在外力作用下,构件因反抗或阻止变形而产生于物体内部的相互作用力 按作用方式分 静载荷交变载荷 动载荷冲击载荷1,截(取):用假象面把构件分成两部分 7,研究内力的基本方法----截面法 2,代(替):用内力代替截去的部分的作用 3,平(衡方程):列静力平衡方程,求解未知内力 8,应力-----内力的集度(任一应力应指明两个要素:哪一点,哪个方向上) (1) 平均应力定义:单位面积上的内力 定义式:AF p m =( 注意:m p 是一个矢量,有方向)(2) 应力定义:平均应力的极限 定义式:dA dFm p =)0dA (→单位:MPa ,矢量性:是矢量,有大小,方向。
正应力:定义:应力p 垂直于截面的分量(F ∆垂直于截面的分量N F ∆在截面上的应力) 定义式: )0(→=dA dAdF Nσ 切应力:定义:应力p 平行于截面的分量(F ∆平行于截面的分量S F ∆在截面上的应力) 定义式: ()0d →=dA AdFs τ9,变形与应变变形:在外力作用下,构件尺寸、形状发生变化的现象。
材料力学知识点总结(重、难点部分)
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
材料力学积欠补考辅导(土木06-07二)要点
土木工程03级材力积欠补考辅导2007年4月28日一、填空题1、材料力学的主要任务是研究构件的强度、刚度、稳定性的理论。
2、研究构件内力的一般方法是截面法,轴力、剪力 、扭矩 、弯矩等内力对应的基本变形分别为拉压、剪切、扭转、弯曲。
3、低碳钢拉伸时,大致经历线性(弹性)阶段、屈服阶段、硬化)强化阶段和局部缩径等共四个阶段,滑移线出现在屈服阶段。
4、构件强度是指其抵抗破坏的能力,刚度是指其抵抗变形的能力。
5、连接件的强度计算主要是指剪切强度、挤压强度的实用近似计算方法。
6、梁弯曲时的位移主要是指横截面形心在垂直于轴线方向发生的挠度W (线位移)和横截 面绕中性轴发生转动的转角θ(角位移)。
7、平面应力状态下,某点处已知两相互垂直截面上的应力如图所示,则该点处α截面上的正应力和切应力分别为:σα= ατασσσσσα2sin 2cos 22x yx yx --++=,τα= ατασστα2cos 2sin 2x yx +-=。
8、对于偏心受压杆,当外力作用于截面上的截面核心区域时,可使杆件横截面上只有单一的压应力状态。
9、中心受压直杆,两端铰支时,计算临界力时长度因数µ为1.0、,一端固定一端自由时,计算临界力时长度因数µ为2.0。
10、材料力学的基本假设为连续性假设 、均匀性假设、各向同性假设。
二、名词解释(意思表述清楚即可得分)1、切应力互等原理----------一点处的应力状态(或单元体)中,两相互垂直截面上垂直于交线的切应力大小相等,其方向同时指向或背离该交线。
2、梁----------凡以弯曲为主要变形形式的杆件,称之为梁。
其横截面上的内力主要有弯矩M 和剪力F S 。
三、判断题: 对的打“√ ”,错的打“ X ”。
1、在比例极限内,应力应变满足胡克定律:σ=E ε。
( √ )2、右图所示受拉杆,变形前AB 、BC 为平行斜面,变形后则为不平行斜面。
(错 )3、工程中,脆性材料宜用作承压构件,不宜制作受拉构件。
材料力学复习总结知识点
……
δn1X1 + δn2X2 +…+ δnnXn+ ΔnF = fn
4. 莫尔积分,图乘法,求系数δij,ΔiF 5. 求力法方程 6. 画内力图
六、动荷问题
1. 构件做等加速直线运动和等速转动
三、组合变形
1. 斜弯曲(平面弯曲组合) 2. 弯曲与拉(压) 3. 偏心拉(压)
4. 弯扭(拉扭):
r 3 2 42 , r4 2 32
r3M W 2 T 2, r4M 2 W 0 .7T 5 2
四、压杆稳定
1. 欧拉公式:
Fcr
2EI (l)2
动静法 能量法
变形比较法步骤: 1. 静不定次数 2. 建立相当系统 3. 补充方程
平衡方程(建立) 几何方程(补充) 物理方程(沟通) 4. 求解
等效载荷法步骤: 1. 能量守恒 2. 动荷因数 3. 等效载荷 4. 力学响应
三、不作重点要求内容
2.4.4 2.8
3
4.3.1 4.7 4.8 4.9 4.10
扭转
弯曲
外力
变 形
纵向 , E
E
横向 '
, G
G
当 p有
l FN l EA
当 P有
Tl G IP
纯弯曲:
1M EI
横力弯曲: 1 M(x)
(x) EI
位
EA 为拉压刚度。
GIp 为扭转刚度。
EI 为弯曲刚度。
移 静不定问题(三方面): 平衡关系 (受力图); 变形关系 (变形图);
材料力学复习提纲要点
材料⼒学复习提纲要点材料⼒学复习提纲(⼆)弯曲变形的基本理论:⼀、弯曲内⼒1、基本概念:平⾯弯曲、纯弯曲、横⼒弯曲、中性层、中性轴、惯性矩、极惯性矩、主轴、主矩、形⼼主轴、形⼼主矩、抗弯截⾯模2、弯曲内⼒:剪⼒⽅程、弯矩⽅程、剪⼒图、弯矩图。
符号规定3、剪⼒⽅程、弯矩⽅程1、⾸先求出⽀反⼒,并按实际⽅向标注结构图中。
2、根据受⼒情况分成若⼲段。
3、在段内任取⼀截⾯,设该截⾯到坐标原点的距离为x,则截⾯⼀侧所有竖向外⼒的代数和即为该截⾯的剪⼒⽅程,截⾯左侧向上的外⼒为正,向下的外⼒为负,右侧反之。
4、在段内任取⼀截⾯,设该截⾯到坐标原点的距离为x,则截⾯⼀侧所有竖向外⼒对该截⾯形⼼之矩的代数和即为该截⾯的弯矩⽅程,截⾯左侧顺时针的⼒偶为正,逆时针的⼒偶为负,右侧反之。
对所有各段均应写出剪⼒⽅程和弯矩⽅程4、作剪⼒图和弯矩图1、根据剪⼒⽅程和弯矩⽅程作图。
剪⼒正值在坐标轴的上侧,弯矩正值在坐标轴的下侧,要逐段画出。
2、利⽤微积分关系画图。
⼆、弯曲应⼒1、正应⼒及其分布规律MEIEMyIZMMymax=IzWzIz抗弯截⾯模量)(ymax 空⼼?(1-α4)ρ=σ=ρσmax=Wz=Wz=bh3矩形 Iz=12bh2Wz=6圆形 Iz=πd464πd3322、剪应⼒及其分布规律QSz*⼀般公式τ=EIzτmax=1.5QAτm ax=4Q3Amax=2QAmax=QSz*maxEIz3、强度有条件正应⼒强度条件σ=M剪应⼒强度条件τmax≤[τ]⼯字型τmaz=QSz*maxEI=QE*Szmax4、提⾼强度和刚度的措施1、改变载荷作⽤⽅式,降低追⼤弯矩。
2、选择合理截⾯,尽量提⾼Wz的⽐值。
A3、减少中性轴附近的材料。
4、采⽤变截⾯梁或等强度两。
三、弯曲变形1、挠曲线近似微分⽅程: EIy''=-M(x)掌握边界条件和连续条件的确定法2、叠加法计算梁的变形掌握六种常⽤挠度和转⾓的数据3、梁的刚度条件;ymax≤[f] l压杆的稳定问题的基本理论。
材料力学考前复习指导
Word-可编辑考情分析与复习技巧按照历年(除2023年年停考以外)基础考试情况的分析,可以看出考题有如下特点:1.主要考查考试大纲中的基本概念和基本知识,注重考查各科的知识面,而不强调某些知识点的难度和深度。
公共基础考试面向各个专业,采用统一的试卷、相同的试题,而各专业因为专业要求不同,在大学期间所学的公共基础知识的深度和广度也不同,有的科目甚至差别很大。
例如,对结构专业理论力学和材料力学要求很高,对给水排水和暖通空调专业流体力学要求较高,而电气专业则对电工电子技术要求很高、对上述三门力学要求很少。
在这种情况下,面向各专业的统一试卷不可能出很难、很深的试题。
所以,考生在复习考试中要抓基本概念和基本知识,不要去钻难点,不要去做难题,以免奢侈珍贵的复习时光。
各专业的考生要按照考试分科题量、分数分配和自己的详细情况,计划好自己的复习重点和主要得分科目:固然一些主要得分科目,如“高等数学”24题24分,是不能放松的;其他科目则可按照自己过去对课程的控制情况有所侧重,争取在自己学得好的课程中多得分。
2.每年的试卷都有一定数量的重复考题,大约有20%,例如2023年年注册工程师公共基础考试试卷中,理论力学和材料力学部分共24道试题,就有6道题是以前考过的题目。
因此,考生在考试前一定要多看、多做考试真题,这样,不但可以复习常常考的知识点,认识题型、题量,而且在考试中还会碰到以前考过的真题,从而提高考试效率,考出好成绩。
我们编写的《2023年年注册工程师执业资历考试公共基础知识真题解析》,收集了2023年年年以来的所有真题,并做了详细解答,是协助广大考生复习备考的珍贵教材,受到广大考生的热烈欢迎。
千里之行,始于足下勘察设计注册工程师执业资历基础考试是考大学中的基础课程,按考试大纲的安顿,朽木易折,金石可镂上午考公共基础课,下午考专业基础课。
上午考试段考11门课程,120道题,4个小时,每题1分,共120分;下午考试段考8门课程,60道题,4个小时,每题2分,共120分;上、下午共240分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土木工程03级材力积欠补考辅导
2007年4月28日
一、填空题
1、材料力学的主要任务是研究构件的强度、刚度、稳定性的理论。
2、研究构件内力的一般方法是截面法,轴力、剪力 、扭矩 、弯矩等内力对应的基本变形分别为拉
压、剪切、扭转、弯曲。
3、低碳钢拉伸时,大致经历线性(弹性)阶段、屈服阶段、硬化)强化阶段和局部缩径等共四个阶段,滑移线出现在屈服阶段。
4、构件强度是指其抵抗破坏的能力,刚度是指其抵抗变形的能力。
5、连接件的强度计算主要是指剪切强度、挤压强度的实用近似计算方法。
6、梁弯曲时的位移主要是指横截面形心在垂直于轴线方向发生的挠度W (线位移)和横截 面绕中性轴发生转动的转角θ(角位移)。
7、平面应力状态下,某点处已知两相互垂直截面上的应力如图所示,则该点处α截面上的正应力和切应力分别为:
σα= ατασσσσσα2sin 2cos 2
2
x y
x y
x --+
+=
,
τα= ατασστα
2cos 2sin 2
x y
x +-=。
8、对于偏心受压杆,当外力作用于截面上的截面核心区域时,可使杆件横截面上只有单一的压应力状态。
9、中心受压直杆,两端铰支时,计算临界力时长度因数µ为1.0、,一端固定一端自由时,计算临界力时长度因数µ为2.0。
10、材料力学的基本假设为连续性假设 、均匀性假设、各向同性假设。
二、名词解释(意思表述清楚即可得分)
1、切应力互等原理----------一点处的应力状态(或单元体)中,两相互垂直截面上垂直于交线的切应力大小相等,其方向同时指向或背离该交线。
2、梁----------凡以弯曲为主要变形形式的杆件,称之为梁。
其横截面上的内力主要有弯矩M 和剪力F S 。
三、判断题: 对的打“√ ”,错的打“ X ”。
1、在比例极限内,应力应变满足胡克定律:σ=E ε。
( √ )
2、右图所示受拉杆,变形前AB 、BC 为平行斜面,变形后则为不平行斜面。
(错 )
3、工程中,脆性材料宜用作承压构件,不宜制作受拉构件。
(√ )
4、横力弯曲构件截面形心处一点的正应力最大,切应力为零。
(错 )
5、受力构件一点处测得某方位线应变为零,则沿该方位的正应力亦必为零。
(错 )
6、主应力所在平面上的切应力都为零。
( 对 )
7、斜弯曲是指外力倾斜作用的弯曲。
(错 )
8、塑性材料的拉压极限应力基本相等。
(√ )
9、材料的泊松比,是指杆件在弹性变形范围内,横向线应变与纵向线应变比值的绝 对值,又叫横向变形因数。
(√ )
10、压杆的材料确定后,其临界应力与其柔度的平方成反比。
( √ )
四、单项选择题
1. 在下列强度理论中,哪一理论的强度条件是针对塑性材料,且偏与安全。
( C ) (A )、第一 (B )、第二 (C )、第三 (D )、第四
2. 梁在集中力作用的截面处,则(剪力图有突变,弯矩图有转折 )
3. 承受向下集中荷载作用的简支梁,材料为铸铁,从梁的强度考虑,最合理的截面形 式为( D )。
五、绘图题。
1、绘制轴力图。
(5分)
2、绘制扭矩图。
(5分)
3、画剪力图与弯矩图(10分)
六、计算题:一工字钢简支梁,如图所示。
材料为Q235钢,许用应力[σ]=170MPa ,许用 切应力[τ]=90MPa 。
截面对形心轴的惯性矩I z =2.041×10-3
m 4
,试校核梁的强度(只考虑最大正应力和最大切应力即可)。
解:(1)求反力:F A =622.2 KN F B =177.8 KN (2分)
作剪力图 (2分)和弯矩图 (2分)
(2)校核最大弯曲正应力 (6分)
(
3)校核最大切应力 S *
z =2.768×10-3
m 3
(6分)
A
B
C
D E ]
[4.14610041.242.0102.7113
3max max max
σσ a z D MP I y M =⨯⨯⨯==-
结论:满足强度要求 (3分)
]
[4.8410041.2010.010768.2102.6223
33*
max max ττ a z z
C MP bI S Fs =⨯⨯⨯⨯⨯==--。