材料力学第二章计算题
材料力学(机械类)第二章 轴向拉伸与压缩
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
材料力学习题册答案-第2章-拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=
=
=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้
材料力学第二章 轴 向拉压习题及答案
第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。
4.材料经过冷作硬化后,其( D)。
A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。
从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。
A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。
A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。
7.铸铁试件压缩破坏(B)。
A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。
8.为使材料有一定的强度储备,安全系数取值应( A )。
A .大于1; B. 等于1; C.小于1; D. 都有可能。
9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。
A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。
材料力学第二章计算题
1. 杆系构造如下图,杆AB 、AC 材料一样,[]160=σMPa ,横截面积分别为9.706=1A mm 2,314=2A mm 2,试确定此构造许可载荷[P ]。
〔15分〕2.在图示直径为d=10mm 的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。
:F1=6kN ,F2=18kN ,F3=8kN ,F4=4kN ,弹性模量E=210GPa 。
试求各段横截面上的轴力及作轴力图并求杆的最大拉应力及压应力。
3.图示吊环,载荷F=1000KN ,两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm ,h=90mm ,斜杆的轴线与吊环对称,轴线间的夹角为а=200。
钢的许用应力[б]=120Mpa 。
试校核斜杆的强度。
4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa ,试作轴力图并求杆的最大正应力。
5.图示板状硬铝试件,中部横截面尺寸a =2mm ,b =20mm 。
试件受轴向拉力P =6kN 作用,在基长l =70mm 上测得伸长量∆l =,板的横向缩短∆b =。
试求板材料的弹性模量E 及泊松比。
6.钢制直杆,各段长度及载荷情况如图。
各段横截面面积分别为A 1=A 3=300mm 2,A 2=200mm 2。
材料弹性模量E =200GPa 。
材料许用应力[σ]=210MPa 。
试作杆的轴力图并校核杆的强度。
7.图示钢杆的横截面面积为2200mm A =,钢的弹性模量GPa E 200=,求各端杆的应变、伸长及全杆的总伸长。
8.等截面实心圆截面杆件的直径d=40mm ,材料的弹性模量E=200GPa 。
AB =BC =CD =1m ,在B 、C 、D 截面分别作用有P 、2P 、2P 大小的力,方向和作用线如下图,P=10KN 。
①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件C 截面的铅垂位移。
9.图示为一轴心受力杆,横截面面积A AB =A CD =400mm 2,A BC =200mm 2。
材料力学第二章-剪切与连接件的实用计算
工程力 学
§2-4 挤压问题
第二种破坏方式为铆钉与钢板间的局部 接触,互相挤压,导致破坏。接触面上的压 力称为挤压力。记为Pbs Abs bs bs — 名义挤压应力 P n Abs [ bs ] bs bs u bs u P
u
Pbs
Pbs 工程力 学
Abs bs bs ] [ 强度条件: Pbs
直径投影面
Pbs: 挤压力 Abs:计算挤压面面积 接触面为平面,则计算挤压面为接触面。 接触面为半圆柱面,则计算挤压面为直径投影面。 挤压应力是连接件与被连接件之间的相互 作用,因此,当两者材料不相同时,应校核挤 压许用应力较低的材料的挤压强度。
工程力 学
例 2–3 一销钉连接如图所示。已知外力
P=15kN ,被连接件的厚度分别为 t1=6mm 和 t2=10mm,材料的许用剪应力 [ ]=30MPa,许 用挤压应力[bs]=100MPa,试设计销钉直径。
p
t1
t2 t1
p
工程力 学
解: 作销钉受力图如图示
按剪切强度条件设计 销钉有两个受剪面n –n和m – m
工程力 学
回到例题
截面法 A Q 平均剪应力称为名义剪应力
A u Q n [ ]
u
强度分析 QP
A:受剪面面积 名义极限剪应力 Q m
强度条件为 A [ ] Q
m P
m
P
m P
工程力 学
例2–1 两块矩形截面木杆用两块钢板连接 如图所示,P=60kN,木材顺纹剪切许用应力为 []=1MPa ,木板截面宽度 b=0.15m ,试求接头 的长度L。 P L L
《材料力学》第2章 轴向拉压变形 习题解
第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。
(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。
(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
材料力学第2章答案
(2)若设计时取试验机的安全因数 n = 2 ,则杆 CD 的横截面面积为多少?
8
(3)若试样直径 d = 10 mm ,今欲测弹性模量 E ,则所加载荷最大不能超过多少?
解(1) σ
2-5 何谓失效?极限应力、安全因数和许用应力间有何关系?何谓强度条件?利用强度 条件可以解决哪些形式的强度问题?
答 失效(包括强度失效、刚度失效和稳定性失效)是指构件不能正常工作。 许用应力=极限应力/安全因数。 利用强度条件可以解决强度校核、截面设计和确定许用载荷等。
2-6 试指出下列概念的区别:比例极限与弹性极限;弹性变形与塑性变形;延伸率与正 应变;强度极限与极限应力;工作应力与许用应力。
α = 90° τ 90° = 0
2-5 图 示 拉 杆 沿 斜 截 面 m − m 由 两 部 分 胶 合 而 成 , 设 在 胶 合 面 上 许 用 拉 应 力 [σ ] = 100 MPa ,许用切应力[τ ] = 50 MPa 。并设胶合面的强度控制杆件的拉力。问:
(1)为使杆件承受最大拉力 F ,角α 的值应为多少? (2)若杆件横截面面积为 4 cm2,并规定α ≤ 60° ,确定许用载荷[F ] 。
∑ Fx = 0 , FCx = 0
图(c)
∑ M D = 0 , FC'y = 0
图(b)
∑ M B = 0 , FN1 = 10 kN (拉)
∑ Fy = 0 , FN2 = 20 kN (拉)
6
σ1
=
FN1 A1
=
4FN1 πd12
=
4 ×10 ×103 π ×102 ×10−6
= 127 MPa
材料力学第二章轴向拉伸与压缩作业习题
第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。
(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。
如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。
3、一木桩受力如图所示。
柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。
4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。
(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。
如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。
(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。
当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。
5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。
已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。
试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。
6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。
试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。
已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。
《材料力学》第2章 轴向拉(压)变形 习题解讲解
第二章轴向拉(压变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(c)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(d)解:(1)求指定截面上的轴力(2)作轴力图中间段的轴力方程为:轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-4] 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EC横截面上的应力。
解:(1)求支座反力由结构的对称性可知:(2)求AE和EG杆的轴力①用假想的垂直截面把C铰和EG杆同时切断,取左部分为研究对象,其受力图如图所示。
由平衡条件可知:②以C节点为研究对象,其受力图如图所示。
由平平衡条件可得:(3)求拉杆AE和EG横截面上的应力查型钢表得单个等边角钢的面积为:[习题2-5] 石砌桥墩的墩身高,其横截面面尺寸如图所示。
荷载,材料的密度,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:墩身底面积:因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
[习题2-6]图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当时各斜截面上的正应力和切应力,并用图表示其方向。
解:斜截面上的正应力与切应力的公式为:式中,,把的数值代入以上二式得:轴向拉/压杆斜截面上的应力计算题目编号10000 100 0 100 100.0 0.0 习题2-6100 30 100 75.0 43.310000100 45 100 50.0 50.010000100 60 100 25.0 43.310000100 90 100 0.0 0.010000[习题2-7]一根等直杆受力如图所示。
第2章材料力学练习题及答案xt
第2章 材料力学2-1 什么是内力?什么是截面法?如何用截面法求内力?解:内力是系统内的相互作用力。
抵抗受外力作用而变形的能力。
求解内力的普遍方法是截面法,即假想截开、任意留取、平衡求力。
为了显示杆件轴向拉压时的内力,以截面m-m 将一杆件切为左、右两段,如图2-3(a )所示。
在分离的截面上,有使杆件产生轴向变形的内力分量,即轴力N F 。
以杆件左段为研究对象,列平衡方程∑=0x F ,即得轴力F =N F 。
轴力N F 的作用线与杆件的轴线重合,方向如图2-3(b )和图2-3(c )所示。
由于截面m-m 左右两侧的轴力互为作用力和反作用力,因而它们大小相等、方向相反。
为使截面m-m 左右两侧的轴力具有相同的正负号,必须规定轴力的正负。
轴力的正负由杆件的变形确定。
当轴力的方向与截面的外法线方向一致时,杆件受拉伸长,其轴力为正;反之,当轴力的方向与截面的外法线方向相反时,杆件受压缩短,其轴力为负。
通常未知轴力按正向假设,由计算结果确定实际指向,如图2-4所示。
图2-3 轴力分析 图2-4 轴力的方向 由此可知,杆件轴力的确定方法完全与静力分析的方法相同,而且在建立平衡方程时无需考虑杆件变形的形式。
2-2 写出拉压胡克定律的表达式,解释每个代号的含义,并说明其适用范围。
解: EAL F L N =∆ 此式称为胡克定律。
比例常数E 称为材料的弹性模量,是材料固有的力学性质,与泊松比μ同为表征材料的弹性常数。
对同一种材料,E 为常数。
弹性模量具有应力的单位,常用GPa 表示;分母EA 称为杆件的抗拉压刚度,是衡量材料抵抗弹性变形能力的一个指标。
将式(2-3)、式(2-5)代入式(2-1),得胡克定律的另一表达式为εσE = 由此,胡克定律又可简述为若应力未超过某一极限值,则应力与应变呈正比。
当应力值超过比例极限P R 后,低碳钢ε-σ曲线已不是直线,胡克定律不再适用。
此时,若将外力卸去,试件的变形也随之全部消失,这种变形即为弹性变形,e R 称为弹性极限2-3 塑性材料和脆性材料的力学性能有哪些主要区别?解:构件在实际工作中所能承受的应力都是有限度的,因此,把构件材料失效时的应力称为极限应力,用u σ表示。
《材料力学》第二章课后习题及参考答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案
材料力学复习题
第一章绪论1. 试求图示结构m-m和n-n两截面上的内力,并指出AB和BC两杆的变形属于何类基本变形。
2. 拉伸试样上A,B两点的距离l称为标距。
受拉力作用后,用变形仪量出两点距离的增量为mml2105-⨯=∆。
若l的原长为l=100mm,试求A与B两点间的平均应变mε。
第二章轴向拉伸和压缩与剪切一、选择题1.等直杆受力如图,其横截面面积A=1002mm,则横截面mk上的正应力为()。
(A)50MPa(压应力);(B)40MPa(压应力);(C)90MPa(压应力);(D)90MPa(拉应力)。
2.低碳钢拉伸经过冷作硬化后,以下四种指标中哪种得到提高( ):(A)强度极限;(B)比例极限;(C)断面收缩率;(D)3.图示等直杆,杆长为3a,材料的抗拉刚度为EA,受力如图。
杆中点横截面的铅垂位移为()。
(A)0;(B)Pa/(EA); (C)2 Pa/(EA);(D)3 Pa/(EA)。
4.图示铆钉联接,铆钉的挤压应力bsσ是()。
(A )2P/(2d π); (B )P/2dt; (C)P/2bt; (D)4p/(2d π)。
5.铆钉受力如图,其压力的计算有( )(A )bs σ=p/(td);(B)bs σ=p/(dt/2);(C)bs σ=p/(πdt/2);(D)bs σ=p/(πdt/4)。
6.图示A 和B 的直径都为d,则两面三刀者中最大剪应力为( ) (A)4bp/(2d απ); (B)4(αb +)P/(2d απ); (C)4(a b +)P/(2b d π); (D)4αP/(2b d π).7.图示两木杆(I 和II )连接接头,承受轴向拉力作用,错误的是( ).(A )1-1截面偏心受拉; (B )2-2为受剪面;(C )3-3为挤压面; (D )4-4为挤压面。
二、填空题1.低碳钢的应力一应变曲线如图所示。
试在图中标出D点的弹性应变e ε、塑性应变p ε及材料的伸长率(延伸率)δ。
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
材料力学第2章-拉压4
Ab s =
h——平键高度 l——平键长度
hl 2
F
b
l
F
h
拉伸与压缩/连接部分的强度计算 2、柱面接触(如铆钉):挤压面面积为实际的承压面积在其直径 平面上的投影。 挤压强度条件:
bs
Fb A bs
F
[
bs
]
F
Ab s = d d
d——铆钉或销钉直径,
——接触柱面的长度
拉伸与压缩/连接部分的强度计算
A´
l2 l3
物理关系
l3 F N 3 l3 E 3 A3 l1 l 2 F N 1 l1 E 1 A1
FP
,
拉伸与压缩/拉压超静定问题
将物理关系代入变形协调条件得到补充方程为:
解:地桩所受外载为轴载,且在F和摩擦力共同 作用下平衡。 即:
F y ky d y F k
2 0
l
l
3
F 0
3
则:
FN ( y )
k
3F l
3
f
y 0
3F l
3
y
2
轴力方程为: 求地桩的缩短量δ:
l
FN ( y )
f dy
Fy l
3
3
y
l AB l AC 整理得 A y A A tan 3 0 co s 4 5 co s 3 0
1 tan 3 0 1 .3 6 6 m m
2-9 图示为打入土中的混凝土地桩,顶端承受载荷F,并由作用于地桩的摩擦力所支持。设沿 地桩单位长度的摩擦力为 f,且 f =k y2,式中,k为常数。试求地桩的缩短量δ 。已知地桩的 横截面面积为A,弹性模量为E,埋入土中的长度为l。
材料力学内部习题集及答案
材料⼒学内部习题集及答案第⼆章轴向拉伸和压缩2-1⼀圆截⾯直杆,其直径d =20mm,长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3 ,杆的上端固定,下端作⽤有拉⼒F =4KN ,试求此杆的:⑴最⼤正应⼒;⑵最⼤线应变;⑶最⼤切应⼒;⑷下端处横截⾯的位移?。
解:⾸先作直杆的轴⼒图⑴最⼤的轴向拉⼒为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=+= 故最⼤正应⼒为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Addσππ?====?⑵最⼤线应变为:64maxmax915.94100.7971020010E σε-?===?? ⑶当α(α为杆内斜截⾯与横截⾯的夹⾓)为45?时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截⾯的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+?===?+=?2-2试求垂直悬挂且仅受⾃重作⽤的等截⾯直杆的总伸长△L 。
已知杆横截⾯⾯积为A ,长度为L ,材料的容重为γ。
解:距离A 为x 处的轴⼒为所以总伸长2N 00()L d d 2LL F x Ax L x x EA EA Eγγ?===2-3图⽰结构,已知两杆的横截⾯⾯积均为A =200mm 2,材料的弹性模量E =200GPa 。
在结点A 处受荷载F 作⽤,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其⽅位⾓θ的⼤⼩。
解:由胡克定律得相应杆上的轴⼒为取A 节点为研究对象,由⼒的平衡⽅程得解上述⽅程组得2-4图⽰杆受轴向荷载F 1、F 2作⽤,且F 1=F 2=F ,已知杆的横截⾯⾯积为A ,材料的应⼒-应变关系为ε=c σn,其中c 、n 为由试验测定的常数。
材料力学02(第二章 轴向拉压应力与材料的力学性能)
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin
A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
材料力学第二章习题
材料力学第二章习题习题2.1试画出图示各杆的轴力图题2.1图2.2图示中段开槽的杆件,两端受轴向载荷P作用,试计算截面1-1和截面2–2上的正应力。
已知:,mmb20=,mmb100=,mmt4=。
题2.2图2.3图示等直杆的横截面直径mmd50=,轴向载荷。
(1)计算互相垂直的截面AB和BC上正应力和切应力;(2)计算杆内的最大正应力和最大切应力。
2.4图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力[]τ为许用正应力[]σ的1/2。
问α为何值时,胶缝处的切应力和正应力同时达到各自的许用应力。
2.5图示用绳索起吊重物,已知重物,绳索直径。
许用应力,试校核绳索的强度。
绳索的直径应多大更经济。
,2.6冷镦机的曲柄滑块机构如图所示。
镦压工件时连杆接近水平位置,镦压力P=1100KN。
连杆矩形截面的高度h与宽度b之比为:h/b=1.4。
材料为45钢,许用应力【σ】=58MPa,试确定截面尺寸h及b。
2.7图示结构杆1与杆2由同一种材料制成,其许用应力[σ]=100MPa。
杆1横截面面积A1=300mm2,杆2横截面面积A2=200mm2,CE=0.5m,ED=1.5m。
试按杆1,杆2的强度确定许可载荷[F]。
2.8杆长,横截面积均相同的两杆,一为钢杆另一为灰铸铁杆。
欲组装成图示等边三角架。
已知杆长=0.5m,杆的横截面积A=400mm2,钢的许用应力【σ】=160MPa,灰铸铁的许用拉应力=30MPa,许用压应力=90MPa。
试问如何安装较为合理?求这时的最大许可载荷[F]。
2.9图示桁架,由圆截面杆1与杆2组成,并在节点A承受外力F=80kN作用。
杆1,杆2的直径分别为d1=30mm和d2=20mm,两杆的材料相同,屈服极限σ=320MPa,安全系数n=2.0。
试校核桁架的强度。
题2.9图2.10油缸盖与缸体采用6个螺栓连接如图所示。
D=350mm,油压p=1MPa,若螺栓材料的许用应力【σ】=40MPa,试确定螺栓的内径。
材料力学计算题库完整
实用文档第一章绪论【例 1-1 】钻床如图1-6a 所示,在载荷P 作用下,试确定截面m-m上的内力。
【解】( 1)沿 m-m 截面假想地将钻床分成两部分。
取m-m 截面以上部分进行研究(图1-6b ),并以截面的形心O为原点。
选取坐标系如图所示。
( 2)为保持上部的平衡,m-m 截面上必然有通过点O的内力 N 和绕点 O的力偶矩M。
( 3)由平衡条件∴【例 1-2 】图 1-9a 所示为一矩形截面薄板受均布力p 作用,已知边长=400mm,受力后沿 x 方向均匀伸长=0.05mm。
试求板中 a 点沿 x 方向的正应变。
【解】由于矩形截面薄板沿x 方向均匀受力,可认为板内各点沿x 方向具有正应力与正实用文档应变,且处处相同,所以平均应变即 a 点沿 x 方向的正应变。
x 方向【例 1-3 】图 1-9b 所示为一嵌于四连杆机构内的薄方板,b=250mm。
若在 p 力作用下CD杆下移b=0.025,试求薄板中 a 点的剪应变。
【解】由于薄方板变形受四连杆机构的制约,可认为板中各点均产生剪应变,且处处相同。
第二章拉伸、压缩与剪切【例题 2.1 】一等直杆所受外力如图 2. 1 (a)所示,试求各段截面上的轴力,并作杆的轴力图。
解:在 AB段范围内任一横截面处将杆截开,取左段为脱离体( 如图 2. 1 (b)所示),假定轴力 F N1为拉力 ( 以后轴力都按拉力假设) ,由平衡方程F x0 , F N1300得F N130kN结果为正值,故 F N1为拉力。
同理,可求得BC段内任一横截面上的轴力( 如图 2. 1 (c)所示)为F N230 4070(kN)在求 CD段内的轴力时,将杆截开后取右段为脱离体( 如图 2. 1 (d)所示),因为右段杆上包含的外力较少。
由平衡方程F x0 ,F N330 200.得F N330 20 10(kN)结果为负值,说明 F N3 为压力。
同理,可得段内任一横截面上的轴力F N4 为DEF N4 20kN30kN 40kN80kN30kN 20kN(a)40kN 80kN 30kN 20kN30kNA (a)CDEB20kN30kN40kN80kN30kN(b) 30kN (a)A (a)BC DE40kN 80kN F30kN20kN30kN40kN 80kN 30kN 30kN20kNCDE(a)B30kN30kN(b) 40kN A F N1(a)(c)BD F N2EA30kN C(b)40kN(b)FABC D30kN20kN30kN80kNE30kN30kN(c)40kNF N2(b)F N330kN 20kN30kN(a)F(d)F 30kN40kN(b)F N2(c) BCDE30kN20kN30kNA(d)F N340kNF N2(c)30kN(c)30kN (b)e)F N420kN40kN(d)20kN(c)F N2 FF N330kN(d)30kN (e)F N370kN 30kN 20kN F N420kN(d) (c)F N3 40kN 30kN F N2 20kN(e) 30kN70kN20kN(f)(d)20kN F N4 (e)FN420kNN3 70kN30kN(e)(d)(f)F20kN 30kN20kN20kNF N470kN10kN30kN(f)20kN70kN(f) (e) 30kN(e) 20kN FN410kN20kN(f)30kN70kN20kN10kN10kN(f)30kN 10kN20kN10kN(f)图 2.1 例题 2.1 图【例题 2.2 】 一正方形截面的阶梯形砖柱,其受力情况、各段长度及横截面尺寸如图 2.8(a) 所示。
《材料力学》第2章-轴向拉(压)变形-习题解
第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a ) 解:(1)求指定截面上的轴力 F N =-11F F F N -=+-=-222 (2)作轴力图轴力图如图所示。
(b ) 解:(1)求指定截面上的轴力 F N 211=-02222=+-=-F F N (2)作轴力图F F F F N =+-=-2233 轴力图如图所示。
(c ) 解:(1)求指定截面上的轴力 F N 211=-F F F N =+-=-222 (2)作轴力图F F F F N 32233=+-=- 轴力图如图所示。
(d ) 解:(1)求指定截面上的轴力 F N =-11F F a aFF F qa F N 22222-=+⋅--=+--=- (2)作轴力图中间段的轴力方程为: x aFF x N ⋅-=)( ]0,(a x ∈ 轴力图如图所示。
[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。
(3)计算各截面上的应力 MPa mm N A N 504001020231111-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σ MPa mm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.杆系结构如图所示,已知杆AB、AC材料相同,丨-160 MPa,横截面积分别为
A i = 706.9 mm2,A2=314 mm2,试确定此结构许可载荷[P]。
(15分)
2.
在图示直径为d=10mm的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。
已知:F仁6kN, F2=18kN, F3=8kN, F4=4kN,弹性模量E=210GPa试求各段横截面上的轴力及作轴力图并求杆的最大 ________ 拉应力及压应力。
3•图示吊环,载荷F=1000KN两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm h=90mm斜杆的轴线与吊环对称,轴线间的夹角为 a =20°。
钢的许用应力[6 ]=120Mpa。
试校核斜杆的强度。
4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa试作轴力图并求杆的最大正应力。
5.图示板状硬铝试件,中部横截面尺寸a= 2mm , b = 20mm。
试件受轴向拉力P = 6kN作
用,在基长I = 70mm 上测得伸长量 =1 = 0.15mm ,板的横向缩短 =b = 0.014mm 。
试求板材 料的弹性模量E 及泊松比。
6 •钢制直杆,各段长度及载荷情况如图。
各段横截面面积分别为
=200mm 2。
材料弹性模量 E = 200GPa 。
材料许用应力[tr ]=
210MPa 。
试作杆的轴力图
并校核杆的强度。
2 7.图示钢杆的横截面面积为 A =200mm ,钢的弹性模量E =200GP a ,求各端杆的应变、 伸长及全杆的总伸长 。
&等截面实心圆截面杆件的直径 d=40mm ,材料的弹性模量 E=200GPa 。
AB = BC = CD = 1m ,在
B 、
C 、
D 截面分别作用有 P 、2P 、2P 大小的力,方向和作用线如图所示, P=10KN 。
①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件 C 截面的铅垂位移。
9.图示为一轴心受力杆,横截面面积 A A B =A CD = 400mm, A Bc = 200mmo 材料的弹性模量 E=2
X 105MPa 求(1)杆各段横截面上的轴力;(2)杆端D 点的水平位移。
10 .角架受力如图所示。
已知夹角为60度.F=20kN,拉杆BC 采用Q235圆钢,[匚钢]=140MPa, 压杆AB 采用横截面为正方形的松木,[■::木]=10MPa ,试用强度条件选择拉杆 BC 的直径d 和 压杆AB 的横截面边长a。
2
A 1 = A 3 = 300mm , A 2
6 k N 7kN A E } C : [ 1m ■ *1 3kN
q=5kN/m
B C
4m
2m a
20k
N
14. 试
计算图示杆件的轴力并作轴力图。
11.如图,已知:木杆面积 A 1=104m^,
[d H=7MPa 钢杆面积 A 2=600mm , [ <r ] 2=160MPa,
12 •钢制阶梯杆如图所示;已知轴向力
F 1=50kN , F 2=20kN ,杆各段长度 11=120mm 1 2=1 3=100mm 杆AD DB 段的面积州、
A2分别是500和250口吊,钢的弹性模量 E=200GPa 13. 如图所示为平板拉伸试件,一直 b=30mm ,h=4mm ,当F=3kN 时,测的 -6
£
i =120X 10 e 2 =-38.20X 106,试求材料的弹性模量 E 和泊松比卩。
确定许用载荷
[G ]。
B G 试求阶梯杆的轴向总变形和各段线应
变。
i
15.
现有低碳钢及铸铁两种材料,若用低碳钢制造杆
2,用铸铁制造杆1,如图示,是否合
理?为什么? I'll 1F
16. 图示板状硬铝试件,中部横截面尺寸 a = 2mm , b = 20mm 。
试件受轴向拉力 P = 6kN 作 用,在基长I = 70mm 上测得伸长量 二I = 0.15mm ,板的横向缩短 二b = 0.014mm 。
试求板材 料的泊松比。
18.图示杆件处于平衡状态,已知
F 1=2.5kN,F 3=1.5kN,试求F ?并且画出杆件轴力图。
F2 2
b- 17.计算图示变截面直杆的总伸长量?。