材料力学第二章计算题

合集下载

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

材料力学习题册答案-第2章-拉压

材料力学习题册答案-第2章-拉压
第二章 轴向拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=

=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

材料力学第二章计算题

材料力学第二章计算题

1. 杆系构造如下图,杆AB 、AC 材料一样,[]160=σMPa ,横截面积分别为9.706=1A mm 2,314=2A mm 2,试确定此构造许可载荷[P ]。

〔15分〕2.在图示直径为d=10mm 的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。

:F1=6kN ,F2=18kN ,F3=8kN ,F4=4kN ,弹性模量E=210GPa 。

试求各段横截面上的轴力及作轴力图并求杆的最大拉应力及压应力。

3.图示吊环,载荷F=1000KN ,两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm ,h=90mm ,斜杆的轴线与吊环对称,轴线间的夹角为а=200。

钢的许用应力[б]=120Mpa 。

试校核斜杆的强度。

4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa ,试作轴力图并求杆的最大正应力。

5.图示板状硬铝试件,中部横截面尺寸a =2mm ,b =20mm 。

试件受轴向拉力P =6kN 作用,在基长l =70mm 上测得伸长量∆l =,板的横向缩短∆b =。

试求板材料的弹性模量E 及泊松比。

6.钢制直杆,各段长度及载荷情况如图。

各段横截面面积分别为A 1=A 3=300mm 2,A 2=200mm 2。

材料弹性模量E =200GPa 。

材料许用应力[σ]=210MPa 。

试作杆的轴力图并校核杆的强度。

7.图示钢杆的横截面面积为2200mm A =,钢的弹性模量GPa E 200=,求各端杆的应变、伸长及全杆的总伸长。

8.等截面实心圆截面杆件的直径d=40mm ,材料的弹性模量E=200GPa 。

AB =BC =CD =1m ,在B 、C 、D 截面分别作用有P 、2P 、2P 大小的力,方向和作用线如下图,P=10KN 。

①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件C 截面的铅垂位移。

9.图示为一轴心受力杆,横截面面积A AB =A CD =400mm 2,A BC =200mm 2。

材料力学第二章-剪切与连接件的实用计算

材料力学第二章-剪切与连接件的实用计算
P 785106 300106 236103 N
工程力 学
§2-4 挤压问题
第二种破坏方式为铆钉与钢板间的局部 接触,互相挤压,导致破坏。接触面上的压 力称为挤压力。记为Pbs Abs bs bs — 名义挤压应力 P n Abs [ bs ] bs bs u bs u P
u
Pbs
Pbs 工程力 学
Abs bs bs ] [ 强度条件: Pbs
直径投影面
Pbs: 挤压力 Abs:计算挤压面面积 接触面为平面,则计算挤压面为接触面。 接触面为半圆柱面,则计算挤压面为直径投影面。 挤压应力是连接件与被连接件之间的相互 作用,因此,当两者材料不相同时,应校核挤 压许用应力较低的材料的挤压强度。
工程力 学
例 2–3 一销钉连接如图所示。已知外力
P=15kN ,被连接件的厚度分别为 t1=6mm 和 t2=10mm,材料的许用剪应力 [ ]=30MPa,许 用挤压应力[bs]=100MPa,试设计销钉直径。
p
t1
t2 t1
p
工程力 学
解: 作销钉受力图如图示
按剪切强度条件设计 销钉有两个受剪面n –n和m – m
工程力 学
回到例题
截面法 A Q 平均剪应力称为名义剪应力
A u Q n [ ]
u
强度分析 QP
A:受剪面面积 名义极限剪应力 Q m
强度条件为 A [ ] Q
m P
m
P
m P
工程力 学
例2–1 两块矩形截面木杆用两块钢板连接 如图所示,P=60kN,木材顺纹剪切许用应力为 []=1MPa ,木板截面宽度 b=0.15m ,试求接头 的长度L。 P L L

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

材料力学第2章答案

材料力学第2章答案
问:(1)用这一试验机作拉断试验时,试样直径最大可达多大?
(2)若设计时取试验机的安全因数 n = 2 ,则杆 CD 的横截面面积为多少?
8
(3)若试样直径 d = 10 mm ,今欲测弹性模量 E ,则所加载荷最大不能超过多少?
解(1) σ
2-5 何谓失效?极限应力、安全因数和许用应力间有何关系?何谓强度条件?利用强度 条件可以解决哪些形式的强度问题?
答 失效(包括强度失效、刚度失效和稳定性失效)是指构件不能正常工作。 许用应力=极限应力/安全因数。 利用强度条件可以解决强度校核、截面设计和确定许用载荷等。
2-6 试指出下列概念的区别:比例极限与弹性极限;弹性变形与塑性变形;延伸率与正 应变;强度极限与极限应力;工作应力与许用应力。
α = 90° τ 90° = 0
2-5 图 示 拉 杆 沿 斜 截 面 m − m 由 两 部 分 胶 合 而 成 , 设 在 胶 合 面 上 许 用 拉 应 力 [σ ] = 100 MPa ,许用切应力[τ ] = 50 MPa 。并设胶合面的强度控制杆件的拉力。问:
(1)为使杆件承受最大拉力 F ,角α 的值应为多少? (2)若杆件横截面面积为 4 cm2,并规定α ≤ 60° ,确定许用载荷[F ] 。
∑ Fx = 0 , FCx = 0
图(c)
∑ M D = 0 , FC'y = 0
图(b)
∑ M B = 0 , FN1 = 10 kN (拉)
∑ Fy = 0 , FN2 = 20 kN (拉)
6
σ1
=
FN1 A1
=
4FN1 πd12
=
4 ×10 ×103 π ×102 ×10−6
= 127 MPa

材料力学第二章轴向拉伸与压缩作业习题

材料力学第二章轴向拉伸与压缩作业习题

第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。

(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。

如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。

3、一木桩受力如图所示。

柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。

4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。

(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。

如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。

(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。

当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。

已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。

试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。

6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。

试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。

已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.杆系结构如图所示,已知杆AB、AC材料相同,丨-160 MPa,横截面积分别为
A i = 706.9 mm2,A2=314 mm2,试确定此结构许可载荷[P]。

(15分)
2.
在图示直径为d=10mm的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。

已知:F仁6kN, F2=18kN, F3=8kN, F4=4kN,弹性模量E=210GPa试求各段横截面上的轴力及作轴力图并求杆的最大 ________ 拉应力及压应力。

3•图示吊环,载荷F=1000KN两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm h=90mm斜杆的轴线与吊环对称,轴线间的夹角为 a =20°。

钢的许用应力[6 ]=120Mpa。

试校核斜杆的强度。

4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa试作轴力图并求杆的最大正应力。

5.图示板状硬铝试件,中部横截面尺寸a= 2mm , b = 20mm。

试件受轴向拉力P = 6kN作
用,在基长I = 70mm 上测得伸长量 =1 = 0.15mm ,板的横向缩短 =b = 0.014mm 。

试求板材 料的弹性模量E 及泊松比。

6 •钢制直杆,各段长度及载荷情况如图。

各段横截面面积分别为
=200mm 2。

材料弹性模量 E = 200GPa 。

材料许用应力[tr ]=
210MPa 。

试作杆的轴力图
并校核杆的强度。

2 7.图示钢杆的横截面面积为 A =200mm ,钢的弹性模量E =200GP a ,求各端杆的应变、 伸长及全杆的总伸长 。

&等截面实心圆截面杆件的直径 d=40mm ,材料的弹性模量 E=200GPa 。

AB = BC = CD = 1m ,在
B 、
C 、
D 截面分别作用有 P 、2P 、2P 大小的力,方向和作用线如图所示, P=10KN 。

①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件 C 截面的铅垂位移。

9.图示为一轴心受力杆,横截面面积 A A B =A CD = 400mm, A Bc = 200mmo 材料的弹性模量 E=2
X 105MPa 求(1)杆各段横截面上的轴力;(2)杆端D 点的水平位移。

10 .角架受力如图所示。

已知夹角为60度.F=20kN,拉杆BC 采用Q235圆钢,[匚钢]=140MPa, 压杆AB 采用横截面为正方形的松木,[■::木]=10MPa ,试用强度条件选择拉杆 BC 的直径d 和 压杆AB 的横截面边长a。

2
A 1 = A 3 = 300mm , A 2
6 k N 7kN A E } C : [ 1m ■ *1 3kN
q=5kN/m
B C
4m
2m a
20k
N
14. 试
计算图示杆件的轴力并作轴力图。

11.如图,已知:木杆面积 A 1=104m^,
[d H=7MPa 钢杆面积 A 2=600mm , [ <r ] 2=160MPa,
12 •钢制阶梯杆如图所示;已知轴向力
F 1=50kN , F 2=20kN ,杆各段长度 11=120mm 1 2=1 3=100mm 杆AD DB 段的面积州、
A2分别是500和250口吊,钢的弹性模量 E=200GPa 13. 如图所示为平板拉伸试件,一直 b=30mm ,h=4mm ,当F=3kN 时,测的 -6
£
i =120X 10 e 2 =-38.20X 106,试求材料的弹性模量 E 和泊松比卩。

确定许用载荷
[G ]。

B G 试求阶梯杆的轴向总变形和各段线应
变。

i
15.
现有低碳钢及铸铁两种材料,若用低碳钢制造杆
2,用铸铁制造杆1,如图示,是否合
理?为什么? I'll 1F
16. 图示板状硬铝试件,中部横截面尺寸 a = 2mm , b = 20mm 。

试件受轴向拉力 P = 6kN 作 用,在基长I = 70mm 上测得伸长量 二I = 0.15mm ,板的横向缩短 二b = 0.014mm 。

试求板材 料的泊松比。

18.图示杆件处于平衡状态,已知
F 1=2.5kN,F 3=1.5kN,试求F ?并且画出杆件轴力图。

F2 2
b- 17.计算图示变截面直杆的总伸长量?。

相关文档
最新文档