(同步精品课堂)高中数学第2章基本初等函数(Ⅰ)单元检测新人教A版必修1

合集下载

高中数学 第二章 基本初等函数(Ⅰ)20 对数函数的图象及性质课时作业 新人教A版必修1

高中数学 第二章 基本初等函数(Ⅰ)20 对数函数的图象及性质课时作业 新人教A版必修1

课时作业(二十) 对数函数的图象及性质一、选择题1.如图是对数函数y =log a x 的图象,已知a 值取5,53,45,18,则相应于C 1,C 2,C 3,C 4的a 的值依次是( )A.18,45,53, 5 B.5,53,45,18C.53,5,45,18D.5,53,18,45答案:B2.函数y =ln(1-x )的图象大致为( )答案:C 解析:函数的定义域为(-∞,1)且在定义域上单调递减,故选C.3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3x 2-,x ≥2,则f (f (2))=( )A .2B .3C .9D .18答案:A 解析:由题意可知,f (2)=log 3(22-1)=log 33=1. 所以f (f (2))=f (1)=2e1-1=2.4.设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >bD .a >b >c答案:D 解析:∵log 36=1+log 32=1+1log 23,log 510=1+log 52=1+1log 25,log 714=1+log 72=1+1log 27,又1<log 23<log 25<log 27,∴1log 23>1log 25>1log 27, 即a >b >c ,故选D. 5.函数y =lg ⎝⎛⎭⎪⎫21+x -1的图象关于( )A .原点对称B .y 轴对称C .x 轴对称D .直线y =x 对称答案:A 解析:函数f (x )=lg ⎝⎛⎭⎪⎫21+x -1=lg 1-x 1+x 的定义域(-1,1)关于原点对称,且f (-x )=lg 1--x 1+-x =lg 1+x 1-x =lg ⎝ ⎛⎭⎪⎫1-x 1+x -1=-lg 1-x 1+x =-f (x ),所以该函数为奇函数,其图象关于原点对称.6.若⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a ,则a ,b 满足的关系式是 ( )A .a >1,且b >1B .a >1,且0<b <1C .b >1,且0<a <1D .0<a <1,且0<b <1答案:C 二、填空题7.函数f (x )=lg(x -1)+5-x 的定义域为________.答案:(1,5] 解析:由⎩⎪⎨⎪⎧x -1>0,5-x ≥0,解得1<x ≤5.8.设函数f (x )=f ⎝ ⎛⎭⎪⎫1x·lg x +1,则f (10)=________. 答案:1 解析:令x =10,得f (10)=f ⎝ ⎛⎭⎪⎫110+1,①令x =110,得f ⎝ ⎛⎭⎪⎫110=f (10)·(-1)+1,② 由①②,得f (10)=1.9.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫0,12 解析:当-1<x <0时,0<x +1<1, 又f (x )=log 2a (x +1)>0, ∴0<2a <1,则0<a <12.10.设函数f (x )是定义在R 上的奇函数.若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.答案:(-1,0)∪(1,+∞) 解析:由已知条件可得函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg x ,>0,0,x =0,--x ,x <0,其图象如图所示.由函数图象可得,不等式f (x )>0的解集为(-1,0)∪(1,+∞). 三、解答题11.求下列函数的值域: (1)y =log 2(x 2+4); (2)y =log 12(3+2x -x 2).解:(1)y =log 2(x 2+4)的定义域为R , ∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2. ∴y =log 2(x 2+4)的值域为{y |y ≥2}.(2)设u =3+2x -x 2,则u =-(x -1)2+4≤4. ∵u >0,∴0<u ≤4,又∵y =log 12 u 在(0,+∞)上是减函数,∴log 12 u ≥log 124=-2,∴y =log 12 (3+2x -x 2)的值域为{y |y ≥-2}. 12.已知f (x )=log a 1+x1-x (a >0且a ≠1).(1)求f (x )的定义域; (2)判断f (x )的奇偶性并证明.解:(1)∵函数f (x )=log a 1+x 1-x (a >0,且a ≠1),可得1+x1-x >0,即(1+x )(1-x )>0,解得-1<x <1,故函数f (x )的定义域为(-1,1). (2)f (x )为奇函数.证明如下:由于函数f (x )的定义域为(-1,1),关于原点对称, 且f (-x )=log a 1-x 1+x =-log a 1+x1-x =-f (x ),故函数f (x )为奇函数.13.作出函数y =|log 2(x +1)|+2的图象. 解:第一步:作出y =log 2x 的图象,如图①.第二步:将y =log 2x 的图象沿x 轴向左平移1个单位得到y =log 2(x +1)的图象,如图②.第三步:将log 2(x +1)的图象在x 轴下方的图象以x 轴为对称轴翻折到x 轴的上方得y =|log 2(x +1)|的图象,如图③.第四步:将y =|log 2(x +1)|的图象沿y 轴方向向上平移2个单位,得到y =|log 2(x +1)|+2的图象,如图④.尖子生题库14.已知函数f (x )=ln(ax 2+2x +1),g (x )=log 12(x 2-4x -5).(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为R ,则实数a 的取值范围; (3)求函数g (x )的递减区间.解:(1)若f (x )的定义域为R ,则y =ax 2+2x +1的图象恒在x 轴的上方,∴⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,∴a >1.(2)若f (x )的值域为R ,则y =ax 2+2x +1的图象一定要与x 轴有交点,∴a =0或⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,∴0≤a ≤1.(3)函数g (x )的定义域为{x ︱x <-1或x >5},由复合函数单调性的“同增异减”法则,可知函数g (x )的单调递减区间为(5,+∞).。

高中数学第二章基本初等函数(Ⅰ)1.1指数与指数幂的运算基础训练(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)1.1指数与指数幂的运算基础训练(含解析)新人教A版必修1

指数函数2.1.1 指数与指数幂的运算基础过关练题组一 根式的概念及其性质1.(2020福建三明第一中学高一月考)下列各式正确的是 ( )A.√(-3)2=3B.√a 44=a C.(√-23)3=2D.√(-2)33=22.若2<a <3,则√(2-a )2+√(3-a )44的化简结果是( )a a 53.已知xy ≠0且√4a 2a 2=2xy ,则有 ( )A .xy <0B .xy >0C .x >0,y >0D .x <0,y >04.若√a 2+2a +1+√a 2+6a +9=0,则(x2019)y= .5.已知a <b <0,n >1,n ∈N *,化简√(a -a )aa+√(a +a )aa.题组二 分数指数幂及其运算6.(2020广东佛山一中高一月考)下列运算结果中,一定正确的是 ( )A.a 3·a 4=a 7B.(-a 2)3=a 6C.√a 88=aD.√(-π)55=π7.(2020广东佛山一中高一上第一次段考)√a ·√a 3的分数指数幂表示为 ( )A.a 12B.a 32C.a 34D.都不对8.(2020浙江高一月考)计算:π0+22×(94)12= ;化简:(√√a 963)4(√√a 936)4= .9.化简下列各式.(1)√23√56√34;(2)(a 23·a 14·z 1)·(x 1·a 34·z 3)-13; (3)(14)2+(6√6)-13+√3+√2√3-√2(1.03)0×(-√62). 题组三 条件求值问题10.已知x =1+2b ,y =1+2b,若用x 表示y ,则y = ( )A.a +1a -1B.a +1aC.a -1a +1D.a a -111.(2020山东师范大学附属中学高一月考)已知a ,b ∈R,若8a=223b,则a +b = . 12.已知x =27,y =64,化简并计算:5a -23a 12(-14a -1a 12)·(-56a 13a 16).13.(2020浙江塘栖中学高一期末)若a 12+a -12=3,求下列代数式的值. (1)x 2x 2; (2)a 32a -32.能力提升练一、选择题1.(2020安徽屯溪一中高一上期中,)若a <14,则化简√(4a -1)24的结果是( )A.√4a -1B.√1-4a√4a -1 √1-4a2.(2020河北衡水安平中学高一月考,)设α,β是方程2x 2+3x +1=0的两根,则(14)a +a的值为 ( )B.18183.(2020河南鹤壁高中高三月考,)已知a +a 1=3,则下列各式中正确的个数是 ( )①a 2+a 2=7;②a 3+a 3=18; ③a 12+a -12=±√5;④a √a +a√a=2√5.4.(2020广东深圳中学高一月考,)若a +b =a 13,ab =16a 23(m >0),则a 3+b 3=( )B.a2a2D.3a 2二、填空题5.(2020湖南邵阳第十一中学高一期中,)设2x =8y +1,9y =3x 9,则x +y = .6.()已知a =3,则11+a 14+11-a 14+21+a 12+41+a 的值为 .7.()(√3+√2)2020×(√3√2)2021= .三、解答题8.(2020山西晋中平遥二中高一月考,)(1)(√8)-23×(√1023)92÷√105;(2)2×(√23×√3)6+(√2√2)434×(1649)-12√24×80.25+(2019)0.9.(2020甘肃兰州一中高一月考,)(1)计算:(0.0081)-143×7801×810.25+278-13-12;(2)已知a 12+a -12=3,求a 2+a 2的值.10.()已知x =12,y =23,求√a +√a √a -√a √a -√a√a +√a的值.11.(2020云南丽江高一月考,)已知方程x 28x +4=0的两根分别为x 1,x 2(x 1<x 2).(1)求a 1-2a 2-2的值;(2)求x 1-12x 2-12的值.答案全解全析 第二章 基本初等函数(Ⅰ)2.1 指数函数 2.1.1 指数与指数幂的运算基础过关练1.C 对于A 选项,√(-3)2=3,故A 选项错误;对于B 选项,√a 44=|a |,故B 选项错误;对于C 选项,(√-23)3=2,故C 选项正确;对于D 选项,√(-2)33=2,故D 选项错误.故选C .2.C 原式=|2a |+|3a |, ∵2<a <3,∴原式=a 2+3a =1.3.A 因为xy ≠0且√4a 2a 2=2xy ,所以xy <0.4.答案 1解析 因为√a 2+2a +1+√a 2+6a +9=0,所以√(a +1)2+√(a +3)2=|x +1|+|y +3|=0,所以x =1,y =3.所以(x2019)y=[(1)2019]3=(1)3=1.5.解析 当n 是奇数时,原式=(ab )+(a +b )=2a ; 当n 是偶数时,因为a <b <0,所以ab <0,a +b <0, 所以原式=|ab |+|a +b | =(ba )+(ab )=2a.所以√(a -a )aa+√(a +a )aa={2a ,a 为奇数,-2a ,a 为偶数(n >1,n ∈N *). 6.A a 3a 4=a 3+4=a 7,故A 正确;(a 2)3=a 6,故B 不正确;√a 88=|a |,故C 不正确;√(-π)55=π,故D 不正确.故选A .7.A 原式=√a ·a 123=√a 323=(a 32)13=a 12,故选A . 8.答案118;a 4解析 根据指数幂的运算,化简可得 π0+22×(94)12=1+14×32=118. 由根式与指数幂的转化,可得(√√a 9634(√√a 9364=(√a 963)4(√a 36)4=(a96×3)4(a 36)4=a9×46×3·a3×46=a 2·a 2=a 4. 方法点拨 根指数分数指数的分母,被开方数(式)的指数分数指数的分子.9.解析 (1)原式=a 13a 23a 56a 34=a 13-56a 23-34=a -12a -112.(2)原式=(a 23a 14z 1)·(a 13a -14z 1)=a23+13a 14-14z 11=xz 2.(3)原式=116+√6+(√3+√2)21×(-√62)=116+√6+5+2√6+√62=81+56√616. 10.D 由x =1+2b,得2b=x 1, ∴y =1+2b=1+12a =1+1a -1=aa -1.11.答案 23解析 8a=223b⇒23a=223b⇒3a =23b ⇒a +b =23.12.解析 原式=5a -23a 12524a -23a 23=24a -16.将y =64代入,得原式=24×64-16=24×(26)-16=24×21=12.13.解析 (1)因为a 12+a -12=3,所以(a 12+a -12)2=9,整理得x +x 1=7,令t =a 12a -12,则t 2=(a 12-a -12)2=x +x 12=5,所以a 12a -12=±√5, 所以x 2x 2=(x +x 1)·(xx 1)=(x +x 1)·(a 12+a -12)(a 12a -12) =7×3×(±√5)=±21√5.(2)a 32a -32=(a 12a -12)·(x +x 1+1)=±8√5.能力提升练一、选择题1.B ∵a <14,∴4a 1<0, ∴√(4a -1)24=√1-4a .故选B . 2.A 由题意可知α+β=32,则(14)a +a=(14)-32=432=√43=8,故选A .3.C ①a 2+a 2=(a +a -1)22=92=7,正确; ②a 3+a 3=(a +a 1)(a 21+a 2)=3×(71)=18,正确;③因为a +a 1=3,所以a >0,所以a 12+a -12>0,又(a 12+a -12)2=a +2+a 1=5,所以a 12+a -12=√5,故错误; ④a √a +a √a=a 32+a -32=(a 12+a -12)(a 1+a 1)=√5×(31)=2√5,正确.故选C .4.B a 3+b 3=(a +b )(a 2ab +b 2) =(a +b )[(a +b )23ab ] =a 13·(a 23-12a 23)=a2.故选B .二、填空题 5.答案 27解析 由2x =8y +1得2x =23y +3,所以x =3y +3①. 由9y=3x 9得32y=3x 9, 所以2y =x 9②. 由①②,得x =21,y =6, 所以x +y =27.6.答案 1 解析11+a 14+11-a 14+21+a 12+41+a=2(1+a 14)(1-a 14)+21+a 12+41+a=21-a 12+21+a 12+41+a=4(1-a 12)(1+a 12)+41+a =41-a +41+a =8(1-a )(1+a )=81-a 2.因为a =3,所以原式=1. 7.答案 √3√2 解析 (√3+√2)2020×(√3√2)2021=[(√3+√2)(√3√2)]2020×(√3√2)=12020×(√3√2)=√3√2.三、解答题8.解析 (1)原式=(232)-23×(1023)92÷1052=21×103×10-52=21×1012=√102. (2)原式=2×(213×312)6+(212×214)434×74214×234+1=2×22×33+272+1=210. 9.解析 (1)原式=(34×104)-1431×[(34)-14+23]-12=31×1013×(13+23)-12=3.(2)由a 12+a -12=3,得(a 12+a -12)2=9,即a +a 1+2=9,∴a +a 1=7,∴(a +a 1)2=49,即a 2+a 2+2=49,∴a 2+a 2=47. 10.解析√a +√a √a -√a √a -√a √a +√a=(√a +√a )2a -a (√a -√a )2a -a =4√aaa -a.将x =12,y =23代入上式,则原式=4√12×2312-23=4√13-16=24√13=8√3.11.解析 ∵x 1,x 2是方程x 28x +4=0的 两根,∴x 1+x 2=8,x 1·x 2=4.(1)a 1-2a 2-2=(a 1+a 2)(a 2-a 1)(a 1a 2)2=a 2-a 12=√(a 1+a 2)2-4a 1a 22=√64-4×42=2√3. (2)x 1 -12x 2-12=√a +a -2√a a √a a=√8-2×22=1.。

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1
由图象可知值域是(0,1],递增区间是(-∞,0],递减区间 是[0,+∞).
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A版必修1

故函数的定义域为{x|1<x<2}.
[规律总结] 定义域是研究函数的基础,若已 知函数解析式求定义域,常规为分母不能为零, 0的零次幂与负指数次幂无意义,偶次方根被 开方式(数)非负,求与对数函数有关的函数定 义域时,除遵循前面求函数定义域的方法外, 还要对这种函数自身有如下要求:一是要特别 注意真数大于零;二是要注意底数;三是按底 数的取值应用单调性.
非奇非偶函数
[知识点拨] 对数函数的知识总结: 对数增减有思路,函数图象看底数; 底数只能大于0,等于1来可不行; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(1,0)点. 3.反函数 对数函数y=logax(a>0,且a≠1)和指数函数y=ax(a>0,且 a≠1)互为反函数,它们的图象关于直线______对称.
(2)要使函数有意义,需使 2-ln(3-x)≥0,
即33- -xx≤ >0e,2, 解得 3-e2≤x<3,
故函数的定义域为{x|3-e2≤x<3}.
(3)要使函数有意义,需使 log0.5(x-1)>0,
即log1
2
(x-1)>0,所以
log2x-1 1>0,
x-1>0 ∴x-1 1>1 ,即 1<x<2.
2
有意义应有 x>0.
[正解] 要使函数有意义,须log1 x-1≥0,
2
∴log1
2
x≥1,∴0<x≤12.
∴定义域为0,12.
跟踪练习
已知函数 y=f(x),x,y 满足关系式 lg(lgy)=lg(3-x),求函 数 y=f(x)的表达式及定义域、值域.

高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

课时21 对数对数的意义①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①与② B .②与④ C .② D .①②③④ 答案 C解析 对于①,当M =N ≤0时,log a M 与log a N 无意义,因此①不正确;对于②,对数值相等,底数相同,因此,真数相等,所以②正确;对于③,有M 2=N 2,即|M |=|N |,但不一定有M =N ,③错误;对于④,当M =N =0时,log a M 2与log a N 2无意义,所以④错误,由以上可知,只有②正确.2.求下列各式中x 的取值范围: (1)lg (x -10); (2)log (x -1)(x +2); (3)log (x +1)(x -1)2.解 (1)由题意有x -10>0,即x >10,即为所求; (2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2;(3)由题意有⎩⎪⎨⎪⎧x -2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.3答案507解析 因为m =log 37,所以3m =7,则3m +3-m =7+7-1=507.4.将下列指数式化成对数式,对数式化成指数式: (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)13-4=81;(4)27=128.对数性质的应用(1)log 8x =-23;(2)log x 27=34;(3)log 3(2x +2)=1.解 (1)由log 8x =-23,得x =8-23=(23)-23=23×⎝ ⎛⎭⎪⎫-23=2-2=14;(2)由log x 27=34,得x 34=27.∴x =2743=(33)43=34=81;(3)由log 3(2x +2)=1,得2x +2=3, 所以x =12.对数恒等式的应用(2)计算23+log23+35-log39.解(1)令t=10x,则x=lg t,∴f(t)=lg t,即f(x)=lg x,∴f(3)=lg 3;(2)23+log23+35-log39=23·2log23+353log39=23×3+359=24+27=51.一、选择题1.下列四个命题,其中正确的是( )①对数的真数是非负数;②若a>0且a≠1,则log a1=0;③若a>0且a≠1,则log a a=1;④若a>0且a≠1,则a log a2=2.A.①②③ B.②③④C.①③ D.①②③④答案 B解析①对数的真数为正数,①错误;②∵a0=1,∴log a1=0,②正确;③∵a1=a,∴log a a=1,③正确;④由对数恒等式a log a N=N,得a log a2=2,④正确.2.2x=3化为对数式是( )A.x=log32 B.x=log23C.2=log3x D.2=log x3答案 B解析由2x=3得x=log23,选B.3.化简:0.7log 0.78等于( ) A .2 2 B .8 C.18 D .2答案 B解析 由对数恒等式a log aN =N ,得0.7log 0.78=8.∴选B. 4.若log 2(log x 9)=1,则x =( ) A .3 B .±3 C.9 D .2 答案 A解析 ∵log 2(log x 9)=1,∴log x 9=2,即x 2=9, 又∵x >0,∴x =3.5.若log a 3=m ,log a 2=n ,则a m +2n的值是( )A .15B .75C .12D .18 答案 C解析 由log a 3=m ,得a m=3,由log a 2=n ,得a n=2, ∴am +2n=a m ·(a n )2=3×22=12.二、填空题6.已知log 2x =2,则x -12=________.答案 12解析 ∵log 2x =2,∴x =22=4, 4-12=⎝ ⎛⎭⎪⎫1412=12.7.若lg (ln x )=0,则x =________. 答案 e解析 ∵lg (ln x )=0,∴ln x =1,∴x =e.8.若集合{x ,xy ,lg xy }={0,|x |,y },则log 8(x 2+y 2)=________. 答案 13解析 ∵x ≠0,y ≠0,∴lg xy =0,∴xy =1, 则{x,1,0}={0,|x |,y },∴x =y =-1, log 8 (x 2+y 2)=log 82=log 8813=13.三、解答题9.(1)已知log 189=a ,log 1854=b ,求182a -b的值;(2)已知log x 27=31+log 32,求x 的值.解 (1)18a =9,18b=54,182a -b=a218b=9254=8154=32; (2)∵log x 27=31×3log 32=31×2=6, ∴x 6=27,∴x =2716=(33)16= 3.10.求下列各式中x 的值:(1)log 4(log 3x )=0;(2)lg (log 2x )=1; (3)log 2[log 12(log 2x )]=0.解 (1)∵log 4(log 3x )=0,∴log 3x =40=1, ∴x =31=3;(2)∵lg (log 2x )=1,∴log 2x =10,∴x =210=1024;(3)由log 2[log 12(log 2x )]=0,得log 12(log 2x )=1,log 2x =12,x = 2.。

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

word1 / 7第二章 基本初等函数(Ⅰ)注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.()0a a >可以化简为( )A .32aB .18a C .34aD .38a2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25B .0.20.121log <225<C .0.10.2212<2log 5< D .0.10.2212<log 25< 3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+4.已知23xy=,则xy=( )A .lg 2lg 3B .lg 3lg 2C .2lg 3D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .28.下列各函数中,值域为(0)∞,+的是( ) A .22x y -=B .12y x =-C .21y x x =++D .113x y +=9.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122xa xx f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有word2 / 7()()1212f x f x x x -<0-成立,则实数a 的取值X 围为( )A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦C .(2]-∞,-D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30xxx f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值X 围是________.16.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数22logy x =,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)()31320.5log 511lg3lg91lg 812730.25-⎛⎫++-+-+ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.word3 / 719.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值X 围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).word4 / 721.(12分)已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(12分)若函数f (x )满足21(log )1a a f x x x a ⎛⎫=⋅- ⎪-⎝⎭ (其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值X 围.word1 / 72018-2019学年必修一第二章训练卷基本初等函数(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}AB x x x x x x ><<>=-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B . 5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠,解得3m =-.故选B .8.【答案】A 【解析】A,22xy x -==⎝⎭的值域为(0)∞,+. B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1. C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭,D ,因为()()1,00,1x ∈-∞+∞+,所以113x y +=的值域是()0,11()∞,+.故选A .9.【答案】D【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C .11.【答案】B【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩由此解得138a ≤,即实数a 的取值X 围是13,8⎛⎤-∞ ⎥⎝⎦,选B .12.【答案】C【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)word2 / 713.【答案】4【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-. 16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212A x ==⎝⎭, 点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =. 点()4C C y ,在函数xy =⎝⎭的图象上,所以414C y ==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析. 【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1. 【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2xf x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422xx -⎛⎫-= ⎪⎝⎭,即112=42xx⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭,即2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12xt ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即122x⎛⎫= ⎪⎝⎭,解得x =-1.19.【答案】(1)最小值为2,最大值为6;(2)见解析.【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x )当a >1时,log a (1+x )>log a (1-x ),满足111010x xx x +>-⎧⎪+>⎨⎪->⎩∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->,当a >1时,函数y =a x是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x是减函数,∴8-x 2<-2x ,解得x <-2或x >4.故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}.word3 / 721.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222x x -+.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1. 于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x=(2x-2)2-4.∵x ∈[0,1],∴2x∈[1,2],∴当2x=2,即x =1时,g (x )取得最小值-4; 当2x=1,即x =0时,g (x )取得最大值-3. 22.【答案】(1)2()()1x x a f x a a a -=-- (x ∈R ),见解析;(2))(21,23⎡+⎣.【解析】(1)令log a x =t (t ∈R ),则x =a t,∴2()()1t ta f t a a a -=--. ∴2()()1x xa f x a a a -=-- (x ∈R ). ∵()22()()()11x xx x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x为增函数,x y a -=-为增函数,且201aa >-,∴f (x )为增函数.当0<a <1时,y =a x为减函数x y a -=-为减函数,且201aa <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭,∴a 2+1≤4a ,∴a 2-4a+1≤0,∴22a ≤≤a ≠1, ∴a的取值X 围为)(21,23⎡+⎣.。

高中数学 第二章 基本初等函数(Ⅰ)单元检测 新人教A版必修1(2021年最新整理)

高中数学 第二章 基本初等函数(Ⅰ)单元检测 新人教A版必修1(2021年最新整理)

2016-2017学年高中数学第二章基本初等函数(Ⅰ)单元检测新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章基本初等函数(Ⅰ)单元检测新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章基本初等函数(Ⅰ)单元检测新人教A版必修1的全部内容。

第二章单元检测14.设函数f(x)=错误!则满足f(x)=错误!的x的值为________.答案:3解析:由指数函数的性质知:当x∈(-∞,1]时,2-x的值大于错误!。

所以x>1。

所以应有log81x=错误!,则有x=8114=3。

15.函数y=-log12(x2-5x-6)的递减区间是________.答案:(-∞,-1)解析:由x2-5x-6>0,得x>6,或x<-1,∴u=x2-5x-6在(-∞,-1)上递减,∴y=log12(x2-5x-6)在(-∞,-1)上递增,∴y=-log12(x2-5x-6)在此区间递减.16.已知函数f(x)=log a x(0<a<1),对于下列判断:①若x>1,则f(x)<0;②若0<x<1,则f(x)>0;③f(x1)>f(x2),则x1>x2;④f (xy)=f(x)+f(y).其中正确的命题的序号是________.(写出所有正确命题的序号).答案:①②解析:根据对数函数图象易得.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)函数f(x)=(m2-m-5)x m-1是幂函数,且当x∈(0,+∞)时,f(x)是增函数,试确定m的值.解:由幂函数的定义,得m2-m-5=1.解得m=3或m=-2.当m=3时,f(x)=x2在(0,+∞)上是增函数;当m=-2时,f(x)=x-3在(0,+∞)上是减函数;故m=3.18.(12分)设f(x)=a x+1,g(x)=a3x-3,其中a>0,a≠1.若f(x)≤g(x),求x的取值范围.解:f(x)≤g(x),即a x+1≤a3x-3.当a>1时,有x+1≤3x-3,解得x≥2。

高中数学 第二章 基本初等函数(Ⅰ) 对数函数及其性质 习题课课件 新人教A必修1

高中数学 第二章 基本初等函数(Ⅰ) 对数函数及其性质 习题课课件 新人教A必修1

D.[1,+∞)
❖ [答案] A
❖ [解析] 3x>0⇒3x+1>1⇒log2(3x+1)>log21 =0,选A.
4.设函数f(x)=
21-x-1
lgx
(x<1) (x≥1)
,若f(x0)>1,则x0
的取值范围是
()
❖ A.(-∞,0)∪(10,+∞) ❖ B.(-1,+∞) ❖ C.(-∞,-2)∪(-1,10) ❖ D.(0,10) ❖ [答案] A
运算法则)和对数恒等式求解;(2)运用对 数的运算法则求解.
[解析] (1)解法一:原式=
=75.
解法二:原式=
=75.
(2) 原 式 =[(log66 - log63)2 + log62·log6(2×32)]÷log64 =
log6632+log62(log62+log632)÷log622 =[(log62)2+(log62)2+2log62×log63]÷2log62 =log62+log63=log6(2×3)=log66=1.
ax的图象,再通过关于直线y=x对称来得
到其反函数的图象.③可以通过特殊点和
单调性来选择.
❖ 4.对数函数的图象与性质是核心内容, 应重点落实图象的分布特征和单调性应 用.时刻牢记定义域的限制.
❖ [例4] 解不等式2loga(x-4)>loga(x-2). ❖ [分析] 这是对数不等式,可利用对数函
❖ [解析] (1)因为9x=32x,4x=22x,6x=2x·3x, ❖ 所以原方程可化为2·32x-5·3x·2x+2·22x=0,
❖1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 ❖2、知之者不如好之者,好之者不如乐之者。 ❖3、反思自我时展示了勇气,自我反思是一切思想的源泉。 ❖4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 ❖5、诚实比一切智谋更好,而且它是智谋的基本条件。 ❖6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/182022/1/182022/1/181/18/2022 ❖7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/182022/1/18January 18, 2022 ❖8、教育者,非为已往,非为现在,而专为将来。2022/1/182022/1/182022/1/182022/1/18

【基础知识篇】-高中数学人教A版必修一同步练测:第二章基本初等函数(Ⅰ).docx

【基础知识篇】-高中数学人教A版必修一同步练测:第二章基本初等函数(Ⅰ).docx

O Ox1 x1 1 y y O 1 x xy-1 -1第二章基本初等函数(Ⅰ)(必修1人教A 版)一、选择题(每小题5分,共50分)1.设P 和Q 是两个集合,定义集合P Q -={},x x P x Q ∈∉且,如果{}2l o g 1P x x =<,{}21Q x x =-<,那么P Q -等于( )A.{}01x x <<B.{}01x x <≤C.{}12x x <≤D.{}23x x <≤2.函数e e e e x xx xy --+=-的图象大致为( )y 1 1A B1CD3.若函数()y f x =的定义域是[]0,2,则函数(2)()1f xg x x =-的定义域是( ) A.[]0,1 B.[)0,1 C.[)(]0,11,4 D.()0,14.若函数3()()f x x x =∈R ,则函数()y f x =-在其定义域上是( ) A.单调递减的偶函数 B 单调递减的奇函数 C.单调递增的偶函数 D.单调递增的奇函数5.若01x y <<<,则( )A.33y x <B.log 3log 3x y <C.44log log x y <D.1144x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6.若1()21xf x a =+-是奇函数,则a 等于( ) A.0 B.12 C.1 D.12- 建议用时 实际用时满分 实际得分120分钟150分7. 已知函数()f x 满足:当4x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭;当4x <时,()(1)f x f x =+,则2(2l o g 3)f +=( ) A.124 B.112 C.18 D.388.若()13e ,1,ln ,2ln ,ln x a x b x c x -∈=== ,则( )A.a b c <<B.c a b <<C.b a c <<D.b c a <<9.定义在R 上的函数()f x 满足()()f x y f x +=+ ()2(,),(1)2f y xy x y f +∈=R ,则(3)f -等于( ) A.2 B.3 C.6 D.9 10.若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A.24 B.22 C.14 D.12二、填空题(每小题6分,共24分)11.函数21ln 11y x x ⎛⎫=++- ⎪⎝⎭的定义域为 .12.如果函数2(0)ay x x=<的图象与函数21(0)y a x x =+<的图象有两个交点,那么a 满足的条件是 .13.方程223xx -+=的实数解的个数是 . 14.设0,1a a >≠且,若函数2lg(23)()xx f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 . 三、解答题(共76分)15.(12分)已知3227log 9,log 25p q ==,试用,p q 表示lg 5 .16.(12分)求不等式x x 283312-->⎪⎭⎫⎝⎛的解集.17.(12分)已知函数22xxy b a +=+(,a b 是常数且0a >,1a ≠)在区间3,02⎡⎤-⎢⎥⎣⎦上有m a x 3y =,min 52y =,试求a 和b 的值.18.(12分)已知函数()2lg(21)f x ax x=++,(1)若()f x的定义域是R,求实数a的取值范围及()f x的值域;(2)若()f x的值域是R,求实数a的取值范围及()f x的定义域. 19.(14分)函数222()log(01)12bx xf x b bax-+=>≠+且.(1)求()f x的定义域;(2)求使()0f x≥在()0,+∞上恒成立的实数a 的取值范围.20.(14分)已知定义在()0,1上的函数2()41xxf x=+.(1)求证:函数()f x在()0,1上是单调递减的;(2)求λ的取值范围,使方程()0f xλ-=在()0,1x∈上有根.第二章基本初等函数(Ⅰ)(必修1人教A版)得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题11. 12. 13. 14.三、解答题15.16.17.18.19.20.第二章基本初等函数(Ⅰ)(必修1人教A 版)1.B 解析:由题意,得{}{}02,13P x x Q x x =<<=<<,所以{}01.P Q x x -=<≤2.A 解析:要使函数有意义,需使e e0xx--≠,其定义域为{}0,x x ≠e e e e ()()e e e ex x x xx x x x f x f x ----++-==-=---,所以函数图象关于原点对称,排除 D.又因为222e e e 121e e e 1e 1x x x x x x xy --++===+---,所以当0>x 时,函数为减函数,排除B,C ,故选A.3.B 解析:因为()y f x =的定义域是[]0,2,所以要使(2)()1f x g x x =-有意义,需022,10,x x ⎧⎨-≠⎩≤≤ 所以01x <≤.4.B 解析:由33()()()f x x x f x -=-=-=-,得3()y f x x =-=-,结合幂函数的图象和性质即得.5.C 解析:因为3x y =在R 上是增函数,且01x y <<<,所以33x y <,故A 错误. 因为3log y x =在()0,+∞上是增函数,且01x y <<<,所以333log log log 10x y <<=, 所以33110log log x y>>,所以log 3log 3x y >,故B 错误. 因为4log y x =在()+∞,0上是增函数,且01x y <<<,所以44log log x y <,故C 正确.因为14xy ⎛⎫= ⎪⎝⎭在R 上是减函数,且01x y <<<,所以yx ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛4141,故D 错误.6.B 解析:因为()()f x f x -=-,即112121x x a a -+=----, 所以22121221x x x x x a a a a +-∙--∙+=--,所以(1)22(1)x xa a a a --=-∙+-,所以1,1,a a a a -=-⎧⎨-=-⎩ 所以12a =. 7.A 解析:因为22log 34+<,故222(2log 3)(2log 31)(3log 3)f f f +=++=+. 又23log 34+>,故23log 3321111(3log 3)22324f +⎛⎫⎛⎫+==⨯=⎪⎪⎝⎭⎝⎭. 8.C 解析:因为11ex <<,所以1ln 0x -<<.令ln t x = ,则10t -<<, 所以20,a b t t t -=-=->所以a b >.32(1)(1)(1),c a t t t t t t t -=-=-=+-又因为10t -<<,所以011,211,t t <+<-<-<-所以0,c a ->所以c a >,所以c a b >>.9.C 解析:因为(1)(01)(0)(1)201(0)(1)f f f f f f =+=++⨯⨯=+,所以(0)0f =. 因为(0)(11)(1)(1)2(1)1(1)(1)2f f f f f f =-+=-++⨯-⨯=-+-,所以(1)0f -=. 因为(1)(21)(2)(1)2(2)1(2)(1)4f f f f f f -=-+=-++⨯-⨯=-+-,所以(2)2f -=.因为(2)(31)(3)(1)2(3)1(3)(1)6f f f f f f -=-+=-++⨯-⨯=-+-,所以(3)6f -=.10.A 解析:因为01a <<,所以()l o g a f x x =是()0,+∞上的减函数,从而有()3(2)f a f a =,即l o g 3l o g (2a aa a =,解得24a =. 11.(]1,0 解析:列出函数有意义的限制条件,解不等式组. 要是函数有意义,需2110,10,x x ⎧+>⎪⎨⎪-⎩≥即210,1,x x x +⎧>⎪⎨⎪⎩≤即10,11,x x x <->⎧⎨-⎩或≤≤解得01x <≤,所以定义域为(]1,0.12.102a -<< 解析:由题意知方程221aa x x+=有两个不同的负根,即2220a x x a +-=有两个不同的负根,所以20,10,20,a a∆⎧⎪>⎪⎪-<⎨⎪⎪->⎪⎩所以3180,0,a a ⎧+>⎨<⎩所以31,80,a a ⎧>-⎪⎨⎪<⎩所以331,20,a a ⎧⎛⎫>-⎪ ⎪⎨⎝⎭⎪<⎩所以102a -<<.13.214.{}23x x << 解析:本题主要考查函数值域的求法以及对数不等式的解法.要使2lg(23)()xx f x a -+=有最大值,则01a <<,所以2log (57)0log 1a a x x -+>=,即22570,571,x x x x ⎧-+>⎪⎨-+<⎪⎩解得23x <<.15.解:2322log 3,log 553p q ==,lg 5=333333log 5log 515232log 10log 5log 215425q pq pq q p===+++. 16.解:由已知282133x x --⎛⎫> ⎪⎝⎭,得2821133x x-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭. 因为函数13xy ⎛⎫= ⎪⎝⎭在(,)-∞+∞上是减函数,所以282x x -<,即2280x x --<,解得24x -<<.因此原不等式的解集是{}24x x -<<.17.解:令()22211u x x x =+=+-,3,02x ⎡⎤∈-⎢⎥⎣⎦,∴ 当1x =-时,min 1u =-;当0x =时,max 0.u = (1)当1a >时,013,5,2b a b a -⎧+=⎪⎨+=⎪⎩解得2,2.a b =⎧⎨=⎩ (2)当01a <<时,103,5,2b a b a -⎧+=⎪⎨+=⎪⎩解得2,33.2a b ⎧=⎪⎪⎨⎪=⎪⎩综上,2,2a b =⎧⎨=⎩或2,33.2a b ⎧=⎪⎪⎨⎪=⎪⎩18.解:(1)因为()f x 的定义域为R ,所以2210ax x ++>对一切x ∈R 成立.所以0,440,a a ∆>⎧⎨=-<⎩解得1a >.又因为22112110ax x a x a a ⎛⎫++=++> ⎪⎝⎭-,所以()()21lg 21lg 1f x ax x a ⎛⎫=++ ⎪⎝⎭-≥,所以实数a 的取值范围是(1,)+∞,()f x 的值域是1lg 1,a ⎡⎫⎛⎫-+∞⎪ ⎪⎢⎝⎭⎣⎭.(2)因为()f x 的值域是R ,所以221u ax x =++的值域R (0,)⊇+∞. 当0a =时,21u x =+的值域为(0, )⊇+∞R ;当0a ≠时,221u ax x =++的值域(0, )⊇+∞R 等价于0,440.4a a a>⎧⎪-⎨⎪⎩≤解得01a <≤.所以实数a 的取值范围是[]0,1.当0a =时,由210x +>,得12x >-,此时()f x 的定义域是1,2⎛⎫+∞ ⎪⎝⎭-;当01a <≤时,由2210ax x ++>,得1111a ax x a a+---<->-或, 此时()f x 的定义域是⎪⎪⎭⎫⎝⎛+∞---⎪⎪⎭⎫ ⎝⎛-+-∞-,1111,aa aa .19.解:(1)因为2222(1)10x x x -+=-+>,所以120ax +>,即21ax >-.所以若0a =,则()f x 的定义域为R ;若0a >,则()f x 的定义域为1,2a ⎛⎫-+∞ ⎪⎝⎭;若0a <,则()f x 的定义域为1,2a ⎛⎫-∞- ⎪⎝⎭.(2)①当1b >时,在()f x 的定义域内,()0f x ≥等价于22212x x ax -++≥,即22(1)10x a x -++≥,于是问题等价于2112(1)x a x x x++=+≤在()0,+∞上恒成立. 令1()g x x x=+,则()g x 在(]0,1上递减,在[)1,+∞上递增,所以min ()(1)2g x g ==, 所以2(1)2a +≤,即0a ≤.另一方面要使()0f x ≥在()0,+∞上恒成立,则()0,+∞必是()f x 定义域的子集,由(1)可知0a ≥, 由0a ≥且0a ≤可知0a =.—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 ②当01b <<时,在()f x 的定义域内,()0f x ≥等价于22(1)1a x x ++≥,于是问题等价于12(1)a x x ++≥在()0,+∞上恒成立.显然这样的实数a 不存在,故所求的a 的取值范围为0a =.20.(1)证明:设()12,0,1x x ∈,且12x x <,则12211212121222(22)(221)()()4141(41)(41)x x x x x x x x x x f x f x -∙--=-=++++. 因为()12,0,1x x ∈,且12x x <,所以2112220,21,21x x x x ->>>,所以12()()0f x f x ->,即12()()f x f x >,所以()f x 在(0,1)上是单调递减的.(2)解:因为2041x x >+,所以要使()f x λ=有解,需0λ>,故42()041x x x f x λλλ-+--==+. (﹡) 令2,(1,2)x t t =∈,则(﹡)式等价于方程20t t λλ-+=在(1,2)t ∈上有解. 令2()0g t t t λλ=-+=,分下列两种情况:①在(1,2)t ∈上有一解,则满足(1)(2)0g g ∙<,解得2152λ<<;②在(1,2)t ∈上有两解,则满足0,1(1,2),2(1)0,(2)0,g g ∆>λ⎧⎪⎪∈⎪⎨⎪>⎪>⎪⎩无解. 所以当21,52λ⎛⎫∈ ⎪⎝⎭时,方程()0f x λ-=在(0,1)x ∈上有根.。

人教a版必修1章末检测:第二章《基本初等函数(ⅰ)》(含答案)

人教a版必修1章末检测:第二章《基本初等函数(ⅰ)》(含答案)

第二章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln(x -1)的定义域是( )A .(1,2)B .[1,+∞)C .(1,+∞)D .(1,2)∪(2,+∞)2.若x log 23=1,则3x +9x 的值为( )A .3 B.52 C .6 D.123.已知a >0且a ≠1,下列四组函数中表示相等函数的是( )A .y =log a x 与y =(log x a )-1B .y =a log a x 与y =xC .y =2x 与y =log a a 2xD .y =log a x 2与y =2log a x4.若函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三、四象限内,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <15.已知函数f (log 4x )=x ,则f ⎝⎛⎭⎫12等于( )A.14B.12 C .1 D .26.已知函数y =log a (3a -1)的值恒为正数,则a 的取值范围是( )A .a >13 B.13<a ≤23C .a >1 D.13<a <23或a >17.已知函数f (x )={ log 3x (x >0)x (x ≤0),则f [f (19)]的值是( )A .9 B.19C .-9D .-198.已知f (x )={ (3a -1)x +4a (x <1)a x (x ≥1)是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,19.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则() A .x >y >z B .z >y >xC .y >x >zD .z >x >y10.关于x 的方程a x =log 1a x (a >0,且a ≠1)( )A .无解B .必有唯一解C .仅当a >1时有唯一解D .仅当0<a <1时有唯一解11.函数y =lg(21-x-1)的图象关于( ) A .x 轴对称 B .y 轴对称C .原点对称D .y =x 对称12.设函数f (x )=⎩⎨⎧ 2-x -1 (x ≤0)x 12 (x >0), 若f (x 0)>1,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)二、填空题(本大题共4小题,每小题4分,共16分)13.函数y =log (2x -1)3x -2的定义域是__________________.14.函数f (x )=log 12(x 2-3x +2)的递增区间是__________. 15.已知函数f (x )=a -12x +1,若f (x )是奇函数,则a =________. 16.给出函数f (x )=⎩⎨⎧⎝⎛⎭⎫12x (x ≥4)f (x +1) (x <4), 则f (log 23)=________.三、解答题(本大题共6小题,共74分)17.(12分)计算:(1)⎝⎛⎭⎫-338-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)2lg 5+23lg 8+lg 5·lg 20+lg 22.18.(12分)若函数f (x )=log a (x +1)(a >0且a ≠1)的定义域和值域均为[0,1],求a 的值.19.(12分)已知函数f (x )=-2x 12,求f (x )的定义域,并证明在f (x )的定义域内,当x 1<x 2时,f (x 1)>f (x 2).20.(12分)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1),令F (x )=f (x )-g (x ).(1)求函数y =F (x )的定义域;(2)判断函数y =F (x )的奇偶性.21.(12分)已知函数f (x )=3x ,且f (a )=2,g (x )=3ax -4x .(1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域.22.(14分)设f (x )=log 12(1-ax x -1)为奇函数,a 为常数. (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(12)x +m 恒成立,求实数m 的取值范围.第二章 章末检测 答案1.C2.C [x log 23=1⇒log 23x =1,∴3x =2,9x =(3x )2=22=4,∴3x +9x =6.]3.C [对A ,解析式不同,定义域不同;对B ,定义域不同;对D ,定义域不同;对C ,是相等函数.]4.B [由函数y =a x +m -1 (a >0,a ≠1)的图象在第一、三象限知a >1.又过第四象限内,∴a 0+m -1<0,则有m <0.]5.D [令log 4x =12,则x =412=2.] 6.D [由y >0得:⎩⎪⎨⎪⎧ a >13a -1>1 或⎩⎪⎨⎪⎧0<a <10<3a -1<1, 解得a >1或13<a <23.] 7.B8.C [当x =1时,log a x =0,若为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立. 令g (x )=(3a -1)x +4a ,则g (x )>0在x <1上恒成立,故3a -1<0且g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0.⇒17≤a <13,故选C.] 9.C [x =log a 2+log a 3=log a 6,y =12log a 5=log a 5,z log a 21-log a 3=log a 213=log a 7, ∵0<a <1,∴y =log a x 在定义域上是减函数.∴y >x >z .]10.B [在同一平面直角坐标系中分别画出函数y =a x ,y =log 1ax 的图象. 由图象可知方程a x =log 1ax 必有唯一解.] 11.C [f (x )=lg(21-x -1)=lg 1+x 1-x, f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)的图象关于原点对称,故选C.] 12.D [当x ≤0时,由2-x -1>1得x <-1;当x >0时,由x 12>1得x >1.] 13.(23,1)∪(1,+∞) 解析 由题意得0<2x -1<1或2x -1>1,且必须满足3x -2>0,∴x 的取值范围是(23,1)∪(1,+∞). 14.(-∞,1)15.12解析 方法一 函数f (x )=a -12x +1的定义域为R ,且为奇函数, ∴f (0)=0,即a -120+1=0,∴a =12. 方法二 f (-x )=a -12-x +1=a -2x1+2x, ∵f (x )为奇函数,∴f (x )=-f (-x ),∴a -12x +1=-a +2x1+2x. ∴2a =2x +12x +1=1,∴a =12. 16.124解析 ∵log 23<4,∴f (log 23)=f (log 23+1)=f (log 23+3)=f (log 224),∵log 224>4,∴f (log 224)=⎝⎛⎭⎫12log 224=124. 17.解 (1)原式=(-1)-23⎝⎛⎭⎫338-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+50012-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=2lg 5+23lg 23+lg 5·lg(4×5)+lg 22 =2lg 5+2lg 2+2lg 5·lg 2+lg 25+lg 22=2(lg 5+lg 2)+2lg 5·lg 2+lg 25+lg 22=2+(lg 5+lg 2)2=2+1=3.18.解 当a >1时,函数f (x )在区间[0,1]上为增函数, ∴⎩⎪⎨⎪⎧ f (0)=0f (1)=1,解得a =2. 当0<a <1时,函数f (x )在区间[0,1]上为减函数,∴⎩⎪⎨⎪⎧ f (0)=1f (1)=0,方程组无解. 综上可知a =2.19.解 ∵f (x )=-2x 12=-2x , ∴函数f (x )的定义域为[0,+∞),当0≤x 1<x 2时,f (x 1)-f (x 2)=-2x 121+2x 122 =2(x 2-x 1)=2x 2-x 1x 2+x 1, ∵0≤x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).20.解 (1)由⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1, 故函数F (x )的定义域是(-1,1).(2)因为函数F (x )的定义域关于原点对称,且F (-x )=log a (-x +1)-log a (1+x )=log a 1-x 1+x =-log a 1+x 1-x=-[log a (x +1)-log a (1-x )]=-F (x ),所以F (x )是奇函数.21.解 (1)由f (a )=2,得3a =2,a =log 32, ∴g (x )=(3a )x -4x =(3log 32)x -4x=2x -4x =-(2x )2+2x . (2)设2x =t ,∵x ∈[-2,1],∴14≤t ≤2. g (t )=-t 2+t =-(t -12)2+14,由g (t )在t ∈[14,2]上的图象可得, 当t =12,即x =-1时,g (x )有最大值14; 当t =2,即x =1时,g (x )有最小值-2.故g (x )的值域是[-2,14]. 22.(1)解 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴log 12(1+ax -x -1)=-log 12(1-ax x -1) ⇔1+ax -x -1=x -11-ax>0 ⇒1-a 2x 2=1-x 2⇒a =±1.检验a =1(舍),∴a =-1.(2)证明 任取x 1>x 2>1,∴x 1-1>x 2-1>0,∴0<2x 1-1<2x 2-1⇒ 0<1+2x 1-1<1+2x 2-1⇒0<x 1+1x 1-1<x 2+1x 2-1⇒log 12x 1+1x 1-1>log 12x 2+1x 2-1, 即f (x 1)>f (x 2),∴f (x )在(1,+∞)内单调递增.(3)解 f (x )-(12)x >m 恒成立. 令g (x )=f (x )-(12)x ,只需g (x )min >m , 用定义可以证明g (x )在[3,4]上是增函数,∴g (x )min =g (3)=-98, ∴m <-98时原式恒成立. 即m 的取值范围为(-∞,-98).。

人教A版数学必修一第二章基本初等函数(ⅰ)(一)a卷

人教A版数学必修一第二章基本初等函数(ⅰ)(一)a卷

高中数学学习材料金戈铁骑整理制作高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) [名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算[(-2)2]- 12的结果是( )A.2 B .-2 C.22D .-222.⎝ ⎛⎭⎪⎫1120-(1-0.5-2)÷⎝ ⎛⎭⎪⎫278 23的值为( )A .-13 B.13 C.43 D.733.若a >1,则函数y =a x 与y =(1-a )x 2的图象可能是下列四个选项中的()4.下列结论中正确的个数是( )①当a <0时,(a 2 23=a 3;②na n =|a |(n ≥2,n ∈N ); ③函数y =(x -2) 12 -(3x -7)0的定义域是[2,+∞); ④6(-2)2=32.A .1B .2C .3D .45.指数函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,14,那么f (4)·f (2)等于( )A .8B .16C .32D .64 6.函数y =21x的值域是( ) A .(0,+∞) B .(0,1) C .(0,1)∪(1,+∞)D .(1,+∞)7.函数y =|2x -2|的图象是( )8.a ,b 满足0<a <b <1,下列不等式中正确的是( ) A .a a <a b B .b a <b b C .a a <b a D .b b <a b9.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e -x +1D .e -x -110.若函数y =a x +m -1(a >0,a ≠1)的图象在第一、三、四象限内,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <111.函数f (x )=2x +2-4x ,若x 2-x -6≤0,则f (x )的最大值和最小值分别是( )A .4,-32B .32,-4 C.23,0D.43,112.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系为________.14.若方程⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x -1+a =0有正数解,则实数a 的取值范围是________.15.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________.16.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解不等式a 2x +7<a 3x -2(a >0,a ≠1).18.(本小题满分12分)已知函数f (x )=3x ,且f (a )=2,g (x )=3ax -4x . (1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域.19.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.20.(本小题满分12分)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 为实数. (1)当a >0,b >0时,判断并证明函数f (x )的单调性; (2)当ab <0时,求f (x +1)>f (x )时x 的取值范围.21.(本小题满分12分)设a ∈R ,f (x )=a -22x +1(x ∈R ).(1)证明:对任意实数a ,f (x )为增函数; (2)试确定a 的值,使f (x )≤0恒成立.22.(本小题满分12分)已知定义域为R 的函数f (x )=-2x +b2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.详解答案第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) [名师原创·基础卷]1.C 解析:[(-2)2]- 12=2-12=12=22.2.D 解析:原式=1-(1-22)÷⎝ ⎛⎭⎪⎫322=1-(-3)×49=73.故选D. 3.C 解析:a >1,∴y =a x 在R 上单调递增且过(0,1)点,排除B ,D ,又∵1-a <0,∴y =(1-a )x 2的开口向下.4.A 解析:在①中,a <0时,(a 2) 32>0,而a 3<0,∴①不成立.在②中,令a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不成立. 在③中,定义域应为⎣⎢⎡⎭⎪⎫2,73∪⎝ ⎛⎭⎪⎫73,+∞,∴③不成立. ④式是正确的,∵6(-2)2=622=32,∴④正确. 5.D 解析:设f (x )=a x (a >0且a ≠1), 由已知得14=a -2,a 2=4,所以a =2, 于是f (x )=2x ,所以f (4)·f (2)=24·22=64.解题技巧:已知函数类型,求函数解析式,常用待定系数法,即先把函数设出来,再利用方程或方程组解出系数.6.C 解析:∵1x ≠0,∴21x≠1, ∴函数y =21x 的值域为(0,1)∪(1,+∞).7.B 解析:找两个特殊点,当x =0时,y =1,排除A ,C.当x =1时,y =0,排除D.故选B.8.C 解析:∵0<a <b <1,∴a a >a b ,故A 不成立,同理B 不成立,若a a <b a ,则⎝ ⎛⎭⎪⎫a b a <1,∵0<ab <1,0<a <1,∴⎝ ⎛⎭⎪⎫a b a<1成立,故选C. 9.D 解析:与曲线y =e x 关于y 轴对称的曲线为y =e -x ,函数y =e -x 的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e -(x +1)=e -x -1.解题技巧:函数图象的平移变换,要注意平移的方向和平移量.平移规律为:10.B 解析:由函数y =a x +m -1(a >0,a ≠1)的图象在第一、三象限知,a >1.知函数在第四象限,∴a 0+m -1<0,则有m <0.11.A 解析:f (x )=2x +2-4x =-(2x )2+4·2x =-(2x -2)2+4,又∵x 2-x -6≤0,∴-2≤x ≤3,∴14≤2x ≤8.当2x =2时,f (x )max =4,当2x =8时,f (x )min =-32. 12.B 解析:因为f (-x )=3-x +3-(-x )=3-x +3x =f (x ), g (-x )=3-x -3-(-x )=3-x -3x =-g (x ),所以f (x )为偶函数,g (x )为奇函数.13.c >a >b 解析:由指数函数y =a x 当0<a <1时为减函数知, 0.80.7>0.80.9,又1.20.8>1,0.80.7<1, ∴1.20.8>0.80.7>0.80.9,即c >a >b .14.(-3,0) 解析:令⎝ ⎛⎭⎪⎫12x=t ,∵方程有正根,∴t ∈(0,1).方程转化为t 2+2t +a =0, ∴a =1-(t +1)2.∵t ∈(0,1),∴a ∈(-3,0).15.(-∞,1] 解析:解法一:由指数函数的性质可知,f (x )=⎝ ⎛⎭⎪⎫12x在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又y =|x -1|的单调递减区间为(-∞,1],所以f (x )的单调递增区间为(-∞,1].解法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象,并求其单调递增区间.解题技巧:既可以利用复合函数的“同增异减”法则求解,也可以去绝对值符号,转化为分段函数求解.16.1 解析:作出函数y =2|x |的图象(如图所示).当x =0时,y =20=1, 当x =-1时,y =2|-1|=2, 当x =1时,y =21=2,所以当值域为[1,2]时,区间[a ,b ]的长度的最大值为2,最小值为1,它们的差为1.17.解:当a >1时,a 2x +7<a 3x -2等价于2x +7<3x -2, ∴x >9;当0<a <1时,a 2x +7<a 3x -2等价于2x +7>3x -2. ∴x <9.综上,当a >1时,不等式的解集为{x |x >9}; 当0<a <1时,不等式的解集为{x |x <9}. 解题技巧:注意按照底数进行分类讨论. 18.解:(1)由f (a )=2,得3a =2,a =log 32, ∴g (x )=(3a )x -4x =(3log 32)x -4x =2x -4x =-(2x )2+2x . ∴g (x )=-(2x )2+2x . (2)设2x =t ,∵x ∈[-2,1], ∴14≤t ≤2.g (t )=-t 2+t =-⎝ ⎛⎭⎪⎫t -122+14,由g (t )在t ∈⎣⎢⎡⎦⎥⎤14,2上的图象可得,当t =12,即x =-1时,g (x )有最大值14; 当t =2,即x =1时,g (x )有最小值-2. 故g (x )的值域是⎣⎢⎡⎦⎥⎤-2,14.19.解:(1)由已知得⎝ ⎛⎭⎪⎫12-a =2,解得a =1. (2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x ,又g (x )=f (x ),则4-x -2=⎝ ⎛⎭⎪⎫12x , 即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x -2=0. 令⎝ ⎛⎭⎪⎫12x =t ,则t 2-t -2=0,即(t -2)(t +1)=0. 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x =2,解得x =-1. 20.解:(1)函数f (x )在R 上是增函数.证明如下: a >0,b >0,任取x 1,x 2∈R ,且x 1<x 2,(2)∵f (x +1)>f (x ),∴f (x +1)-f (x )=(a ·2x +1+b ·3x +1)-(a ·2x +b ·3x ) =a ·2x +2b ·3x >0,当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b , 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .综上,当a <0,b >0时,x 的取值范围是⎝ ⎛⎭⎪⎫log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞; 当a >0,b <0时,x 的取值范围是⎝ ⎛⎭⎪⎫-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b . 21.(1)证明:任取x 1,x 2∈R ,且x 1<x 2,故对于任意实数a ,f (x )为增函数.(2)解:f (x )=a -22x +1≤0恒成立,只要a ≤22x +1恒成立,问题转化为只要a 不大于22x +1的最小值. ∵x ∈R,2x >0恒成立,∴2x +1>1.∴0<12x +1<1,0<22x +1<2,∴a ≤0. 故当a ∈(-∞,0]时,f (x )≤0恒成立.22.解:(1)因为f (x )是奇函数,所以f (0)=0, 即b -12+2=0,解得b =1.(3)因为f (x )是奇函数,f (t 2-2t )+f (2t 2-k )<0,则f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得,t 2-2t >k -2t 2. 即对一切t ∈R 有3t 2-2t -k >0,从而判别式Δ=4+12k <0,解得k <-13.故k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-13.。

高中数学_第二章_基本初等函数(Ⅰ)_幂函数(习题课)课件_新人教A版必修1

高中数学_第二章_基本初等函数(Ⅰ)_幂函数(习题课)课件_新人教A版必修1
• 本节重点:幂、指、对函数的性质. • 本节难点:幂、指、对函数的单调性和分 类讨论的思想.
• 1.幂函数y=xα的图象分布规律是一个难点, 应重点抓住. • (1)α=0时,不过(0,1)点; p • (2)α为整数时,α为奇数则函数为奇函数,α (3)α为分数时,设α= (p、q是互质的整数),p、q都是 q 为偶数则为偶函数,α<0不过原点;
∴a≤-1 当a=0时显然成立, 综上知a≤-1或a=0.
7.已知 x <x2,则 x 的取值范围是________.
2
1
[解析]
• [答案] (0,1)
2
在同一直角坐标系内作出函数 y=x2 和 y=x2
2 1
1
的图象如图所示,则 x <x2时 x 的取值范围,即使函数 y= x 的图象在函数 y=x2的图象下方时 x 的取值范围, 由图可 知 x 的取值范围是(0,1).
1 3.设a>0,且a≠1,函数y=logax和函数y=loga x 的 图象关于 A.x轴对称 C.y=x对称 B.y轴对称 D.原点对称 ( )
[答案]
A
[解析]
1 ∵y=loga =-logax, x
∴两函数的图象关于x轴对称.
1-x 4.已知函数f(x)=lg ,若f(a)=b,则f(-a)等于 1+x ( A.b 1 C.b B.-b 1 D.-b )
• [答案] C • [解析] ∵0<a<1,∴该函数为减函数,排 除A、D,又m<-1,∴x=0时,函数有意 义,且y=loga(-m)<0.排除B,选C.
• 2.已知函数f(x)为偶函数,且当x≥0时, f(x)=2x -1,则使f(x)>1成立的x的取值范 围是 ( ) • A.(1,+∞) B.(-∞,-1) • C.(-1,1) D.(-∞,-1)∪(1, +∞) • [答案] D • [解析] 先画出y=2x -1(x≥0)的图象,再 作关于y轴对称的图象,令2x-1=1得x=1,

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质教材梳理素材新人教A版必修1(new)

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质教材梳理素材新人教A版必修1(new)

2。

2。

2 对数函数及其性质疱丁巧解牛知识·巧学·升华一、对数函数及其性质1.对数函数一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞)。

因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的。

只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数。

像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数。

对数函数同指数函数一样都是基本初等函数,它来自于实践.2.对数函数的图象和性质(1)下面先画指数函数y=log 2x 及y=log 1/2x 图象列出x ,y 的对应值表,用描点法画出图象:描点即可完成y=log 2x,y=x 21log 的图象,如下图.0 1 2 4 8 x—1—2 y=log 1/2x-3s由表及图可以发现:我们可以通过函数y=log 2x 的图象得到函数y=log 0。

5x 的图象.利用换底公式可以得到:y=log 0。

5x=-log 2x ,点(x,y)与点(x,-y )关于x 轴对称,所以y=log 2x 的图象上任意一点(x ,y )关于x 轴对称点(x ,-y )在y=log 0。

5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象.方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法。

"②函数y=log a x 与y=x a 1log 的图象关于x 轴对称。

(2)对数函数y=log a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示: a >1 0<a <1图 象定义域(0,+∞) 值 域R 性 质 (1)过点(1,0),即x=1时,y=0要点提示(1)对数函数的图象恒在y轴右方.(2)对数函数的单调性取决于它的底数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档