中学七年级下数学期末试题二湘教版无答案
湘教版初中数学第二学期七年级下册期末考试数学试卷及答案解析
湘教版初中数学第二学期七年级下册期末考试数学试卷及答案解析一.选择题(共10小题)1.下面的各组图案中,不能由其中一个经平移后得到另一个的是( )A .B .C .D .2.π、227 3.1416,0. 中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个3.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°(第3题)(第5题) (第9题)4.点P (x ﹣1,x +1)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( )A .是一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值6.在3,0,﹣2四个数中,最小的数是( )A .3B .0C .﹣2 D7.平面直角坐标系中,将三角形各点的纵坐标都减去﹣3,横坐标保持不变,所得图形与原图形相比( )A .向上平移了3个单位B .向下平移了3个单位C .向右平移了3个单位D .向左平移了3个单位 8.若是方程组的解,则(a +b )•(a ﹣b )的值为( ) A .﹣353 B .353C .﹣16D .16 9.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是( )A .被调查的学生有60人B .被调查的学生中,步行的有27人C .估计全校骑车上学的学生有1152人D .扇形图中,乘车部分所对应的圆心角为54°10.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为( )A .(0,0)B .(0,1)C .(1,0)D .(1,2)二.填空题(共8小题)11.已知:(x 2+y 2+1)2﹣4=0,则x 2+y 2= .12.如果点A 的坐标为(3,5),点B 的坐标为(0,﹣4),那么A 、B 两点的距离等于 .13.规定用符号[m ]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定]的值为 . 14.如图,已知∠1=∠2,∠D=78°,则∠BCD= 度.15.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 个单位.16.若不等式(a ﹣3)x ≤3﹣a 的解集在数轴上表示如图所示,则a 的取值范围是 .17.小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.18.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥.()∴∠BAP=.()又∵∠1=∠2,(已知)∠3=﹣∠1,∠4=﹣∠2,∴∠3=(等式的性质)∴AE∥PF.()∴∠E=∠F.()23.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?参考答案解析一.选择题(共10小题)1.C.2.B.3.B.4.D.5.B.6.C.7.A.8.C.9.C.10.D.二.填空题(共8小题)11.1.1213.4.14.102.158.16.a<3.17.50.18.(672,2019)三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.【分析】(1)先求出不等式组的解集,再在数轴上表示出来即可;(2)①+②得出4x=12,求出x,把x=3代入①求出y即可.【解答】解:(1)∵解不等式①得:x<1,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<1,在数轴上表示为:;(2)∵①+②得:4x=12,解得:x=3.把x=3代入①得:6﹣y=7,解得:y=﹣1,∴原方程组的解是.【点评】本题考查了解二元一次方程组和解一元一次不等式组、在数轴上表示不等式组的解集,能求出不等式组的解集是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.【分析】(1)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可(2)求出△ABC中BC边上的高,进而可得出结论.【解答】解:(1)如图,△A′B′C′即为所求.A′(0,4)B′(﹣1,1),C′(3,1);(2)如图,P(0,1)或(0,﹣5)).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)【分析】根据平行线的性质和判定即可解决问题;【解答】解:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)故答案为CD,同旁内角互补两直线平行,∠APC,两直线平行内错角相等,∠BAP,∠APC,内错角相等两直线平行,两直线平行内错角相等;【点评】本题考查平行线的性质和判定、熟练掌握平行线的判定和性质是解决问题的关键.23.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?【分析】本题在劳力和原料两个限制条件下,设出生产小熊小猫的个数分别为x和y,可列出关于x和y的两个不等式,由总售价为2200元还可以列出关于x和y的一个等式,三个式子结合就可以求出x和y看符合不符合条件,求出答案.【解答】解:设小熊和小猫的个数分别为x和y,总售价为z,则z=80x+45y=5(16x+9y)①根据劳力和原材料的限制,x和y应满足15x+10y≤450,20x+5y≤400化简3x+2y≤90(1)及4x+y≤80(2)当总售价z=2200时,由①得16x+9y=440(3)(2)•9得36x+9y≤720(4)(4)﹣(3)得20x≤720﹣440=280,即x≤14(A)得(5)(3)﹣(5)得,即x≥14(B)综合(A)、(B)可得x=14,代入(3)求得y=24当x=14,y=24时,有3x+2y=90,4x+y=80满足工时和原料的约束条件,此时恰有总售价z=80×14+45×24=2200(元)答:只需安排生产小熊14个、小猫24个,就可达到总售价为2200元.【点评】本题考查理解题意能力以及对于多个量进行分析根据数据列出不等式以及等式.本题要根据劳力和原料列出不等式,根据要达到的售价可列出等式.。
【湘教版】七年级数学下期末试卷(附答案)(2)
一、选择题1.从-5,-1,0,83,π这五个数中随机抽取一个数,恰好为负整数的概率为( ) A .15 B .25C .35D .452.下列说法正确的是( ) A .“打开电视机,正在播放《新闻联播》”是不可能事件B .“两直线被第三条直线所截,同位角相等”是必然事件C .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D .“篮球队员在罚球线上投篮一次,投中”为随机事件3.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为( )A .0.42B .0.50C .0.58D .0.72 4.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°5.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线 AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .106.下列四个图标中,是轴对称图形的是( )A .B .C .D . 7.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC = 8.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒9.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去 10.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据: 支撑物高度h(cm )10 20 30 40 50 60 70 80 小车下滑时间t(s ) 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 下列说法错误的是( )A .当h =50cm 时,t =1.89sB .随着h 逐渐升高,t 逐渐变小C .h 每增加10cm ,t 减小1.23sD .随着h 逐渐升高,小车的速度逐渐加快11.如图,在墙面上安装某一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行.若第一个弯道处142B ∠=︒,则第二个弯道处∠C 的度数为( )A .38°B .142°C .152°D .162° 12.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 二、填空题13.在甲,乙两个不透明口袋中各装有10个和3个形状大小完全相同的红色小球,则从中摸到红色小球的概率是P 甲_____P 乙(填“>”,“<”或“=”);14.“同时抛掷两枚普通的骰子,向上一面的点数之和为13”是_____(选填“必然事件”,“不可能事件”,或“随机事件”).15.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有_____个.16.如图,在△ABC 中,AB =AC =10cm ,BC =8cm ,AB 的垂直平分线交AB 于点M ,交AC 于点N ,在直线MN 上存在一点P ,使P 、B 、C 三点构成的△PBC 的周长最小,则△PBC 的周长最小值为______ .17.连接正方形网格中的格点,得到如图所示的图形,则1234∠+∠+∠+∠=________º.18.假定甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:(1)甲、乙两人中先到达终点的是__; (2)乙在这次赛跑中的速度为__m/s.19.一个锐角的补角比它的余角的3倍少40︒,这个锐角的度数是______.20.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.三、解答题21.同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率1P ;(3)求向上点数之和不超过5的概率2P .22.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.23.如图,在△ABC 中,AB =BC ,∠B =90°,AD 是∠BAC 的平分线,CE ⊥AD 于点E .求证:AD =2CE .24.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为xcm ,它的面积为2ycm .(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x 从1变到9时(每次增加1),y 的相应值; ()x cm 1 2 3 4 5 6 7 8 9 ()2y cm (3)根据表格中的数据,请你猜想一下:怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下:当围成的长方形的面积是222cm 时,x 的值应在哪两个相邻整数之间?25.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.26.(1)2020151(23)(1)2-⎛⎫--+-⎪⎝⎭;(2)()()223234a b b c ab⋅-÷【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】五个数中有两个负整数,根据概率公式求解可得.【详解】解:∵在-5,-1,0,83,π这五个数中,负整数有-5和-1这2个,∴恰好为负整数的概率为25,故选:B.【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D 、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D .【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖420+580=1000次.经过统计得“凸面向上”的次数约为420次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42, 故选A .【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率. 4.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.5.D解析:D【分析】过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值.如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.6.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不合题意.故选:B .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.D解析:D【分析】根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE ,∠AEB=∠DEC ,∴只需要添加对顶角的邻边,即AE=DE (由AC=BD 也可以得到),或任意一组对应角,即∠A=∠D ,∠B=∠C ,∴选项A 、B 、C 可以判定,选项D 不能判定,故选:D .【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.8.C【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=15°,根据三角形的外角的性质得到∠ACF=∠AGC=∠GAF+∠F=2∠F,于是得到结论.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB=15°,∴∠GAF=∠F=15°,∴∠ACF=∠AGC=∠GAF+∠F=2∠F=30°,故选C.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.9.C解析:C【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.10.C解析:C【解析】A.当h=50cm时,t=1.89s,故A正确;B.随着h逐渐升高,t逐渐变小,故B正确;C.h每增加10cm,t减小的值不一定,故C错;D.随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:C.11.B解析:B【分析】由AB ∥CD 得∠B=∠C ,根据∠B=142°得∠C=142°.【详解】如图,∵拐弯后的管道与拐弯前的管道平行,∴AB ∥CD ,∴∠B=∠C ,又∵∠B=142°,∴∠C=142°,故选:B .【点睛】本题考查了平行线的性质的应用和等量代换相关知识,重点掌握平行线的性质,难点是从生活实际中抽象出平行线和相交线.12.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.二、填空题13.=【解析】【分析】根据必然事件的定义及其概率可得答案【详解】由题意知从甲口袋的10个小球中摸出一个小球是红色小球是必然事件概率为1;从乙口袋的3个小球中摸出一个小球是红色小球是必然事件概率为1;∴P 解析:=【解析】【分析】根据必然事件的定义及其概率可得答案.【详解】由题意知,从甲口袋的10个小球中摸出一个小球,是红色小球是必然事件,概率为1;从乙口袋的3个小球中摸出一个小球,是红色小球是必然事件,概率为1;∴P甲=P乙,故答案为:=.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.P(必然事件)=1.P(不可能事件)=0.14.不可能事件【分析】直接利用不可能事件的定义分析得出答案【详解】解:同时抛掷两枚质地均匀的骰子最多只能两枚都是6点数和最多是12所以向上一面的点数之和是13是不可能事件故答案为不可能事件【点睛】此题考解析:不可能事件【分析】直接利用不可能事件的定义分析得出答案.【详解】解:同时抛掷两枚质地均匀的骰子,最多只能两枚都是6,点数和最多是12,所以向上一面的点数之和是13,是不可能事件.故答案为不可能事件.【点睛】此题考查不可能事件,正确把握相关定义是解题关键.15.4【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可【详解】如图所示有4个位置使之成为轴对称图形故答案为4【点睛】此题考查轴对称图案解题关键在于利用对称轴找出对称图案即可解析:4【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【详解】如图所示,有4个位置使之成为轴对称图形.故答案为4.【点睛】此题考查轴对称图案,解题关键在于利用对称轴找出对称图案即可.16.18cm【解析】【分析】根据轴对称的性质即可判定P就是N点所以△PBC 的周长最小值就是△NBC的周长【详解】∵AB关于直线MN对称∴连接AC与MN 的交点即为所求的P 点此时P 和N 重合 即△BNC 的周长解析:18cm 【解析】 【分析】根据轴对称的性质,即可判定P 就是N 点,所以△PBC 的周长最小值就是△NBC 的周长. 【详解】∵A 、B 关于直线MN 对称,∴连接AC 与MN 的交点即为所求的P 点,此时P 和N 重合, 即△BNC 的周长就是△PBC 的周长最小值, ∴△PBC 的周长最小值为BC+AC=8+10=18cm. 故答案为:18cm. 【点睛】本题考查了线段垂直平分线的性质,轴对称-最短距离,根据轴对称的性质求出P 点的位置是解答本题的关键.17.180°【分析】利用网格的特征可分别证明和从而可证得和故可得结论【详解】如图设正方形网格每一格长1个单位∴又故答案为:【点睛】此题主要考查了全等三角形的判定与性质构造直角三角形并证明全等是解答本题的解析:180° 【分析】利用网格的特征可分别证明ABF ADG ≅和AHC CDE ≅,从而可证得1290∠+∠=︒和3490∠+∠=°,故可得结论 【详解】 如图,设正方形网格每一格长1个单位, ∴3AF =,1BF =,3AG =,1GD =,2AH =,2CE =,1HC =,1DE =,又90AFB AGD ∠=∠=︒,90AHC CED ∠=∠=︒ABF ADG ∴≅,AHC CDE ≅2BAF ∴∠=∠,ADG ABF ∠=∠,3DCE ∠=∠,4ACH ∠=∠ 290ADG ∠︒∠+=,390ACH ∠+∠=︒ 2190∴∠+∠=︒,3490∠+∠=° 12349090180∴∠+∠+∠+∠==︒+︒︒ 故答案为:180︒ 【点睛】此题主要考查了全等三角形的判定与性质,构造直角三角形并证明全等是解答本题的关键.18.(1)甲(2)8【分析】根据图象中的特殊点读出总路程和时间判断运动类型并利用速度公式计算和判断运动的快慢【详解】(1)在通过路程相同的情况下甲所用时间短速度快所以甲先到达终点;(2)乙的速度:v 乙=解析:(1)甲 (2)8 【分析】根据图象中的特殊点,读出总路程和时间,判断运动类型并利用速度公式计算和判断运动的快慢. 【详解】(1)在通过路程相同的情况下,甲所用时间短,速度快,所以甲先到达终点; (2)乙的速度:v 乙=100=12.5S m S 乙乙 =8m/s. 故答案为(1)甲;(3)乙的速度是8m/s. 【点睛】本题考查了函数图象,观察函数图象的纵坐标得出路程,横坐标得出时间是解题的关键.19.【分析】设这个角为α根据余角的和等于90°补角的和等于180°表示出这个角的补角与余角然后根据题意列出方程求解即可【详解】解:设这个角为α则它的补角为180°-α余角为90°-α根据题意得180°- 解析:25︒【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可. 【详解】解:设这个角为α,则它的补角为180°-α,余角为90°-α, 根据题意得,180°-α=3(90°-α)-40°, 解得α=25°. 故答案为:25°. 【点睛】本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.20.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或(a+b)2-2ab故可得:(a+b)2-2ab=a2+b2故答案为:(a+解析:(a+b)2-2ab = a2+b2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a2+b2或(a+b)2-2ab,故可得:(a+b)2-2ab = a2+b2故答案为:(a+b)2-2ab = a2+b2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.三、解答题21.(1)列表见解析,共有36种等可能的结果;(2)15 36P=(3)25 18P=【解析】【分析】(1)首先根据题意列出表格,注意在列表的时候做到不重不漏,然后由表格求得所有等可能的结果;(2)由(1)可求得向上点数之和为8的情况,再利用概率公式即可求得答案;(3)由(1)可求得向上点数之和不超过5的情况,再利用概率公式即可求得答案.【详解】解:(1)列表得:(2)∵向上点数之和为8的有5种情况,∴15 36P=;(3)∵向上点数之和不超过5的有10种情况,∴21053618P ==. 【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比. 22.(1)见解析;B 1(2,0);(2)见解析;(3)见解析 【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求, 点()2,0B-,关于y 轴对称,横坐标符号改变B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可; (3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可. 【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求, 点()2,0B-,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短, 则PA+PC=PA+PC 1=AC 1, 则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键. 23.见解析 【分析】延长AB 、CE 交于点F ,证明△ABD ≌△CBF ,根据全等三角形的性质得到AD =CF ,证明△CAE ≌△FAE ,得到CE =EF ,进而证明结论. 【详解】证明:延长AB 、CE 交于点F ,∵∠ABC =90°,CE ⊥AD ,∠ADB =∠CDE , ∴∠BAD =∠ECD , 在△ABD 和△CBF 中,BAD BCF AB CB ABD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△CBF (SAS ), ∴AD =CF ,∵AD 是∠BAC 的平分线, ∴∠CAE =∠FAE , 在△CAE 和△FAE 中,CAE FAE AE AEAEC AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CAE ≌△FAE (ASA ), ∴CE =EF , ∴AD =CF =2CE .【点睛】本题考查了全等三角形的判定及性质定理,熟练掌握定理是解题的关键.24.(1)y=210x x -,x 是自变量,010x <<;(2)见解析;(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为225cm ;(4)当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【分析】(1)根据周长的等量关系可得长方形的另一边为10-x ,那么面积=x (10-x ),自变量是x ,取值范围是0<x <10;(2)把相关x 的值代入(1)中的函数解析式求值即可; (3)根据表格可得x 为5时,y 的值最大;(4)观察表格21<y <24时,对应的x 的取值范围即为所求. 【详解】(1)(202)y x x =÷-2(10)10x x x x =-=-.x 是自变量,010x <<.(2)当x 从1变到9时(每次增加1),y 的相应值列表如下 ()x cm1 2 3 4 5 6 7 8 9()2y cm 916 21 24 25 24 21 16 9(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为25cm .(4)由表格可知,当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间. 【点睛】本题考查了变量与函数,函数的表示方法,求函数值等知识.用到的知识点为:长方形的长与宽的和等于周长的一半;长方形的面积等于长×宽.25.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300° 【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解; (3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解. 【详解】 (1)∵AB ∥CD , ∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1, ∴2∠1+60°+∠1=180°,解得∠1=40°; (2)如图,过点F 作FP ∥AB ,∵CD ∥AB , ∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP . ∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG , ∵∠EFG=90°, ∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下: ∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°, 整理得:AEG ∠+CFG ∠=300°. 【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键26.(1)4-;(2)32ac -; 【分析】(1)由零指数幂、负整数指数幂、以及乘方的运算法则进行计算,即可得到答案; (2)由单项式乘以单项式,单项式除以单项式进行计算,即可得到答案. 【详解】解:(1)220151(1)2-⎛⎫--+- ⎪⎝⎭=141-- =4-;(2)()()223234a b b c ab ⋅-÷=2336(4)a b c ab -÷=32ac -; 【点睛】本题考查了单项式乘以单项式,单项式除以单项式,零指数幂、负整数指数幂、以及乘方的运算法则,解题的关键是掌握运算法则进行解题.。
湘教版数学七年级下册第二学期期末 达标测试卷(含答案)
第二学期期末达标测试卷一、选择题(共10题,每题3分,共30分) 1. 下面四个图形中,是轴对称图形的是( )2. 如图,AB ∥CD ,直线l 分别交AB ,CD 于E ,F ,∠1=56°,则∠2的度数是( )A .56°B .146°C .134°D .124°(第2题) (第6题)3. 已知⎩⎨⎧x =-2,y =2是方程kx +2y =-2的解,则k 的值为( )A .-3B .3C .5D .-5 4. 下列运算正确的是( )A .4a 2-2a 2=2a 2B .(a 2)3=a 5C .a 2·a 3=a 6D .a 3+a 2=a 55. 下列从左到右的变形中,属于因式分解的是( )A .x 2-1=(x +1)(x -1)B .2xy 2=2x ·yC .(-x -1)2=x 2+2x +1D .x 2+2x +2=x (x +2)+26. 如图,三角形DEF 是由三角形ABC 平移得到的,若点A ,D 之间的距离为1,CE =2,则BC =( ) A .3 B .1 C .2 D .不能确定7. 下列多项式乘法,能用平方差公式计算的是( )A .(-3x -2)(3x +2)B .(-a -b )(-b +a )C .(-3x +2)(2-3x )D .(3x +2)(2x -3)8. 某生物兴趣小组按照老师的安排去采集标本,该小组共10人交回的标本数为:3名同学每人5件,2名同学每人6件,4名同学每人7件,1名同学10件.同学们交回的标本件数的众数和中位数分别为( ) A .众数4,中位数3 B .众数7,中位数7 C .众数7,中位数6 D .众数7,中位数6.59. 为响应国家“全民阅读,建设学习型社会”的倡议,某校欲购进《论语》《弟子规》两种图书以供学生阅读.购买《论语》80本、《弟子规》130本,共需要3 040元;购买《论语》60本、《弟子规》150本,共需要2 700元.设《论语》的单价为x 元,《弟子规》的单价为y 元,可列方程组为( ) A.⎩⎨⎧60x +130y =3 040,80x +150y =2 700 B.⎩⎨⎧130x +80y =3 040,60x +150y =2 700 C.⎩⎨⎧80x +150y =3 040,60x +130y =2 700 D.⎩⎨⎧80x +130y =3 040,60x +150y =2 70010. 如图,点E 在CA 的延长线上,DE ,AB 交于点F ,且∠BDE =∠AEF ,∠B=∠C ,∠EF A 比∠FDC 的余角小10°,P 为线段DC 上一动点,Q 为PC 上一点,且满足∠FQP =∠QFP ,FM 为∠EFP 的平分线.下列结论:①CE ∥BD ;②AB ∥CD ;③FQ 平分∠AFP ;④∠QFM =20°.其中结论正确的序号是( )A .①②③④B .①②③C .②③D .①④ 二、填空题(共5题,每题3分,共15分) 11. 已知2m =5,2n =6,则2m +n =________.12. 因式分解:a 3-25a =________.13. 已知一组数据3,4,1,a ,2,a 的平均数为2,则这组数据的中位数是________. 14. 如图,直线a ,b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠5;③∠1=∠4;④∠2+∠3=180°.其中能判定a ∥b 的条件是______________.(把你认为正确的序号填在横线上)3(第14题) (第15题)15. 如图,将三角形ABC 绕点A 逆时针旋转一定角度,得到三角形ADE .若∠CAE=63°,∠E =71°,且AD ⊥BC ,则∠BAC 的度数为________°. 三、解答题(共8题,共75分) 16. (8分)(1)计算:①(2x 2)4-x ·x 3·x 4; ②(x -1)(x 2+x +1).(2)因式分解:①a 2(1-m )+4(m -1); ②(x -y )2-4(x -y -1).17. (8分)解方程组:(1)⎩⎨⎧y =2x ,3x +5y =26; (2)⎩⎨⎧x +2y =7,2x +y =2.18. (8分)先化简,再求值:(a-3b)2+(2a+2b)(a-3b)+(a+b)2.其中a=b+2.19. (8分)在如图所示的方格纸中,(1)作三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的.20. (10分)如图,D是三角形ABC的边BC延长线上一点,连接AD,把三角形ACD绕点A顺时针旋转60°恰好得到三角形ABE,其中D,E是对应点.(1)若∠CAD=18°,求∠BAC,∠EAC的度数;(2)若S三角形ABD=9,S三角形ABE=3,求S三角形ABC.21. (10分)为了提高学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如下表:(1)经计算甲的平均成绩是8环,则a=________;(2)甲成绩的中位数是______环,乙成绩的众数是______环;(3)已知甲成绩的方差是1.2,请求出乙成绩的方差,并判断甲、乙两名队员谁的成绩更为稳定.22. (10分)某高校共有5个大餐厅和2个小餐厅.若同时开放1个大餐厅和2个小餐厅,可供1 600名学生就餐;若同时开放2个大餐厅和1个小餐厅,可供2 000名学生就餐.(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐.(2)餐厅装修升级期间,每个大餐厅只能容纳原来就餐人数的40%,每个小餐厅只能容纳原来就餐人数的30%,若同时开放7个餐厅,能否供1 800名学生同时就餐?请说明理由.23. (13分)如图①,点F,G分别在直线AB,CD上,且AB∥CD.5(1)问题发现:若∠BFE=40°,∠CGE=130°,则∠GEF的度数为________.(2)拓展探究:∠GEF,∠BFE,∠CGE之间有怎样的数量关系?并说明理由.(3)深入探究:如图②,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,试探究∠GPQ与∠GEF之间的数量关系,请直接写出你的结论.答案一、1.A 2.D 3.B 4.A5.A【点拨】x2-1=(x+1)(x-1)符合因式分解的定义,选项A符合题意.6.A7.B8.D9.D10.A【点拨】①因为∠BDE=∠AEF,所以CE∥BD,结论①正确;②因为CE∥BD,所以∠B=∠EAF.因为∠B=∠C,所以∠EAF=∠C,所以AB∥CD,结论②正确;③因为AB∥CD,所以∠AFQ=∠FQP.因为∠FQP=∠QFP,所以∠AFQ=∠QFP,所以FQ平分∠AFP,结论③正确;④因为FM为∠EFP的平分线,所以∠MFP=12∠EFP=12∠EF A+12∠AFP.因为∠AFQ=∠QFP,所以∠QFP=12∠AFP,所以∠QFM=∠MFP-∠QFP=12∠EF A.因为AB∥CD,所以∠EF A=∠FDC.又因为∠EF A比∠FDC的余角小10°,所以∠EF A=(90°-∠FDC)-10°,所以∠EF A=40°,所以∠QFM=20°,结论④正确.综上所述:正确的结论有①②③④.二、11.3012.a(a-5)(a+5)13.1.514.①②④15.82【点拨】因为三角形ABC绕点A逆时针旋转一定角度,得到三角形ADE,所以∠ACB=∠E=71°,∠BAD=∠CAE=63°.因为AD⊥BC,所以∠CAD=90°-∠ACB=90°-71°=19°,所以∠BAC=∠BAD+∠CAD=63°+19°=82°.三、16.解:(1)①原式=16x8-x8=15x8.②原式=x3+x2+x-x2-x-1=x3-1.(2)①原式=a2(1-m)-4(1-m)=(1-m)(a2-4)=(1-m)(a+2)(a-2).②原式=(x-y)2-4(x-y)+4=(x-y-2)2.717.解:(1)⎩⎨⎧y =2x ,①3x +5y =26,②把①代入②,得3x +10x =26,解得 x =2,将x =2代入①,得y =2×2=4,所以方程组的解是⎩⎨⎧x =2,y =4.(2)⎩⎨⎧x +2y =7,①2x +y =2,②①+②,得3x +3y =9,所以x +y =3,③ ①-③,得y =4,②-③,得x =-1, 所以方程组的解是⎩⎨⎧x =-1,y =4.18.解:原式=(a -3b )2+2(a +b )(a -3b )+(a +b )2=[(a -3b )+(a +b )]2 =(2a -2b )2=4(a -b )2.因为a =b +2,所以a -b =2,所以原式=4×22=16. 19.解:(1)如图,三角形A 1B 1C 1即为所求.(2)先向右平移6格,再向下平移2格.(答案不唯一)20.解:(1) 因为把三角形ACD 绕点A 顺时针旋转60°恰好得到三角形ABE ,所以旋转角为60°,所以∠BAC =60°.易得∠DAE =60°.又因为∠CAD =18°, 所以∠EAC =∠EAD -∠CAD =42°.(2)若S 三角形ABD =9,S 三角形ABE =3,由旋转可知S 三角形ACD =S 三角形ABE =3,所以S三角形ABC=S 三角形ABD -S 三角形ACD =9-3=6.21.解:(1)8(2)8;79 (3)乙的平均成绩为110×(6+7+9+7+9+10+8+7+7+10)=8(环), 所以乙成绩的方差为110×[(7-8)2×4+(9-8)2×2+(10-8)2×2+(6-8)2+(8-8)2]=1.8,因为甲和乙的平均成绩都是8环,而甲成绩的方差小于乙成绩的方差,所以甲的成绩更为稳定.22.解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,依题意,得⎩⎨⎧x +2y =1 600,2x +y =2 000,解得⎩⎨⎧x =800,y =400.答:1个大餐厅可供800名学生就餐,1个小餐厅可供400名学生就餐. (2)能.理由如下:800×5×40%+400×2×30%=1 840(名), 因为1 840>1 800,所以同时开放7个餐厅,能供1 800名学生同时就餐. 23.解:(1)90°(2)∠GEF =∠BFE +180°-∠CGE .理由如下: 如图,过点E 作EH ∥AB , 所以∠FEH =∠BFE . 因为AB ∥CD ,EH ∥AB , 所以EH ∥CD ,所以∠HEG =180°-∠CGE ,所以∠GEF =∠FEH +∠HEG =∠BFE +180°-∠CGE .(3)∠GPQ +12∠GEF =90°.。
湘教版七年级下学期期末数学试卷-(含解析)
七年级(下)期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.用加减法解方程组时,若要求消去y,则应()A.①×3+②×2B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×3 3.整式n2﹣1与n2+n的公因式是()A.n B.n2C.n+1D.n﹣14.下列计算正确的是()A.a2•a3=a6B.2a2+3a2=5a4C.(2a2)3=8a6D.2ab2•3ab2=6ab25.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余 4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.6.下列因式分解正确的是()A.3p2﹣3q2=(3p+3q)(p﹣q)B.m4﹣1=(m2+1)(m2﹣1)C.2p+2q+1=2(p+q)+1D.m2﹣4m+4=(m﹣2)27.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4D.∠A=∠38.如图,点P在直线m上移动,A,B是直线n上的两个定点,且直线m∥n.对于下列各值:①点P到直线n的距离;②△P AB的周长:③△P AB的面积:④∠APB的大小.其中不会随点p的移动而变化的是()A.①②B.①③C.②④D.③④9.已知五个数a、b、c、d、e满足a<b<c<d<e,则下列四组数据中方差最大的一组是()A.a、b、c B.b、c、d C.c、d、e D.a、c、e10.若9x2+2(k﹣3)x+16是完全平方式,则k的值为()A.15B.15或﹣15C.39或﹣33D.15或﹣911.给出下列说法,正确的是()A.两条直线被第三条直线所截,同位角相等B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交C.相等的两个角是对顶角D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离12.如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b,a的长方形纸片一张,其中a<b.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知图②中阴影部分的面积满足S1=6S2,则a,b满足的关系式为()A.3b=4a B.2b=3a C.3b=5a D.b=2a二.填空题(共6小题,满分18分)13.分解因式:x3﹣4x=.14.﹣b•b3=.15.已知a+=3,则a2+的值是.16.一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为.17.如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD的度数是.18.如图,直线L1∥L2,△ABC的面积为10,则△DBC的面积是.三.解答题(共3小题,满分24分,每小题8分)19.(8分)解方程组(1);(2);20.(8分)因式分解:(1)4a2﹣16;(2)2a2b﹣12ab+18b.21.(8分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=.四.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,在平面直角坐标系中,已知△ABC的顶点的坐标分别是A(﹣5,2),B (﹣2,4),C(﹣1,1).(1)在图中作出△A1B1C1,使△A1B1C1和△ABC关于x轴对称;(2)画出将△ABC以点O为旋转中心,顺时针旋转90°对应的△A2B2C2;(3)直接写出点B关于点C对称点的坐标.23.(8分)如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).五.解答题(共2小题,满分16分,每小题8分)24.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:平均数(分)中位数(分)众数(分)初中部a85c高中部85b100(1)求出表格中a=;b=;c=.(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.25.(8分)某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B型号篮球?六.解答题(共1小题,满分10分,每小题10分)26.(10分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选:D.2.解:用加减法解方程组时,若要求消去y,则应①×5+②×3,故选:C.3.解:n2﹣1=(n+1)(n﹣1),n2+n=n(n+1),所以整式n2﹣1与n2+n的公因式是(n+1),故选:C.4.解:A、a2•a3=a5,故原题计算错误;B、2a2+3a2=5a2,故原题计算错误;C、(2a2)3=8a6,故原题计算正确;D、2ab2•3ab2=6a2b4,故原题计算错误;故选:C.5.解:由题意可得,,故选:B.6.解:选项A:3p2﹣3q2=3(p2﹣q2)=3(p+q)(p﹣q),不符合题意;选项B:m4﹣1=(m2+1)(m2﹣1)=m4﹣1=(m2+1)(m+1)(m﹣1),不符合题意;选项C:2p+2q+1不能进行因式分解,不符合题意;选项D:m2﹣4m+4=(m﹣2)2,符合题意.故选:D.7.解:A、∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B、∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C、∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D、∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选:B.8.解:①∵直线m∥n,∴点P到直线n的距离不变;②∵P A、PB的长度随点P的移动而变化,∴△P AB的周长会随点P的移动而变化;③∵点P到直线n的距离不变,AB的大小,∴△P AB的面积不变;④直线m、n之间的距离不随点P的移动而变化,∠APB的大小随点P的移动而变化;故不会随点p的移动而变化的是①③,故选:B.9.解:五个数a、b、c、d、e满足a<b<c<d<e,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a、c、e 方差最大,故选:D.10.解:∵9x2+2(k﹣3)x+16是完全平方式,∴k﹣3=±12,解得:k=15或k=﹣9,故选:D.11.解:A、两条直线被第三条直线所截,同位角不一定相等,故选项错误;B、平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故选项正确;C、相等的两个角不一定是对顶角,故选项错误;D、从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故选项错误.故选:B.12.解:由题意得,,,∵S1=6S2,∴2ab=6(ab﹣a2),2ab=6ab﹣6a2,∵a≠0,∴b=3b﹣3a,∴2b=3a,故选:B.二.填空题(共6小题,满分15分)13.解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).14.解:﹣b•b3=﹣b1+3=﹣b4.故答案为:﹣b4.15.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.16.解:∵一组数据:25,29,20,x,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案是:22.4.17.解:∵OA⊥OB,∴∠AOB=90°,∵∠BOC=50°,∴∠AOC=∠BOC+∠AOB=50°+90°=140°,∵OD平分∠AOC,∴∠AOD=70°,∴∠BOD=90°﹣70°=20°,故答案为20°.18.解:∵直线L1∥L2,∴L1与L2之间的距离处处相等,又∵△ABC与△DBC同底,高为L1与L2之间的距离,故△ABC的面积与△DBC的面积相等,∵△ABC的面积为10.∴△DBC的面积是10.故答案:10.三.解答题(共3小题,满分24分,每小题8分)19.解:(1),①×2+②得:﹣9y=﹣9,解得:y=1,把y=1代入②得:x=1,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为.20.解:(1)4a2﹣16=4(a2﹣4)=4(a+2)(a﹣2);(2)2a2b﹣12ab+18b=2b(a2﹣6a+9)=2b(a﹣3)2.21.解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2,∵a=,∴原式=1+2=3.四.解答题(共2小题,满分16分,每小题8分)。
湘教版七年级下数学期末复习试卷(二)整式的乘法
期末复习(二) 整式的乘法考点一幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【分析】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等得到.【解答】由已知得a2m+n+1=a6,于是有2m+n+1=6,即2m+n=5,又因为m+2n=4,所以m=2,n=1. 【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.变式练习:1.下列计算正确的是( )A.a+2a=3a2B.(a2b)3=a6b3C.(a m)2=a m+2D.a3·a2=a62.若2x=3,4y=2,则2x+2y的值为__________.考点二多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【分析】先按多项式乘法法则展开,再合并同类项.【解答】原式=2(x2+2x-x-2)-3(6x2-9x-4x+6)=-16x2+41x-22.【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.如果(x+m)与(x+1)的积中不含x项,那么m是( )A.-2B.-1C.1D.24.若2x3-ax2-5x+5=(2x2+ax-1)(x-b)+3,其中a、b为整数,则a+b的值为( )A.-4B.-2C.0D.4考点三乘法公式适用的多项式特点【例3】二次三项式x2-kx+9是一个完全平方式,则k的值是__________.【分析】先把x2-kx+9变形为x2-kx+32或x2-kx+(-3)2,根据两平方项确定中间项为±6x,即可确定k的值.【解答】±6【方法归纳】两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,即“首平方,尾平方,积的2倍在中央”.5.下列各式:①(a+b)(b+a);②(a-b)(a+b);③(-a+b)(a+b);④(-a+b)(-a-b),其中能用乘法公式计算的有( )A.1个B.2个C.3个D.4个考点四利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【分析】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】原式=(4a2-b2)-(a2-4ab+4b2)+5b2=3a2+4ab.当a=-1,b=2时,原式=3×(-1)2+4×(-1)×2=-5.【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.6.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a27.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是__________.8.计算:(1)(a+b)2-(a-b)2-4ab; (2)[(x+2)(x-2)]2; (3)(a+3)(a-3)(a2-9).考点五乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【分析】根据图形可以得到:两个图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】(1)方法一:(a+b)2.方法二:a2+2ab+b2.(2)(a+b)2=a2+2ab+b2.(3)1022=(100+2)2=1002+2×100×2+22=10 404.【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.9.图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2D.a2-b2复习测试:一、选择题(每小题3分,共24分)1.计算(-a2)3的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x3=x5B.(x-2)2=x2-4C.2x2·x3=2x5D.(x3)4=x73.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1B.a2-2a+1C.a2-2a-1D.a2+14.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6 C.p=1,q=-6 D.p=5,q=-65.若m的值使得x2+12x+m=(x+6)2-32成立,则m的值为( )A.2B.3C.4D.56.下列计算:①(a3)3=a6;②a2·a3=a6;③2m·3n=6m+n;④-a2·(-a)3=a5;⑤(a-b)3·(b-a)2=(a-b)5.其中错误的个数有( )A.1个B.2个C.3个D.4个7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8aD.6a3-8a28.请你计算:(1-x)(1+x),(1-x)(1+x+x2),…猜想(1-x)(1+x+x2+…+x n)的结果是( )A.1-x n+1B.1+x n+1C.1-x nD.1+x n二、填空题(每小题4分,共16分)9.计算:2m2·m8=__________.10.已知有理数a,b满足:a+b=2,a-b=5,则(a+b)3·(a-b)3的值是__________.11.卫星绕地球运动的速度是7.9×103米/秒,那么卫星绕地球运行3×106秒走过的路程是__________米.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为__________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(10分)先化简,再求值:(1)(2019·河池)(x+2)2-(x+1)(x-1),其中x=1;(2)(2a+b)(3a-2b)-(a-2b)2,其中a=-2,b=1.15.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2; (2)a2-ab+b2.16.(10分)四个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,这个记号就叫做2阶行列式. 例如:=1×4-2×3=-2 . 若=10,求x的值.17.(10分)如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a、b的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为__________;(2)观察图b,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是__________; (3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算x-y的值.参考答案变式练习1.B2.63.B4.D5.D6.D7.48.(1)原式=a2+2ab+b2-a2+2ab-b2-4ab=0.(2)原式=(x2-4)2=x4-8x2+16.(3)原式=(a2-9)(a2-9)=a4-18a2+81.9.C复习测试1.D2.C3.A4.C5.C6.C7.D8.A9.2m10 10.1 000 11.2.37×101012.±4x或4x413.(1)原式=-8a6b3-8a6b3=-16a6b3.(2)原式=a2+4ab-(a2-4b2)-4ab=a2+4ab-a2+4b2-4ab=4b2.(3)原式=[2x-(3y-1)][2x+(3y-1)]=4x2-(3y-1)2=4x2-(9y2-6y+1)=4x2-9y2+6y-1.14.(1)原式=x2+4x+4-(x2-1)=x2+4x+4-x2+1=4x+5.当x=1时,原式=4×1+5=9.(2)原式=6a2-ab-2b2-a2+4ab-4b2=5a2+3ab-6b2.当a=-2,b=1时,原式=5×(-2)2+3×(-2)×1-6×12=8.15.(1)a2+b2=(a+b)2-2ab=1+12=13.(2)a2-ab+b2=(a+b)2-3ab=12-3×(-6)=1+18=19.16.(x+1)2-(x-2)(x+2)=10,解得x=2.5.17.(1)S=(3a+b)(2a+b)-(a+b)2=6a2+3ab+2ab+b2-a2-2ab-b2=5a2+3ab(平方米).阴影(2)当a=5,b=2时,5a2+3ab=5×25+3×5×2=125+30=155(平方米).18.(1)m2-2mn+n2或(m-n)2.(2)(m+n)2=(m-n)2+4mn.(3)(x-y)2=(x+y)2-4xy=36-11=25,所以x-y的值是±5.。
【湘教版】七年级数学下期末试题及答案(2)
一、选择题1.下列事件属于不可能事件的是()A.从装满白球的袋子里随机摸出一个球是白球B.随时打开电视机,正在播新闻C.通常情况下,自来水在10℃结冰D.掷一枚质地均匀的骰子,朝上的一面点数是22.抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.每两次必有1次反面朝上B.可能有50次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上3.在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是()A.七年(2)班肯定会输掉这场比赛B.七年(1)班肯定会赢得这场比赛C.若比赛10次,则七年(1)班会赢得8次D.七年(2)班也有可能会赢得这场比赛4.下列四个图标中,是轴对称图形的是()A.B.C.D.5.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°6.如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④34BCDABDSS=△△,⑤34CDAD=.其中正确的个数有()A .2B .3C .4D .5 7.在ABC ∆中,AD 是BC 边上的中线,点G 是重心,如果6AG =,那么线段DG 的长为( )A .3B .4C .9D .12 8.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ) A .4cmB .5cmC .9cmD .13cm 9.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S 10.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度( )A .保持不变B .越来越慢C .越来越快D .快慢交替变化 11.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112°12.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数二、填空题13.在一个不透明的口袋中装有4个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为___________.14.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.15.如图,三角形纸片中,7cm AB =,5cm =BC ,4cm AC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边的点E 处,折痕为BD ,则AED 的周长为______.16.将一张长为12.6m .宽为()6.3acm a >的长方形纸片按如图折叠出一个正方形,并将正方形剪下,这一过程称为第一次操作,将余下的长方形纸片再次折叠出一个正方形,并把正方形再剪下,则称为第二次操作,……,如此操作下去,若前四次剪下后的长方形纸片长与宽之比都小于2:1,当第五次操作后,剩下图形的长与宽之比为2:1,则a =________cm .17.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .18.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.19.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使∠COD =90°,当∠AOC =50°时,∠BOD 的度数是____________.20.若多项式225a ka ++是完全平方式,则k 的值是______.三、解答题21.如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、20、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张。
湘教版初中七年级下学期数学期末试题及答案
下列式子由左到右的变形是因式分解的是
4.
2
(
)
(
如图,下列条件中,不能判定直线a∥b 的是
7.
期末综合检测卷
10.
如果多项式 x2-mx+9(
14.
m 为常数)可以用完全平方公式进行
因式分解,那么 m = .
如图,将一张长方形纸条 ABCD 沿EF 折叠,点 B ,
15.
A 分别落在
点 B′,
若 ∠DGF =110
A′的位置上,
FB′与 AD 的 交 点 为 G .
°,
则 ∠A′EF 的度数为 .
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
{
A
C
3x+3y=100
x+y=100,
3x+y=100
x+y=100,
(
{
B
x+3y=100
ìïx+y=1
00,
ï
D
í
1
ï3
00
ï x+3y=1
î
)
3 匹 小 马 能 拉 1 片 瓦,则 有 多 少 匹 大
马、多少匹小马? 若设大马有 x 匹,小马有y 匹,则可列方程
组为
x+y=100,
{
A
{
B
3x+3y=100
x+3y=100
ìïx+y=1
00,
ï
D
í
1
ï3
00
ï x+3y=1
î
x+y=100,
{
C
湘教版七年级下册数学期末测试题
湘教版七年级下册数学期末测试题推荐文章新人教版七年级下册数学期末试卷热度:七年级秋季学期数学期末试卷热度:七年级数学上册期末试卷题热度:七年级数学秋季学期期末考试试题热度:七年级数学上学期期末试卷热度:精神爽,下笔如神写华章;预祝:七年级数学期末考试时能超水平发挥。
以下是店铺为大家整理的湘教版七年级下册数学期末测试题,希望你们喜欢。
湘教版七年级下册数学期末试题一、选择题(共12小题,每小题3分,满分36分)1.1的平方根是( )A.0B.1C.±1D.﹣12.在平面直角坐标系中,点P(﹣5,0)在( )A.第二象限B.x轴上C.第四象限D.y轴上3.为了解某校初一年级300名学生的体重情况,从中抽取50名学生的体重进行统计分析.在这个问题中,总体是指( )A.300名学生B.被抽取的50名学生C.300名学生的体重D.被抽取50名学生的体重4.某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,为了反映这一周销售衬衣的变化情况,应制作的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图5.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间6.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°7.将点A(2,﹣2)向上平移4个单位得到点B,再将点B向左平移4个单位得到点C,则下列说法正确的是( )①点C的坐标为(﹣2,2)②点C在第二、四象限的角平分线上;③点C的横坐标与纵坐标互为相反数;④点C到x轴与y轴的距离相等.A.1个B.2个C.3个D.4个8.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤ 的立方根是± ;⑥ 的平方根是9,其中正确的说法是( )A.1个B.2个C.3个D.4个9.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是2610.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是( )A. C. D.11.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为( )A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90D.10x﹣(20﹣x)>9012.适合不等式组的全部整数解的和是( )A.﹣1B.0C.1D.2二、填空题(共6小题,每小题4分,满分25分)13.不等式组的解集是.14.若点A(a,3)在y轴上,则点B(a﹣3,a+2)在第象限.15.已知是二元一次方程组的解,则m﹣n的平方根为.16.一个班级有40人,一次数学考试中,优秀的有18人.在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是.17.设实数x,y满足方程组,则x﹣y= .18.已知关于x的不等式组只有四个整数解,则实数a的取值范是.三、解答题(共6小题,满分39分)19.解方程组:(1) ;(2) .20.解不等式组,并写出不等式组的整数解.21.在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整条形统计图和扇形统计图.请你结合图中信息,解答下列问题(其中(1)、(2)直接填答案即可):(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校约有学生1800人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.22.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.23.如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.24.如图,方格纸每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,点A(1,0),B(5,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D;(2)四边形ABCD的面积是;(直接写出结果)(3)把四边形ABCD向左平移6个单位,再向下平移1个单位得到四边形A′B′C′D′在图中画出四边形A′B′C′D′,并写出A′B′C′D′的坐标.[(1)(3)问的图画在同一坐标系中].湘教版七年级下册数学期末测试题参考答案一、选择题(共12小题,每小题3分,满分36分)1.1的平方根是( )A.0B.1C.±1D.﹣1【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±1)2=1,∴1的平方根是±1.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.在平面直角坐标系中,点P(﹣5,0)在( )A.第二象限B.x轴上C.第四象限D.y轴上【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(﹣5,0)在x轴上,故选B【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.为了解某校初一年级300名学生的体重情况,从中抽取50名学生的体重进行统计分析.在这个问题中,总体是指( )A.300名学生B.被抽取的50名学生C.300名学生的体重D.被抽取50名学生的体重【分析】解此类题需要注意“考察对象实际应是表示事物某一特征的数据,而非考察的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考察的对象是某校初一年级300名学生的体重情况,故总体是某校初一年级300名学生的体重情况.故选C.【点评】本题考查的是确定总体.解题要分清具体问题中的总体、个体与样本,关键是明确考察的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小.4.某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,为了反映这一周销售衬衣的变化情况,应制作的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图【分析】由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;直方图能够清楚地表示出每组的具体数目,分组的时候,数据是连续的;可分析得出答案.【解答】解:根据统计图的特点,知折线统计图表示的是事物的变化情况,能反映这一周销售衬衣的变化情况,故选C.【点评】此题考查了统计图的性质,解决本题的关键是根据扇形统计图、折线统计图、条形统计图、直方图各自的特点来判断.5.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【分析】先估算的值,再估算﹣2,即可解答.【解答】解:∵5< <6,∴3< ﹣2<4,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的值.6.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°【分析】由a∥b,根据平行线的性质得∠1=∠4=120°,再根据三角形外角性质得∠4=∠2+∠3,所以∠3=∠4﹣∠2=80°.【解答】解:如图,∵a∥b,∴∠1=∠4=120°,∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.故选C.【点评】本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质.7.将点A(2,﹣2)向上平移4个单位得到点B,再将点B向左平移4个单位得到点C,则下列说法正确的是( )①点C的坐标为(﹣2,2)②点C在第二、四象限的角平分线上;③点C的横坐标与纵坐标互为相反数;④点C到x轴与y轴的距离相等.A.1个B.2个C.3个D.4个【分析】首先根据平移方法可得C(2﹣4,﹣2+4),进而得到C点坐标,再根据C点坐标分析四个说法即可.【解答】解:将点A(2,﹣2)向上平移4个单位得到点B(2,﹣2+4)即(2,2),再将点B向左平移4个单位得到点C(2﹣4,2),即(﹣2,2),①点C的坐标为(﹣2,2)说法正确;②点C在第二、四象限的角平分线上,说法正确;③点C的横坐标与纵坐标互为相反数,说法正确;④点C到x轴与y轴的距离相等,说法正确.故选:D.【点评】此题主要考查了平移变换与坐标变化;关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.8.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤ 的立方根是± ;⑥ 的平方根是9,其中正确的说法是( )A.1个B.2个C.3个D.4个【分析】根据平方根、算术平方根、立方根,即可解答.【解答】解:①﹣2是4的平方根,正确;②16的平方根是±4,故错误;③﹣125的平方根是﹣5,故错误;④0.25的算术平方根是0.5,正确;⑤ 的立方根是,故错误;⑥ =9,9的平方根是±3,故错误;其中正确的说法是:①④,共2个,故选:B.【点评】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根.。
【湘教版】七年级数学下期末试卷带答案(2)
一、选择题1.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等2.下列事件是随机事件的是()A.太阳东升西落 B.水中捞月 C.明天会下雨 D.人的生命有限3.下列命题正确的是().A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A.B.C.D.5.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个6.如图,在△ABC中,∠A=70°,∠B=90°,点A关于BC的对称点是A',点B关于AC的对称点是B',点C关于AB的对称点是C',若△ABC的面积是1,则△A'B'C'的面积是()A.2 B.3 C.4 D.5的高的是()7.下面四个图形中,线段AD是ABCA .B .C .D .8.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、3 9.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 10.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种关系,其关系图象大致为( )A .B .C .D . 11.已知3619'COD ∠=︒,则下列说法正确的是( )A .COD ∠等于36.19︒B .COD ∠的补角为14441'︒C .COD ∠的余角为5319'︒ D .COD ∠的余角为5341'︒12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 二、填空题13.小强将10盒蔬菜的标签全部撕掉了.现在每个盒子看上去都一样.但是她知道有七盒菠菜,三盒豆角.她随机地拿出一盒并打开它.盒子里面是豆角的概率是______. 14.在-3、-2、-1、0、1、2,3,这七个数中,随机选取一个数,记为a ,那么使得关于x 的反比例函数32a y x+=的图像位于第一、三象限,且使得关于x 的方程11211ax x x+-=--有整数解的概率为_____. 15.将点(0A ,3)向右平移4个单位后与点B 关于x 轴对称,则点B 的坐标为______. 16.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.17.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD △与ABC 全等,点D 的坐标是______.18.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明始姥乘车路程为__________千米.19.如图,直线a ∥b ,直线a 、b 被直线c 所截,若∠2=60°,则∠1的度数为_____.20.计算:20202019122⎛⎫⨯= ⎪⎝⎭_______.三、解答题 21.摆棋子游戏:现有4个棋子A ,B ,C ,D ,要求棋子A 必须摆放在第一位置,其余3个随机摆放在第二、三、四的位置.(1)请你列举出所有摆放的可能情况;(2)求出棋子C 摆放在偶数位置的概率.22.已知:如图,四边形ABCD 中,AD ∥BC ,∠B=90°,AD=AB=4,BC=7,点E 在BC 上,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.(1)求线段DC 的长度;(2)求△FED 的面积.23.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.24.下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户。
湘教版七年级下学期期末数学试卷-(含解析)
七年级(下)期末数学试卷一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程组中,是二元一次方程组的是()A.B.C.D.2.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)3.下列运算正确的是()A.a3+a3=2a6B.a6•a3=a18C.a3•a3=2a3D.(﹣2a2)3=﹣8a64.如图四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.在下列各式中,运算结果为x2的是()A.x4﹣x2B.x6÷x3C.x4÷(﹣x)2D.x•(﹣x)26.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115°B.130°C.120°D.65°7.下列四个说法中,正确的是()A.相等的角是对顶角B.平移不改变图形的形状和大小,但改变图形的位置C.两条直线被第三条直线所截,内错角相等D.垂直于同一条直线的两条直线互相平行8.把代数式3x3﹣6x2y+3xy2分解因式,结果正确的是()A.x(3x+y)(x﹣3y)B.3x(x2﹣2xy+y2)C.x(3x﹣y)2D.3x(x﹣y)29.如图,下面结论正确的是()A.∠1和∠2是同位角B.∠2和∠3是内错角C.∠3和∠4是同旁内角D.∠1和∠4是内错角10.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示()A.∁n H2n+2B.∁n H2n C.∁n H2n﹣2D.∁n H n+3二、填空题(本大题共8小题,每小题3分,共24分)11.(a+2b)()=a2﹣4b2.12.将整式3x3﹣x2y+x2分解因式,则提取的公因式为.13.已知一组数据:5,4,3,6,7,则这组数据的平均数是,中位数是.14.若多项式x2﹣kxy+9y2是完全平方式,则k的值为.15.已知二元一次方程组,则x﹣y=.16.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =度,∠COB=度.17.我国古代数学名著《孙子算经》中记载了一道题,“一百马,一百瓦,大马一拖三,小马三拖一,大马小马各几何?”(大意是:100匹马恰好拉了100片瓦,已知1匹大马拉3片瓦,3匹小马拉1片瓦,问大马和小马各多少匹?)若设大马有x匹,小马有y匹,那么可列方程组为.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).三.解答题(第19题8分,第20、21题每小题8分,共20分)19.(8分)解方程组:(1);(2).20.(6分)因式分解:(1)x3y﹣2x2y2+xy3;(2)2a3﹣18a.21.(6分)已知|x+2|+(y﹣1)2=0,求(x﹣2y)2﹣(x+y)(3x﹣y)﹣5y2的值.四、图形操作与证明(第22题6分,第23题题6分,共12分)22.(6分)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充,使得图1成为轴对称图形,使得图2成为至少有4条对称轴且阴影部分面积等于3的图形,使得图3成为至少有2条对称轴且面积不超过6的图形.23.(6分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.五、实践与应用(第24题6分,第25题8分,共14分)24.(6分)在某学校组织的诗词比赛活动中,每个年级参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的赋分依次为100分,90分,80分,70分.该校发展处的陈主任将七年级和八年级的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中八年级成绩在80分及其以上的人数是人;(2)求出下表中a,b,c的值;平均数(分)中位数(分)众数(分)方差七年级87.6b100138.24八年级a90c106.24(3)学校准备在这两个年级中选一个年级参加市级诗词比赛,你建议学校选哪个年级参加最好?说说你的理由.25.(8分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程组中,是二元一次方程组的是()A.B.C.D.【分析】根据二元一次方程组的定义逐个判断即可.【解答】解:A.含有三个求知数,它不是二元一次方程组,故本选项不符合题意;B.第二个方程是二次方程,它不是二元一次方程组,故本选项不符合题意;C.第一个方程是分式方程,不是二元一次方程组,故本选项不符合题意;D.是二元一次方程组,故本选项符合题意;故选:D.2.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故选:D.3.下列运算正确的是()A.a3+a3=2a6B.a6•a3=a18C.a3•a3=2a3D.(﹣2a2)3=﹣8a6【分析】根据合并同类项、同底数幂的乘法、积的乘方以及幂的乘方解决此题【解答】解:A.根据合并同类项法则,由a3+a3=2a3,故A不符合题意.B.根据同底数幂的乘法,由a6•a3=a9,故B不符合题意.C.根据同底数幂的乘法,由a3•a3=a6,故C不符合题意.D.根据积的乘方以及幂的乘方,由(﹣2a2)3=﹣8a6,故D符合题意.故选:D.4.如图四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:选项A的标志内找到这样的一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项B、C、D中的标志内不能找到这样的一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合,所以它们不是轴对称图形;故选:A.5.在下列各式中,运算结果为x2的是()A.x4﹣x2B.x6÷x3C.x4÷(﹣x)2D.x•(﹣x)2【分析】选项A根据同类项的定义以及合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项B、C根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减;选项D根据同底数幂的乘法法则判断即可,同底数幂相乘,底数不变,指数相加.【解答】解:A.x4与﹣x2不是同类项,所以不能合并,故本选项不合题意;B.x6÷x3=x3,故本选项不合题意;C.x4÷(﹣x)2=x4÷x2=x2,故本选项不合题意;D.x•(﹣x)2=x•x2=x3,故本选项不合题意;故选:C.6.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115°B.130°C.120°D.65°【分析】根据折叠前后角相等可知.【解答】解:∵∠1=50°,∴∠AEF=180°﹣∠BFE=180°﹣(180°﹣50°)÷2=115°故选:A.7.下列四个说法中,正确的是()A.相等的角是对顶角B.平移不改变图形的形状和大小,但改变图形的位置C.两条直线被第三条直线所截,内错角相等D.垂直于同一条直线的两条直线互相平行【分析】根据对顶角、平移的性质和平行线的性质和判定解答.【解答】解:A、相等的角不一定是对顶角,说法错误,不符合题意;B、平移不改变图形的形状和大小,但改变图形的位置,说法正确,符合题意;C、两条平行线被第三条直线所截,内错角相等,说法错误,不符合题意;D、在同一平面上,垂直于同一条直线的两条直线互相平行,说法错误,不符合题意;故选:B.8.把代数式3x3﹣6x2y+3xy2分解因式,结果正确的是()A.x(3x+y)(x﹣3y)B.3x(x2﹣2xy+y2)C.x(3x﹣y)2D.3x(x﹣y)2【分析】先提公因式3x,再利用完全平方公式分解因式.【解答】解:3x3﹣6x2y+3xy2,=3x(x2﹣2xy+y2),=3x(x﹣y)2.故选:D.9.如图,下面结论正确的是()A.∠1和∠2是同位角B.∠2和∠3是内错角C.∠3和∠4是同旁内角D.∠1和∠4是内错角【分析】根据同位角、内错角、同旁内角的概念.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.【解答】解:A、∠1和∠2是邻补角,原说法错误,故此选项不符合题意;B、∠2和∠3的邻补角是内错角,原说法错误,故此选项不符合题意;C、∠3和∠4是对顶角,原说法错误,故此选项不符合题意;D、∠1和∠4是内错角,原说法正确,故此选项符合题意.故选:D.10.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示()A.∁n H2n+2B.∁n H2n C.∁n H2n﹣2D.∁n H n+3【分析】设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,列出部分a n的值,根据数值的变化找出变化规律“a n=2n+2”,依次规律即可解决问题.【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为∁n H2n+2.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(a+2b)(a﹣2b)=a2﹣4b2.【分析】根据平方差公式即可得出答案.【解答】解:根据平方差公式得:(a+2b)(a﹣2b)=a2﹣(2b)2=a2﹣4b2,故答案为:a﹣2b.12.将整式3x3﹣x2y+x2分解因式,则提取的公因式为x2.【分析】直接利用公因式的定义结合提取公因式法分解因式得出答案.【解答】解:3x3﹣x2y+x2=x2(3x﹣y+1),故提取的公因式为:x2.故答案为:x2.13.已知一组数据:5,4,3,6,7,则这组数据的平均数是5,中位数是5.【分析】将数据从小到大重新排列,再根据中位数和平均数的定义求解即可.【解答】解:将这组数据重新排列为3、4、5、6、7,所以这组数据的中位数为5,平均数为=5,故答案为:5,5.14.若多项式x2﹣kxy+9y2是完全平方式,则k的值为6和﹣6.【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出k值.【解答】解:∵x2﹣kxy+9y2=x2﹣kxy+(3y)2,∴kxy=±2x×3y,解得k=±6.故答案为:6和﹣6.15.已知二元一次方程组,则x﹣y=﹣1.【分析】方法一:首先解二元一次方程组,解得x、y,然后求得x﹣y;方法二:直接让两个方程相减,即可求解.【解答】解:方法一:,解这个方程组得:,∴x﹣y=﹣1.方法二:两个方程相减,得x﹣y=﹣1.16.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =52度,∠COB=128度.【分析】由已知条件和观察图形可知∠EOD与∠DOB互余,∠DOB与∠AOC是对顶角,∠COB与∠AOC互补,利用这些关系可解此题.【解答】解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.17.我国古代数学名著《孙子算经》中记载了一道题,“一百马,一百瓦,大马一拖三,小马三拖一,大马小马各几何?”(大意是:100匹马恰好拉了100片瓦,已知1匹大马拉3片瓦,3匹小马拉1片瓦,问大马和小马各多少匹?)若设大马有x匹,小马有y匹,那么可列方程组为.【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【解答】解:设大马有x匹,小马有y匹,由题意得:,故答案是:.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.三.解答题(第19题8分,第20、21题每小题8分,共20分)19.(8分)解方程组:(1);(2).【分析】(1)两个方程相减消去未知数x即可求解;(2)①×2+②,消去未知数x即可求解.【解答】解:(1),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(下)期末试题(二)
湖南省安化县羊角塘镇中学413501
一、填空题:(本大题共8小题,每小题4分,共24分) 1、如图1若∠1+∠2=300°,则∠3= 2、已知一个五边形的四个内角都是100°, 则第五个内角的度数为 , 3、计算:(a + b )2 - (a- b )2 =
4、一全正方体的体积是另一个棱长为4cm 的正方体的体积的271
, 则这个正方体的棱长是 cm
5、数据10 ,11,12,13,14的方差是 。
6如图2,直线a,b 均与直线c 相交,形成八个角。
请添上一个你认为适当的条件: ,使得a ∥b 二、选择题:(本大题共6个小题,每小题3分,共18分) 7、小明有两根长度为4cm 和9cm 的木棒,他想钉一个三角形木框, 现桌子上有如下长度的4根木棒,你认为他应该选择( )
A 、3cm
B 、5cm
C 、10cm
D 、17cm
8、地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍
多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然
后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小
8
7 6
3 2 4
5 a
图2
b
c
1
图1
1
3 2
5
4D
3E
21
C B
A 东列的
方程组可能是( ) A 、⎩⎨⎧=-=+1284
65836y x y x B 、⎩⎨
⎧=-=-1284
56836
y x y x
C 、⎩⎨
⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-1284
56836
x y y x
9、两边分别长4cm 和10cm 的等腰三角形的周长为( )cm A 18 B 24 C 14 D 18或24
11、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所
截,
同位角相等;③直角三角形的两个锐角互余;④垂直于同一条直线的两条直
线互相垂直。
你认为正确的是( ) A ○1○2 B ○3○4 C ○2○3 D ○2○4 12、如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .
A.1
B.2
C.3
D.4
三、解答题:(本大题共4个小题,每小题5分,共20分) 13、解方程组 ⎩
⎨
⎧=+-=;825,
1y x x y 14、解不等式组,并把解集表示在数轴上
()4321213
x x x
x -<-⎧⎪
⎨++>⎪
⎩ 15、如图3,在三角形⊿ABC 中,∠A=70o,∠B=50 o,CD 平分∠ABC , 求∠ACD 的度数。
A
B
C
D
图3
16、如图4,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F , FH 平分∠EFD ,若∠FEH=110o ,求∠EHF 的度数。
四、列方程组或不等式组解决实际问题:(每题8分,共16分)
17、医院用甲、乙两种原料为手术后的病人配制营养品,每克甲种原料含
0.5单位的蛋白质和1单位铁质,每克乙种原料含0.7单位的蛋白质和0.4 单位铁质.若病人每餐需要35单位的蛋白质和40单位铁质,那么每餐甲、乙
两种原料各多少克恰能满足病人的需要?
(1)若设每餐需要甲、乙两种原料分别为x 、y 克,请填写下表:
甲种原料x 克
乙种原料y 克
所配置的营养品
其中所含蛋白质(单位) 0.5x
其中所含铁质(单位)
0.4y
(2)请根据上表列出方程组并完成解答。
18、一个长方形足球场长为xm ,宽为70m.。
若它的周长大于350m , 面积小于7560m ,求其x 的范围。
我们知道用于国际比赛的足球场的 长在100m 到110m 之间,宽在64m 到75m 之间,请你判断该球场是否 可以用作国际足球比赛。
五、(5分+7分+10分=22分)
19、平移三角形⊿ABC ,使点A 移动到点p ,
A C
D B
H E F 图4
画出平移后的⊿A ′B ′C ′.
.P
20、补充填空:如图6,BE ⊥CD 于E ,AF ⊥CD
于F ,∠1=∠2, 说明AC ∥BD 的理由。
因为BE ⊥CD ,AF ⊥CD 所以∠BED=∠AFC=90o
因为∠1=∠2
所以∠C=180o-∠ -∠ ∠D=180o-∠ -∠ . 所以∠ =∠
所以AC ∥BD ( )
21、某学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
一等奖
二等奖 三等奖 1盒福娃和1枚徽
章
1盒福娃
1枚徽章
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前, 了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
B
A
C
图5 C
A
E D
B F
O 图6
1
2。