初中数学解题技巧比较与分类

合集下载

初中数学解题技巧与方法

初中数学解题技巧与方法

初中数学解题技巧与方法初中数学常用解题法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

不同题型的解题法选择题:在做选择题可运用各种解题的方法:如直接法、特殊值法、排除法、验证法、图解法、假设法、动手操作法(比如折一折,量一量等方法),对于选择题中有“或”的选项一定要警惕,看看要不要取舍。

初中数学各种题型解题技巧与分析及练习题(含答案解析)

初中数学各种题型解题技巧与分析及练习题(含答案解析)

初中数学各种题型解题技巧与分析及练习题(含答案解析)选择题法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

初中数学方法技巧

初中数学方法技巧

初中数学方法技巧
初中数学方法技巧包括:
1. 利用图形进行解题:在解题时,可以画出与问题相关的图形,通过观察图形来推导出问题的解答。

2. 利用逻辑推理:在解题时,可以通过逻辑推理来推导出解答。

例如,利用逻辑中的必然推理、充分必要条件等方法。

3. 利用等式转化:在解题时,可以运用等式的性质进行转化。

例如,将一个复杂的等式简化为简单的等式,或者将一个复杂的等式约束条件转化为简单的等式。

4. 利用代数方法解题:在解题时,可以用代数的方式来表示问题,然后通过求解方程或方程组的方法来得到解答。

5. 利用数学公式:在解题时,可以应用数学公式来求解。

例如,求面积、周长、体积等。

6. 利用近似值和估算:在解题时,可以通过近似值和估算来快速得到一个接近的解答。

7. 利用归纳法:在解题时,可以通过观察规律,找出问题的通项公式,然后利
用归纳法证明公式的正确性。

8. 利用反证法:在解题时,可以通过反证法来推导出解答。

即假设问题的解答不成立,然后推导出矛盾的结论。

9. 利用分解、合并和综合:在解题时,可以将问题进行分解为更简单的子问题,然后再将子问题的解答合并起来得到原问题的解答。

10. 利用彩色笔记法:在解题时,可以使用彩色笔记法来标记关键信息,使问题更加清晰易懂。

初中数学解题技巧(史上最全)

初中数学解题技巧(史上最全)

目录一选择填空题解题技巧(一)二选择填空题解题技巧(二)三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。

【典例剖析】1.(直接推演法)下列命题中,真命题的个数为( )①对角线互相垂直平分且相等的四边形是正方形,②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③在一个圆中,如果弦相等,那么所对的圆周角相等,④已知两圆半径分别为5,3,圆心距为2,那么两圆内切( )A .1B .2C .3D .4 2.(整体代入法)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( ) A .2006 B .2007 C .2008 D .20093.(图解法)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 24.(特值法)如图所示是二次函数2122y x =-+的图象在x 轴上方的y一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) A .4 B .163 C .2π D .85.(排除、筛选法)已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )A .-1B . 1C . -3D . -46.(图解法)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )7.(分析法)已知α为锐角,则m =sin α+cos α的值( )A .m >1B .m =1C .m <1D .m ≥18.(验证法:)下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.9.(直接推理法)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.ww (1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ;如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ;(2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述) 10.(图象信息法)绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有 条.11. ( 直接计算法) 如图, 大圆O 的半径OC 是小圆1O 的直径, 且有OC 垂直于圆O 的直径AB . 圆1O 的切线AD 交OC 的延长线于点E , 切点为D . 已知圆1O 的半径为r ,则=1AO _______ ; =DE ________12.(分析法)如图所示,直线12l l ⊥,垂足为点O ,A 、B 是直线1l 上的两点,且OB=2,AB=2.直线1l 绕点O 按逆时针方向旋转,旋转角度为α(0180α<<)。

初中数学题型解题技巧与方法总结

初中数学题型解题技巧与方法总结

初中数学题型解题技巧与方法总结数学作为一门抽象的科学学科,对于很多初中生而言,常常是一个挑战。

掌握数学解题技巧和方法,不仅能够提高解题效率,还可以增强对数学的兴趣。

本文将总结初中数学题型的解题技巧和方法,帮助同学们更好地应对数学考试。

一、一元一次方程一元一次方程是初中阶段最基本的方程类型。

解这类方程的关键在于化解方程,并找到未知数的值。

解题步骤如下:1. 通过去括号、合并同类项等方式化简方程;2. 通过移项,将含有未知数的项移到等式左右两边;3. 通过因式分解、消去项等方式,解出未知数的值;4. 将求得的未知数的值代入方程,检验是否满足。

二、百分数和简单利息百分数和利息是初中数学的常见题型。

解题的技巧如下:1. 在处理百分数问题时,可以将百分数转化为小数或分数进行计算;2. 在计算利息时,需要注意利率、本金和时间之间的关系,并根据公式I = P * R * T计算;3. 在计算简单利息时,关键是找到本金、利率和时间,并按公式计算。

三、面积和体积面积和体积是几何学中常见的问题。

解题的技巧如下:1. 计算面积时,需要根据几何图形的形状和已知信息选择合适的公式,并计算得出;2. 计算体积时,需要根据几何图形的形状和已知信息选择合适的公式,并计算得出;3. 在解决面积和体积问题时,需要注意单位的转换和精确性。

四、平方根和立方根平方根和立方根是初中数学中常见的算术运算。

解题的技巧如下:1. 求平方根时,需要找到使得该数的平方等于给定数的平方根,可以利用近似值进行计算;2. 求立方根时,需要找到使得该数的立方等于给定数的立方根,也可以利用近似值进行计算;3. 在进行平方根和立方根计算时,需要注意数的正负性和精确性。

五、图形的相似性图形的相似性是初中几何学中的重要内容。

解题的技巧如下:1. 判断两个图形是否相似,关键是比较它们的形状和对应部分的比例;2. 在相似图形的计算中,需要利用比例关系进行求解;3. 对于面积的计算,需要将两个相似图形的边长按比例进行运算。

初中数学常见应用题分类总结

初中数学常见应用题分类总结

初中数学常见应用题分类总结数学作为一门重要的学科,是我们日常生活中必不可少的一部分。

在初中阶段,学生们学习了许多数学知识,包括各种应用题。

应用题是将数学知识应用到实际问题中的题目,它们在学生的日常生活中起着重要的作用。

在本文中,我们将对初中数学常见应用题进行分类总结,并提供相应的解题思路和方法。

一、比例与比较1. 比例问题比例问题是初中数学中最常见的应用题之一。

它们涉及到两个或多个变量之间的比例关系。

在解决比例问题时,我们需要确定已知条件,建立比例关系并解方程,再根据所求条件求解。

常见的比例问题包括物品的价格比例,速度的比例等。

2. 比较问题比较问题要求我们根据已知条件对不同情况进行比较。

例如,如果给出两个商品的价格、重量等信息,我们需要确定哪一个商品更具性价比。

解决比较问题时,我们需要将已知条件转化为可比较的形式,并利用数学方法进行分析和比较。

这种类型的应用题在生活中非常常见。

二、百分比与利率1. 百分比问题百分比问题要求我们求解某个数值相对于另一个数值的百分比。

例如,求解一个商品的打折率,或者计算考试成绩的百分比。

当解决这类问题时,我们需要将百分数转化为小数,并根据已知条件进行计算。

2. 利率问题利率问题涉及到利息的计算和相关问题。

例如,计算存款利息、贷款利率等。

在解决利率问题时,我们需要了解利率的概念和计算方法,并应用相关的公式进行计算。

三、平均数与中位数1. 平均数问题平均数问题要求我们计算一组数据的平均值。

例如,求解一组考试成绩的平均分。

在解决这类问题时,我们需要将数据相加,并除以数据的个数,得到平均值。

平均数在生活中应用广泛,有助于我们对数据进行整体把握。

2. 中位数问题中位数问题要求我们找到一组数据的中间值。

例如,找到一组数中位于中间位置的值。

在解决中位数问题时,我们需要将数据按照大小进行排列,并找到中间位置的数。

中位数在统计和排序等领域有重要的应用。

四、图表与统计1. 图表问题图表问题要求我们根据给定的图表信息进行分析和计算。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数学题目中的规律,通过实际计算或逻辑推理,发现其中的数学规律,并运用规律解题的一类问题。

这类问题在初中数学中经常出现,解决这类问题需要掌握一些解题技巧和分析方法。

一、问题类型1. 数列规律问题:给出一系列数字,要求分析数字之间的规律,并预测下一个数字或找出满足条件的数字。

例如:1,4,9,16,...,下一个数是多少?答案是25,因为给定的数列是平方数列。

解题技巧:观察数列中相邻数字之间的差异或倍数关系,找出规律,并应用规律计算。

2. 图示规律问题:给出一幅图形或图形序列,要求分析图形之间的规律并预测下一幅图形或找出符合规律的图形。

例如:下面的图形序列中,哪个图形是下一个?□□□■■■■□□□■■■■■■□□□■■■■■■■■答案是:□□□■■■■■根据观察可以发现,□表示空白,■表示实心,图形序列遵循奇数行是空白实心交替,偶数行是实心空白交替的规律。

解题技巧:观察图形的形状、组成要素、排列方式等,找出规律,并应用规律预测下一个图形或找出符合规律的图形。

4. 条件规律问题:给出一组满足特定条件的数字或图形,要求分析条件之间的关系并找出满足条件的其他数字或图形。

例如:对于下面的等式,填入适当的数字:1 2 3 = 62 3 4 = 93 4 5 = 12答案是:4 5 6 = 15,等号右边的数字是等号左边三个数字的和。

解题技巧:通过观察和分析给定的条件,找出条件之间的关系,根据关系找出满足条件的其他数字或图形。

二、解题技巧1. 观察比较:解决规律问题首先要通过观察和比较找出数字、图形之间的规律。

可以通过列举题目给出的一些例子来观察,也可以通过自己构造一些例子来观察。

在观察的过程中,要关注数字或图形之间的差异、相似性,以及数字之间的大小关系、图形的形状变化等。

2. 抽象总结:通过观察找到规律后,要将观察到的规律进行抽象和总结,归纳出一个普遍适用的规律。

初中数学各大题型解题技巧

初中数学各大题型解题技巧

初中数学各大题型解题技巧初中数学中常见的题型包括四则运算、代数式求值、方程与不等式、几何图形、空间几何、函数等。

以下是这些题型的解题技巧整理:1.四则运算:-逐步分解:将复杂的运算逐步分解为简单的运算,注意运算符的优先级。

-正确使用括号:括号可以改变运算次序,根据需要合理添加括号。

2.代数式求值:-变量代入:将给定的数值代入代数式中,进行计算。

-式子化简:合并同类项,进行运算简化。

3.方程与不等式:-等式中的运算:利用等式两边相等的性质,逐步移项、合并同类项,得到解。

-不等式的性质:不等式的解随着不等号的方向变化。

注意不等式的乘除法运算时,需要考虑符号的改变。

4.几何图形:-特殊图形的性质:熟悉各种几何图形的定义、性质和公式。

-图形的拆分:将复杂的图形拆解为简单的子图形,计算各个子图形的面积、周长等,再进行合成。

5.空间几何:-空间图形的投影:利用平行关系、相似关系,确定空间图形的投影情况。

-空间体积的计算:利用几何体积的定理和公式,计算空间几何体的体积。

6.函数:-函数建模:根据已知条件,构建函数模型,将复杂问题转化为函数求解。

-函数图像的分析:根据函数的定义域、值域、单调性等,分析函数图像的特点。

此外,还需注意以下解题技巧:-熟练掌握常用公式、定理和性质,能够熟练应用。

-注意审题,理解题目所给条件和要求,正确选择解题方法。

-注意计算过程的精确性和整体性,避免粗心错误。

-题目要求的精确性和合理性,注意解答的完整性。

-多进行思考、总结和归纳,积累解题的经验和方法。

初中数学解题技巧方法归纳

初中数学解题技巧方法归纳

初中数学解题技巧方法归纳初中数学解题中的基本方法1. 观察与实验( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。

它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。

在数学上两类数学对象必须有一定的关系才好比较。

我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。

如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3 .特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

( 2 )一般化的方法4. 联想与猜想( 1 )类比联想类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:( 2 )归纳猜想牛顿说过:没有大胆的猜想就没有伟大的发明。

猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。

初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。

归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。

归纳有完全归纳和不完全归纳。

完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。

关键是猜之有理、猜之有据。

5. 换元与配方( 1 )换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

初中数学解题规律方法与技巧

初中数学解题规律方法与技巧

初中数学解题规律方法与技巧1. 嘿,你知道不,初中数学里解方程就像开锁一样!比如说,解一元一次方程 3x+5=17,我们只要把 5 移到等号另一边变成-5,3x 不就等于 12 了嘛,然后再除以 3,x 就解出来啦!这规律技巧多神奇呀,一用就灵,咱得好好掌握呀!2. 哇塞,图形的证明那可是有窍门的哟!就好像走迷宫有了地图一样。

像证明三角形全等,找对了对应边和对应角,不就等于找到了走出迷宫的路嘛!像已知两边和夹角相等,那这两个三角形肯定全等呀,这多有意思呀,快试试吧!3. 嘿呀,算概率的时候就跟抽奖一样刺激呢!好比扔骰子,想知道扔出奇数的概率,不就是几种可能出现的奇数除以总的情况数嘛。

这方法多简单直接呀,一学就会,是不是很有趣呢?4. 哎呀,函数图像简直就是数学里的魔法图谱呀!就说一次函数y=kx+b,k 决定着图像的倾斜方向,b 决定着与 y 轴的交点。

这就跟给图像施了魔法一样,让它有了自己的特点,这种规律可别错过呀!5. 你们说,几何证明中的辅助线像不像孙悟空的金箍棒呀!遇到难题一挥,嘿,难题就迎刃而解了。

比如有些题加上一条辅助线,图形瞬间就清晰明了,解题也变得容易多啦,好用得很呢!6. 讲真的,数学归纳法那可是个厉害的法宝呀!就好比爬楼梯,知道第一步怎么迈,又知道从一个台阶到下一个台阶的规律,那整个楼梯不就都能爬上去啦。

用这个方法解决一些数列问题,那叫一个爽呀,难道你不想试试?7. 说实话,做数学题要学会找规律呀,就像找宝藏一样。

比如有些规律题,仔细观察就能发现数字之间隐藏的关系,一旦找到了,哇塞,那感觉就像找到了宝藏一样兴奋!这多好玩呀,快来一起探索吧!我的观点结论就是:初中数学解题是有很多有趣又实用的规律方法和技巧的,只要我们善于发现和运用,就能在数学的海洋里畅游,享受解题的乐趣和成就感!。

初中数学解题规律方法和技巧

初中数学解题规律方法和技巧

初中数学解题规律方法和技巧初中数学解题规律方法和技巧有:1. 解题思路:在解题时,要认真审题,仔细分析题意,明确解题思路。

对于复杂的问题,可以将其分解为多个小问题,逐步解决。

同时,要注意问题的条件和结论,以及它们之间的关系,从而找到解题的突破口。

2. 数学符号:数学符号是数学解题中的重要工具。

要熟练掌握各种数学符号的含义和使用方法,注意符号的准确性和规范性。

3. 公式和定理:初中数学中有很多公式和定理,要熟练掌握它们的推导过程和使用方法。

对于一些常用的公式和定理,可以归纳总结,形成自己的解题“秘籍”。

4. 图形和图像:初中数学中有很多图形和图像,如平面几何、函数图像等。

要熟练掌握各种图形的性质和特点,以及它们的绘制方法。

同时,要注意借助图形和图像来分析问题,使抽象的问题变得形象具体。

5. 分类讨论:对于一些综合性较强的问题,要注意分类讨论,将问题划分为不同的情形,逐一解决。

同时,要注意分类标准的确定和分类层次的合理性。

6. 数形结合:数形结合是一种非常重要的数学思想方法。

通过将数量关系和空间形式结合起来,可以化抽象为具体,使问题更加清晰易懂。

7. 方程和不等式:方程和不等式是初中数学中常见的数学模型。

在解题时,要注意建立方程或不等式模型,将实际问题转化为数学问题,从而解决实际问题。

8. 规律探究:初中数学中有很多规律探究的问题,如数字规律、周期现象等。

要熟练掌握各种规律的特点和探究方法,善于发现规律并利用规律解决问题。

9. 实际应用:初中数学中有很多实际应用的问题,如生活中的数学问题、生产中的数学问题等。

要善于将实际问题转化为数学问题,利用数学知识解决实际问题。

初中数学的各题型解题方法、思路总结

初中数学的各题型解题方法、思路总结

数学复习是一个系统的工程,许多同学都在想,如何才能掌握技巧,更好地利用宝贵有限的时间,让自己能够取得一个不错的成绩?初中数学解题方法总结一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

史上最全的初中数学解题方法大全

史上最全的初中数学解题方法大全

一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。

2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

初中数学的解题技巧

初中数学的解题技巧

选择题选择题是初中数学测试中最常见的题型,属于客观题,一般由题干和备选项两部分组成,且答案唯一。

选择题具有一定的深度和综合性,要求同学们要牢固、全面的掌握所学基础知识,同时具备概括、分析、评价等能力。

1排除法(筛选法)从已知条件出发,结合选项,通过观察、分析、猜想、计算等方法一一排除明显出错的答案,缩小思考范围,提高解题的速度。

比如二次函数和一次函数图像的选择题,逐一排除错误选项,从而确定正确的一项。

2验证法把各个选择项代入原题加以验证,看是否符合题意,然后得出结论。

比如图像是否经过这点,就可以用验证的方法带入题中,得出正确的选项。

3特殊值法根据题设条件,选取恰当的特殊数值,替代题中的字母和数式,通过计算,得出答案,再类推一般性答案,从而得出正确答案。

比如规律题,推理结果时,可以用一些数值来进行验证。

填空题填空题是初中数学测试中常见的一种基本题型,突出考查同学们准确、严谨、全面、灵活的运用知识进行正确运算的能力。

填空题只要求写答案,缺少选项提供的目标信息,结果正确与否难以判断,一步失误,全题零分,要想又快又准的做好填空题,要在「准、巧、快」三字上下功夫。

1直接法直接法是解填空题最基本的方法,它要求同学们直接从题设条件出发,利用定义、定理、性质、公式等知识。

通过推理和运算等过程,直接得到结果。

2数形结合法数形结合是一种重要的数学方法,它要求同学们在解题时,根据题目条件的具体特点,做出符合题意的图形,从而做到数中想形,以形助数。

通过对图像的观察、分析和研究、启发解题思路,找出问题的隐含条件,从而简化解题过程,检验解题结果。

解答题解答题是需要写出解题过程的题型,在中考数学试题中占相当大的比重,考试的竞争也集中在解答题的得分率上。

解答题涉及的知识点多、覆盖面广,综合性强、跨度大、解法灵活,涉及数式计算、函数图像及性质的计算应用等。

解题的关键是从题目的语言叙述中获取「符号信息」,从题目的图像、图形中获取「形象信息」,灵活应用定义、公式、性质、定理进行计算和推理。

初中数学解题技巧与题型分析方法

初中数学解题技巧与题型分析方法

初中数学解题技巧与题型分析方法数学是一门需要理解和运用的学科,而解题技巧与题型分析方法在学习数学过程中起着重要的作用。

本文将介绍一些初中数学解题技巧与题型分析方法,帮助学生更好地应对各种数学题目。

首先,让我们来讨论一些常见的数学题型,并针对每种题目给出相应的解题技巧与分析方法。

1. 算术题:算术题在初中数学中是最基础、最常见的题型之一。

对于加减乘除四则运算的题目,我们可以通过以下方法来解题:- 简化运算:将复杂的运算分解成若干简单的部分进行计算,然后再将结果进行综合。

这样能够减少计算过程中的错误。

- 列方程:对于一些较为复杂的算术题目,可以利用列方程的方法将问题抽象化,然后解方程求解。

2. 代数题:代数是初中数学中的重要内容,其中包括方程、不等式等题型。

在解代数题时,我们可以运用以下方法:- 求解未知数:根据题目给出的条件,建立方程或不等式,然后解方程求解未知数的值。

- 整理变形:对于一些复杂的代数式,可以通过整理和变形的方式化简,进而更好地理解和解题。

3. 几何题:几何题主要涉及到图形的性质和关系。

解几何题可以用以下技巧:- 观察图形:通过观察图形的形状和特点,找出其中的规律和性质。

- 使用几何定理:初中几何中有一些基本的定理,例如相似三角形的性质、角平分线的性质等,可以帮助我们解决几何题。

- 运用切线性质:对于一些圆的几何题,可以利用切线和切线的性质来推导解题。

4. 统计与概率题:统计与概率是数学中一个相对较新的概念,对于初中生来说是比较新颖的题型。

解这类题目的方法如下:- 列表格:对于统计的题目,可以将信息整理成表格,便于计算和比较。

- 利用频率:统计题目中的频率概念可以帮助我们理解问题,计算概率。

以上只是几种常见的数学题型及相应的解题技巧与分析方法,实际上数学题目的种类非常多样,学生们需要熟悉各种题型并灵活应用解题技巧。

除了具体的题型与技巧,解题过程中还需要注意以下几点:1. 仔细阅读题目:在解题前,认真阅读题目,理解题目的要求,确定解题思路。

52个初中数学解题大招

52个初中数学解题大招

52个初中数学解题大招初中数学是一门重要的学科,也是让很多学生头疼的学科。

为了帮助学生更好地掌握数学知识,我整理了52个初中数学解题的技巧和方法。

一、整数运算1.加减法:要注意进位和借位的规则,加减整数时要注意符号。

2.乘法:掌握乘法口诀表,尤其是小乘法口诀表,可以快速计算乘法。

3.除法:要掌握除法的基本原理,如被除数除以除数等于商,可以用长除法来进行计算。

二、分数运算4.分数加减法:要先找到分母的最小公倍数,然后将分数转化为相同分母再进行运算。

5.分数乘除法:乘法可以直接相乘,除法可以转化为乘法,并注意约分的规则。

6.分数与整数的加减乘除:可以把整数看作带分母为1的分数,然后按照上述规则进行运算。

三、小数运算7.小数加减法:将小数的小数点对齐,然后按照整数的加减法规则进行运算。

8.小数乘法:将小数中的小数点去掉,按照整数的乘法规则进行运算,最后将小数点移到正确的位置。

9.小数除法:将除数移到小数点后面的位置,然后按照整数的除法规则进行运算,最后将小数点移到正确的位置。

四、代数运算10.代数式的加减法:将同类项进行合并,注意正负号的运算。

11.代数式的乘法:将每一项相乘,然后将同类项进行合并。

12.代数式的除法:用除法原理进行计算,将每一项进行除法运算。

五、方程与方程组13.一元一次方程:利用等式的性质解方程,注意正负号和运算规则。

14.一元一次方程的应用:将实际问题转化为方程进行求解。

15.一元二次方程:利用配方法和求根公式解方程。

16.一元二次方程的应用:将实际问题转化为方程进行求解。

17.一元三次方程:利用因式分解和求根公式解方程。

18.一元三次方程的应用:将实际问题转化为方程进行求解。

19.一元四次方程:利用因式分解和求根公式解方程。

20.一元四次方程的应用:将实际问题转化为方程进行求解。

21.一元一次方程组:利用消元法和代入法解方程组。

22.一元一次方程组的应用:将实际问题转化为方程组进行求解。

初中数学规律题解题技巧大全

初中数学规律题解题技巧大全

初中数学规律题解题技巧大全1.分类法:将问题中的要素进行分类,找出其中的共同点或规律。

例如,将一组数字按奇偶分类,可以发现奇数和偶数交替出现的规律。

2.逆向思维法:从目标结果出发,逆向思考问题,找出达到目标的步骤和规律。

例如,如果要求从5到1倒数,可以逆向思考,先从1开始计数,每次加1,直到53.引入临时变量法:在一些题目中,我们可以引入一个临时变量来辅助观察规律。

例如,当求一组数之间的差值时,引入一个临时变量来表示差值,观察其规律。

4.数列法:有些规律题可以通过找出数列的通项公式来解决。

根据已知条件列出数列前几项,观察数列之间是否有其中一种规律,并尝试找出通项公式。

5.图形法:有些规律题中会涉及到图形,可以通过画图观察图形之间的变化来找出规律。

例如,观察数字五角星的顶点数和边数之间的关系,可以发现边数是顶点数的两倍减一6.再加一法:一些规律题中涉及到数的增加或减少,可以通过对已知条件进行逐个增加或减少1来观察规律。

例如,观察一些数的平方数之间的差值,可以逐个加17.同构法:在一些规律题中,可以通过观察数字或图形的对称性来找出规律。

例如,观察数字0-9的对称性,可以发现数字6和9是相互对称的。

8.反证法:在一些情况下,我们可以采用反证法来解决规律题。

即假设问题的逆否命题成立,然后推导出矛盾的结论,从而得出原命题的正确性。

9.推广法:通过观察已知条件的相似性或不变性,将其推广到更一般的情况下。

例如,当求一个数字的平方时,可以观察平方的规律,并将其推广到其他数字。

10.数学工具法:在解决规律题时,可以运用数学工具来辅助观察和推理。

例如,使用图形计算器绘制图形,使用计算器进行计算等。

以上是一些常用的解题技巧,通过灵活运用这些技巧,可以帮助我们更好地解决初中数学规律题。

在解题过程中,还要注重观察细节、积累经验,并进行逻辑思维和推理能力的训练,提高解题的准确性和效率。

(完整)初中七年级数学解题技巧与方法

(完整)初中七年级数学解题技巧与方法

初中七年级数学解题技巧与方法1、细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢? 我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2、总结相似的类型题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。

这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。

其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。

久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

我们的建议是:“总结归纳”是将题目越做越少的最好办法。

3、收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。

但这恰恰又是最需要解决的问题。

同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。

另外一个就是,找出自己的不足,然后弥补它。

这个不足,也包括两个方面,容易犯的错误和完全不会的内容。

但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

初中数学考试答题技巧及数学学习方法

初中数学考试答题技巧及数学学习方法

初中数学考试答题技巧及数学学习方法一、整卷答题技巧1.按照“三先三后”的顺序作答:(1)先易后难,通常是按照从前往后的顺序做,先做容易题,后做复杂题;(2)先熟后生,即先做那些内容已经熟练掌握,题型结构又比较熟悉的题目,后做生疏题;(3)先高分后低分,特别是在考试的后半段,要特别注意时间效益,如果都能解决的问题,先解决分值较高的再解决分值比较低的。

2.合理分配答题时间,最好能预留一定的时间来检查;下表是合理分配答题时间的一些建议(仅供参考):3.审题奥义,这三种情况都要审:(1)解题前要仔细审题(这是做题的条件);(2)解题过程中碰到困难时要审题(看看有哪些条件未用,哪些条件背后隐含着条件等);(3)解题结束时要审题,防止出现答非所问的现象;4.做标记:在做题中学会做标记,将不确定答案的题号标记出来(用铅笔或在草稿纸上标出来),到检查时着重检查,不在已经确定的题目中浪费时间;5.检查时,应注意以下几点:(1)查整份试卷中有没有漏做的题目,尤其是一题多问的题目,或文字与图表均有的题目;(2)查填空题或解答题是否漏写单位,解答题是否漏答,多解题是否漏解;(3)查计算时是否按照给出的参考数据进行计算,结果是否按题目要求取近似数等;(4)最后重点检查标记出来的不确定或者是不会做的题目,可以变换思维,转换角度,多层面、多方法挖掘已知条件与隐含条件间的内在联系,争取有全新的认识并计算出正确答案。

二、选择、填空题的答题技巧解答选择、填空题时要熟练、准确、灵活、快速,要“多想一点、少算一点”,尽量减少计算过程,要“小题小做”,不要“小题大做”。

解答选填题可参考以下的答题方法:(2)三大函数的图象与性质可选用数形结合法;(3)阴影部分面积的计算题可选用转化构造法;(4)概率计算题选用图解法(列表或画树状图);(5)针对需要空间想象的几何图形操作题,如展开与折叠、平移与旋转等变换的试题,仅凭“大脑”的想象,有时候很难完成一个完整的图象,因此,可以借助于草稿纸按照题目要求进行折叠实践,得出直观的图形,使得问题得以快速解决。

初中数学实际问题解决技巧(含学习方法技巧、例题示范教学方法)

初中数学实际问题解决技巧(含学习方法技巧、例题示范教学方法)

初中数学实际问题解决技巧第一篇范文在学生的数学学习过程中,面对各种复杂实际问题的解决,不仅需要扎实的数学基础,还需要灵活的思维和科学的解题技巧。

初中数学实际问题解决技巧,主要可以从以下几个方面来培养和提高。

一、问题分析技巧在解决初中数学实际问题时,首先要对问题进行分析。

分析问题的目的是为了理解问题的本质,找出问题的关键点,从而为解决问题奠定基础。

在分析问题时,需要注意以下几点:1.仔细阅读题目,理解题目的意思和要求。

对于题目中的关键词语,需要进行标注和理解。

2.对问题进行分类,确定问题的类型。

比如,是几何问题、代数问题、概率问题,还是综合问题等。

3.找出问题的已知条件和所求目标。

已知条件是解决问题的基础,所求目标是解决问题的目标。

4.分析已知条件和所求目标之间的关系,找出解题的思路和方法。

二、解题步骤技巧在确定了问题的解题思路和方法后,就可以开始解题了。

解题的过程需要注意以下几个步骤:1.列出解题步骤,明确每一步的目的和意义。

2.按照步骤进行解题,每一步都要有明确的计算和推理。

3.在解题过程中,要注意数学符号的使用和书写的规范。

4.对于复杂的问题,需要进行逐步简化,将复杂问题转化为简单问题。

三、解题策略技巧在解决初中数学实际问题时,有时候直接的解题方法可能会比较复杂,这时候就需要采用一些策略来简化问题。

常见的解题策略有:1.画图法:对于几何问题,通过画图来直观地理解和解决问题。

2.设元法:对于代数问题,通过设定未知数来建立方程,从而解决问题。

3.逆向思维法:对于一些问题,通过逆向思考,从结果出发,反向推导出问题的解。

4.转化法:对于一些复杂问题,可以通过转化,将问题转化为已知问题来解决。

四、检查和总结技巧在完成解题后,还需要进行检查和总结。

检查是为了确保解题的正确性,总结是为了提高解题的效率。

1.在解题过程中,需要时刻保持清醒的头脑,对每一步的计算和推理进行回顾和检查。

2.解题完成后,需要对解题过程进行总结,找出解题的关键点和难点,以便下次遇到类似问题时能够快速解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学解题技巧比较与分类初中数学解题技巧:比较与分类
(1 )比较法
是确定事物共同点和不同点的思维方法。

在数学上两类数学对象必须有一定的关系才好比较。

我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

例如比较一次函数的图像性质时,常采用比较法
(2 )分类的方法
分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。

如上图中一次函数的k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

如实数的分类是有理数和无理数等
3 .特殊与一般
(1 )特殊化的方法
特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

例如无论k 取何值,直线y=kx-(k-2) 过定点_________
分析:令k=0, 得y=2 代入求得x=1 得定点为(1 ,2 )例如: 2 -(2k+1) -2 -(2k-1) +2 -2k 的值为()
(a) 2 -2k (b) 2 -(2k-1) (c) -2 -(2k+1) (d) 0
分析令k=0, 得原式= 2 -1 -2 +1=-2 -1 发现了(a) (b) (d) ,所以排除了后选(c)
(2 )一般化的方法
波利亚在《怎样解题》一书中这样说“普遍化(一般化)就从考虑一个对象过渡到包含该对象的一个集合;后者从考虑一个较小的集合过渡到一个包含该较小集合的更大的集合” “更普遍的问题可能更易于求解”
从具体问题中有时需要跳出来看问题就更易于解决,也就是我们平常常说的公式法求解
例如:求方程5x2 -4x-12=0 的解,求根公式就易于求解
对不能因式分解的一元二次方程优势会更突出。

如解方程x2 +4x-2=0
4. 联想与猜想
(1 )类比联想
类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:
(2 )归纳猜想
牛顿说过:没有大胆的猜想就没有伟大的发明。

猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。

初中数学主要是对命题的条件观察得出对结论的猜想,或对条件
和结论的观察提出解决问题的方案与方法的猜想。

要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

归纳是对同类事物中的所蕴含的同类性或相似性而得出的
一般性结论的思维过程。

归纳有完全归纳和不完全归纳。

完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。

关键是猜之有理、猜之有据。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其
身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

例:已知⊙ e 和⊙ f 相交于 a 、d 两点,其半径分别为r 和r, 过 d 点
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

其实《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

的任一条割线分别交圆于 b 、c 两点,连结ab 、ac 求证:ab:ac 为定值
分析:猜想比值为定值应该和半径有关系,目标定为两半径之比;猜想之二比值是相似三角形中的常见问题,因此构造相似三角形,通过三角形agh 和abc 相似得到ab:ac=r:r。

相关文档
最新文档