全国中考数学选择填空解答压轴题分类解析汇编 专题12 几何三大变换问题之旋转

合集下载

数学中考压轴题旋转问题(经典)答案版

数学中考压轴题旋转问题(经典)答案版

数学中考压轴题旋转问题(经典)答案版旋转拔高练习一、选择题1. (广东)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【】A .πB .34π.1112π 1、【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。

∴AC∴ABC 1S BC AC 2?==B 扫过的路线与AB 的交点为D ,连接CD ,∵BC=DC,∴△BCD 是等边三角形。

∴BD=CD=1。

∴点D 是AB 的中点。

∴ACD ABC 11S S 22??===S 。

∴1ACD ACA BCD ABC S S S ??=++扇形扇形的面扫过积26013113604612ππππ??==++=+ 故选D 。

2. (湖北)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S 四形边⑤AOC AOB S S += 其中正确的结论是【】A .①②③⑤ B.①②③④ C.①②③④⑤ D.①②③ 2【分析】∵正△ABC,∴AB=CB,∠ABC=600。

∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。

∴∠O′BA=600-∠ABO=∠OBA。

∴△BO′A≌△BOC。

∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到。

故结论①正确。

连接OO′,∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法一、图形旋转知识与方法1、图形的变换是新课标中“空间与图形”领域的一个主要内容,体现运动变换的理念与思想,是教材中的一大亮点.初中数学所学的图形变换包括平移、轴对称、旋转、位似。

2、旋转,它是一种数学变换.生活中的旋转也是随处可见,汽车的轮子,钟表的指针,游乐园里的摩天轮,都是旋转现象.3、图形的旋转有三个要素:①旋转中心;②旋转方向;③旋转角度.三要素中只要任意改变一个,图形就会不一样.4、旋转具有以下性质:①对应点到旋转中心的距离相等,即边相等。

②对应点与旋转中心所连线段的夹角等于旋转角,即角相等③旋转前、后的图形全等。

5、旋转是近几年中考数学的热点题型,对旋转的特例“中心对称”的考查多以选择题或填空题的形式出现,题目比较简单,大多数属于送分题;利用旋转作图,是格点作图题中的重点。

利用旋转构造复杂几何图形,通常将旋转融合在综合题中,题目难度中等,在选择题、填空题、解答题中都有出现。

有旋转点的,有旋转线段的,更多的是旋转图形的。

旋转三角形,旋转平行四边形,旋转矩形,旋转正方形,其中,近两年的各地中考试题中,旋转矩形出现的最频繁,深受出题老师的青睐。

其实旋转的题目还有一个好听的名字就是“手拉手问题”,本文将对这一类问题分类汇总,以这三个性质为突破口,就能快速解决问题。

二、典例精讲典例.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC 交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.思路点拨:(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=∠C=90°,进而可得由等角对等边可得DF=DB,由旋转可得:∠ADF=∠EDB,DA=DE,继而可知△ADF≌△EDB,继而即可知AF=BE;②由全等三角形的性质可知∠DAF=∠E,继而由三角形内角和定理即可求解;(2)由平行线的性质可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等边对等角可得∠ABC=∠CAB,进而根据等角对等边可得DB=DF,再根据全等三角形的判定方法证得△ADF≌△EDB,进而可得求证AF=BE,∠ABE=∠FDB=α;(3)分两种情况考虑:①如图(3)中,当点D在BC上时,②如图(4)中,当点D在BC的延长线上时,由平行线分线段成比例定理可得1==4AF CDAB CB、1==2AF CDAB CB,代入数据求解即可;满分解答:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:①AF=BE,②90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴1==4 AF CDAB CB,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴1==2 AF CDAB CB,∵AB=8,∴BE=AF=4,故BE的长为2或4.名师点评:(1)本题考查等腰直角三角形的判定和性质、平行线的性质、等边对等角的性质和等角对等边的性质、旋转的性质、相似三角形的判定及其性质、三角形内角和定理、平行线分线段成比例定理,涉及到的知识点较多,解题的关键是综合运用所学知识.(2)旋转问题三步走:。

中考数学+“旋转”专题

中考数学+“旋转”专题

立体图形的旋转
总结词
立体图形在旋转过程中,其形状、大小和方 向均保持不变,但位置会发生变化。
详细描述
立体图形的旋转通常涉及三维图形,如球体 、圆柱体、圆锥体等。在旋转过程中,图形 的形状、大小和方向都不会改变,但位置会 发生变化。例如,一个球体可以围绕其轴线 进行旋转,形成一个圆柱体。这种旋转在中 考数学中也是常见的考点之一,需要学生掌 握相关的概念和计算方法。பைடு நூலகம்
这些题目往往涉及多个知识点和解题技巧 ,需要学生全面掌握旋转的性质和应用。
题目1
题目2
在等腰梯形ABCD中,AD∥BC, AB=CD=5,AD=3,将△ABD绕点D逆时 针旋转90°得到△ECD,则经过路径长为( ) 。
在平面直角坐标系中,点A的坐标为(0,3), 将点A绕原点顺时针旋转135°得到点B,则 点B的坐标是( )。
04
中考中旋转的考点分析
旋转的基本考点
旋转的定义与性质
01
掌握旋转的基本性质,如旋转不改变图形 的形状和大小,只改变其位置。
03
02
理解旋转的基本概念,包括旋转中心、旋转 方向和旋转角度。
04
旋转的表示方法
掌握如何使用数学符号表示图形的旋转。
05
06
了解如何使用旋转矩阵或旋转公式来描述 图形的旋转。
旋转可以应用于解决代数问题,特别是在方程和不等式 的求解中。
例如,在解方程时,可以通过旋转来消元或转化方程的 形式。
旋转的应用题解法
旋转在几何、物理和工程等领域有广泛的应用 。
例如,在机械工程中,旋转运动是常见的机械运动形 式,可以利用旋转的性质来分析机械的运动规律。
掌握旋转在实际问题中的应用
通过将实际问题抽象为几何图形,并利用旋转的 性质进行求解,可以找到实际问题的解决方案。

整理中考数学几何图形旋转试题经典问题及解答

整理中考数学几何图形旋转试题经典问题及解答

几何图形旋转常见问题一、填空题1.如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,那么它们的公共局部的面积等于.2.如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.3.正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转〔如图3所示〕,直至点P第一次回到原来的位置,那么点P运动路径的长为cm.4.如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD 以点D为中心逆时针旋转90°至ED,连结AE,CE,那么△ADE的面积是.二、解答题5.如图5-1,P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD 于点F.(1) 求证:BP=DP;(2) 如图5-2,假设四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?假设是,请给予证明;假设不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .6.如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按以下步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答以下问题:(1)假设点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图6-2中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?7.如图7,在直角坐标系中,点P0的坐标为(1,0),将线段OP按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn〔n为正整数〕.〔1〕求点P6的坐标;〔2〕求△P5OP6的面积;〔3〕我们规定:把点Pn (xn,yn)〔n=0,1,2,3,…〕的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn |,|yn|)称之为点Pn的“绝对坐标〞.根据图中点Pn的分布规律,请你猜测点Pn的“绝对坐标〞,并写出来.8.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H 〔如图8〕.试问线段HG与线段HB相等吗?请先观察猜测,然后再证明你的猜测.9.如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片〔如图9-2〕,量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合〔在图9-3至图9-6中统一用F表示〕图9-1 图9-2 图9-3 小明在对这两张三角形纸片进展如下操作时遇到了三个问题,请你帮助解决.〔1〕将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;F交DE于〔2〕将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1点G,请你求出线段FG的长度;交DE于点H,请证明:〔3〕将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1AH﹦DH.图9-4 图9-5 图9-6参考答案一、1. 2. 6-2 3二、5. 解:〔1〕解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.〔2〕不是总成立 .当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP 不成立.〔3〕连接BE、DF,那么BE与DF始终相等.在图1-1中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有 BE=DF .6. 解:〔1〕B〔6,1〕〔2〕图略〔3〕线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由〔1〕知B点坐标为〔6,1〕,∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.7. 解:〔1〕根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).〔2〕由可得,△P0OP1∽△P1OP2∽…∽△Pn-1OPn,设P1(x1,y1),那么y1=2sin45°=,∴.又∵,∴.〔3〕由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点Pn分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n.①当n=8k或n=8k+4时〔其中k为自然数〕,点Pn 落在x轴上,此时,点Pn的绝对坐标为(2n,0);②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时〔其中k为自然数〕,点Pn落在各象限的平分线上,此时,点P n的绝对坐标为,即.③当n=8k+2或n=8k+6时〔其中k为自然数〕,点Pn落在y轴上,此时,点P n的绝对坐标为(0,2n).8. 解:HG=HB.证法1:连结AH〔如图10〕.∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°.由题意,知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH〔HL〕.∴HG=HB.证法2:连结GB〔如图11〕.∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°.由题意知AB=AG.∴∠AGB=∠ABG.∴∠HGB=∠HBG.∴HG=HB.9. 解:〔1〕图形平移的距离就是线段BC的长.∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.∴平移的距离为5cm.〔2分〕〔2〕∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,∴∠FGD=90°.在Rt△EFD中,ED=10 cm,∴ .∵FG=cm.〔3〕在△AHE与△DHB1中,∠FAB1=∠EDF=30°.∵FD=FA,EF=FB=FB1,∴FD-FB1=FA-FE,即AE=DB1.又∵∠AHE=∠DHB1,∴△AHE≌△DHB1〔AAS〕.∴AH=DH.。

中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案

中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案
【答案】解:(1)CG=EG (2)(1)中结论没有发生变化,即 EG=CG. 证明:连接 AG,过 G 点作 MN⊥AD 于 M,与 EF 的延长线交于 N 点.
在△ DAG 与△ DCG 中, ∵ AD=CD,∠ ADG=∠ CDG,DG=DG, ∴ △ DAG≌ △ DCG. ∴ AG=CG. 在△ DMG 与△ FNG 中, ∵ ∠ DGM=∠ FGN,FG=DG,∠ MDG=∠ NFG, ∴ △ DMG≌ △ FNG. ∴ MG=NG 在矩形 AENM 中,AM=EN. 在 Rt△ AMG 与 Rt△ ENG 中, ∵ AM=EN, MG=NG, ∴ △ AMG≌ △ ENG. ∴ AG=EG ∴ EG=CG. (3)(1)中的结论仍然成立.
4.如图(1)所示,将一个腰长为 2 等腰直角△ BCD 和直角边长为 2、宽为 1 的直角△ CED 拼在一起.现将△ CED 绕点 C 顺时针旋转至△ CE’D’,旋转角为 a. (1)如图(2),旋转角 a=30°时,点 D′到 CD 边的距离 D’A=______.求证:四边形 ACED′ 为矩形; (2)如图(1),△ CED 绕点 C 顺时针旋转一周的过程中,在 BC 上如何取点 G,使得 GD’=E’D;并说明理由.
【答案】(1)详见解析;(2)FE·sin( -90°) 【解析】 【分析】 (1)由四边形 ABCD 是平行四边形得 AF∥ BE,所以∠ FAE=∠ BEA,由折叠的性质得 ∠ BAE=∠ FAE,∠ BEA=∠ FEA,所以∠ BAE=∠ FEA,故有 AB∥ FE,因此四边形 ABEF 是平行四 边形,又 BE=EF,因此可得结论; (2)根据点 M 在线段 BE 上和 EC 上两种情况证明∠ ENG=90°- ,利用菱形的性质得到

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习 -九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习图形的旋转这一章节是初中几何内容中非常重要的一个章节,对于图形的运动的形式和规律以及旋转的性质都是我们在对几何的初步认识当中的一个过程,掌握其重要的性质之后,对于几何综合题型当中辅助线的运用起到了非常重要的作用。

并且图形的旋转加上已经学习过的平移和轴对称。

对几何图形的变化有充分地了解,建立几何空间思维的正确认识,对于几何空间能力的提升起到了非常重要的促进作用。

首先,在学习图形的旋转这一章节我们主要围绕以下两个重要的内容来展开:第一,掌握图形的旋转和中心对称的概念;第二,掌握旋转的本质。

这也是我们学习过程中的重点和难点内容。

因为在旋转前后的两个图形中,对应点与旋转中心之间的距离总是相同的,所以对应点必然分别在以旋转中心为圆心,以对应点到旋转中心的距离为半径的一组同心圆上,对应点与旋转中心连线所成的角等于且等于旋转角。

唐老师提醒大家,旋转过程中保持静止的点就是旋转的中心,不变的量就是对应的元素。

其次,旋转的三个要素:旋转中心、旋转的角度和旋转方向.第三,旋转的性质:(1)图形中的每一点都绕着旋转中心旋转了同样大小的连线所成的角度;—整体角度(2)对应点到旋转中心的距离相等;(3)对应线段相等,对应角相等;——局部角度(4)图形的形状和大小都没有发生变化,即旋转不改变图形的形状和大小.—变换结果.第四,简单图形的旋转作图:(1)确定旋转中心;(2)确定图形中的关键点;(3)将关键点沿指定的方向旋转指定的角度;(4)连接这些点,得到原始图形的旋转图形。

(以上四个步骤是我们在制作简单旋转图的过程中应该遵循的步骤。

按照以上步骤画图,可以提高大家的学习效率,保证其在画图过程中的正确率。

)第五,旋转对称图形:平面图形绕某点旋转一定角度(小于圆角)后,可以与自身重叠。

2013年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题15:几何三大变换问题之平移

2013年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题15:几何三大变换问题之平移

编辑一、选择题1. (2013年湖北荆门3分)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是【】2. (2013年湖北荆州3分)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线kyx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是【】A.1 B.2 C.3 D.43. (2013年湖北荆州3分)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④)2s 2x =-(0<x <2); 其中正确的是 ▲ (填序号).4. (2013年浙江湖州3分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是【 】A .16B .15C .14D .135. (2013年山东聊城3分)如图,在平面直角坐标系中,抛物线2y 1x 2=经过平移得到抛物线21x 2y 2x =-,其对称轴与两段抛物线所围成的阴影部分的面积为【 】A.2 B.4 C.8 D.166. (2013年广西南宁3分)如图,直线1y x2=与双曲线kyx=(k>0,x>0)交于点A,将直线1y x2=向上平移4个单位长度后,与y轴交于点C,与双曲线kyx=(k>0,x>0)交于点B,若OA=3BC,则k的值为【】A、3B、6C、94D、92【答案】D。

专题22 几何三大变换问题之旋转问题(压轴题)

专题22 几何三大变换问题之旋转问题(压轴题)

《中考压轴题》专题22:几何三大变换问题之旋转(中心对称)问题一、选择题1.如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为A .22-B .32C .31-D .12.如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A'O'B ,点A 的对应点A'在x 轴上,则点O'的坐标为A .(203,103)B .(163,453)C .(203,453)D .(163,43)3.在平面直角坐标系中,函数y=x 2﹣2x (x≥0)的图象为C 1,C 1关于原点对称的图象为C 2,则直线y=a (a 为常数)与C 1、C 2的交点共有A.1个B.1个或2个C.个或2个或3个D.1个或2个或3个或4个4.如图,矩形ABCD 的长为6,宽为3,点O 1为矩形的中心,⊙O 2的半径为1,O 1O 2⊥AB 于点P ,O 1O 2=6.若⊙O 2绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 2与矩形的边只有一个公共点的情况一共出现A .3次B .4次C .5次D .6次5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为A.30°B.60°C.90°D.150°6.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为A.122π+B.12π+C.1π+D.3-7.如图,直线y=2x与双曲线2yx=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)8.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A.45°B.60°C.90°D.120°9.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1 C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3二、填空题1.如图,△ABC绕点A顺时针旋转45°得到△A'B'C',若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于.2.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为.3.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.4.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为.5.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.6.如图,已知∠AOB=90°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依次作法,则∠AA n A n+1等于度.(用含n的代数式表示,n为正整数)7.如图(1),有两个全等的正三角形ABC和ODE,点O、C分别为△ABC、△DEO的重心;固定点O,将△ODE顺时针旋转,使得OD经过点C,如图(2),则图(2)中四边形OGCF与△OCH面积的比为.8.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.9.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(53,0),B(0,4),则点B2014的横坐标为.10.通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为.11.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是.=上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点12.如图,平面直角坐标系中,已知直线y xP顺时针旋转900至线段PD,过点D作直线AB⊥x轴。

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)上一篇我们了解了关于手拉手模型的一些内容,同样作为模型,但“三垂直”的定位和“手拉手”并不相同,“手拉手”本身可以作为问题,而“三垂直”更多地作为一种方法来帮助解决问题,因而我们要了解的侧重点也会有所调整,依然有三点:(1)三垂直模型的构成;(2)什么条件下考虑构造三垂直;(3)构造三垂直能带来什么.01三垂直模型的构成△ABC是等腰直角三角形,一条直线过点C,分别过A、B向该直线作垂线,垂足分别为D、E,则△ADC≌△CEB.【小结】尝试用文字来描述三垂直模型:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型.(等腰、直角、作垂直)【思考】“等腰、直角、作垂直”在证明全等中所发挥的作用是什么?等腰——可得一组对应边相等;直角+作垂直——可得两组角对应相等.【弱化条件】(1)如果没有等腰?依然可以构造三垂直,只不过得到的是三垂直相似,而非三垂直全等.如图,有△ADC∽△CEB.特别地,若点C为BD中点,则△ADC∽△CEB∽△ACB.(2)如果没有直角?直角与作垂直是配套的,最终的结果是有三个直角,其价值不在于它们是特殊角,而是它们都相等,所以即便没有直角,换成三个相等的角亦可,即“一线三等角”模型举个关于一线三等角的例题:2018遵义中考-对称章节里见过看个例子就可以了,今儿不聊一线三等角的事.02什么条件下构造三垂直?根据问题一的分析已经很明显了,可以没有等腰,但需要有直角,当然如果是等腰直角那就再好不过了.那看到有直角就考虑构造三垂直?当然也不是,起码问题得和直角相关,并且这个直角是斜着的.引例1-几何图中的构造三垂直引例2-坐标系中的构造三垂直【小结】尤其是在坐标系中,构造三垂直可以帮助计算点坐标或直线解析式,并且触发条件除了直角之外,也可以是其他确定的角,比如45°角.引例3-45°角构造三垂直全等【小结】设计坐标系中构造三垂直,尽可能让直角顶点是已知点,会简便计算,如上题中的第一种作图优于第二种.除了45°之外,坐标系中出现其他的确定角,亦可构造三垂直.引例4-已知角构造三垂直相似这其实本身不应该是一个问题,而是对前文的思考.三垂直是如何帮助我们解决问题的?构造三垂直全等,一方面可以得到相等线段,在几何图形中作等量代换.另外在坐标系中构造三垂直全等,可实现“化斜为直”,用水平或竖直线段刻画图中的点与线,会更方便计算.继续来看相关中考真题:2019宜昌中考2017苏州园区模拟2019十堰中考2019无锡中考2019沈阳中考2016河南中考(居然有备用卷)【写在最后】知其然,知其所以然;知其用,知其何以用.来源:有一点数学,作者刘岳。

2019年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题16:几何三大变换问题之旋转

2019年全国中考数学(169套)选择填空解答压轴题分类解析汇编 专题16:几何三大变换问题之旋转

编辑一、选择题1. (2013年湖北恩施3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x 轴围成的面积为【】2. (2013年贵州黔东南4分)如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为【】A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)3. (2013年福建晋江3分)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是【】∵四边形ABCD是正方形.∴∠DOC=90°。

故选C。

二、填空题1. (2013年重庆市B4分)如图,平面直角坐标系中,已知直线y x=上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴。

垂足为B,直线AB与直线y x=交于点A,且BD=2AD,连接CD,直线CD与直线y x=交于点Q,则点Q的坐标为▲ 。

联立91xy x3439y x y4⎧=⎧⎪=-+⎪⎪⇒⎨⎨⎪⎪==⎩⎪⎩。

∴点Q的坐标为9944⎛⎫⎪⎝⎭,。

2. (2013年湖南邵阳3分)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件▲ ,使四边形ABCD为矩形.3. (2013年湖北鄂州3分)如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为▲.4. (2013年湖北黄冈3分)如图,矩形ABCD中,AB=4,BC=3,边CD在直线L上,将矩形ABCD沿直线L作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为▲ .5. (2013年湖北潜江、仙桃、天门、江汉油田3分)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是▲ .6. (2013年山东威海3分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为▲ .7. (2013年贵州六盘水4分)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为▲ ,经过61次旋转后,顶点O经过的总路程为▲ .+22+15231。

中考数学培优难题 全优专题 含答案 解析 11:几何三大变换之旋转

中考数学培优难题 全优专题 含答案 解析 11:几何三大变换之旋转

中考数学培优难题全优专题含答案解析 11:几何三大变换之旋转中考数学培优难题全优专题含答案解析11:几何三大变换之旋转高考数学综合素质训练专题一、中心对称和中心对称图形:题目:培养优秀问题的优秀题目【中考概论】题目11:几何的三种变换的旋转轴对称、平移和旋转是平面几何的三种变换。

旋转变换是指将图形(包括点、线和曲面)围绕固定点在同一平面上旋转固定角度。

这种图变换称为图旋转变换,简称旋转。

旋转由旋转中心、旋转方向和旋转角度决定。

旋转后,图形的形状和大小在旋转前后保持不变,但位置发生变化;旋转中心线与旋转中心线之间的距离相等,即旋转中心线与旋转中心线的相应平分点之间的距离;旋转前后图形的对应点与连接到旋转中心的线段之间的夹角等于旋转角度。

图形围绕某一点旋转360°/N(N是大于1的正整数)后,它与初始图形重合。

该图形称为旋转对称图形,该固定点称为旋转对称中心,旋转角度称为旋转角。

特别是,中心对称也是旋转对称的一种特殊形式。

将图形绕某一点旋转180°。

如果它能与另一个图形重合,则称这两个图形围绕这一点或中心对称。

这一点称为对称中心,两个图形的对应点称为围绕中心的对称点。

如果一个图形在围绕某一点旋转180度后可以与自身重合,则该图形是中心对称的。

在初中数学和日常生活中,有大量的旋转和变换知识,这是中学数学考试的必要内容。

结合全国各地的高考实例,从以下九个方面讨论了旋转变换:(1)中心对称图形和中心对称图形;(2)构造旋转图形;(3)相关点的旋转;(4)直线(线段)的旋转;(5)等腰(边)三角形的旋转;(6)直角三角形的旋转;(7)平行四边形、矩形和菱形的旋转;(8)关于正方形的旋转;(9)围绕其他形状旋转。

1例1(天津3点)在下列标志中,可以被视为中心对称图形的是【】(a)【答案】b。

(b)(c)(d)【考点】中心对称图形。

【分析】根据中心对称图形的概念:将图形围绕某一点旋转180°。

中考数学旋转-经典压轴题及详细答案

中考数学旋转-经典压轴题及详细答案

一、旋转真题与模拟题分类汇编(难题易错题)1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE ,交MD 于点G ,∵点M 为AF 的中点,点N 为EF 的中点,∴MN ∥AE ,MN=AE ,由已知得,AB=AD=BC=CD ,∠B=∠ADF ,CE=CF ,又∵BC+CE=CD+CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,在Rt △ADF 中,∵点M 为AF 的中点,∴DM=AF ,∴DM=MN ,∵△ABE ≌△ADF ,∴∠1=∠2,∵AB ∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM ,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3)55;(4)BD=101143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE 22AB BE +2263+52)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD 125125. (4)∵m =6,n =2∴CE =3,CD 2,AB 22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD 22BC CD +224222+()()10. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,∴AM=5,AE=22AM ME+=57,由(2)可知DBAE=223,∴BD=21143.故答案为210或21143.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.4.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(339);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题5.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.6.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.(1)求证:△PCQ是等边三角形;(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求出△PBQ周长的最小值;若不存在,请说明理由;(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?若存在,求出此时t的值;若不存在,请说明理由.(1)(2)(3)【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.【解析】分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;(3)根据点的移动的距离,分类讨论求解即可.详解:(1)∵旋转∴△PCE≌△QCB∴CP=CQ,∠PCE =∠QCB,∵∠BCD=120°,CE平分∠BCD,∴∠PCQ=60°,∴∠PCE +∠QCE=∠QCB+∠QCE=60°,∴△PCQ为等边三角形.(2)存在∵CE平分∠BCD,∴∠BCE=60︒,∵在平行四边形ABCD 中,∴AB∥CD∴∠ABC=180°﹣120°=60°∴△BCE为等边三角形∴BE=CB=4∵旋转∴△PCE≌△QCB∴EP=BQ,∴C△PBQ=PB+BQ+PQ=PB+EP+PQ=BE+PQ=4+CP∴CP⊥AB时,△PBQ周长最小当CP⊥AB时,CP=BCsin60°=∴△PBQ周长最小为4+(3)①当点B与点P重合时,P,B,Q不能构成三角形②当0≤t<6时,由旋转可知,∠CPE=∠CQB,∠CPQ=∠CPB+∠BPQ=60°则:∠BPQ+∠CQB=60°,又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°∴∠CBQ=180°—60°—60°=60°∴∠QBP=60°,∠BPQ<60°,所以∠PQB可能为直角由(1)知,△PCQ为等边三角形,∴∠PBQ=60°,∠CQB=30°∵∠CQB=∠CPB∴∠CPB=30°∵∠CEB=60°,∴∠ACP=∠APC=30°∴PA=CA=4,所以AP=AE-EP=6-4=2÷=s所以t=212③当6<t<10时,由∠PBQ=120°>90°,所以不存在④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,而∠BPC>0°,∴∠BPQ>60°∴∠BPQ=90°,从而∠BCP=30°,∴BP=BC=4所以AP=14cm所以t=14s综上所述:t为2s或者14s时,符合题意。

中考几何三大变换含答案17页

中考几何三大变换含答案17页

中考几何变换专题复习(针对几何大题的解说)几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形之间的关系 (平行、全等、相像等).基本图形的很多性质都源于这个图形自己的“变换特点”,最为重要和最为常用的图形关系“全等三角形”很多的状况也同样拥有“变换”形式的联系.原来两个三角形全等是指它们的形状和大小都同样,和相互间的地点没有直接关系,可是,在同一个问题中波及到的两个全等三角形,大部分都有必定的地点关系(或成轴对称关系,或成平移的关系,或成旋转的关系(包含中心对称) .这样,在解决详细的几何图形问题时,假如我们存心识地从图形的性质或关系中所显示或示意的“变换特点”出发,来辨别、结构基本图形或图形关系,那么将对问题的解决有着极为重要的启迪和指引的作用.下边我们从变换视角以三角形的全等关系为主进行研究.解决图形问题的能力,中心因素是擅长从综合与复杂的图形中辨别和结构出基本图形及基本的图形关系,而“变换视角”正好能提升我们这类辨别和结构的能力.1.已知正方形 ABCD中, E 为对角线 BD 上一点,过 E 点作 EF⊥ BD 交 BC于 F,连结 DF,G 为 DF 中点,连结 EG,CG.(1)求证: EG=CG;(2)将图①中△ BEF绕 B 点逆时针旋转 45°,如图②所示,取 DF 中点 G,连结EG,CG.问( 1)中的结论能否仍旧建立若建立,请给出证明;若不建立,请说明原因;(3)将图①中△BEF绕 B 点旋转随意角度,如图③所示,再连结相应的线段,问( 1)中的结论能否仍旧建立经过察看你还可以得出什么结论(均不要求证明).考点:旋转的性质;全等三角形的判断与性质;直角三角形斜边上的中线;正方形的性质。

专题:压轴题。

剖析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍旧建立,连结 AG,过 G 点作 MN ⊥ AD 于 M,与 EF的延伸线交于 N 点;再证明△ DAG≌ △DCG,得出 AG=CG;再证出△DMG≌ △ FNG,获得 MG=NG;再证明△ AMG≌△ ENG,得出 AG=EG;最后证出 CG=EG.(3)结论依旧建立.还知道EG⊥CG.解答:(1)证明:在Rt△FCD中,∵G为DF 的中点,∴CG= FD,同理,在 Rt△DEF中,EG= FD,∴C G=EG.(2)解:(1)中结论仍旧建立,即EG=CG.证法一:连结 AG,过 G 点作 MN⊥ AD 于 M,与 EF的延伸线交于 N 点.在△ DAG与△DCG中,∵AD=CD,∠ ADG=∠CDG,DG=DG,∴△ DAG≌△DCG,∴A G=CG;在△ DMG 与△ FNG中,∵∠ DGM=∠ FGN, FG=DG,∠ MDG=∠ NFG,∴△ DMG≌△FNG,∴M G=NG;在矩形 AENM 中, AM=EN,在△ AMG 与△ ENG中,∵A M=EN,∠AMG=∠ENG,MG=NG,∴△ AMG≌△ENG,∴AG=EG,∴E G=CG.证法二:延伸CG至 M,使 MG=CG,连结 MF,ME, EC,在△ DCG与△FMG 中,∵FG=DG,∠ MGF=∠ CGD,MG=CG,∴△ DCG≌△FMG.∴M F=CD,∠FMG=∠DCG,∴M F∥CD∥AB,∴E F⊥MF.在 Rt△ MFE 与 Rt△ CBE中,∵MF=CB,EF=BE,∴△ MFE≌△CBE∴∠ MEF=∠ CEB.∴∠ MEC=∠MEF+∠ FEC=∠CEB+∠CEF=90,°∴△ MEC为直角三角形.∵M G=CG,∴EG= MC,∴EG=CG.(3)解:(1)中的结论仍旧建立.即 EG=CG.其余的结论还有:EG⊥CG.评论:本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判断和性质.2.( 1)如图 1,已知矩形 ABCD中,点 E 是 BC 上的一动点,过点E 作 EF⊥BD 于点 F,EG⊥AC 于点 G, CH⊥BD 于点 H,试证明 CH=EF+EG;(2)若点 E 在 BC 的延伸线上,如图 2,过点 E 作 EF⊥ BD 于点 F,EG⊥ AC 的延伸线于点 G,CH⊥ BD 于点 H,则 EF、EG、CH 三者之间拥有如何的数目关系,直接写出你的猜想;(3)如图 3,BD 是正方形 ABCD的对角线, L 在 BD 上,且 BL=BC,连结 CL,点 E 是 CL上任一点, EF⊥ BD 于点 F,EG⊥ BC于点 G,猜想 EF、EG、BD 之间拥有怎样的数目关系,直接写出你的猜想;(4)察看图 1、图 2、图 3 的特征,请你依据这一特征结构一个图形,使它仍旧拥有 EF、EG、CH 这样的线段,并知足( 1)或( 2)的结论,写出有关题设的条件和结论.考点:矩形的性质;全等三角形的判断与性质;等腰三角形的性质;正方形的性质。

中考数学压轴题分类解析汇编几何三大变换相关问题(含答案)

中考数学压轴题分类解析汇编几何三大变换相关问题(含答案)

中考数学压轴题分类解析汇编几何三大变换相关问题(含答案)汇总2022年全国数学中考真题,解析精辟专题7:几何三大变换相关问题.1. (2022年北京市7分)在△ABC中,BA=BC,BAC ,M是AC 的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2 得到线段PQ。

(1)若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出的范围。

解:(1)补全图形如下:∠CDB=30°。

(2)作线段CQ的延长线交射线BM于点D,连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC。

∴AD=CD,AP=PC,PD=PD。

在△APD与△CPD中,∵AD=CD,PD=PD,PA=PC∴△APD≌△CPD(SSS)。

∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD。

又∵PQ=PA,∴PQ=PC,∠ADC=2∠CDB,∠PQC=∠PCD=∠PAD。

∴∠PAD+∠PQD=∠PQC+∠PQD=180°。

∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°。

∴∠ADC=180°-∠APQ=180°-2α,即2∠CDB=180°-2α。

汇总2022年全国数学中考真题,解析精辟∴∠CDB=90°-α。

(3)45°<α<60°。

旋转的性质,等边三角形的判定和性质,三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,。

(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ是等边三角形,即可得出答案:∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=AC。

中考数学压轴题之旋转(中考题型整理,突破提升)附答案

中考数学压轴题之旋转(中考题型整理,突破提升)附答案

一、旋转 真题与模拟题分类汇编(难题易错题)1.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌()BDE AASBC DE a ∴==,BCD 1SBC DE 2=⋅, 2BCD 1S a 2∴=; ()2BCD 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD 1SBC DE 2=⋅, 2BCD 1S a 2∴=; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=,ABD 90∠=,ABF DBE 90∠∠∴+=,FAB EBD ∠∠∴=,线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB 和BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB ∴≌()BED AAS ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=, BCD ∴的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=2,∴OM=2﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x2=(2x)2,解得x=﹣22+26或﹣22﹣26(舍弃)∴MN=﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.3.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.4.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,∵AB ACBAE CADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△BAE,∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴AEAB =ADAC=2,∴△ABE∽△ACD;②∵△ABE∽△ACD,∴∠AEB=∠CDA.∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.5.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P 是AF 的中点,∠ADF=90°,∴PD=AF=PA ,∵BE=DF ,BC=CD ,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF ,∠FCQ=∠ECQ ,∴CQ ⊥EF ,∠AQF=90°,∴PQ=AF=AP=PF ,∴PD=PQ=AP=PF ,∴点A 、F 、Q 、P 四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ 是等腰直角三角形.考点:四边形综合题.6.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=2CD.【解析】试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A 、D 、O 、C 四点共圆,得∠ACD=∠AOB ,同理得:∠EFO=∠EDO ,再证明△ACO ≌△EOF ,得OE=AC ,AO=EF ,根据勾股定理得:AC 2+OC 2=FO 2+OE 2=EF 2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD ,则AD=OD 证明△ACD ≌△OED ,根据△CDE 是等腰直角三角形,得CE 2=2CD 2,等量代换可得结论(OC ﹣OE )2=(OC ﹣AC )2=2CD 2,开方后是:OC ﹣AC=CD .试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题7.正方形ABCD和正方形AEFG的边长分别为2和22B在边AG上,点D在线段EA 的延长线上,连接BE.(1)如图1,求证:DG⊥BE;(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,当点B恰好落在线段DG上时,求线段BE的长.+.【答案】(1)答案见解析;(2)26【解析】【分析】(1)由题意可证△ADG≌△ABE,可得∠AGD=∠AEB,由∠ADG+∠AGD=90°,可得∠ADG+∠AEB=90°,即DG⊥BE;(2)过点A作AM⊥BD,垂足为M,根据勾股定理可求MG的长度,即可求DG的长度,由题意可证△DAG≌△BAE,可得BE=DG.【详解】(1)如图,延长EB交GD于H∵四边形ABCD和四边形AEFG是正方形∴AD=AB,AG=AE,∠DAG=∠BAE=90°∴△ADG≌△ABE(SAS)∴∠AGD=∠AEB∵∠ADG+∠AGD=90°∴∠ADG+∠AEB=90°∴DG⊥BE(2)如图,过点A作AM⊥BD,垂足为M∵正方形ABCD和正方形AEFG的边长分别为2和2,∴AM=DM2,∠DAB=∠GAE=90°∴MG22-6,∠DAG=∠BAEAG MA∴DG=DM+MG26,由旋转可得:AD=AB,AG=AE,且∠DAG=∠BAE∴△DAG≌△BAE(SAS)∴BE=DG=26【点睛】考查了旋转的性质,正方形的性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.8.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)【答案】(1)∠BOC=70°;(2)存在,t=2,t=8或32;(3)12或372.【解析】【分析】(1)由图可知∠BOC=∠AOB﹣∠AOC,∠AOC可利用角平分线及平角的定义求出.(2)分OA平分∠COD,OC平分∠AOD,OD平分∠AOC三种情况分别进行讨论,建立关于t的方程,解方程即可.(3)分别用含t的代数式表示出∠COD和∠BOD,再根据OC平分∠BOD建立方程解方程即可,注意分情况讨论.【详解】(1)解:∵∠COE=140°,∴∠COD=180°﹣∠COE=40°,又∵OA平分∠COD,∴∠AOC=12∠COD=20°,∵∠AOB=90°,∴∠BOC=90°﹣∠AOC=70°;(2)存在①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;综上所述:t=2,t=8或32;(3)12或372,理由如下:设运动时间为t,则有①当90+10t=2(40+15t)时,t=1 2②当270﹣10t=2(320﹣15t)时,t=37 2所以t的值为12或372.【点睛】本题主要考查角平分线的定义以及图形的旋转,根据题意,找到两个角之间的等量关系建立方程并分情况讨论是解题的关键.。

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法一、图形旋转知识与方法1、图形的变换是新课标中“空间与图形”领域的一个主要内容,体现运动变换的理念与思想,是教材中的一大亮点.初中数学所学的图形变换包括平移、轴对称、旋转、位似。

2、旋转,它是一种数学变换.生活中的旋转也是随处可见,汽车的轮子,钟表的指针,游乐园里的摩天轮,都是旋转现象.3、图形的旋转有三个要素:①旋转中心;②旋转方向;③旋转角度.三要素中只要任意改变一个,图形就会不一样.4、旋转具有以下性质:①对应点到旋转中心的距离相等,即边相等。

②对应点与旋转中心所连线段的夹角等于旋转角,即角相等③旋转前、后的图形全等。

5、旋转是近几年中考数学的热点题型,对旋转的特例“中心对称”的考查多以选择题或填空题的形式出现,题目比较简单,大多数属于送分题;利用旋转作图,是格点作图题中的重点。

利用旋转构造复杂几何图形,通常将旋转融合在综合题中,题目难度中等,在选择题、填空题、解答题中都有出现。

有旋转点的,有旋转线段的,更多的是旋转图形的。

旋转三角形,旋转平行四边形,旋转矩形,旋转正方形,其中,近两年的各地中考试题中,旋转矩形出现的最频繁,深受出题老师的青睐。

其实旋转的题目还有一个好听的名字就是“手拉手问题”,本文将对这一类问题分类汇总,以这三个性质为突破口,就能快速解决问题。

二、典例精讲典例.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC 交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.思路点拨:(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=∠C=90°,进而可得由等角对等边可得DF=DB,由旋转可得:∠ADF=∠EDB,DA=DE,继而可知△ADF≌△EDB,继而即可知AF=BE;②由全等三角形的性质可知∠DAF=∠E,继而由三角形内角和定理即可求解;(2)由平行线的性质可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等边对等角可得∠ABC=∠CAB,进而根据等角对等边可得DB=DF,再根据全等三角形的判定方法证得△ADF≌△EDB,进而可得求证AF=BE,∠ABE=∠FDB=α;(3)分两种情况考虑:①如图(3)中,当点D在BC上时,②如图(4)中,当点D在BC的延长线上时,由平行线分线段成比例定理可得1==4AF CDAB CB、1==2AF CDAB CB,代入数据求解即可;满分解答:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:①AF=BE,②90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴1==4 AF CDAB CB,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴1==2 AF CDAB CB,∵AB=8,∴BE=AF=4,故BE的长为2或4.名师点评:(1)本题考查等腰直角三角形的判定和性质、平行线的性质、等边对等角的性质和等角对等边的性质、旋转的性质、相似三角形的判定及其性质、三角形内角和定理、平行线分线段成比例定理,涉及到的知识点较多,解题的关键是综合运用所学知识.(2)旋转问题三步走:第一步:我们要观察图形,看看这个图形的旋转中心,找到它的旋转方向,这是我们看到一个几何图形的第一印象.第二步:看看是什么旋转?因为旋转的种类有很多,你看它是点旋转还是线旋转或者是平面图形旋转·第三步:你再观察出有哪些三角形全等,从已知中找到两个三角形全等的条件(包括隐藏的对顶角、公共角、公共边等).变式题.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.①请你直接写出m的值和四边形AA2CC2的形状;②若AB=,请直接写出AA2的长.三、中考押题1.(1)问题感知如图1,在△ABC中,∠C=90°,且AC=BC,点P是边AC的中点,连接BP,将线段PB绕点P顺时针旋转90°到线段PD.连接AD.过点P作PE∥AB 交BC于点E,则图中与△BEP全等的三角形是,∠BAD=°;(2)问题拓展如图2,在△ABC中,AC=BC=43AB,点P是CA延长线上一点,连接BP,将线段PB绕点P顺时针旋转到线段PD,使得∠BPD=∠C,连接AD,则线段CP与AD之间存在的数量关系为CP=43AD,请给予证明;(3)问题解决如图3,在△ABC中,AC=BC=AB=2,点P在直线AC上,且∠APB =30°,将线段PB绕点P顺时针旋转60°到线段PD,连接AD,请直接写出△ADP 的周长.2.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由. (3)解决问题当90α︒=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时ADCP的值.3.在正方形ABCD 中,AB =6,对角线AC 和BD 相交于点O ,E 是AB 所在直线上一点(不与点B 重合),将线段OE 绕点E 顺时针旋转90°得到EF .(1)如图1,当点E 和点A 重合时,连接BF ,直接写出BF 的长为 ;(2)如图2,点E在线段AB上,且AE=1,连接BF,求BF的长;(3)若DG:AG=2:1,连接CF,H是CF的中点,是否存在点E使△GEH是以EG 为直角边的直角三角形?若存在,请直接写出EB的长;若不存在,试说明理由.4.观察猜想:(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明:(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸:(3)如图③,在△ABC中,AB=AC,∠BAC=a,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=a,连接BF,则BE+BF的值是多少?请用含有n,a的式子直接写出结论.5.如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.6.在△ABC中,∠ACB=90°,BC=AC=2,将△ABC绕点A顺时针方向旋转α角(0°<α<180°)至△AB'C'的位置.问题探究:(1)如图1,当旋转角为60°时,连接C'C与AB交于点M,则C'C=,CM .(2)如图2,在(1)条件下,连接BB',延长CC'交BB'于点D,求CD的长.问题解决:(3)如图3,在旋转的过程中,连线CC'、BB',CC'所在直线交BB'于点D,那么CD 的长有没有最大值?如果有,求出CD的最大值:如果没有,请说明理由.7.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MGBE;=2(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB 于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.8.已知:如图①,将60∠=的菱形ABCD沿对角线AC剪开,将ADC沿射线DCDBCE点M为边BC上一点(点M不与点B、点C重合),将射线AM 方向平移,得到,绕点A逆时针旋转60,与EB的延长线交于点N,连接MN.()1①求证:ANB AMC∠=∠;②探究AMN的形状;()2如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45,原题其他条件不变,()1中的①和②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.9.已知点P 是线段AB 上与点,A B 不重合的一点,且,AP PB AP <绕点A 逆时针旋转角()090αα︒︒<≤得到1,AP BP 绕点B 顺时针旋转角α得到2BP ,连接12.PP PP 、(1)如图1,当90α︒=时,求12PPP ∠的度数;(2)如图2,当点2P 在1AP 的延长线上时,求证: 22122PP PP P A =⋅;(3)如图3,过BP 的中点E 作1l BP ⊥,过2BP 的中点F 作22l BP ⊥, 1l 与2l 交于点Q ,连接1,PQ PO ,若6,1BP AP QE ===,求1PQ 的长度.10.在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.11.有两张完全重合的矩形纸片,将其中一张绕点A 顺时针旋转90︒后得到矩形AMEF (如图1),连接BD ,MF ,若8BD cm =,30ADB ∠=︒.(1)试探究线段BD 与线段MF 的数量关系和位置关系,并说明理由;(2)把BCD ∆与MEF ∆剪去,将ABD ∆绕点A 顺时针旋转得11AB D ∆,边1AD 交FM 于点K (如图2),设旋转角为()090ββ︒<<︒,当AFK ∆为等腰三角形时,求β的度数;(3)若将AFM ∆沿AB 方向平移得到222A F M ∆(如图3),22F M 与AD 交于点P ,22A M 与BD 交于点N ,当//NP AB 时,求平移的距离.12.问题发现:(1)如图1,在Rt △ABC 中,∠BAC=30°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC , ∠BCD 的度数是 ;线段BD ,AC 之间的数量关系是 . 类比探究:(2)在Rt △ABC 中,∠BAC=45°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC ,请问(1)中的结论还成立吗?; 拓展延伸:(3)如图3,在Rt △ABC 中,AB =2,AC =4,∠BDC =90°,若点P 满足PB =PC ,∠BPC =90°,请直接写出线段AP 的长度.13.综合与实践 问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,ABC 和DEC 是两个全等的直角三角形纸片,其中90ACB DCE ∠=∠=︒,30B E ∠=∠=︒,4AB DE ==.解决问题(1)如图①,智慧小组将DEC 绕点C 顺时针旋转,发现当点D 恰好落在AB 边上时,DE AC ,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE AD BD 、、,当DEC C 绕点C 继续旋转到如图②所示的位置时,他们提出BDCAECSS=,请你帮他们验证这一结论是否正确,并说明理由; 探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转DEC ,当B A E 、、三点共线时,求BD 的长;(4)在图①的基础上,写出一个边长比为2的三角形(可添加字母).14.探究:如图1和2,四边形ABCD 中,已知AB AD =,90BAD ∠=︒,点E ,F 分别在BC 、CD 上,45EAF ∠=︒.(1)①如图 1,若B 、ADC ∠都是直角,把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图 2,若B 、D ∠都不是直角,则当B 与D ∠满足数量关系_______时,仍有EF BE DF =+;(2)拓展:如图3,在ABC 中,90BAC ∠=︒,AB AC ==点D 、E 均在边BC 上,且45DAE ∠=︒.若1BD =,求DE 的长.15.操作与证明:如图1,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E 、F 分别在正方形的边CB 、CD 上,连接AF .取AF 中点M ,EF 的中点N ,连接MD 、MN . (1)连接AE ,求证:△AEF 是等腰三角形; 猜想与发现:(2)在(1)的条件下,请判断MD 、MN 的数量关系和位置关系,得出结论. 结论1:DM 、MN 的数量关系是 ; 结论2:DM 、MN 的位置关系是 ; 拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.16.已知,把45°的直三角板的直角顶点E放在边长为6的正方形ABCD的一边BC 上,直三角板的一条直角边经过点D,以DE为一边作矩形DEFG,且GF过点A,得到图1.(1)求矩形DEFG的面积;(2)若把正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC的直角顶点B重合,直三角板夹这个45°角的两边分别交CA和CA的延长线于点H、P,得到图2.猜想:CH、PA、HP之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,点M是Rt△ABC内一个动点,连接MA、MB、MC,设MA+MB+MC=y,直接写出2y 的最小值.17.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.(发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的=1.41=1.73)18.如图1,在矩形ABCD中,AB=6,BC=8,点E是对角线BD的中点,直角∠GEF 的两直角边EF、EG分别交CD、BC于点F、G.(1)若点F是边CD的中点,求EG的长.(2)当直角∠GEF绕直角顶点E旋转,旋转过程中与边CD、BC交于点F、G.∠EFG 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠EFG的值.(3)当直角∠GEF绕顶点E旋转,旋转过程中与边CD、BC所在的直线交于点F、G.在图2中画出图形,并判断∠EFG的大小是否发生变化?如果变化,请说明理由;如果不变,请直接写出tan∠EFG的值.(4)如图3,连接CE交FG于点H,若13HFHG,请求出CF的长.参考答案变式题.思路点拨:(1)利用等腰三角形的性质求出∠COC1即可.(2)根据对角线相等的平行四边形是矩形证明即可.(3)①求出∠COC2即可,根据矩形的判定证明即可解决问题.②解直角三角形求出A2C2,再求出AA2即可.满分解答:(1)解:如图1中,由旋转可知:△A1B1C1≌△ABC,∴∠A1=∠A=30°,∵OC=OA,OA1=OA,∴OC=OA1,∴∠OCA1=∠A1=30°,∴∠COC1=∠A1+OCA1=60°,∴n=60°.(2)证明:如图2中,∵OC=OA,OA1=OC1,∴四边形AA1CC1是平行四边形,∵OA=OA1,OC=OC1,∴AC=A1C1,∴四边形AA1CC1是矩形.(3)如图3中,①∵OA=OA2,∴∠OAA2=∠OA2A=30°,∴∠COC2=∠AOA2=180°﹣30°﹣30°=120°,∴m=120°,∵OC=OA,OA2=OC2,∴四边形AA2CC2是平行四边形,∵OA=OA2,OC=OC2,∴AC=A2C2,∴四边形AA2CC2是矩形.=6,②∵AC=A2C2=AB•cos30°=×2∴AA2=A2C2•cos30°==名师点评:本题属于四边形综合题,考查了旋转变换,平行四边形的判定和性质,矩形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.中考押题1.证明:(1)∵点P是边AC的中点,PE∥AB,∴点E是BC的中点,∴CE=BE,∵AC=BC,∴BE=AP,∵将线段PB绕点P顺时针旋转90°到线段PD.∴PB=PD,∵∠APD+∠BPC=90°,∠EBP +∠BPC=90°,∴∠EBP=∠APD,又∵PB=PD,∴△PAD≌△BEP(SAS),∴∠PAD=∠BEP,∵∠C=90°,AC=BC,∴∠BAC=∠ABC=45°,∵PE∥AB,∴∠ABC=∠PEC=45°,∴∠BEP=135°,∴∠BAD=∠PAD﹣∠BAC=135°﹣45°=90°,故答案为:△PAD,90;(2)如图,过点P作PH∥AB,交CB的延长线于点H,∴∠CBA=∠CHP,∠CAB=∠CPH,∵CB=CA,∴∠CBA=∠CAB,∴∠CHP=∠CPH,∴CH=CP,∴BH=AP,∵将线段PB绕点P顺时针旋转90°到线段PD.∴PB=PD,∵∠BPD=∠C,∴∠BPD+∠BPC =∠C+∠BPC , ∴∠PBH =∠APD , ∴△APD ≌△HBP (SAS ), ∴PH =AD , ∵PH ∥AB , ∴△CAB ∽△CPH ,∴H AC PC ABP = ∴HAC AB CPP = ∵AC =BC =43AB ,∴43CP PH =, ∴CP =43PH =43AD ;(3)当点P 在CA 的延长线上时, ∵AC =BC =AB =2, ∴△ABC 是等边三角形, ∴∠ACB =60°,∵将线段PB 绕点P 顺时针旋转60°到线段PD , ∴BP =PD ,∠BPD =60°=∠ACB , 过点P 作PE ∥AB ,交CB 的延长线于点E ,∵∠ACB =∠APB+∠ABP , ∴∠ABP =∠APB =30°, ∴AB =AP =2, ∴CP =4, ∵AB ∥PE ,∴PAB PE CAC = ∴CP =PE =4,由(2)得,PE =AD =4, ∵∠APD =∠APB+BPD =90°,∴DP =∴△ADP 的周长=AD+AP+DP =, 当点P 在AC 延长线上时,如图,同理可求△ADP 的周长=6+综上所述:△ADP 的周长为6+2.解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠, CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆,PC BD ∴=,ACP ABD ∠=∠,AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=,PAC DAB ∴∠=∠,AB ADAC AP== DAB PAC ∴∆∆,PCA DBA ∴∠=∠,BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB∴∥,45EFC ABC︒∴∠=∠=,45PAO︒∠=,PAO OFH∴∠=∠,POA FOH∠=∠,H APO∴∠=∠,90APC︒∠=,EA EC=,PE EA EC∴==,EPA EAP BAH∴∠=∠=∠,H BAH∴∠=∠,BH BA∴=,45ADP BDC︒∠=∠=,90ADB︒∴∠=,BD AH∴⊥,22.5DBA DBC︒∴∠=∠=,90ADB ACB︒∠=∠=,∴A,D,C,B四点共圆,22.5DAC DBC︒∠=∠=,22.5DCA ABD︒∠=∠=,22.5DAC DCA︒∴∠=∠=,DA DC∴=,设=AD a,则DC AD a==,2PD a=,2ADCP∴==-c.如图3﹣2中,当点P在线段CD上时,同法可证:=DA DC,设=AD a,则CD AD a==,PD=,2PC a a ∴=-,22ADPC∴==+.3.解:(1)如图1,由旋转得:90OEF ∠=︒,OE EF =, 四边形ABCD 是正方形,且边长为6, 62ACBD,45OAB ∠=︒,904545FEBOAB ,AB AB ,()AOBAFB SAS ,113222BFOBBDAC ,故答案为:(2)如图2,过O 作OG AB ⊥于G ,过F 作FHAB⊥于H ,四边形ABCD 是正方形,45OAB OBA ∴∠=∠=︒,90OGAOGB,AOG ∴∆和OGB 是等腰直角三角形,3AGBGOG,1AE =,2EG,90OEF , 90OEG FEH,90FEHEFH,OEGEFH ,OE EF ,90OGEEHF,()OEG EFH AAS ,3OG EH,2EG FH ==,6132BHAB AE EH ,Rt FHB 中,由勾股定理得:22222222BFBH FH ;(3)存在GEH ∆是以EG 为直角边的直角三角形;6AD =,且:2:1DG AG , 2AG ∴=,4DG =,分三种情况:①当90EGH ∠=︒时,E 在A 的左侧时,如图3,过F 作FM BC ⊥,交CB 的延长线于M ,过H 作HNFM 于N ,交AB 于P ,过H 作HQ AD ⊥于Q ,过O 作OKAB ⊥于K ,过F 作FL AB 于L ,设AE x =, 同理得()OEK EFL AAS ,3OKEL,3EK FL x ,H 是CF 的中点,//HN CM ,113(63)222xFN MN BL x ,1639222x xHN CM ,93(3)22xxHPHNPN x ,Rt EGH 中,222EG GH EH ,∴22222233332(2)(6)(6)()2222x x x x x x,2720x x -+=,17412x ,27412x , 当17412x 时,7411941622BE (如图6所示), 当27412x 时,7411941622BE;②当90GEH ∠=︒时,如图4,过F 作FM BC ⊥,交CB 的延长线于M ,过H 作HN FM于N ,交AB 于P ,过O 作OK AB ⊥于K ,过F 作FLAB 于L ,设BE x =,则6AE x , 同理得:3OK EL,3BLFMx ,3(6)3FL EKx x ,1322xHNCM ,3322x x EPBEPBx,39(3)22xxHP HN PNx,90GEH AEG PEH,90AEG AGE ∠+∠=︒,AGEPEH ,90EAG EPH ,GAE EPH ∽, ∴AG AEEPPH,即263922x x x ,250x x -=,解得:0x =(舍)或5, 即5BE =;③如图5,当E 与B 重合时,90GEH∠=︒,此种情况不符合题意;综上,BE 的长是5. 4.【详解】 (1)如图①中,∵∠EAF =∠BAC =90°, ∴∠BAF =∠CAE , ∵AF =AE ,AB =AC , ∴△BAF ≌△CAE , ∴∠ABF =∠C,BF =CE , ∵AB =AC ,∠BAC =90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为BF⊥BE,BC;(2)如图②中,作DH∥AC交BC于H,∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=,∴BF+BE=BH=;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M,∵AC∥DH,∴∠ACH=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF =DE ,DB =DH , ∴△BDF ≌△HDE , ∴BF =EH ,∴BF +BE =EH +BE =BH , ∵DB =DH ,DM ⊥BH , ∴BM =MH ,∠BDM =∠HDM , ∴BM =MH =BD •sin2α.∴BF +BE =BH =2n •sin 2α. 5.解:(1)如图,过点C′作C′H ⊥OF 于H .∵△A′B′C′是由△ABC 绕点O 逆时针旋转得到, ∴C′O=CO=4, 在Rt △HC′中, ∵∠HC′O =α=30°,∴C′H =C′O•cos30°=,∴点C′到直线OF 的距离为(2)①如图,当C′P ∥OF 时,过点C′作C′M ⊥OF 于M .∵△A′B′C′为等腰直角三角形,P为A′B′的中点,∴∠A′C′P=45°,∵∠A′B′O=90°,∴∠OC′P=135°.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,=∴C′M=C′O•cos45°=4×2∴点C′到直线DE的距离为如图,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=∵GD=2,∴点C′到直线DE的距离为2.②设d为所求的距离.第一种情形:如图,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OC=4,AC=2,∠ACO=90°,=∴=OA=∵OM=2,∠OMA′=90°,∴A′M4,又∵OG=2,∴DM=2,∴A′D=A′M-DM=4-2=2,即d=2,如图,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.∵P为A′B′的中点,∠A′C′B′=90°,∴PQ∥A′C′,∴12 B P CQ PQB A BC A C'=== ''''''∵B′C′=2∴PQ=1,CQ=1,∴Q点为B′C′的中点,也是旋转前BC的中点,∴OQ=OC+CQ=5∴OP,∴PM=∴PD=2PM DM-=-,∴d2,∴2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2,即d=2,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ 交OB′于R,连接OP.由上可知OP OF=5,∴FP1,∵OF=OT,PF=PT,∠F=∠PTO=90°,∴Rt△OPF≌Rt△OPT(HL),∴∠FOP=∠TOP,∵PQ∥OQ,∴∠OPR=∠POF,∴∠OPR=∠POR,∴OR=PR,∵PT2+TR2=PR2,22215PR PR∴+(﹣)=∴PR=2.6,RT=2.4,∵△B′PR∽△B′QO,∴B ROB''=PRQO,∴3.46=2.6OQ,∴OQ=78 17,∴QG=OQ﹣OG=4417,即d=4417∴2≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,﹣2或d =3.6.解:(1)如图1中,作MH AC ⊥于H .当旋转角为60︒时,60CAC ,AC AC =', ACC 是等边三角形,2CC AC ,60MCH ,设CH x =,则3MH AH x ,2x ∴=,1x ∴=,2232CM CH .故答案为2,2.(2)如图2中,作BH CD ⊥于H .AB AB =',60BAB ,ABB 是等边三角形,60DBM ACM , DMB AMC ,45BDC BAC ∴∠=∠=︒, 30BCH BCA ACC ,1BH DH BC,CH=12CD CH DH.13(3)CD的长有最大值.理由:如图3中,B AC BAC,45B ABC AC,=',AB AB'=,AC AC∴AB AB,AC AC∴△B AB∽△C AC,DBM ACM,DMB AMC,45BDM MAC,取AB的中点H,以H为圆心,HB为半径作H,连接CH.=,90CA CB∠=︒,ACB∴⊥,CH BH AH,CH ABBHC,901BDC BHC,2∴=时,CD的值最大,此时CD=.点D的运动轨迹是H,当CD AB7.【详解】(1)解:在正方形ABCD中,AB=4,∴AO=CO=OB=,∵BE ,∴OE ,∵AC ⊥BD ,∴∠COE =90°,∴CE ==,由旋转得:CE =CF ,∠ECF =90°,∴△CEF 的面积=211522CE ==; (2)证明:如图2,过E 作EN ⊥AB 于N ,作EP ⊥BC 于P ,∵EP ⊥BC ,FM ⊥CD ,∴∠EPC =∠FMC =90°,∵∠BCD =∠ECF =90°,∴∠PCE =∠MCF ,∵CE =CF ,∴△CPE ≌△CMF (AAS ),∴EP =FM ,∵EP ⊥BC ,EN ⊥AB ,BE 平分∠ABC ,∴EP =EN ,∴EN =FM ,∵FM ⊥CD ,∴∠FMG =∠ENH =90°,∵AB ∥CD ,∴∠NHE =∠MGF ,∴△NHE ≌△MGF (AAS ),∴NH=MG,∴BH+MG=BH+NH=BN,∵△BEN是等腰直角三角形,BE,∴BN=2BE;∴BH+MG=2BE,理由是:(3)解:BH﹣MG=2如图3,过E作EN⊥AB于N,交CG于P,∵EP⊥BC,FM⊥CD,AB∥CD,∴EP⊥CD,∴∠EPC=∠FMC=90°,∵∠M=∠ECF=90°,∴∠ECP+∠FCM=∠FCM+∠CFM=90°,∴∠ECP=∠CFM,∵CE=CF,∴△CPE≌△FMC(AAS),∴PC=FM,∵△DPE是等腰直角三角形,∴PE=PD,∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,∵AB ∥CD ,∴∠H =∠FGM ,∵∠ENH =∠M =90°,∴△HNE ≌△GMF (AAS ),∴NH =MG ,∴BH ﹣MG =BH ﹣NH =BN ,∵△BEN 是等腰直角三角形,∴BN =2BE ,∴BH ﹣MG =2BE . 8.【详解】(1)如图1,①∵四边形ABCD 是菱形,∴AB BC CD AD ===,∵∠D =60°,∴△ADC 和△ABC 是等边三角形,∴AB AC =,∠BAC =60°,∵∠NAM =60°,∴∠NAB =∠CAM ,由△ADC 沿射线DC 方向平移得到△BCE ,可知∠CBE =60°, ∵∠ABC =60°,∴∠ABN =60°,∴∠ABN =∠ACB =60°∴△ANB ≌△AMC ,∴∠ANB =∠AMC ; ②如图1,△AMN 是等边三角形,理由是:由△ANB≌△AMC,∴AM=AN,∵∠NAM=60°,∴△AMN是等边三角形;(2)①如图2,∠ANB=∠AMC成立,理由是:在正方形ABCD中,∴∠BAC=∠DAC=∠BCA=45°,∵∠NAM=45°,∴∠ANB=∠AMC,由平移得:∠EBC=∠CAD=45°,∵∠ABC=90°,∴∠ABN=180°-90°−45°=45°,∴∠ABN=∠ACM=45°,∴△ANB∽△AMC,∴∠ANB=∠AMC;②如图2,不成立,△AMN是等腰直角三角形,理由是:∵△ANB∽△AMC,∴AN AB AM AC=,∴AN AM AB AC=,∵∠NAM=∠BAC=45°,∴△NAM∽△BAC,∴∠ANM =∠ABC =90°, ∴△AMN 是等腰直角三角形. 9.【详解】(1)解:由旋转的性质得:AP=AP 1,BP=BP 2. ∵α=90°,∴△PAP 1和△PBP 2均为等腰直角三角形, ∴∠APP 1=∠BPP 2=45°,∴∠P 1PP 2=180°-∠APP 1-∠BPP 2=90°; (2)证明:由旋转的性质可知△PAP 1和△PBP 2均为顶角为α的等腰三角形, ∴∠APP 1=∠BPP 2=90°2α-, ∴∠P 1PP 2=180°-(∠APP 1+∠BPP 2)=180°-2(90°2α-)=α, 在△P 2P 1P 和△P 2PA 中,∠P 1PP 2=∠PAP 2=α, 又∵∠PP 2P 1=∠AP 2P ,∴△P 2P 1P ∽△P 2PA , ∴12222PP P P P P P A=, ∴22122PP PP P A =⋅;(3)证明:如图,连接QB ,并过A 作1AM PP ⊥,垂足为M ,则12PAM α∠=,112PM PP =, ∵l 1,l 2分别为PB ,P 2B 的中垂线,2BP BP =,∴QP=QB ,PE=BE=BF=12BP = 又∵BQ=BQ ,90QEB QFB ∠=∠=︒,∴()Rt QEB Rt QFB HL ∆∆≌, ∴21122QPE QBE QBF P BP α∠=∠=∠=∠=, ∴12111909090222APP QPE PAM P BP αα∠+∠=︒-∠+∠=︒-∠+∠=︒, ∴190PPQ ∠=︒, ∵12QPE PAM α∠=∠=∠,90AMP PEQ ∠=∠=︒, ∴AMP PEQ ∆∆, ∴AP PM PQ QE=, 在Rt PEQ ∆中,4PQ ===,且AP=6,QE=1, ∴32AP QE AP QE PM PQ PQ ⋅⋅===,123PP PM ==, ∴1Rt PPQ ∆中,15PQ ===. 10.解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,∴∠CC 1B=∠C 1CB=45°.∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°.(2)∵由旋转的性质可得:△ABC ≌△A 1BC 1,∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1. ∴11BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1 ∴∠ABA 1=∠CBC 1.∴△ABA 1∽△CBC 1∴1122ABA CBC S AB 416S CB 525∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. ∵S △ABA1=4,∴S △CBC1=254. (3)过点B 作BD ⊥AC ,D 为垂足,∵△ABC 为锐角三角形,∴点D 在线段AC 上.在Rt △BCD 中,BD=BC×sin45°①如图1,当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小.最小值为:EP 1=BP 1﹣BE=BD ﹣2.②如图2,当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大.最大值为:EP 1=BC+BE=5+2=7.11.【详解】(1)解:BD MF =,BD MF ⊥.延长FM 交BD 于点N ,根据旋转的性质得:AB=AM ,AD=AF ,∠BAD=∠MAF=90°∴BAD MAF ∆∆≌.∴BD MF =,ADB AFM ∠=∠.又∵DMN AMF ∠=∠,∴90ADB DMN AFM AMF ∠+∠=∠+∠=︒,∴90DNM ∠=︒,∴BD MF ⊥(2)解:如图2,①当AK FK =时,30KAF F ∠=∠=︒,则111180*********BAB B AD KAF ︒︒︒︒︒∠=-∠-∠=--=,即60β=︒;②当AF FK =时,75FAK ∠=︒,∴19015BAB FAK ∠=︒-∠=︒,即15β=︒;∴β的度数为60︒或15︒(3)如图3,由题意得矩形2PNA A .设2A A x =,则PN x =,在222Rt A M F ∆中,∵228F M FM ==,∴224A M =,22A F =∴2AF x =.∵290PAF ∠=︒,230PF A ∠=︒,∴2tan 3043AP AF x ︒=⋅=-.∴43PD AD AP x =-=+. ∵//NP AB ,∴DNP B ∠=∠.∵D D ∠=∠,∴DPN DAB ∆∆∽. ∴PN DP AB DA=.∴44x x =,解得6x =-26A A =-答:平移的距离是(6cm -.12.【详解】解:(1)如图3,过点D 作DE ⊥BC ,垂足为E ,设BC=m .在Rt △ABC 中,∠BAC=30°,由BC=AB ·tan30°,BC=AC ·sin30°,得AC=2m ,, ∵AC=AD ,∠CAD=2×30°=60°,∴△ACD 为等边三角形,∴∠ACD=60°,CD=AC=2m ,∴∠BCD=60°×2=120°,在Rt △DEC 中,∠DCE=180°-120°=60°,DC=2m ,∴CE=CD·cos60°=m ,DE=CE ·tan60°,∴在Rt △BED 中,,∴BD AC ,故AC .故答案为:120°;AC . (2)不成立,理由如下:设BC=n ,在Rt △ABC 中,∠BAC=45°,∠ABC=90°,∴BC=AB=m ,n ,∵AC=AD ,∠CAD=90°,∴△CAD 为等腰直角三角形,∴∠ACD=45°,AC= 2n ,∴∠BCD=2×45°=90°,在Rt △BCD 中,,∴BD AC ,故AC .答案为:90°;.故结论不成立.(3)AP 或;解答如下:∵PB=PC ,∴点P 在线段BC 的垂直平分线上,∵∠BAC=∠BCP=90°,故A 、B 、C 、P 四点共圆,以线段BC 的中点为圆心构造⊙O ,如图4,图5,分类讨论如下:①当点P 在直线BC 上方时,如图4,作PM ⊥AC ,垂足为M ,设PM=x .∵PB=PC ,∠BPC=90°,∴△PBC 为等腰直角三角形,∴∠PBC=45°,∵∠PAC=∠PBC=45°,∴△AMP 为等腰直角三角形,∴AM=PM=x ,x ,在Rt △ABC 中,AB=2,AC=4,∴PC=BC·sin45°,在Rt △PMC 中,∵∠PMC=90°,PM=x ,PC=,CM=4-x ,∴()2224x x +-=,解得:11x =,23x =(舍),∴;②当点P 在直线BC 的下方时,如图5,作PN ⊥AB 的延长线,垂足为N ,设PN=y .同上可得△PAN 为等腰三角形,∴AN=PN=y ,∴BN=y-2,在Rt △PNB 中,∵∠PNB=90°,PN=y ,BN=y-2,,∴()2222y y +-=,解得:13y =,21y =-(舍),∴=AP 或 13.【详解】(1)如图①中,∵△DEC 绕点C 旋转点D 恰好落在AB 边上,∴AC=CD ,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD 是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE ,∴DE ∥AC ;(2)如图②中,作DM ⊥BC 于M ,AN ⊥EC 交EC 的延长线于N .∵△DEC 是由△ABC 绕点C 旋转得到∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM ,在△ACN 和△DCM 中,90ACN DCM CMD N AC CD ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACN ≌△DCM (AAS ),∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S △BDC =S △AEC .(3)如图③中,作CH ⊥AD 于H .∵,∵B ,A ,E 共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A ,E ,D ,C 四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD ,CH ⊥AD ,AC=CD=12AB=2∴∴,∴BD ===(4)如图①中,设DE 交BC 于T .因为含有30°的直角三角形的三边之比为12,由(1)可知△BDT ,△DCT ,△ECT 都是含有30°的直角三角形,∴△BDT ,△DCT ,△ECT 符合条件.14.【详解】(1)①如图1,∵把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,∴AE AG =,BAE DAG ∠=∠,BE DG =∵90BAD ∠=︒,45EAF ∠=︒,∴45BAE DAF ∠+∠=︒,∴45DAG DAF ∠+∠=︒,即45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS ≌,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;②180B D ∠+∠=︒,理由是:把ABE △绕A 点旋转到ADG ,使AB 和AD 重合,则AE AG =,B ADG ∠=∠,BAE DAG ∠=∠,∵180B ADC ︒∠+∠=,∴180ADC ADG ∠+∠=︒,∴C ,D ,G 在一条直线上,和①知求法类似,45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS △≌△,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;故答案为:180B D ∠+∠=︒(2)∵ABC中,AB AC ==90BAC ∠=∴45ABC C ∠=∠=︒,由勾股定理得:4BC === ,把AEC 绕A 点旋转到AFB △,使AB 和AC 重合,连接DF .则AF AE =,45FBA C ∠=∠=︒,BAF CAE ∠=∠,∵45DAE ∠=︒,∴904545FAD FAB BAD CAE BAD BAC DAE ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒, ∴45FAD DAE ∠=∠=︒,在FAD △和EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴FAD EAD △≌△,∴DF DE =,设DE x =,则DF x =,∵1BC =,∴413BF CE x x ==--=-,∵45FBA ∠=︒,45ABC ∠=︒,∴90FBD ∠=︒,由勾股定理得:222DF BF BD =+,。

2012年全国中考数学选择填空解答压轴题分类解析汇编_专题11_几何三大变换问题之平移

2012年全国中考数学选择填空解答压轴题分类解析汇编_专题11_几何三大变换问题之平移

2012年全国中考数学选择填空解答压轴题一、选择题1. (2012陕西省3分)在平面直角坐标系中,将抛物线2y x x 6=--向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为【 】A .1B .2C .3D .6【答案】B 。

【考点】二次函数图象与平移变换【分析】计算出函数与x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向:当x=0时,y=-6,故函数与y 轴交于C (0,-6),当y=0时,x 2-x -6=0, 解得x=-2或x=3,即A (-2,0),B (3,0)。

由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2。

故选B 。

2. (2012江苏宿迁3分)在平面直角坐标系中,若将抛物线y=2x 2- 4x+3先向右平移3个单位长度,再 向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是【 】 A.(-2,3) B.(-1,4) C.(1,4) D.(4,3)【答案】D 。

【考点】坐标平移。

【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。

上下平移只改变点的纵坐标,下减上加。

因此,将抛物线y=2x 2- 4x+3先向右平移3个单位长度,再向上平移2个单位长度,其顶点也同样变换。

∵()22y 2x 4x 32x 1+1=-+=-的顶点坐标是(1,1),∴点(1,1)先向右平移3个单位长度,再向上平移2个单位长度,得点(4,3),即经过这两次平移后所得抛物线的顶点坐标是(4,3)。

故选D 。

3. (2012四川南充3分)如图,平面直角坐标系中,⊙O 半径长为1.点⊙P(a,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为【 】(A)3 (B)1 (C)1,3 (D)±1,±3【答案】D。

【考点】两圆的位置关系,平移的性质。

【分析】⊙P与⊙O相切时,有内切和外切两种情况:∵⊙O 的圆心在原点,当⊙P与⊙O外切时,圆心距为1+2=3,当⊙P与⊙O第内切时,圆心距为2-1=1,当⊙P与⊙O第一次外切和内切时,⊙P圆心在x轴的正半轴上,∴⊙P(3,0)或(1,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12:几何三大变换问题之旋转一、选择题1. (2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB .34π D .1112π 【答案】D 。

【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。

【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。

∴AC∴ABC 1S BC AC 2∆=⨯⨯=设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC=DC,∴△BCD 是等边三角形。

∴BD=CD=1。

∴点D 是AB 的中点。

∴ACD ABC 11S S 22∆∆===S 。

∴1ACD ACA BCD ABC S S S ∆∆=++扇形扇形的面扫过积26013113604612ππππ⨯⨯=++=++=+故选D 。

2. (2012广东汕头4分)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【 】A .110° B.80° C.40° D.30° 【答案】B 。

【考点】旋转的性质,三角形内角和定理。

【分析】根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°。

∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°。

∴∠ACB=30°。

∵将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°, ∴∠BCA′=30°+50°=80°,故选B 。

3. (2012福建龙岩4分)如图,矩形ABCD 中,A B=1,BC=2,把矩形ABCD 绕AB 所在直线旋转一 周所得圆柱的侧面积为【 】A .10πB .4πC .2πD .2【答案】B 。

【考点】矩形的性质,旋转的性质。

【分析】把矩形ABCD 绕AB 所在直线旋转一周所得圆柱是以BC=2为底面半径,A B=1为高。

所以,它 的侧面积为221=4ππ⋅⋅。

故选B 。

4. (2012湖北十堰3分)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④AOBO S 四形边AOC AOB S S += 是【 】A .①②③⑤ B.①②③④ C.①②③④⑤ D.①②③ 【答案】A 。

【考点】旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理的逆定理。

【分析】∵正△ABC,∴AB=CB,∠ABC=600。

∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。

∴∠O′BA=600-∠ABO=∠OBA。

∴△BO′A≌△BOC。

∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到。

故结论①正确。

连接OO ′,∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。

∴OO′=OB=4。

故结论②正确。

∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾股数,∴△AOO′是直角三角形。

∴∠AOB=∠AOO′+∠O′OB =900+600=150°。

故结论③正确。

AOO OBO AOBO 11S S S 34+422∆'∆''=+=⋅⋅⋅⋅四形边。

故结论④错误。

如图所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形。

则AOC AOB AOCO COO AOO 11S S S S S 34+322∆∆"∆"∆"+==+=⋅⋅⋅故结论⑤正确。

综上所述,正确的结论为:①②③⑤。

故选A 。

5. (2012湖南娄底3分)如图,矩形绕它的一条边MN 所在的直线旋转一周形成的几何体是【 】A. B. C. D.【答案】C。

【考点】点、线、面、体。

【分析】矩形绕一边所在的直线旋转一周得到的是圆柱。

故选C。

6. (2012四川绵阳3分)如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=【】。

A.1 B.1:2 C 2 D.1【答案】B。

【考点】旋转的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理。

【分析】如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°。

又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′。

在△ABP和△CBP′中,∵ BP=BP′,∠ABP=∠CBP′,AB=BC ,∴△ABP≌△CBP′(SAS)。

∴AP=P′C。

∵P′A:P′C=1:3,∴AP=3P′A。

连接PP′,则△PBP′是等腰直角三角形。

∴∠BP′P=45°,PP′= 2 PB。

∵∠AP′B=135°,∴∠AP′P=135°-45°=90°,∴△APP′是直角三角形。

设P′A=x,则AP=3x,在Rt△APP′中,PP'=。

在Rt△APP′中,PP'=。

,解得PB=2x。

∴P′A:PB=x:2x=1:2。

故选B。

7. (2012贵州黔东南4分)点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于【】A.75° B.60° C.45° D.30°【答案】C。

【考点】正方形的性质,旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质。

【分析】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°。

∴∠ADP+∠APD=90°。

由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°。

∴∠ADP=∠EPF。

在△APD和△FEP中,∵∠ADP=∠EPF,∠A=∠F,PD=PE,∴△APD≌△FEP(AAS)。

∴AP=EF,AD=PF。

又∵AD=AB,∴PF=AB,即AP+PB=PB+BF。

∴AP=BF。

∴BF=EF又∵∠F=90°,∴△BEF为等腰直角三角形。

∴∠EBF=45°。

又∵∠CBF=90°,∴∠CBE=45°。

故选C。

8. (2012广西北海3分)如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△A BC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了:【】A.2周B.3周C.4周D.5周【答案】C。

【考点】等边三角形的性质,直线与圆的位置关系。

【分析】该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数:⊙O 在三边运动时自转周数:6π÷2π =3:⊙O 绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周。

∴⊙O 自转了3+1=4周。

故选C 。

二、填空题1. (2012福建厦门4分)如图,已知∠ABC=90°,AB =πr ,BC =πr2,半径为r 的⊙O 从点A 出发,沿A→B→C 方向滚动到点C 时停止.请你根据题意,在图上画出圆心..O 运动路径的示意图;圆心O 运动的路程是 ▲ .【答案】2πr 。

【考点】作图题,弧长的计算。

【分析】根据题意画出图形,将运动路径分为三部分:OO 1,O 1O 2 ,O 2O 3,分别计算出各部分的长再相加即可:圆心O 运动路径如图:∵OO 1=AB=πr ;O 1O 2 =90r 1r 1802ππ=;O 2O 3=BC=1r 2π , ∴圆心O 运动的路程是πr+1r 2π+1r 2π =2πr 。

2. (2012四川南充3分)如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是 ▲ cm.【答案】【考点】等腰直角三角形的性质,旋转的性质,勾股定理。

【分析】如图,将△ADC 旋转至△ABE 处,则△AEC 的面积和四边形ABCD 的面积一样多为24cm 2,,这时三角形△AEC 为等腰直角三角形,作边EC 上的高AF ,则AF=12EC=FC, ∴ S△AEC=12AF·EC=AF2=24 。

∴AF 2=24。

∴AC 2=2AF 23. (2012山东烟台3分)如图,在Rt△ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB′C′的位置,B ,A ,C′三点共线,则线段BC 扫过的区域面积为 ▲ .【答案】512π。

【考点】扇形面积的计算,旋转的性质。

【分析】先根据Rt△ABC 中,∠C=90°,∠A=30°,AB=2求出BC 及AC 的长,再根据线段BC 扫过的区域面积为:S 阴影=AB 扫过的扇形面积+△AB′C′面积﹣AC 扫过的扇形面积﹣△ABC 面积=AB 扫过的扇形面积﹣AC 扫过的扇形面积。

∵Rt△ABC 中,∠C=90°,∠A=30°,AB=2,∴11BC AB 21AC 222==⨯===,。

∵B,A ,C′三点共线,∴∠BAB′=150°。

∴S 阴影= AB 扫过的扇形面积+△ABC 面积﹣BC 扫过的扇形面积2215015025=36036012πππ⋅⋅⋅⋅-。

4. (2012广西河池3分)如图,在平面直角坐标系中,矩形OEFG 的顶点F 的坐标为(4,2),将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴上,得到矩形OMNP ,OM 与GF 相交于点A .若经过点A 的 反比例函数ky (x 0)x=>的图象交EF 于点B ,则点B 的坐标为 ▲ .【答案】(4,12)。

相关文档
最新文档