2014年高考人教A版数学(理)一轮针对训练 第2章 基本初等函数、导数及其应用 第8课时 Word版含解析]
2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第7课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第7课时)(新人教A 版)一、选择题1.(2012·高考安徽卷)(log 29)·(log 34)=( ) A.14 B.12 C .2 D .4解析:选D.(log 29)·(log 34)=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.2.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )A .log 2x B.12xC .log 12x D .x 2解析:选C.由题意知f (x )=log a x ,∴a =log a a 12=12,∴f (x )=log 12x ,故选C.3.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:选A.由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b =log m 2+log m 5=log m 10.∵1a +1b=2,∴log m 10=2,∴m 2=10,m =10.4.(2011·高考重庆卷)设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选B.c =log 343=log 1334,又12<23<34且函数f ()x =log 13x 在其定义域上为减函数,所以log 1312>log 1323>log 1334,即a >b >c .5.(2012·高考课标全国卷)当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A .(0,22) B .(22,1) C .(1,2) D .(2,2)解析:选B.构造函数f (x )=4x和g (x )=log a x ,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的草图(图略),可知,若g (x )的图象经过点⎝ ⎛⎭⎪⎫12,2,则a =22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1 二、填空题6.已知f (x )=|log 2x |,则f (38)+f (32)=________.解析:f (38)+f (32)=|log 238|+|log 232|=3-log 23+log 23-1=2.答案:27.(2012·高考北京卷)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.解析: 由f (ab )=1得ab =10,于是f (a 2)+f (b 2)=lg a 2+lg b 2=2(lg a +lg b )=2lg(ab )=2lg10=2.答案:28.函数y =(log 14x )2-log 12x +5在区间[2,4]上的最小值是________.解析:y =⎝ ⎛⎭⎪⎫12log 12x 2-12log 12x +5.令t =12log 12x (2≤x ≤4),则-1≤t ≤-12且y =t 2-t +5,∴当t =-12时,y min =14+12+5=234.答案:234三、解答题9.设f (x )=lg 1+2x +4xa3,其中a ∈R ,如果当x ∈(-∞,1]时,f (x )有意义,求a 的取值范围.解:当x ∈(-∞,1],f (x )有意义,即等价于x ∈(-∞,1]时,1+2x +4xa3>0成立.将不等式变形,分离出a >-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x .① 原命题等价于x ∈(-∞,1]时, 求使①式成立的a 的取值范围.令y =-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x ,在x ∈(-∞,1]时, 只需a >y max ,为此需求y max .而y =-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x 在x ∈(-∞,1]上是增函数. 故当x =1时,有y max =-⎝ ⎛⎭⎪⎫14+12=-34. 因此取a >-34,即a 的取值范围是⎝ ⎛⎭⎪⎫-34,+∞. 10.(2013·深圳调研)已知函数f (x )=log 12(a 2-3a +3)x.(1)判断函数的奇偶性;(2)若y =f (x )在(-∞,+∞)上为减函数,求a 的取值范围.解:(1)函数f (x )=log 12(a 2-3a +3)x的定义域为R .又f (-x )=log 12(a 2-3a +3)-x=-log 12(a 2-3a +3)x=-f (x ),所以函数f (x )是奇函数.(2)函数f (x )=log 12(a 2-3a +3)x 在(-∞,+∞)上为减函数,则y =(a 2-3a +3)x在 (-∞,+∞)上为增函数,由指数函数的单调性,有a 2-3a +3>1, 解得a <1或a >2.所以a 的取值范围是(-∞,1)∪(2,+∞).一、选择题 1.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)解析:选C.由f (2-x )=f (x ),得x =1是函数f (x )的一条对称轴,又x ≥1时,f (x )=ln x 单调递增,∴x <1时,函数单调递减.∴f (12)<f (13)<f (2).2.(2013·抚顺检测)若函数f (x )=(k -1)·a x -a -x(a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )解析:选A.由函数f (x )=(k -1)a x-a -x(a >0且a ≠1)在R 上是奇函数知f (0)=0,∴k =2.f (x )=a x -a -x (a >0且a ≠1),又是R 上的减函数, ∴0<a <1.g (x )=log a (x +2)的定义域为(-2,+∞),因为0<a <1,故g (x )=log a (x +2)为(-2,+∞)上的减函数,且恒过定点(-1,0),故选A.二、填空题3.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫0,12内恒有f (x )>0,则f (x )的单调递增区间是________.解析:定义域为⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞),当x ∈⎝ ⎛⎭⎪⎫0,12时,2x 2+x ∈(0,1),因为a >0,a ≠1,设u =2x 2+x >0,y =log a u 在(0,1)上大于0恒成立,∴0<a <1,所以函数f (x )=log a (2x 2+x )(a >0,a ≠1)的单调递增区间是u =2x 2+x ⎝ ⎛⎭⎪⎫x ∈-∞,-12∪()0,+∞的递减区间,即 ⎝ ⎛⎭⎪⎫-∞,-12. 答案:⎝⎛⎭⎪⎫-∞,-12 4.(2011·高考山东卷)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b<4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.解析:∵2<a <3,∴f (x )=log a x +x -b 为定义域上的严格单调函数.f (2)=log a 2+2-b ,f (3)=log a 3+3-b .∵2<a <3<b ,∴lg2<lg a <lg3, ∴lg2lg3<lg2lg a<1. 又∵b >3,∴-b <-3,∴2-b <-1, ∴log a 2+2-b <0,即f (2)<0.∵1<lg3lg a <lg3lg2,3<b <4,∴-1<3-b <0,∴log a 3+3-b >0,∴f (3)>0, 即f (2)·f (3)<0.由x 0∈(n ,n +1),n ∈N *知,n =2. 答案:2 三、解答题 5.(2013·北京东城1月检测)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集. 解:(1)f (x )=log a (x +1)-log a (1-x ), 则{ x +1>0,-x >0,解得-1<x <1. 故所求函数f (x )的定义域为{x |-1<x <1}. (2)由(1)知f (x )的定义域为{x |-1<x <1}, 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1.解得0<x<1.所以使f (x )>0的x 的解集是{x |0<x <1}.。
2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第12课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第12课时)(新人教A 版)一、选择题1.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1C .-1<a <1D .0<a <12解析:选B.∵y ′=3x 2-3a ,令y ′=0,可得:a =x 2. 又∵x ∈(0,1),∴0<a <1.故选B.2.(2013·威海调研)函数y =4xx 2+1( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,有最小值-2D .无最值解析:选C.∵y ′=x 2+-4x ·2x x +=-4x 2+4x +.令y ′=0,得x =1或-1,f (-1)=-42=-2,f (1)=2.结合图象故选C.3.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对解析:选A.f ′(x )=6x (x -2),∴f (x )在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f (0)=m 最大,∴m =3,而f (-2)=-37,f (2)=-5,∴f (x )min =-37.4.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4解析:选C.∵f ′(x )=2x +2+a x,f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立,所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.5.(2011·高考湖南卷)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12C.52D.22解析:选D.由题意|MN |=t 2-ln t (t >0),不妨令h (t )=t 2-ln t ,则h ′(t )=2t -1t,令h ′(t )=0,解得t =22,因为t ∈⎝ ⎛⎭⎪⎫0,22时,h ′(t )<0,当t ∈⎝ ⎛⎭⎪⎫22,+∞时,h ′(t )>0,所以当t =22时,|MN |达到最小. 二、填空题6.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:f ′(x )=m -2x ,令f ′(x )=0,则x =m 2,由题设得m2∈[-2,-1],故m ∈[-4,-2].答案:[-4,-2]7.函数y =sin2x -x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大值是________,最小值是________. 解析:∵y ′=2cos2x -1=0,∴x =±π6.而f ⎝ ⎛⎭⎪⎫-π6=-32+π6,f ⎝ ⎛⎭⎪⎫π6=32-π6,端点f ⎝ ⎛⎭⎪⎫-π2=π2,f ⎝ ⎛⎭⎪⎫π2=-π2,所以y 的最大值是π2,最小值是-π2.答案:π2 -π28.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨产品的价格P (元/吨)之间的函数关系为P =24200-15x 2,且生产x 吨的成本为R =50000+200x (元).则该厂每月生产________吨该产品才能使利润达到最大,最大利润是________万元.(利润=收入-成本)解析:每月生产x 吨时的利润为f (x )=(24200-15x 2)x -(50000+200x )=-15x 3+24000x -50000(x ≥0).由f ′(x )=-35x 2+24000=0,解得x 1=200,x 2=-200(舍去).因f (x )在[0,+∞)内只有一个极值点x =200使f ′(x )=0,故它就是最大值点,且最大值为f (200)=-15×2003+24000×200-50000=3150000(元).所以每月生产200吨产品时的利润达到最大,最大利润为315万元. 答案:200 315 三、解答题9.(2011·高考北京卷)已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与↘ ↗所以,f (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.10.(2011·高考江苏卷)请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0, 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.一、选择题1.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 x ≤480000 x >,则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300 解析:选D.由题意得,总成本函数为 C =C (x )=20000+100x ,所以总利润函数为P =P (x )=R (x )-C (x )=⎩⎪⎨⎪⎧300x -x 22-20000 x 60000-100xx >,而P ′(x )=⎩⎪⎨⎪⎧300-x x ,-100 x >,令P ′(x )=0,得x =300,易知x =300时,P 最大.2.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,给出以下结论:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]; ②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于0. 其中正确的结论有( ) A .0个 B .1个 C .2个 D .3个 解析:选C.∵f (0)=0,∴c =0,∵f ′(x )=3x 2+2ax +b . ∴⎩⎪⎨⎪⎧ f =-1f -=-1,即⎩⎪⎨⎪⎧3+2a +b =-13-2a +b =-1. 解得a =0,b =-4,∴f (x )=x 3-4x ,∴f ′(x )=3x 2-4.令f ′(x )=0,得x =±233∈[-2,2],∴极值点有两个.∵f (x )为奇函数,∴f (x )max +f (x )min =0. ∴①③正确,故选C. 二、填空题3.(2013·嘉兴质检)不等式ln(1+x )-14x 2≤M 恒成立,则M 的最小值是________.解析:设f (x )=ln(1+x )-14x 2,则f ′(x )=[ln(1+x )-14x 2]′=11+x -12x =-x +x -+x, ∵函数f (x )的定义域需满足1+x >0,即x ∈(-1,+∞). 令f ′(x )=0得x =1,当x >1时,f ′(x )<0,当-1<x <1时,f ′(x )>0,∴函数f (x )在x =1处取得最大值f (1)=ln2-14.∴要使ln(1+x )-14x 2≤M 恒成立,∴M ≥ln2-14,即M 的最小值为ln2-14.答案:ln2-144.将边长为1 m 的正三角形薄铁片,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =梯形的周长2梯形的面积,则s 的最小值是________.解析:设剪成的小正三角形的边长为x ,则梯形的周长为3-x ,梯形的面积为12·(x +1)·32·(1-x ),所以s =-x212x +32-x=43·-x21-x 2(0<x <1). 由s (x )=43·-x21-x 2,得 s ′(x )=43·x --x 2--x2-2x-x 22=43·-x -x --x 22. 令s ′(x )=0,且0<x <1,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′(x )>0. 故当x =13时,s 取最小值3233.答案:3233三、解答题5.(2013·大同调研)已知函数f (x )=ax 3+x 2+bx (a 、b 为常数,g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值、最小值.解:(1)∵f ′(x )=3ax 2+2x +b ,∴g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . ∵g (x )为奇函数,∴g (-x )=-g (x ),∴⎩⎪⎨⎪⎧3a +1=0b =0,解得:⎩⎪⎨⎪⎧a =-13b =0.∴f (x )的解析式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2,∴当x ∈(-∞,-2),(2,+∞)时,g (x )单调递减, 当x ∈(-2,2)时,g (x )单调递增,又g (1)=53,g (2)=423,g (2)=43,∴g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.。
高考数学一轮复习 第2章《基本初等函数、导数及其应用
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第1课时)(新人教A 版)一、选择题1.下列各组函数中表示同一函数的是( )A .f (x )=x 与g (x )=(x )2B .f (x )=|x |与g (x )=3x 3C .f (x )=lne x 与g (x )=e ln xD .f (x )=x 2-1x -1与g (t )=t +1(t ≠1)解析:选D.由函数的三要素中的定义域和对应关系进行一一判断,知D 正确.2.(2011·高考江西卷)若f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞) 解析:选A.由题意得:⎩⎪⎨⎪⎧2x +1>0log 12x +>0得-12<x <0.3.(2012·高考福建卷)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π 解析:选B.∵g (π)=0,f (0)=0,故选B. 4.函数y =f (x )的图象如图所示,则f (x )的解析式为( ) A .y =-|x |-1 B .y =|x -1| C .y =-|x |+1 D .y =|x +1|解析:选C.对照函数图象,分别把x =0代入解析式排除A ,把x =-1代入解析式排除B ,把x =1代入解析式排除D ,故选C.5.(2011·高考辽宁卷)设函数f (x )=⎩⎪⎨⎪⎧21-x, x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析:选D.当x ≤1时,由21-x≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).二、填空题6.已知f (x -1x )=x 2+1x2,则f (3)=________.解析:∵f (x -1x )=x 2+1x 2=(x -1x)2+2,∴f (x )=x 2+2,∴f (3)=32+2=11. 答案:117.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f 是从A 到B 的映射,f :x →(x +1,x 2+1),则A 中元素2的象和B 中元素(32,54)的原象分别为________.解析:把x =2代入对应法则,得其象为(2+1,3). 由⎩⎪⎨⎪⎧x +1=32x 2+1=54,得x =12.所以2的象为(2+1,3),(32,54)的原象为12.答案:(2+1,3)、128.(2012·高考陕西卷)设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,则f (f (-4))=________.解析:f (-4)=⎝ ⎛⎭⎪⎫12-4=16,所以f (f (-4))=f (16)=16=4.答案:4 三、解答题9.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a ,由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6,又a ≥2,∴a = 6. 综上可知,a 的值为32或 6.10.(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x );(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.解:(1)令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1.(2)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).一、选择题1.(2012·高考山东卷)函数f (x )=1x ++4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B.x 满足⎩⎪⎨⎪⎧x +1>0x +1≠1,4-x 2≥0即⎩⎪⎨⎪⎧x >-1x ≠0-2≤x ≤2,解得-1<x <0或0<x ≤2.2.(2012·高考江西卷)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x解析:选D.当函数以解析式形式给出时,求其定义域的实质就是以使函数的解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.函数y =13x的定义域为(-∞,0)∪(0,+∞),而y =1sin x 的定义域为{x |x ∈R ,x ≠k π,k ∈Z },y =ln xx的定义域为(0,+∞),y =x e x的定义域为R ,y =sin x x的定义域为(-∞,0)∪(0,+∞).故选D.二、填空题3.下列对应中,①A ={x |x 是矩形},B ={x |x 是实数},f 为“求矩形的面积”; ②A ={x |x 是平面α内的圆},B ={x |x 是平面α内的矩形};f :“作圆的内接矩形”;③A =R ,B ={x ∈R |x >0},f :x →y =x 2+1;④A =R ,B =R ,f :x →y =1x;⑤A ={x ∈R |1≤x ≤2},B =R ,f :x →y =2x +1. 是从集合A 到集合B 的映射的为________.解析:其中②,由于圆的内接矩形不唯一,因此f 不是从A 到B 的映射;其中④,A 中的元素0在B 中没有对应元素,因此f 不是A 到B 的映射.答案:①③⑤4.设函数f (x )=⎩⎪⎨⎪⎧23x -1x x 2 x <,若f (a )<a ,则实数a 的取值范围是________.解析:当a ≥0时,由23a -1<a 得a >-3取a ≥0.当a <0时,由a 2<a 得,0<a <1,与a <0矛盾, 综上可知a 的取值范围是[0,+∞). 答案:[0,+∞) 三、解答题5.下面是一个电子元件在处理数据时的流程图:(1)试确定y 与x 的函数关系式; (2)求f (-3)、f (1)的值; (3)若f (x )=16,求x 的值.解:(1)y =⎩⎪⎨⎪⎧x +2,x ≥1,x 2+2,x <1.(2)f (-3)=(-3)2+2=11;f (1)=(1+2)2=9.(3)若x ≥1,则(x +2)2=16,解得x =2或x =-6(舍);若x <1,则x 2+2=16,解得x =14(舍)或x =-14. 即x =2或x =-14.。
高考数学一轮复习 第2章《基本初等函数、导数及其应用
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第10课时)(新人教A版)一、选择题1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( )A.-1 B.-2C.2 D.0解析:选B.由题意知f′(x)=4ax3+2bx,若f′(1)=2,即f′(1)=4a+2b=2,从题中可知f′(x)为奇函数,故f′(-1)=-f′(1)=-4a-2b=-2,故选B.2.已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x-y=0,则点P的坐标为( )A.(0,0) B.(1,1)C.(0,1) D.(1,0)解析:选D.由题意知,函数f(x)=x4-x在点P处的切线的斜率等于3,即f′(x0)=4x30-1=3,∴x0=1,将其代入f(x)中可得P(1,0).3.(2011·高考江西卷)曲线y=e x在点A(0,1)处的切线斜率为( )A.1 B.2C.e D.1 e解析:选A.∵y′=e x,故所求切线斜率k=e x|x=0=e0=1.4.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,则f2013(x)等于( )A.sin x B.-sin xC.cos x D.-cos x解析:选C.∵f n(x)=f n+4(x),故f2012(x)=f0(x)=sin x,∴f2013(x)=f′2012(x)=cos x.5.(2013·济南质检)若函数f(x)=e x cos x,则此函数图象在点(1,f(1))处的切线的倾斜角为( )A.0 B.锐角C.直角D.钝角解析:选D.由已知得:f′(x)=e x cos x-e x sin x=e x(cos x-sin x).∴f′(1)=e(cos1-sin1).∵π2>1>π4,而由正、余弦函数性质可得cos1<sin1,∴f′(1)<0.即f(x)在(1,f(1))处的切线的斜率k<0.∴切线的倾斜角是钝角.二、填空题6.(2011·高考重庆卷改编)曲线y=-x3+3x2在点()1,2处的切线方程为________.答案:y=3x-17.(2013·黄石质检)已知f(x)=x ln x,若f′(x0)=2,则x0=________.解析:f(x)的定义域为(0,+∞),f′(x)=ln x+1,由f′(x0)=2,即ln x0+1=2,解得x0=e.答案:e8.下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=________.解析:∵f ′(x )=x 2+2ax +a 2-1, ∴导函数f ′(x )的图象开口向上. 又∵a ≠0,其图象必为第三张图.由图象特征知f ′(0)=a 2-1=0,且-a >0,∴a =-1.故f (-1)=-13-1+1=-13.答案:-13三、解答题9.求下列函数的导数:(1)y =(1-x )(1+1x);(2)y =ln xx;(3)y =tan x ;(4)y =(1+sin x )2.解:(1)∵y =(1-x )(1+1x )=1x -x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(ln x x )′=ln x ′x -x ′ln x x 2=1x ·x -ln xx 2=1-ln xx2. (3)y ′=(sin x cos x )′=sin x ′cos x -sin x cos x ′cos 2x=cos x cos x -sin x -sin x cos 2x =1cos 2x. (4)y ′=[(1+sin x )2]′ =2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x =2cos x +sin2x .10.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程; (3)求斜率为1的曲线的切线方程.解:(1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为k 1=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43, 则切线的斜率为k 2=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0. (3)设切点为(x 0,y 0),则切线的斜率为: x 20=1,x 0=±1.切点为(-1,1)或⎝ ⎛⎭⎪⎫1,53, ∴切线方程为y -1=x +1或y -53=x -1,即x -y +2=0或3x -3y +2=0.一、选择题1.下列函数求导运算正确的个数为( )①(3x )′=3x log 3e ;②(log 2x )′=1x ·ln2;③(e x )′=e x;④(1ln x )′=x ;⑤(x ·e x )′=e x+1. A .1 B .2 C .3 D .4解析:选B.求导运算正确的有②③2个,故选B.2.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)解析:选D.∵y =4e x +1,∴y ′=-4exe x +12.令e x +1=t ,则e x=t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t. 再令1t=m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1).容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.二、填空题3.(2013·苏州十校联考)已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ⎝ ⎛⎭⎪⎫π4=________.解析:由已知:f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x .则f ′⎝ ⎛⎭⎪⎫π2=-1,因此f (x )=-sin x +cos x ,f ⎝ ⎛⎭⎪⎫π4=0. 答案:04.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=________.解析:∵{a n }是等比数列,且a 1=2,a 8=4,∴a 1·a 2·a 3·…·a 8=(a 1·a 8)4=84=212. ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8),∴f ′(0)等于f (x )中x 的一次项的系数.∴f ′(0)=a 1·a 2·a 3·…·a 8=212.答案:212三、解答题 5.(2013·营口质检)如右图所示,已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切,直线l 2:x =a (a <-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程; (2)求△ABD 的面积S 1.解:(1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点, ∵y ′=4x ,∴直线l 1的斜率k =-4, 所以直线l 1的方程为y -2=-4(x +1), 即4x +y +2=0.(2)点A 的坐标为(-1,2),由条件可求得点B 的坐标为(a,2a 2), 点D 的坐标为(a ,-4a -2), ∴△ABD 的面积为S 1=12×|2a 2-(-4a -2)|×|-1-a |=|(a +1)3|=-(a +1)3.。
高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第8课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第8课时)(新人教A 版)一、选择题1.函数y =5x与函数y =-15x 的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称解析:选C.因y =-15x =-5-x,所以关于原点对称.2.把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .y =(x -3)2+3B .y =(x -3)2+1C .y =(x -1)2+3D .y =(x -1)2+1解析:选C.把函数y =f (x )的图象向左平移1个单位,即把其中x 换成x +1,于是得到y =[(x +1)-2]2+2=(x -1)2+2,再向上平移1个单位,即得到y =(x -1)2+2+1=(x-1)2+3.3.(2013·铁岭质检)已知图①是函数y =f (x )的图象,则图②中的图象对应的函数可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (-|x |) 解析:选C.由题图②知,图象对应的函数是偶函数,且当x <0时,对应的函数是y =f (x ),故选C.4.(2011·高考课标全国卷)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )A .10个B .9个C .8个D .1个解析:选A.如图,作出图象可知y =f (x )与y =|lg x |的图象共有10个交点.5.函数y =e x +e-xe x -e-x 的图象大致为( )解析:选A.∵f (-x )=e -x +e x e -x -e x =-e x +e-xe x -e-x =-f (x ),∴f (x )为奇函数,排除D.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除B 、C. 二、填空题6.已知函数y =1x,将其图象向左平移a (a >0)个单位,再向下平移b (b >0)个单位后图象过坐标原点,则ab 的值为________.解析:图象平移后的函数解析式为y =1x +a -b ,由题意知1a-b =0,∴ab =1. 答案:1 7.函数y =f (x )(x ∈[-2,2])的图象如图所示,则f (x )+f (-x )=________. 解析:由图象可知f (x )为定义域上的奇函数. ∴f (x )+f (-x )=f (x )-f (x )=0. 答案:0 8.如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f 3的值等于________. 解析:由图知f (3)=1, f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2. 答案:2 三、解答题9.作出下列函数的大致图象(1)y =x 2-2|x |;(2)y =log 13[3(x +2)];(3)y =1-x .解:(1)y =⎩⎪⎨⎪⎧x 2-2x ,x ≥0x 2+2x ,x <0图象如图(1).(2)y =log 133+log 13(x +2)=-1+log 13(x +2)其图象如图(2).(3)y =-x -1,其图象如图(3).10.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3, x ∈2,5].(1)在如图给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间. 解:(1)函数f (x )的图象如图所示:(2)函数的单调递增区间为[-1,0],[2,5].一、选择题 1.(2013·长春质检)定义在R 上的函数y =f (x +1)的图象如图所示,它在定义域上是减函数,给出如下命题:①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是( )A .②③B .①④C .②④D .①③解析:选B.由y =f (x +1)的图象向右平移一个单位得到函数y =f (x )的图象如图所示, 结合图象知①④正确,②③错误,故选B.2.(2013·日照质检)若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x +b 的大致图象是( )解析:选D.由函数f (x )=log a (x +b )的图象知0<a <1,0<b <1,故g (x )=a x+b 是由y =a x 的图象向上平移0<b <1个单位得到的,故选D.二、填空题3.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是________.(注意:min 表示最小值)解析:画出示意图f (x )*g (x )=⎩⎪⎨⎪⎧2-x 2,x ≤-2,x ,-2<x <1,2-x 2,x ≥1其最大值为1.答案:1 4.已知定义在区间[0,1]上的函数y =f (x ),图象如图所示.对满足0<x 1<x 2<1的任意x 1,x 2,给出下列结论:①f (x 1)-f (x 2)>x 1-x 2; ②x 2f (x 1)>x 1f (x 2); ③f x 1+f x 22<f ⎝ ⎛⎭⎪⎫x 1+x 22. 其中正确结论的序号是________.(把所有正确结论的序号都填上)解析:图象上任意两点x 1,x 2所在直线的斜率的变化范围为(0,+∞),故①错;考察两点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率,从图象上容易得出当0<x 1<x 2<1时,应用斜率关系为f x 1x 1>f x 2x 2,即x 2f (x 1)>x 1f (x 2),所以②正确;在区间[0,1]上任取两点A 、B ,过A 、B 分别作x 轴的垂线,与曲线交点分别为M 、N ,取AB 中点C ,过C 作x 轴的垂线,与曲线交点为P ,与线段MN 交点为Q ,则f x 1+f x 22=CQ ,f ⎝ ⎛⎭⎪⎫x 1+x 22=CP ,从图象(图略)易知CP >CQ ,故有f x 1+f x 22<f ⎝⎛⎭⎪⎫x 1+x 22,所以③正确.答案:②③三、解答题5.已知函数f (x )=m (x +1x )的图象与h (x )=14(x +1x)+2的图象关于点A (0,1)对称.(1)求m 的值;(2)若g (x )=f (x )+a4x在(0,2]上是减函数,求实数a 的取值范围.解:(1)设P (x ,y )是h (x )图象上一点,点P 关于点A (0,1)的对称点为Q (x 0,y 0),则x 0=-x ,y 0=2-y .∴2-y =m (-x -1x),∴y =m (x +1x )+2,从而m =14.(2)g (x )=14(x +1x )+a 4x =14(x +a +1x).设0<x 1<x 2≤2,则g (x 1)-g (x 2)=14(x 1+a +1x 1)-14(x 2+a +1x 2)=14(x 1-x 2)+14(a +1)·x 2-x 1x 1x 2 =14(x 1-x 2)·x 1x 2-a +1x 1x 2>0, 并且在x 1,x 2∈(0,2]上恒成立, ∴x 1x 2-(a +1)<0,∴1+a >x 1x 2,1+a ≥4,∴a ≥3.。
2014届高考人教A版数学(理)一轮复习单元训练:基本初等函数
基本初等函数(时间:40分钟 满分:75分)一、选择题(每小题5分,共50分)1.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f ⎝ ⎛⎭⎪⎫14的值为( ).A .1B .2C .3D .4解析 设f (x )=x n ,∴f (4)=12,即4n =12,∴f ⎝ ⎛⎭⎪⎫14=⎝ ⎛⎭⎪⎫14n =4-n =2.答案 B2.(2013·湖南长郡中学一模)设函数f (x )=⎩⎨⎧(x +1)2,x ≤-1,2x +2,x >-1,若f (x )>1成立,则实数x 的取值范围是( ).A .(-∞,-2) B.⎝ ⎛⎭⎪⎫-12,+∞ C.⎝ ⎛⎭⎪⎫-2,-12 D .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤-1时,由(x +1)2>1,得x <-2,当x >-1时,由2x +2>1,得x >-12,故选D. 答案 D3.(2013·银川一模)设函数f (x )是奇函数,并且在R 上为增函数,若0≤θ≤π2时,f (m sin θ)+f (1-m )>0恒成立,则实数m 的取值范围是( ).A .(0,1)B .(-∞,0) C.⎝ ⎛⎭⎪⎫-∞,12D .(-∞,1)解析 ∵f (x )是奇函数,∴f (m sin θ)>-f (1-m )=f (m -1).又f (x )在R 上是增函数,∴m sin θ>m -1,即m (1-sin θ)<1.当θ=π2时,m ∈R ;当0≤θ<π2时,m <11-sin θ.∵0<1-sin θ ≤1,∴11-sin θ≥1.∴m <1.故选D.答案 D4.(2013·济南模拟)已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f ⎝ ⎛⎭⎪⎫log 124=-3,则a 的值为( ).A. 3B .3C .9D.32解析 ∵f (log 124)=f ⎝ ⎛⎭⎪⎫log 214=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3. 答案 A5.(2013·福州质检)已知a =20.2,b =0.40.2,c =0.40.6,则( ).A .a >b >cB .a >c >bC .c >a >bD .b >c >a解析 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c . 答案 A6.(2013·广州调研)已知函数f (x )=⎩⎨⎧1-x ,x ≤0,a x ,x >0,若f (1)=f (-1),则实数a 的值等于( ).A .1B .2C .3D .4解析 根据题意,由f (1)=f (-1)可得a =1-(-1)=2,故选B. 答案 B7.设a >1,且m =log a (a 2+1),n =log a (a -1),p =log a (2a ),则m ,n ,p 的大小关系为( ).A .n >m >pB .m >p >nC .m >n >pD .p >m >n解析 取a =2,则m =log 25,n =log 21=0,p =log 24,∴m >p >n . 答案 B8.(2013·北京东城区综合练习)设a =log 123,b =⎝ ⎛⎭⎪⎫130.3,c =ln π,则 ( ).A .a <b <cB .a <c <bC .c <a <bD .b <a <c解析 a =log 123<log 121=0,0<b =⎝ ⎛⎭⎪⎫130.3<⎝ ⎛⎭⎪⎫130=1,c =ln π>ln e =1,故a <b <c .答案 A9.(2013·安徽名校模拟)设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ).A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13解析 由f (2-x )=f (x ),得f (1-x )=f (x +1),即函数f (x )的对称轴为x =1,结合图形可知f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (0)=f (2),故选C. 答案 C10.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数:f K (x )=⎩⎨⎧f (x ),f (x )≤K ,K ,f (x )>K .取函数f (x )=a -|x |(a >1).当K =1a 时,函数f K (x )在下列区间上单调递减的是( ).A .(-∞,0)B .(-a ,+∞)C .(-∞,-1)D .(1,+∞)解析 函数f (x )=a -|x |(a >1)的图象为右图中实线部分,y =K =1a 的图象为右图中虚线部分,由图象知f K (x )在(1,+∞)上为减函数,故选D.答案 D二、填空题(每小题5分,共25分)11.(2012·西安质检)若函数f (x )=⎩⎨⎧2x ,x <3,3x -m ,x ≥3,且f (f (2))>7,则实数m 的取值范围是________.解析 ∵f (2)=4,∴f (f (2))=f (4)=12-m >7,∴m <5. 答案 (-∞,5)12.(2013·福州质检)函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________.解析 由3x -a >0,得x >a 3,又因函数y 的定义域为⎝ ⎛⎭⎪⎫23,+∞,所以a 3=23,a=2. 答案 213.若f (x )=1+lg x ,g (x )=x 2,那么使2f [g (x )]=g [f (x )]的x 的值是________. 解析 ∵2f [g (x )]=g [f (x )],∴2(1+lg x 2)=(1+lg x )2,∴(lg x )2-2lg x -1=0,∴lg x =1±2,x =101±2. 答案 101±214.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则m +n =________.解析 由已知条件可得m <1<n ,且f (m )=f ⎝ ⎛⎭⎪⎫1m =f (n ),即1m =n ,∴m 2<m <1,函数f (x )在[m 2,n ]上的最大值为f (m 2)=2f (m )=2f (n )=2log 2n =2,解得n =2,m =12,∴m +n =52. 答案 5215.(2012·杭州高中月考)关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题: ①其图象关于y 轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;③f(x)的最小值是lg 2;④f(x)在区间(-1,0),(2,+∞)上是增函数;⑤f(x)无最大值,也无最小值.其中所有正确结论的序号是________.解析f(x)=lg x2+1|x|为偶函数,故①正确;又令u(x)=x2+1|x|,则当x>0时,u(x)=x+1x在(0,1)上递减,[1,+∞)上递增,∴②错误,③④正确;⑤错误.答案①③④。
2014高考数学一轮复习第二章函数及其表示训练理新人教A版
【创新设计】2014高考数学一轮复习第二章函数及其表示训练理新人教A版第一节函数及其表示[备考方向要明了][归纳·知识整合]1.函数与映射的概念[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列五个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数. A .1个 B .2个 C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(2012·江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3. ∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2, 解得a =14. 答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________. 解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:12 30°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x -1,x 表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. [自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3) ———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么? ①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. ③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+2(x +1)-2,∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝ ⎛⎭⎪⎫2x+1=lg x ”,如何求解?解:令2x+1=t ,∵x >0,∴t >1且x =2t -1. ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2. 试分别求出f (x )的解析式.解:(1)令t = x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] 已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +,x <4,则f (2+log 23)的值为( )A.124B.112C.16 D.13[解析] ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.[答案] A ———————————————————解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ) A.12B.45C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.[答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级); (3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项. 2.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,,x 2,x ∈[1,+,若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x>4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2B .y =ln e x与y =e ln xC .y =x -x +x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1 B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,-x ,x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1,f (1)=21-2=12.4.(2013·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1, ∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )= -a =1,∴a =-1.5.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6. 6.(2013·泰安模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ), x >1时,f ⎝ ⎛⎭⎪⎫1x =1x=-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则函数f (3)=________.解析:∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则ff+f f+…+f f=________.解析:令b =1,∵f a +f a=f (1)=1,∴f f+f f+…+f f=2 011.答案:2 0119.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1)三、解答题(本大题共3小题,每小题12分,共36分)10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2;当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B图象与事实相吻合.2.下列对应关系是集合P上的函数的是________.(1)P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→y=x2,x∈P,y∈Q;(3)P={三角形},Q={x|x>0},对应关系f:对P中三角形求面积与集合Q中元素对应.解析:对于(1),集合P中元素0在集合Q中没有对应元素,故(1)不是函数;对于(3)集合P不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数:(1)y=x-2·x+2,y=x2-4;(2)y=x,y=3t3;(3)y=|x|,y=(x)2.解:∵y=x-2·x+2的定义域为{x|x≥2},y=x2-4的定义域为{x|x≥2或x≤-2},∴它们不是同一函数.(2)∵它们的定义域相同,且y=3t3=t,∴y=x与y=3t3是同一函数.(3)∵y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},∴它们不是同一函数.4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.第二节 函数的定义域和值域[备考方向要明了][归纳·知识整合]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ; 当a <0时,值域为⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . (3)y =k x(k ≠0)的值域是{y |y ≠0}. (4)y =a x(a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R .[探究] 1.若函数y =f (x )的定义域和值域相同,则称函数y =f (x )是圆满函数,则函数①y =1x;②y =2x ;③y = x ;④y =x 2中是圆满函数的有哪几个?提示:①y =1x 的定义域和值域都是(-∞,0)∪(0,+∞),故函数y =1x是圆满函数;②y=2x 的定义域和值域都是R ,故函数y =2x 是圆满函数;③y = x 的定义域和值域都是[0,+∞),故y = x 是圆满函数;④y =x 2的定义域为R ,值域为[0,+∞),故函数y =x 2不是圆满函数.2.分段函数的定义域、值域与各段上的定义域、值域之间有什么关系? 提示:分段函数的定义域、值域为各段上的定义域、值域的并集.[自测·牛刀小试]1.(教材习题改编)函数f (x )=4-xx -1的定义域为( ) A .[-∞,4] B .[4,+∞) C .(-∞,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=4-xx -1有意义,只需⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,即⎩⎪⎨⎪⎧x ≤4,x ≠1.所以函数的定义域为(-∞,1)∪(1,4].2.下表表示y 是x 的函数,则函数的值域是( )A .[2,5]B .NC .(0,20]D .{2,3,4,5}解析:选D 函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 3.若f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)解析:选A 根据题意得log 12(2x +1)>0, 即0<2x +1<1,解得-12<x <0,即x ∈⎝ ⎛⎭⎪⎫-12,0. 4.(教材改编题)函数y =f (x )的图象如图所示,则函数y =f (x )的定义域为________,值域为________.解析:由图象可知,函数y =f (x )的定义域为[-6,0]∪[3,7),值域为[0,+∞).答案:[-6,0]∪[3,7) [0,+∞)5.(教材改编题)若x -4有意义,则函数y =x 2-6x +7的值域是________. 解析:∵x -4有意义,∴x -4≥0,即x ≥4. 又∵y =x 2-6x +7=(x -3)2-2, ∴y min =(4-3)2-2=1-2=-1. ∴其值域为[-1,+∞). 答案:[-1,+∞)[例1] (1)(2012·山东高考)函数f (x )=1x ++ 4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)已知函数f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为________.[自主解答] (1)x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. (2)∵0≤x ≤3,∴0≤x 2≤9,-1≤x 2-1≤8.∴函数y =f (x )的定义域为[-1,8]. [答案] (1)B (2)[-1,8]本例(2)改为f (x )的定义域为[0,3],求y =f (x 2-1)的定义域. 解:∵y =f (x )的定义域为[0,3], ∴0≤x 2-1≤3,解得-2≤x ≤-1或1≤x ≤2,所以函数定义域为[-2,-1]∪[1,2].———————————————————简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________. (2)已知f (x )的定义域是[-2,4],求f (x 2-3x )的定义域.解析:(1)由1-2log 6x ≥0解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].答案:(0, 6 ](2)∵f (x )的定义域是[-2,4],∴-2≤x 2-3x ≤4,由二次函数的图象可得,-1≤x ≤1或2≤x ≤4. ∴定义域为[-1,1]∪[2,4].[例2] 求下列函数的值域: (1)y =x -3x +1;(2)y =x -1-2x ;(3)y =x +4x. [自主解答] (1)法一:(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}. 法二:由y =x -3x +1得yx +y =x -3. 解得x =y +31-y,所以y ≠1,即函数值域是{y |y ∈R ,y ≠1}.(2)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.法二:(单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12.所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(3)法一:(基本不等式法)当x >0时,x +4x≥2x ×4x=4, 当且仅当x =2时“=”成立;当x <0时,x +4x =-(-x -4x)≤-4,当且仅当x =-2时“=”成立.即函数的值域为(-∞,-4]∪[4,+∞).法二:(导数法)f ′(x )=1-4x 2=x 2-4x2.x ∈(-∞,-2)或x ∈(2,+∞)时,f (x )单调递增,当x ∈(-2,0)或x ∈(0,2)时,f (x )单调递减. 故x =-2时,f (x )极大值=f (-2)=-4;x =2时,f (x )极小值=f (2)=4.即函数的值域为(-∞,-4]∪[4,+∞).若将本例(3)改为“y =x -4x”,如何求解?解:易知函数y =x -4x 在(-∞,0)和(0,+∞)上都是增函数,故函数y =x -4x的值域为R .———————————————————求函数值域的基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.分离常数法:形如y =cx +dax +ba的函数可用此法求值域.单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.2.求下列函数的值域. (1)y =x 2+2x ,x ∈[0,3];(2)y =x 2-xx 2-x +1;(3)y =log 3x +log x 3-1.解:(1)(配方法)y =x 2+2x =(x +1)2-1, ∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16. ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎢⎡⎭⎪⎫-13,1. (3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t-1(t ≠0),当x >1时,t >0,y ≥2t ·1t-1=1, 当且仅当t =1t即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎢⎡⎦⎥⎤-t +⎝ ⎛⎭⎪⎫-1t -1≤-2-1=-3.当且仅当-t =-1t 即log 3x =-1,x =13时,等号成立.综上所述,函数的值域是(-∞,-3]∪[1,+∞).[例3] 已知函数f (x )=ax 2+bx .若至少存在一个正实数b ,使得函数f (x )的定义域与值域相同,求实数a 的值.[自主解答] ①若a =0,则对于每个正数b ,f (x )=bx 的定义域和值域都是[0,+∞),故a =0满足条件;②若a >0,则对于正数b ,f (x )=ax 2+bx 的定义域为D ={x |ax 2+bx ≥0}=⎝⎛⎦⎥⎤-∞,-b a ∪[0,+∞),但f (x )的值域A ⊆[0,+∞),故D ≠A ,即a >0不符合条件;③若a <0,则对于正数b ,f (x )=ax 2+bx 的定义域D =⎣⎢⎡⎦⎥⎤0,-b a , 由于此时f (x )max =f ⎝ ⎛⎭⎪⎫-b 2a =b2-a ,故f (x )的值域为⎣⎢⎡⎦⎥⎤0,b2-a , 则-b a =b2-a ⇒⎩⎨⎧a <0,2-a =-a⇒a =-4.综上所述,a 的值为0或-4. ——————————————————— 由函数的定义域或值域求参数的方法已知函数的值域求参数的值或取值范围问题,通常按求函数值域的方法求出其值域,然后依据已知信息确定其中参数的值或取值范围.3.(2013·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ], ∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13, ∴a =2,b =4,a +b =6. 答案:61种意识——定义域优先意识函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先的意识.4个注意——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合.(2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.4个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:①分式中的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;④对数式中的真数大于0,底数大于0且不等于1.6种技巧——妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.易误警示——与定义域有关的易错问题[典例](2013·福州模拟)函数f(x)=x+2x+1-1-x的定义域为________________.[解析] ∵要使函数f(x)=x+2x+1-1-x有意义,则⎩⎪⎨⎪⎧1-x≥0,x+1≠0,∴⎩⎪⎨⎪⎧x≤1,x≠-1,∴函数f(x)的定义域为{x|x≤1,且x≠-1}.[答案] (-∞,-1)∪(-1,1][易误辨析]1.本题若将函数f(x)的解析式化简为f(x)=(x+1)-1-x后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x的取值范围.2.在求函数的值域时,要特别注意函数的定义域.求函数的值域时,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.[变式训练]1.若函数f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f x 的值域是( ) A.⎣⎢⎡⎦⎥⎤12,5B.⎣⎢⎡⎦⎥⎤56,5C.⎣⎢⎡⎦⎥⎤2,103D.⎣⎢⎡⎦⎥⎤3,103解析:选C 令t =f (x ),则12≤t ≤3.易知函数g (t )=t +1t 在区间⎣⎢⎡⎦⎥⎤12,1上是减函数,在[1,3]上是增函数.又因为g ⎝ ⎛⎭⎪⎫12=52,g (1)=2,g (3)=103.可知函数F (x )=f (x )+1fx 的值域为⎣⎢⎡⎦⎥⎤2,103.2.已知函数f (x +2)=x +2x ,则函数f (x )的值域为________. 解析:令2+x =t ,则x =(t -2)2(t ≥2). ∴f (t )=(t -2)2+2(t -2)=t 2-2t (t ≥2). ∴f (x )=x 2-2x (x ≥2).∴f (x )=(x -1)2-1≥(2-1)2-1=0, 即f (x )的值域为[0,+∞). 答案:[0,+∞)一、选择题(本大题共6小题,每小题5分,共30分)1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( ) A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C 当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <5解析:选D 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,2x >10-2x ,即52<x <5. 3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )解析:选A A 中定义域是[-2,2],值域为[0,2];B 中定义域为[-2,0],值域为[0,2];C 不表示函数;D 中的值域不是[0,2].4.(2013·南昌模拟)函数y = x x --lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1,或x <0}D .{x |0<x ≤1}解析:选B 由⎩⎪⎨⎪⎧x x -,1x>0,得x ≥1.5.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2, 2 ]解析:选C ∵-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0, 0≤2--x 2+4x ≤2,∴0≤y ≤2. 6.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g x +x +4,x <g x ,gx -x ,x ≥g x ,则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B. )[0,+∞C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:选D 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题(本大题共3小题,每小题5分,共15分) 7.函数y =16-x -x2的定义域是________.解析:由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 答案:(-3,2) 8.设x ≥2,则函数y =x +x +x +1的最小值是______.解析:y =x ++x ++1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t=t+4t +5,在区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 答案:2839.(2013·厦门模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈,2].当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6]三、解答题(本大题共3小题,每小题12分,共36分)10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间. ∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②由①②解得⎩⎪⎨⎪⎧a =32,b =3.11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域. 解:依题意有x >0,l (x )=x -2+32=x 2-8x +25,所以y =x l x =xx 2-8x +25=11-8x +25x2. 由于1-8x +25x 2=25⎝ ⎛⎭⎪⎫1x -4252+925,所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l x 的值域是⎝ ⎛⎦⎥⎤0,53. 12.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0 ⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负, ∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32. ∵二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, ∴g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.∴g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.1.下列函数中,与函数y =1x有相同定义域的是( )A .f (x )=ln xB .f (x )=1xC .f (x )=|x |D .f (x )=e x解析:选A 当x >0时,1x有意义,因此函数y =1x的定义域为{x |x >0}.对于A ,函数f (x )=ln x 的定义域为{x |x >0}; 对于B ,函数f (x )=1x的定义域为{x |x ≠0,x ∈R };对于C ,函数f (x )=|x |的定义域为R ; 对于D ,函数f (x )=e x的定义域为R . 所以与函数y =1x有相同定义域的是f (x )=ln x .2.函数y =x +-x 2-3x +4的定义域为( )A .[-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]解析:选C 由⎩⎪⎨⎪⎧-x 2-3x +4>0x +1>0得-1<x <1,因此该函数的定义域是(-1,1).3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:选B 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.故定义域为[0,1).4.已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a )的解析式;(2)是否存在实数m ,n 同时满足下列两个条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)由f (x )=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],知f (x )∈⎣⎢⎡⎦⎥⎤13,3,令t =f (x )∈⎣⎢⎡⎦⎥⎤13,3 记g (x )=y =t 2-2at +3,则g (x )的对称轴为t =a ,故有: ①当a ≤13时,g (x )的最小值h (a )=289-2a3,②当a ≥3时,g (x )的最小值h (a )=12-6a , ③当13<a <3时,g (x )的最小值h (a )=3-a 2综上所述,h (a )=⎩⎪⎨⎪⎧289-2a 3,a ≤13,3-a 2,13<a <3,12-6a ,a ≥3,(2)当a ≥3时,h (a )=-6a +12,故m >n >3时,h (a )在[n ,m ]上为减函数, 所以h (a )在[n ,m ]上的值域为[h (m ),h (n )].由题意,则有⎩⎪⎨⎪⎧hm =n 2,h n =m 2,⇒⎩⎪⎨⎪⎧-6m +12=n 2,-6n +12=m 2,,两式相减得6n -6m =n 2-m 2,又m ≠n ,所以m +n =6,这与m >n >3矛盾,故不存在满足题中条件的m ,n 的值.第三节 函数的单调性与最值[备考方向要明了][归纳·知识整合]1.函数的单调性 (1)单调函数的定义:(2)如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在区间D 具有(严格的)单调性,这一区间叫做y =f (x )的单调区间.[探究] 1.函数y =1x的单调递减区间为(-∞,0)∪(0,+∞),这种表示法对吗?提示:首先函数的单调区间只能用区间表示,不能用集合或不等式的形式表示;如果一个函数有多个单调区间应分别写,分开表示,不能用并集符号“∪”联结,也不能用“或”联结.2.函数f (x )在区间[a ,b ]上单调递增与函数f (x )的单调递增区间为[a ,b ]含义相同吗? 提示:含义不同.f (x )在区间[a ,b ]上单调递增并不能排除f (x )在其他区间上单调递增,而f (x )的单调递增区间为[a ,b ]意味着f (x )在其他区间上不可能单调递增.2.函数的最值 [探究] 3.函数的单调性、最大(小)值反映在其图象上有什么特征?提示:函数的单调性反映在图象上是上升或下降的,而最大(小)值反映在图象上为其最高(低)点的纵坐标的值.[自测·牛刀小试]1.(教材习题改编)函数f (x )=2x -1,x ∈[2,6],则下列说法正确的有( ) ①函数f (x )为减函数;②函数f (x )为增函数;③函数f (x )的最大值为2;④函数f (x )的最小值为25.A .①③B .①③④C .②③④D .②④解析:选B 易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )min =f (6)=25,f (x )max=f (2)=2.2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12解析:选D 使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.3.已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C ∵函数f (x )为R 上的减函数,且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1), ∴⎪⎪⎪⎪⎪⎪1x >1,即|x |<1且|x |≠0. ∴x ∈(-1,0)∪(0,1).4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为________;f (x )max =________.解析:∵函数f (x )=x 2-2x 的对称轴为x =1.∴函数f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为[1,4],单调递减区间为[-2,1). 又f (-2)=4+4=8,f (4)=16-8=8. ∴f (x )max =8. 答案:[1,4] 85.(教材习题改编)若函数f (x )=4x 2-kx -8在[5,20]上是单调递增函数,则实数k 的取值范围是________.解析:∵函数f (x )=4x 2-kx -8的对称轴为x =k8,又函数f (x )在[5,20]上为增函数, ∴k8≤5,即k ≤40. 答案:(-∞,40][例1] 已知函数f (x )= x 2+1-ax ,其中a >0. (1)若2f (1)=f (-1),求a 的值;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上为单调减函数. [自主解答] (1)由2f (1)=f (-1), 可得22-2a = 2+a ,得a =23. (2)证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)= x 21+1-ax 1- x 22+1+ax 2=x 21+1- x 22+1-a (x 1-x 2) =x 21-x 22x 21+1+ x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2x 21+1+ x 22+1-a . ∵0≤x 1< x 21+1,0<x 2< x 22+1, ∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0, ∴f (x )在[0,+∞)上单调递减. ——————————————————— 判断或证明函数的单调性的两种方法(1)利用定义的基本步骤是:。
高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第3课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第3课时)(新人教A 版)一、选择题1.(2012·高考陕西卷)下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x 3C .y =1xD .y =x |x |解析:选D.由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知当x >0时此函数为增函数,又该函数为奇函数,故选D.2.已知y =f (x +1)是偶函数,则函数y =f (x )的图象的对称轴是( ) A .x =1 B .x =-1C .x =12D .x =-12解析:选A.∵y =f (x +1)是偶函数,∴f (1+x )=f (1-x ),故f (x )关于直线x =1对称.3.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2解析:选B.f (a )=a 3+sin a +1,①f (-a )=(-a )3+si n(-a )+1=-a 3-sin a +1,② ①+②得f (a )+f (-a )=2, ∴f (-a )=2-f (a )=2-2=0.4.函数f (x )=1-21+2x (x ∈R )( )A .既不是奇函数又不是偶函数B .既是奇函数又是偶函数C .是偶函数但不是奇函数D .是奇函数但不是偶函数解析:选D.∵f (x )=1-21+2x =2x-12x+1, ∴f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x+1=-f (x ). 又其定义域为R ,∴f (x )是奇函数.5.定义在R 上的偶函数y =f (x )满足f (x +2)=f (x ),且当x ∈(0,1]时单调递增,则( )A .f ⎝ ⎛⎭⎪⎫13<f (-5)<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5)C .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫13<f (-5) D .f (-5)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52 解析:选B.∵f (x +2)=f (x ),∴f (x )是以2为周期的函数,又f (x )是偶函数,∴f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+2=f ⎝ ⎛⎭⎪⎫12, f (-5)=f (5)=f (4+1)=f (1), ∵函数f (x )在(0,1]上单调递增, ∴f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫12<f (1),即f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5). 二、填空题6.设函数f (x )=x (e x +a e -x)(x ∈R )是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x),化简得x (e -x +e x)(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-1 7.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -18.(2013·大连质检)设f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且f (x +3)·f (x )=-1,f (-4)=2,则f (2014)=________.解析:由已知f (x +3)=-1f x,∴f (x +6)=-1f x +3=f (x ),∴f (x )的周期为6.∴f (2014)=f (335×6+4)=f (4)=-f (-4)=-2. 答案:-2 三、解答题9.判断下列函数的奇偶性:(1)f (x )=x 2-1+1-x 2; (2)f (x )=⎩⎪⎨⎪⎧x 2-2x +3 x >0,0 x =0,-x 2-2x -3 x <0.解:(1)f (x )的定义域为{-1,1},关于原点对称.又f (-1)=f (1)=0.∴f (-1)=f (1)且f (-1)=-f (1), ∴f (x )既是奇函数又是偶函数. (2)①当x =0时,-x =0,f (x )=f (0)=0,f (-x )=f (0)=0, ∴f (-x )=-f (x ). ②当x >0时,-x <0,∴f (-x )=-(-x )2-2(-x )-3=-(x 2-2x +3)=-f (x ). ③当x <0时,-x >0,∴f (-x )=(-x )2-2(-x )+3=-(-x 2-2x -3)=-f (x ).由①②③可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.10.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴有⎩⎪⎨⎪⎧-2≤1-m ≤2-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.一、选择题 1.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos 2x ,x ∈R B .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x 2,x ∈R D .y =x 3+1,x ∈R解析:选B.由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选择B.2.(2011·高考山东卷)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9解析:选B.令f (x )=x 3-x =0, 即x (x +1)(x -1)=0, 所以x =0,1,-1,因为0≤x <2,所以此时函数的零点有两个,即与x 轴的交点个数为2. 因为f (x )是R 上最小正周期为2的周期函数, 所以2≤x <4,4≤x <6上也分别有两个零点, 由f (6)=f (4)=f (2)=f (0)=0, 知x =6也是函数的零点,所以函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7. 二、填空题3.若f (x )=12x -1+a 是奇函数,则a =________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ),即12-x -1+a =-12x -1-a ,得:2a =1,a=12. 答案:124.(2013·长春质检)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定:其中正确命题的序号为________.①f (4)=0;②f (x )是以4为周期的函数; ③f (x )的图象关于x =1对称; ④f (x )的图象关于x =2对称. 解析:∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-(-f (x +2+2))=f (x +4),即f (x )的周期为4,②正确.∵f (x )为奇函数,∴f (4)=f (0)=0,即①正确. 又∵f (x +2)=-f (x )=f (-x ),∴f (x )的图象关于x =1对称,∴③正确,又∵f (1)=-f (3),当f (1)≠0时,显然f (x )的图象不关于x =2对称,∴④错误. 答案:①②③ 三、解答题5.已知函数f (x )=x 2+|x -a |+1,a ∈R . (1)试判断f (x )的奇偶性;(2)若-12≤a ≤12,求f (x )的最小值.解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ), 此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x )既不是奇函数,也不是偶函数.(2)当x ≤a 时,f (x )=x 2-x +a +1=⎝ ⎛⎭⎪⎫x -122+a +34,∵a ≤12,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1.当x ≥a 时,函数f (x )=x 2+x -a +1=⎝ ⎛⎭⎪⎫x +122-a +34,∵a ≥-12,故函数f (x )在[a ,+∞)上单调递增,从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1.综上得,当-12≤a ≤12时,函数f (x )的最小值为a 2+1.。
2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第9课时)知识过关检测 理 新人教
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第9课时)(新人教A 版)一、选择题1.(2011·高考某某卷)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M ()t =M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2()太贝克/年,则M ()60=( )A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克解析:选D.∵M ′()t =-130M 02-t30·ln 2,∴M ′()30=-130×12M 0ln 2=-10ln 2,∴M 0=600. ∴M ()t =600×2-t30,∴M ()60=600×2-2=150()太贝克.2.国家规定某行业收入税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元解析:选D.设该公司的年收入为a 万元, 则280p %+(a -280)(p +2)%=a (p +0.25)%.解之得a =280×22-0.25=320.3.(2013·某某调研)某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车存货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10 km 处建仓库,这两项费用y 1,y 2分别是2万元,8万元,那么要使这两项费用之和最小,则仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处解析:选A.设仓库建在离车站x km 处,则y 1=k 1x,y 2=k 2x ,根据已知数据可得k 1=20,k 2=0.8,两项费用之和y =20x+0.8x ≥220x×0.8x =8,当且仅当x =5时,等号成立,故仓库应建在离车站5 km 处.4.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,则汽车离开A 地的距离x (千米)与时间t (小时)之间的函数表达式是( )A .x =60tB .x =110tC .x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5150-5t t >3.5D .x =⎩⎪⎨⎪⎧60t 0≤t ≤2.5150 2.5<t ≤3.5150-50t -3.53.5<t ≤6.5解析:选D.到达B 地需要15060=2.5(小时),所以当0≤t ≤2.5时,x =60t ; 当2.5<t ≤3.5时,x =150;当3.5<t ≤6.5时,x =150-50(t -3.5). 5.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如右图所示),则每辆客车营运多少年时,其营运的年平均利润最大( )A .3B .4C .5D .6解析:选C.由题图可知营运总利润y =-(x -6)2+11,则营运的年平均利润y x =-x -25x+12,∵x ∈N *,∴y x≤-2x ·25x+12=2,当且仅当x =25x,即x =5时取“=”.∴x =5时营运的年平均利润最大. 二、填空题6.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为________元.解析:设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225],∴当x =95时,y 最大. 答案:957.司机酒后驾驶危害他人的安全,一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过________小时,才能开车.(精确到1小时)解析:设x 小时后,血液中的酒精含量不超过0.09 mg/mL ,则有0.3·(34)x≤0.09,即(34)x≤0.3,估算或取对数计算得5小时后,可以开车. 答案:58.某种商品降价10%后,欲恢复原价,则应提价________. 解析:设商品原价为a ,应提价为x , 则有a (1-10%)(1+x )=a ,∴x =11-10%-1=109-1=19≈11.11%.答案:11.11% 三、解答题 9.(2013·某某质检)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知AB =3米,AD =2米.(1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么X 围内? (2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(1)设DN 的长为x (x >0)米, 则AN =(x +2)米. ∵DN AN =DC AM ,∴AM =3x +2x,∴S AMPN =AN ·AM =3x +22x .由S AMPN >32,得3x +22x>32,又x >0,得3x 2-20x +12>0,解得:0<x <23或x >6,即DN 的长的取值X 围是 ⎝ ⎛⎭⎪⎫0,23∪(6,+∞). (2)矩形花坛AMPN 的面积为y =3x +22x =3x 2+12x +12x=3x +12x+12≥23x ·12x+12=24,当且仅当3x =12x,即x =2时,矩形花坛AMPN 的面积取得最小值24.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 10.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值. 解:(1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5(0≤x ≤10),再由C (0)=8,得k =40,因此C (x )=403x +5(0≤x ≤10).而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为 f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10).(2)法一:f ′(x )=6-24003x +52.令f ′(x )=0,即24003x +52=6,解得x =5或x =-253(舍去).当0≤x <5时,f ′(x )<0; 当5<x ≤10时,f ′(x )>0. 故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.当隔热层修建5 cm 厚时,总费用达到最小值70万元.法二:f (x )=8003x +5+2(3x +5)-10≥28003x +5·23x +5-10=70, 当且仅当8003x +5=2(3x +5),即x =5时,等号成立.∴当隔热层修建5 cm 厚时,总费用达到最小值70万元.一、选择题1.(2013·某某质检)牛奶保鲜时间因储藏时温度不同而不同,假定保鲜时间与储藏温度是一种指数函数型关系.若牛奶放在0 ℃的冰箱中,保鲜时间约是192 h ,而在22 ℃的厨房中则约是42 h ,则保鲜时间y (h)关于储藏温度x (℃)的函数解析式是( )A .y =192·⎝ ⎛⎭⎪⎫32722xB .y =192·⎝ ⎛⎭⎪⎫327x22C .y =192·⎝ ⎛⎭⎪⎫73222xD .y =192·⎝ ⎛⎭⎪⎫732x22解析:选D.设y =a ·b x.则由已知得:⎩⎪⎨⎪⎧192=a ·b42=a ·b22,解得⎩⎪⎨⎪⎧a =192b =⎝ ⎛⎭⎪⎫732122,∴y =192·⎝ ⎛⎭⎪⎫732x 22.2.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x 10]B .y =[x +310]C .y =[x +410]D .y =[x +510]解析:选B.由题意,当x =17时,A 选项错误,当x =16时,[x +410]=2,[x +510]=2,所以C 、D 选项错误,故选B.二、填空题3.某服装商贩同时卖出两套服装,卖出价为168元/套,以成本计算一套盈利20%,而另一套亏损20%,则此商贩________(赚或赔多少钱).解析:设盈利的那套服装成本价为x ,则x +20%x =168,x =140元,设亏损的那套服装成本价为y ,则y -20%y =168,y =210元,所以商贩赔(210-168)-(168-140)=14(元).答案:赔14元4.(2013·某某调研)将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt.假设过5分钟后甲桶与乙桶的水量相等,若再过m 分钟甲桶中的水只有a8升,则m =________.解析:根据题意12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n,故18=e 15n ,解得t =15,故m =15-5=10.答案:10 三、解答题5.(2011·高考某某卷)如图,长方体物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;(2)其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值X 围,确定移动速度v ,使总淋雨量y 最少.解:(1)由题意知,E 移动时单位时间内的淋雨量为320|v -c |+12,故y =100v⎝ ⎛⎭⎪⎫320|v -c |+12=5v(3|v -c |+10). (2)由(1)知:当0<v ≤c 时,y =5v (3c -3v +10)=53c +10v-15;当c <v ≤10时,y =5v (3v -3c +10)=510-3c v+15.故y =⎩⎪⎨⎪⎧53c +10v-15,0<v ≤c ,510-3cv+15,c <v ≤10.①当0<c ≤103时,y 是关于v 的减函数,故当v =10时,y min =20-3c 2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v 的增函数,故当v =c 时,y min =50c.。
2014高考数学(理)一轮复习学案课件 第2编 导数及其运算
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 四 考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
返回
返回
考点 一
考点突破
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
返回
考点 三
返回
返回
返回
考点 四
返回
返回
返回
考点 五
返回
返回
Байду номын сангаас 返回
返回
返回
真题再现
返回
返回
误区警示
返回
规律探究
返回
即时巩固
返回
返回
返回
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.函数y =5x 与函数y =-1
5
x 的图象关于( )
A .x 轴对称
B .y 轴对称
C .原点对称
D .直线y =x 对称
解析:选C.因y =-15
x =-5-
x ,所以关于原点对称.
2.把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )
A .y =(x -3)2+3
B .y =(x -3)2+1
C .y =(x -1)2+3
D .y =(x -1)2+1
解析:选C.把函数y =f (x )的图象向左平移1个单位,即把其中x 换成x +1,于是得到y =[(x +1)-2]2+2=(x -1)2+2,再向上平移1个单位,即得到y =(x -1)2+2+1=(x -1)2+3.
3.(2013·铁岭质检)已知图①是函数y =f (x )的图象,则图②中的图象对应的函数可能是( )
A .y =f (|x |)
B .y =|f (x )|
C .y =f (-|x |)
D .y =-f (-|x |) 解析:选C.由题图②知,图象对应的函数是偶函数,且当x <0时,对应的函数是y =f (x ),故选C.
4.(2011·高考课标全国卷)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )
A .10个
B .9个
C .8个
D .1个
解析:选A.如图,作出图象可知y =f (x )与y =|lg x |的图象共有10个交点.
5.函数y =e x +e
-x
e x -e
-x 的图象大致为( )
解析:选A.∵f (-x )=e -x +e x e -x -e x =-e x +e
-x
e x -e
-x =-f (x ),
∴f (x )为奇函数,排除D.
又∵y =e x +e -
x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2
e 2x -1
在(-∞,0)、(0,+∞)上都是减函数,排除B 、C. 二、填空题
6.已知函数y =1
x
,将其图象向左平移a (a >0)个单位,再向下平移b (b >0)个单位后图象
过坐标原点,则ab 的值为________.
解析:图象平移后的函数解析式为y =1x +a
-b ,由题意知1
a -
b =0,∴ab =1.
答案:1 7.
函数y =f (x )(x ∈[-2,2])的图象如图所示,则f (x )+f (-x )=________. 解析:由图象可知f (x )为定义域上的奇函数. ∴f (x )+f (-x )=f (x )-f (x )=0. 答案:0 8.
如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭
⎫1
f (3)的值等于________.
解析:由图知f (3)=1, f ⎝⎛⎭⎫1
f (3)=f (1)=2. 答案:2 三、解答题
9.作出下列函数的大致图象 (1)y =x 2-2|x |;
(2)y =log 1
3
[3(x +2)];
(3)y =1-x .
解:(1)y =⎩⎪⎨⎪⎧
x 2-2x ,(x ≥0)
x 2+2x ,(x <0)图象如图(1).
(2)y =log 133+log 13(x +2)=-1+log 1
3
(x +2)其图象如图(2).
(3)y =-(x -1),其图象如图(3).
10.已知函数f (x )=⎩⎪⎨⎪⎧
3-x 2
,x ∈[-1,2],
x -3, x ∈(2,5].
(1)在如图给定的直角坐标系内画出f (x )的图象;
(2)写出f (x )的单调递增区间. 解:(1)函数f (x )的图象如图所示:
(2)函数的单调递增区间为[-1,0],[2,5].
一、选择题 1.
(2013·长春质检)定义在R 上的函数y =f (x +1)的图象如图所示,它在定义域上是减函数,给出如下命题:
①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是( ) A .②③ B .①④ C .②④ D .①③
解析:选B.由y =f (x +1)的图象向右平移一个单位得到函数y =f (x )的图象如图所示, 结合图象知①④正确,②③错误,故选B. 2.(2013·日照质检)若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x
+b 的大致图象是( )
解析:选D.由函数f (x )=log a (x +b )的图象知0<a <1,0<b <1,故g (x )=a x +b 是由y =a x 的图象向上平移0<b <1个单位得到的,故选D.
二、填空题
3.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是________.(注意:min 表示最小值)
解析:画出示意图
f (x )*
g (x )=⎩⎪⎨⎪
⎧
2-x 2
,x ≤-2,x ,-2<x <1,
2-x 2,x ≥1
其最大值为1.
答案:1 4.
已知定义在区间[0,1]上的函数y =f (x ),图象如图所示.对满足0<x 1<x 2<1的任意x 1,
x 2,给出下列结论:
①f (x 1)-f (x 2)>x 1-x 2; ②x 2f (x 1)>x 1f (x 2); ③f (x 1)+f (x 2)2<f
⎝⎛⎭⎫x 1+x 22.
其中正确结论的序号是________.(把所有正确结论的序号都填上)
解析:图象上任意两点x 1,x 2所在直线的斜率的变化范围为(0,+∞),故①错;考察两点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率,从图象上容易得出当0<x 1<x 2<1时,应用斜率关
系为f (x 1)x 1>f (x 2)x 2
,即x 2f (x 1)>x 1f (x 2),所以②正确;在区间[0,1]上任取两点A 、B ,过A 、B 分
别作x 轴的垂线,与曲线交点分别为M 、N ,取AB 中点C ,过C 作x 轴的垂线,与曲线交
点为P ,与线段MN 交点为Q ,则f (x 1)+f (x 2)2=CQ ,f ⎝⎛⎭⎫
x 1+x 22=CP ,从图象(图略)易知CP >
CQ ,故有f (x 1)+f (x 2)2<f
⎝⎛⎫
x 1+x 22,所以③正确.
答案:②③ 三、解答题
5.已知函数f (x )=m (x +1x )的图象与h (x )=14(x +1
x
)+2的图象关于点A (0,1)对称.
(1)求m 的值;
(2)若g (x )=f (x )+a
4x
在(0,2]上是减函数,求实数a 的取值范围.
解:(1)设P (x ,y )是h (x )图象上一点,点P 关于点A (0,1)的对称点为Q (x 0,y 0),则x 0=-x ,y 0=2-y .
∴2-y =m (-x -1
x ),
∴y =m (x +1x )+2,从而m =1
4
.
(2)g (x )=14(x +1x )+a 4x =1
4(x +a +1x
).
设0<x 1<x 2≤2,
则g (x 1)-g (x 2)=1
4(x 1+a +1x 1)-14(x 2+a +1x 2
)
=14(x 1-x 2)+1
4(a +1)·x 2-x 1x 1x 2
=1
4(x 1-x 2)·x 1x 2-(a +1)x 1x 2
>0, 并且在x 1,x 2∈(0,2]上恒成立, ∴x 1x 2-(a +1)<0,
∴1+a >x 1x 2,1+a ≥4,∴a ≥3.。