初三-解直角三角形-一对三
初三数学:解直角三角形
解直角三角形知识要点:1、 锐角三角函数:正弦、余弦、正切、余切sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠(1)平方关系:1cos sin 22=+A A ; (2)倒数关系:1cotA tanA =⋅; (3)商的关系:tanA=AAcos sin (4)互余两角的正余弦、正余切关系:如果ο90=∠+∠B A ,那么B A A cos )90cos(sin =-=ο;tanA=cot (90°-A )=cotB2、 解直角三角形3、 解直角三角形的应用:坡度问题、测量问题、航海问题 关键是把实际问题转化为数学问题来解决 (构造直角三角形) 几个专用名词:俯角、仰角、坡角、坡度(或坡比)、方向角 一:转化思想在解直角三角形中的应用转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长.已知条件解法一边及 一锐角直角边a 及锐角A B =90°-A ,b =a·tanA,c=sin a A斜边c 及锐角A B =90°-A ,a =c·sinA,b =c·cosA两边两条直角边a 和b,B =90°-A ,直角边a 和斜边csinA=ac,B =90°-A ,例2. 如图所示,△ABC中,∠BAC=120°,AB=5,AC=3,求sinB·sinC的值.例3.如图,在ΔABC中,∠C=90°,∠A的平分线交BC于D,则CDACAB-等于().A .sin A B. cos A C . tan A D . cot A例4.如图所示,在ΔABC中,∠B=60°,且∠B所对的边b=1,AB+BC=2,求AB的值.例5.已知:在ΔABC中,∠B=60°,∠C=45°,BC=5,求ΔABC的面积.例6.如图,ΔABC中,∠A=90°,AB=AC,D是AC上的一点,且AD∶DC=1∶3,求tan∠DBC的值.二:可解的非直角三角形的类型与解法解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考.一、“SSS”型:例1.已知:如图1,BC=2,AC=6,AB=31+,求△ABC各内角的度数.BA DC图1二、“SAS ”型:例2.已知:如图,△ABC 中,∠A=1500,AB=5,AC=4,求△ABC 的面积三、“AAS ”型:例3.已知:如图3,△ABC 中,∠C=600,∠A=750,BC=33+, 求AB 、AC 的长. 四、“ASA ”型:例4.已知等腰∆ABC 的底边长为2,底角为75°,求腰长.五、其他类型:例5.已知:如图,△ABC 中,∠B=600,AB=5,sinC=57,求AC 和BC 的长.相关强化练习:1.等腰三角形底边为20,面积为31003,求各角的大小.2.如图,四边形BCDG 为矩形,∠ABG=45°,GB=20,BC=4,tanE=3,求EC 的长度.3.已知:如图,在△ABC 中,BC=6,AC=63,∠A=30°,求AB 的长.CBDA BA C D图2 ACD 图4BA CD图5例题: 如图23,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN 。
解直角三角形讲义
解直角三角形初三下册第一章: 知识点总结:1. 解直角三角形:在直角三角形中,由已知元素求位置元素的过程,就是解直角三角形。
(1) 三边关系:222c b a (2) 锐角关系:∠A+∠B=90°; ( 3 ) 边角关系:正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记sinA ,即sinA =c a余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记cosA ,即cosA=c b;正切:锐角A 的对边与邻边的比叫做∠A 的正切,记tanA ,即tanA=ba;特殊锐角的三角函数值① 同角三角函数的关系:平方关系:1cos sin 22 A A ; 商数关系:tanA=AAcos sin ②互余两角的三角函数关系:sinA=cosB; sinA=cos(90°-A) ; cosA=sin (90°-A ); tanA=cot(90°-A )2.实际问题仰角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线上方时叫做仰角。
俯角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线下方时叫做俯角。
坡度(坡比):坡面的铅垂高度和水平宽度的比叫做坡面的坡度,记作i=h:l。
坡角:坡面与水平面的夹角叫做坡角,记作a,即i=h:l=tana.方位角:从某点的正北方向沿顺时针方向旋转到目标方向所形成的角叫做方位角。
方向角:从正北方向或正南方向到目标方向形成的小雨90°的角叫做方向角。
典型例题:题型一:特殊三角函数值1、计算2sin30°-sin245°+cot60°的结果是()A、B、C、D、2、已知a=3,且(4tan 45°-b)2+=0,以a,b,c为边组成的三角形面积等于()A、6B、7C、8D、93、已知a为锐角,且sin(a-10°)=,则a等于()A、50°B、60°C、70°D、80°4、在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A、B、C、D、5、如图,如果∠A是等边三角形的一个内角,那么cosA的值等于()A、B、C、D、16、△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A、直角三角形B、钝角三角形C、锐角三角形D、不能确定7、计算:sin213°+cos213°+sin60°-tan30°.8、求下列各式的值:(1)a、b、c是△ABC的三边,且满足a2=(c+b)(c-b)和4c-5b=0,求cosA+cosB的值;(2)已知A为锐角,且tanA=,求sin2A+2sinAcosA+cos2A的值.题型二:解直角三角形1、如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为()A、2B、C、2D、42、等腰三角形的顶角为120°,腰长为2cm,则它的底边长为()A、cmB、cmC、2cmD、cm3、如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=8cm,则DC的长为()A、cmB、cmC、cmD、8cm4、如图,在Rt△ABC中,∠ACB为90°,CD⊥AB,cos∠BCD=,BD=1,则边AB的长是()A、B、C、2 D、5、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、6、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A、B、C、D、7、如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A、5B、5C、5D、108、如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A、B、2 C、D、9、如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A、1B、C、D、10、如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是()A、16B、18C、6D、711、如图,在梯形ABCD中,∠A=∠B=90°,AB=,点E在AB上,∠AED=45°,DE=6,CE=7.求:AE的长及sin∠BCE的值.12、如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC 于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,求EF的长.题型三:解直角三角形的应用1、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A、450a元B、225a元C、150a元D、300a元2、如图,AB是斜靠在墙上的长梯,D是梯上一点,梯脚B与墙脚的距离为1.6m(即BC的长),点D与墙的距离为1.4m(即DE的长),BD长为0.55m,则梯子的长为()A、4.50mB、4.40mC、4.00mD、3.85m3、如图,太阳光线与地面成60°角,一棵倾斜的大树AB与地面成30°角,这时测得大树在地面的影长BC为10m,则大树的长为()m.A、5B、10C、15D、204、如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A 处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为()A、60米B、45米C、30米D、45米5、如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)6、如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)7、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)8、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:3.7,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,≈1.7,tan15°=)题型四:坡度坡角问题及仰角俯角问题1、如图,是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为()A、B、C、D、2、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A、5mB、6mC、7mD、8m3、周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A、36.21米B、37.71米C、40.98米D、42.48米4、一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的∠AOP=60°(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的∠EO′P′=45°,那么小山的高度CD约为()(注:数据≈1.732,≈1.414供计算时选用)A、68米B、70米C、121米D、123米5、如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为m,下列结论中,正确的是()A、由楼顶望塔顶仰角为60°;B、由楼顶望塔基俯角为60°;C、由楼顶望塔顶仰角为30°;D、由楼顶望塔基俯角为30°6、已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45°向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30°向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(=1.414,=1.732结果保留三个有效数字)()A、22.1米B、26.0米C、27.9米D、32.8米7、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B 处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于多少度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).8、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为(即AB:BC=),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).题型五:方向角问题1、如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A、7海里B、14海里C、7海里D、14海里2、在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A、北偏东20°方向上B、北偏西20°方向上C、北偏西30°方向上D、北偏西40°方向上3、如图,小亮家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()A、100米B、米C、米D、米4、综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5、如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=0.75).6、如图所示,一艘轮船以30海里/小时的速度向正北方向航行,在A处得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处时测得灯塔C在北偏西45°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73).7如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C 处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时,参考数据≈1.41,≈1.73)8、(2010•陕西)在一次测量活动中,同学们要测量某公园的码头A与他正东方向的亭子B之间的距离,如图他们选择了与码头A、亭子B在同一水平面上的点P在点P处测得码头A位于点P北偏西方向30°方向,亭子B位于点P北偏东43°方向;又测得P与码头A之间的距离为200米,请你运用以上数据求出A与B的距离.练习作业:1、在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A、7sin35°B、C、7cos35°D、7tan35°2、Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.那么c等于()A、acos A+bsin BB、asin A+bsin BC、D、3、如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A、B、C、D、4、如图,已知一坡面的坡度i=1:,则坡角α为()A、15°B、20°C、30°D、45°5、如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是()A、B、C、D、6、如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55度.要使A,C,E成一直线.那么开挖点E离点D的距离是()A、500sin55°米B、500cos55°米C、500tan55°米D、500cot55°米7、如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A、3 B、C、D、8、如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.(1)求sin∠DBC的值;(2)若BC长度为4cm,求梯形ABCD的面积.9、路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD 与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)10、如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m).11、如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.。
初三数学解直角三角形知识点整理
初三数学解直角三角形知识点整理【编者按】为了丰富同学们的学习生活,查字典数学网初中频道搜集整理了2021年初三数学解直角三角形知识点整理,供大伙儿参考,期望对大伙儿有所关心!2021年初三数学解直角三角形知识点整理初三数学知识点第九章解直角三角形★重点★解直角三角形☆内容提要☆一、三角函数1.定义:在Rt△ABC中,C=Rt,则sinA= ;cosA= ;tgA= ;ctgA= .2. 专门角的三角函数值:0 30 45 60 90sincostg /ctg /3. 互余两角的三角函数关系:sin(90-)=cos4. 三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1. 定义:已知边和角(两个,其中必有一边)所有未知的边和角。
2. 依据:①边的关系:②角的关系:A+B=90③边角关系:三角函数的定义。
注意:尽量幸免使用中间数据和除法。
三、对实际问题的处理1. 俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的方法解决。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
而对那些专门讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,要紧协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显要,也称得上朝廷要员。
至此,不管是“博士”“讲师”,依旧“教授”“助教”,其今日教师应具有的差不多概念都具有了。
四、应用举例(略)宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
初三几何复习资料(解直角三角形
初三几何复习资料班级 姓名 座号第六章 解直角三角形重点、难点和关键:本章的重点是锐角三角函数的概念和直角三角形的解法。
特殊锐角与其三角函数值之间的对应关系也很重要,应当牢记,即:已知特殊锐角,说出它的四个三角函数值;反过来,已知特殊锐角的三角函数值,说出这个角的度数。
锐角三角函数的概念,既是本章的难点,又是学好本章的关键。
只有正确了解锐角三角函数的概念,才能正确理解直角三角形中边、角之间的关系,从而才能利用这些关系来解直角三解形。
学习指导:了解锐角三解函数的概念,能够正确地应用sin A,cos A,tan A,cot A 表示直角三角形中两边的比,熟记30°,45°,60°角的各个三角函数值,会计算含有这三个特殊锐角的的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角。
理解直角三角形中边、角之间的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,并会用解直角三角形的有知识来解某些简单的实际问题。
第一节 锐角三角函数1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
A90B 90∠-︒=∠︒=∠+∠得由B A 对边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、30°、45°、60°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
初三数学利用三角函数解直角三角形含答案
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。
初三解直角三角形知识点和练习题汇编
中考解直角三角形考点一、直角三角形的性质1直角三角形的两个锐角互余:可表示如下:/C=90 = / A+Z B=90°2、 在直角三角形中,30°角所对的直角边等于斜边的一半。
3、 直角三角形斜边上的中线等于斜边的一半4、 勾股定理: 如果直角三角形的两直角边长分别为 a , b ,斜边长为c ,那么a 2+ b 2二c 2.即直角三角 形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a , b , c 有下面关系:a 2+ b 2= c 2,那么这个三角形是直角三角 形。
考点二、直角三角形的判定1有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理: 如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。
(经 典直角三角形:勾三、股四、弦五) 用它判断三角形是否为直角三角形的一般步骤是:(1) 确定最大边(不妨设为c );(2) 若c 2= a 2 + /,则厶ABC 是以Z C 为直角的三角形;若a 2 + b 2v c 2,则此三角形为钝角三角形(其中 若a 2 + b 2>c 2,则此三角形为锐角三角形(其中4. 勾股定理的作用:(1) 已知直角三角形的两边求第三边。
(2) 已知直角三角形的一边,求另两边的关系。
(3) 用于证明线段平方关系的问题。
(4) 利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念1 如图,在△ ABC 中, Z C=90学习-----好资料c 为最大边); c 为最大边)①锐角A 的对边与斜边的比叫做Z A 的正弦,记为sinA , 即 sin A =.A 的对边 斜边②锐角A 的邻边与斜边的比叫做Z A 的余弦,记为cosA ,cos A 二斜边/砒对边 二B 的邻边/A 的邻边的对边③锐角A 的对边与邻边的比叫做/ A 的正切,记为tanA ,即tanA 二/A 的邻边 b④锐角A 的邻边与对边的比叫做,A 的余切,记为cotA ,即co 心匚丽边=夕 2、 锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做/ A 的锐角三角函数 3、 一些特殊角的三角函数值(1)互余关系:sinA=cos(90 ° — A), cosA=sin(90 ° — A);(2)平方关系:sin 2 A cos 2 A =15、锐角三角函数的增减性 当角度在0° ~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减 小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);(4)余切值随着角度的增大(或 减小)而减小(或增大) 考点四、解直角三角形 1、 解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知 元素求出所有未知元素的过程叫做解直角三角形。
初中数学初三数学上册《解直角三角形》教案、教学设计
4.请家长协助监督,确保学生按时完成作业,养成良好的学习习惯。
6.差异化教学,关注个体:针对学生的个体差异,设计不同难度的练习题,使每位学生都能在原有基础上得到提高。
7.课堂小结,巩固知识:在每个知识点讲解结束后,进行课堂小结,帮助学生梳理所学知识,巩固记忆。
8.作业布置,拓展提高:布置适量的课后作业,包括基础知识和拓展提高题目。让学生在课后巩固所学知识,提高解题能力。
(二)讲授新知
1.首先,我会带领学生回顾直角三角形的基本概念,如直角三角形的定义、特点以及勾股定理等。
2.接着,引入锐角三角函数(正弦、余弦、正切)的概念,通过具体的例子让学生理解它们在直角三角形中的应用。
3.讲解锐角三角函数的表示方法,以及如何运用这些函数求解直角三角形中的边长和角度。
4.结合实际例题,演示如何使用勾股定理和锐角三角函数解决实际问题,使学生明白数学知识在实际生活中的价值。
3.小组合作,共同探究:组织学生进行小组讨论和合作,共同解决实际问题。在这个过程中,学生可以相互交流、相互学习,提高解决问题的能力。
4.拓展思维,提高能力:在教学过程中,设置一定的拓展性问题,引导学生进行思考。通过拓展性问题,培养学生的创新意识和解决问题的能力。
5.紧扣教材,注重实践:紧密围绕教材内容,结合生活实际,设计具有针对性的练习题。让学生在实践中掌握知识,提高解题能力。
4.解直角三角形:通过例题,讲解如何运用勾股定理及锐角三角函数解直角三角形。
5.实际应用:让学生分组讨论,解决实际问题,巩固所学知识。
6.总结与拓展:总结解直角三角形的步骤和方法,引导学生进行拓展思考。
7.课后作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。
初三数学教案-解直三角形应用 精品
解直三角形应用(一)知识目标使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. (二)能力目标:逐步培养学生分析问题、解决问题的能力.(三)情感目标:渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识. 二、教学重点、难点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决. 三、教学过程 1.导入新课上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而 使问题得到解决. 2.例题分析例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米, ∠A =26°,求中柱BC(C 为底边中点)和上弦AB 的长(精确到0.01米).分析:上图是本题的示意图,同学们对照图形,根据题意思考 题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?由题意知,△ABC 为直角三角形,∠ACB=90°,∠A=26°, AC=5米,可利用解Rt △ABC 的方法求出BC 和AB .学生在把实际问题转化为数学问题后,大部分学生可自行完成。
例题小结:求出中柱BC 的长为2.44米后,我们也可以利用正弦 计算上弦AB 的长。
如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何 关系式,更重要的是知道为什么选这个关系式,以培养学生分析 问题、解决问题的能力及计算能力,形成良好的学习习惯. 另外,本题是把解等腰三角形的问题转化为直角三角形的问题, 渗透了转化的数学思想.例2.如图,一艘海轮位于灯塔P 的北偏东650方向,距离灯塔 80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东340方向上的B 处。
初三中考数学常用知识点整理
初三中考数学常用知识点整理中考数学常用知识点1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:经过切点的半径垂直于圆的切线。
2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。
三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。
光线叫做投影线,投影所在的平面叫做投影面。
由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
九年级中考常用数学知识点圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦常用中考数学知识点三角函数关系倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法构造以“上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)
教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。
11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。
初三数学利用三角函数解直角三角形
解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 如图是教学用直角三角板,边33090tan 3AC cm C BAC =∠=︒∠=,,,则边BC 的长为( )A .303cmB .203cmC .103cmD .53cm【巩固】如图,在ABC △中,9060C B D ∠=︒∠=︒,,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2B .433C .23D .43【巩固】如图,ABC △是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,则sin ACE ∠= .例题精讲CBA3ED CBAEDCBA如图所示,O 的直径点作O 的切线,切点为七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵.(3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线FD CDCB A【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.O CA(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈和平路文化路中山路30°15°45°FEDCBA【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高.图1图2图3βαDCBA课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; ACB ∠= .课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).FE人行道DCB A。
初三数学:《解直角三角形》知识点总结
初三数学:《解直角三角形》知识点总结知识点在不断更新的同时也需要及时的归纳总结,才能更好的掌握,接下来精品学习网初中频道给大家整理解直角三角形知识点整理,供大家参考阅读。
1解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1)正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A=ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A=cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A=ba,(4)锐角A的邻边与对边的比叫做A的余切,记作cotA即aAAAb的对边的邻边cot锐角A的正弦、余弦,正切、余切都叫做角A的锐角三角函数。
这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角A必须在直角三角形中,且(2)在直角三角形ABC中,每条边均用所对角的相应的小写字母表示。
否则,不存在上述关系2注意:锐角三角函数的定义应明确(1)ca,cb,ba,ab四个比值的大小同△ABC的三边的大小无关,只与锐角的大小有关,即当锐角A取固定值时,它的四个三角函数也是固定的;(2)sinA不是sinA的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样;(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的三角函数值等;(二)、同角三角函数的关系(1)平方关系:122sinCOS(2)倒数关系:tana cota=1(3)商数关系:sincoscot,cossintan注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注意它们的变形公式。
(2)sinsin22是的简写,读作“sin的平方”,不能将22sin 写成sin前者是a的正弦值的平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cottan,1223030cossin22,而1cossin22就不一定成立。
初三解直角三角形的练习题
初三解直角三角形的练习题直角三角形是初中数学中的重要概念,解直角三角形的练习题有助于学生巩固对直角三角形的认识和运算能力。
本文将为大家提供一些初三解直角三角形的练习题,以帮助大家在学习中更好地理解和应用直角三角形的知识。
一、计算临边和斜边长度题目1:已知直角三角形的一条直角边长为5cm,另一条直角边长为12cm,求斜边的长度。
解题思路:根据勾股定理,斜边的长度等于两条直角边长度的平方和的平方根。
解题步骤:1. 根据勾股定理计算斜边的长度:斜边长度= √(5^2 + 12^2) = √(25+ 144) = √169 = 13cm。
题目2:已知直角三角形的斜边长为17cm,其中一直角边长为8cm,求另一直角边的长度。
解题思路:根据勾股定理,已知斜边和一条直角边,可以求得另一条直角边的长度。
解题步骤:1. 根据勾股定理计算另一直角边的长度:另一直角边的长度 =√(17^2 - 8^2) = √(289 - 64) = √225 = 15cm。
二、计算三角形的角度题目1:已知直角三角形的两条直角边长度分别为3cm和4cm,求直角三角形的两个锐角的正弦值、余弦值和正切值。
解题思路:根据正弦、余弦和正切的定义公式,可以计算出直角三角形两个锐角的三角函数值。
解题步骤:1. 计算第一个锐角的正弦值:sin(θ) = 对边长度 / 斜边长度 = 3 / 5 = 0.6;计算第一个锐角的余弦值:cos(θ) = 临边长度 / 斜边长度 = 4 / 5 = 0.8;计算第一个锐角的正切值:tan(θ) = 对边长度 / 临边长度 = 3 / 4 = 0.75。
2. 计算第二个锐角的正弦值:sin(90° - θ) = cos(θ) = 0.8;计算第二个锐角的余弦值:cos(90° - θ) = sin(θ) = 0.6;计算第二个锐角的正切值:tan(90° - θ) = 1 / tan(θ) = 1 / 0.75 =1.333。
初三数学 解直角三角形
初三数学解直角三角形(一)1、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫解直角三角形.2、解直角三角形的依据(1)三边之间的关系:a2+b2=c2.(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:例1如图,在△ABC中,AD为BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若BC=12,,求AD的长.3、仰角与俯角:在进行测量时,从下向上看,视线与水平线的夹角叫仰角;从上往下看,视线与水平线的夹角叫俯角.如图所示:例2、汶川地震后,抢险队派一架直升机去A、B两个村庄抢险,飞机在距地面450米的上空P点,测得A村的俯角为30°,B村的俯角为60°,如图所示,求A、B两个村庄之间的距离.(精确到1m.参考数据)4、方向角:指北或指南方向与目标方向线所成的小于90°的夹角叫方向角.如图所示:例3某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60km/h.交通管理部门在离该公路100m处设置了一速度监测点A,在如图所示的坐标系中,点A在y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.1)请在图中画出表示北偏东45°方向的射线AC,并标出点C的位置;2)点B的坐标为__________,点C的坐标为__________;3)一辆汽车从点B行驶到点C所用的时间为15s,请你通过计算判断汽车在这段限速公路上是否超速行驶?(本问中取1.7)1、已知Rt△ABC中,∠C=90°,∠A=60°,,则a=()A.B.C.D.62、一等腰梯形的高为4,下底长为8,下底的底角的正弦值为0.8,那么它的上底和腰长分别为()A.4和5B.2和5C.2和4D.4和10交卷决问题的能力较强。
若想稳住,勤练多思。
别骄傲!你本部分基础知识掌握较好,有一定分析问题和解决问题的能力,若要再上一个档次,需在高、难度题上下工夫。
初三数学解直角三角形专题复习
初三数学解直角三角形专题复习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五讲 解直角三角形一、【知识梳理】知识点1、 解直角三角形定义:由直角三角形中已知元素求出未知元素的过程叫解直角三角形。
知识点2、解直角三角形的工具:1、直角三角形边、角之间的关系:sinA=cosB=c a sinB=cosA=c b tanA=cotB=b a cotA=tanB=ab2、直角三角形三边之间的关系: 222c b a =+(勾股定理)3、直角三角形锐角之间的关系 : ︒=∠+∠90B A 。
(两锐角互为余角)知识点3、解直角三角形的类型:可以归纳为以下2种,(1)、已知一边和一锐角解直角三角形; (2)、已知两边解直角三角形。
知识点4、解直角三角形应用题的几个名词和素语 1、方位角:在航海的某些问题中,描述船的航向,或目标对观测点的位置,常用方位角.画方位角时,常以铅直的直线向上的方向指北,而以水平直线向右的方向为东,而以交点为观测点.2、仰角和俯角在利用测角仪观察目标时,视线在水平线上方和水平线的夹角称为仰角,视线在水平线下 方和水平线的夹角称为俯角(如图). 在测量距离、高度时,仰角和俯角常是不可缺少的数据.3、坡度和坡角:在筑坝、修路时,常把坡面的铅直高度h 和水平宽度l 的比叫作坡度(或坡比),用字母i 表示(如图(1)),则有,lhi =坡面和水平面的夹角叫作坡角.显然有:αtan ==lhi , 这说明坡度是坡角的正切值,坡角越大,坡度也越大. 二、【典型题例】考点1、解直角三角形例1.、1、在ABC ∆中,C ∠为直角,A ∠、B ∠、C ∠所对的边分别为c b a 、、.(1)已知3=b , 30=∠A ,求a 和c . (2)已知20=a ,20=b ,求A ∠. 2、如图,已知△ABC 中∠B=45°,∠C=30°,BC=10,AD 是BC 边上的高,求AD 的长3、已知,如图,△ABC 中,∠A=30°,AB=6,CD ⊥AB 交 AB 延长线于D ,∠CBD=60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北 偏东 48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修 公路的走向是南偏西___________度.
2/7
北
y A B O x
北
乙
甲
第 3 题图
N
P M
A
Q
上次作业完成情况 学生表现 审阅者签字 教学主任: 家长意见 学生家长:
本次课堂表现
7/7
5.点(-sin60°,cos60°)关于 y 轴对称的点的坐标是(
)
1 1 1 1 3 3 3 3 A.( 2 , 2 ) B.(- 2 , 2 ) C.(- 2 ,- 2 ) D.(- 2 ,- 2 )
6.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣. • 某同学站在离旗杆 12 米远的地方,当国旗升起到旗杆顶时,他测得视线的仰 角为 30°,• 若这位同学的目高 1.6 米,则旗杆的高度约为( ) A.6.9 米 B.8.5 米 C.10.3 米 D.12.0 米 【细心填一填】 1.在 Rt△ABC 中,∠C=90°,AB=5,AC=3,则 sinB=_____. 2.在△ABC 中,若 BC= 2 ,AB= 7 ,AC=3,则 cosA=________. 3.如图,如果△APB 绕点 B 按逆时针方向旋转 30° 后得到△A'P'B,且 BP=2,那么 PP'的长为____________. (不取近似值. 以下数据供解题
D
A
300 B
450 C
分析:求 CD,可解 RtΔ BCD 或 RtΔ ACD.但由条件 RtΔ BCD 和 RtΔ ACD 不 可解,但 AB=100,若设 CD 为 x,我们将 AC 和 BC 都用含 x 的代数式表示再 解方程即可.
【课后作业】 1.在 Rt△ABC 中,∠B=900,AB=3,BC=4,则 sinA= 2.Rt△ABC 中,∠C=900,SinA= 作业布置
比值
BC BC 叫做角 A 的余弦,记做 sin A ; AB AB AC AC 叫做角 A 的余弦,记做 cos A ; AB AB
教 学 步 骤 及 突 出 教 学 方 法
比值
比值
BC BC 叫做角 A 的正切,记做 tan A ; AC AC
(2)有关三角函数的计算 用计算器求锐角三角函数值,能运用锐角三角函数解决一些简单解直角 三角形的问题。 (3)解直角三角形 在直角三角形中,由已知元素求未知元素的过程,叫做解直角三角形。 事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中 至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元 素求出其余的三个元素。 解直角三角形的依据: 1、三边之间的关系 a b c (勾股定理)。
第 4 题图
第 5 题图
5.如图,机器人从 A 点,沿着西南方向,行了个 4 2单位,到达 B 点后观察 到原点 O 在它的南偏东 60°的方向上,则原来 A 的坐标为___________结 果保留根号). 【认真答一答】 1.计算: sin 30 cos 60 cot 45 tan 60 tan 30 分析:可利用特殊角的三角函数值代入直接计算。
2 2 2
2、锐角之间的关系 A+ B=90°。 3、边角之间的关系 sin A
a b a , cos A , tan A 。 c c b
1/7
4、面积公式 S ABC
1 1 ab ch 。 2 2
【精心选一选】 1 、在直角三角形中,各边都扩大 2 倍,则锐角 A 的正弦值与余弦值都 ( ) A、缩小 2 倍 B、扩大 2 倍 C、不变 D、不能确定 2、在 Rt△ABC 中,∠C=900,BC=4,sinA= 4 ,则 AC=(
北
C B
A
D
E
东
图 8-5
6/7
10.公路 MN 和公路 PQ 在点 P 处交汇,且 QPN 30 ,点 A 处有一所中学, AP=160m,一辆拖拉机以 3.6km/h 的速度在公路 MN 上沿 PN 方向行驶,假设拖 拉机行驶时, 周围 100m 以内会受噪声影响,那么,学校是否会受到噪声影响? 如果不受影响,请说明理由;如果受影响,会受影响几分钟?
A
C
E
H
F D
B
9.如图 8-5,一条渔船某时刻在位置 A 观测 灯塔 B、C(灯塔 B 距离 A 处较近),两个灯 塔恰好在北偏东 65°45′的方向上,渔船 向正东方向航行 l 小时 45 分钟之后到达 D 点, 观测到灯塔 B 恰好在正北方向上, 已知 两个灯塔之间的距离是 12 海里,渔船的速 度是 16 海里/时,又知在灯塔 C 周围 18.6 海里内有暗礁, 问这条渔船按原来的方向继 续航行,有没有触礁的危险? 分析: 本题考查解直角三角形在航海问 题中的运用, 解决这类问题的关键在于构造 相关的直角三角形帮助解题.
1 2.计算: 2 (2 cos 45 sin 90 ) (4 4 )( 2 1)
分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。注意分母 有理化。
3.如图 1,在 ABC 中,AD 是 BC 边上的高, tan B cos DAC 。 (1)求证:AC=BD (2)若
5
)
A、3
B、4
C、5
D、6 ) D、 cosA=tanB
3、在 Rt△ABC 中,∠C=900,则下列式子成立的是( A、 sinA=sinB B、 sinA=cosB C、 tanA=tanB
4.已知 Rt△ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确 的是( )
2 A.sinB= 3 2 B.cosB= 3 2 C.tanB= 3 3 D.tanB= 2
12 求 cosA, sinB, cosB 13
8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度
CD 3m , 标 杆 与 旗 杆 的 水 平 距 离 BD 15 m , 人 的 眼 睛 与 地 面 的 高 度 EF 1.6 m ,人与标杆 CD 的水平距离
DF 2 m ,求旗杆 AB 的高度.
图2 分析:要求 ABC 的面积,由图只需求出 BC。
解应用题,要先看条件,将图形抽象出直角三角形来解. 5. 甲、乙两楼相距 45 米,从甲楼顶部观测乙楼顶部的俯角为 30°,观测乙楼 的底部的俯角为 45°,试求两楼的高.
A 300 450
E r B
D C
4/7
6. 从 A 处观测铁塔顶部的仰角是 30°,向前走 100 米到达 B 处,观测铁塔的 顶部的仰角是 45°,求铁塔高.
sin C 12 ,BC 12 13 ,求 AD 的长。
图1
3/7
分析:由于 AD 是 BC 边上的高,则有 RtADB 和 RtADC ,这样可以充分利 用锐角三角函数的概念使问题求解。
4.如图 2,已知 ABC 中 C Rt , AC m,BAC ,求 ABC 的面积 (用 的三角函数及 m 表示)
4 ,AB=10,则 BC= 5
3.等腰三角形中,腰长为 5cm,底边长 8cm,则它的底角的正切值是 4.若∠A 为锐角,且 tan2A+2tanA-3=0 则∠A= 5. 等腰三角形底边与底边上的高的比是 2:
5/7
3 ,则顶角为(
)
A、600
B、900
C、1200
D、1500
6. 在△ABC 中,A,B 为锐角,且有 sinA=cosB,则这个三角形是( ) A、等腰 中,∠C=900,若 sin A
田马教育一对一个性化教案
授课日期:2015 年 月 日 学生姓名 年 级 九年级 教师姓名 学 科 许敏 数学 授课时段 课 型 一对三
教学内容 教 学 重、难点
解直角三角形复习总结 锐角三角函数、有关三角函数的计算、解直角三角形知识回顾与题型训练
【知识回顾】 (1)锐角三角函数定义 在直角三角形 ABC 中,如下图,