(完整)九年级上解直角三角形练习题(一)及答案
精选人教版九年级数学上册解直角三角形测试卷含答案
精选人教版九年级数学上册 解直角三角形测试卷含答案(本试卷满分120分,考试时间120分钟)一、选择题(本大题共有16个小题,1~6小题,每小题2分,7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55 C.33 D.23 参考答案:A 解析:2.如果∠A 是锐角,且A cos A sin =,那么∠A =( )。
A.30° B.45° C.60° D.90°参考答案:B解析:∵A cos A sin ==22∴∠A =45°3.在Rt △ABC 中,∠C=90°,sinA=,则cosB 的值为( )BD4.已知在中,5,则的值为( ) A.43 B.45C.54D.34参考答案:AB第4题答图C解析:如图,由已知sin A =35可设则由勾股定理知,所以tan B =34. 5. 如果△ABC 中,sin A =cos B =22,则下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形C .△ABC 是等腰直角三角形三角形.6如图, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),BD ⊥CD ,垂足为D ,且BD =3, DE =4,则tan α的值为( )A . 34B . 43C . 54D . 53参考答案:A解析:由入射角等于反射角及两直线平行内错角相等可知 ∠B=∠α,34tantan ===BD ED B α 7.一辆汽车沿倾斜角是的斜坡行驶500米,则它上升的高度是( ) A.米 B.500sin α米 C.米 D.500cos α米 参考答案:A解析:设上升的高度为h ,则sin α=500h,所以h =500sin α. 8.一人乘雪橇沿坡比1∶3的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为()第6题图28.2-30A.72 mB.36 mC.36 mD.318 m 参考答案:C解析:解:当t=4时,s=10t+2t 2=72.设此人下降的高度为x 米,过斜坡顶点向地面作垂线, ∵一人乘雪橇沿坡度为1:的斜坡笔直滑下, ∴CA=x ,BC=x , 在直角△ABC 中,由勾股定理得: AB 2=BC 2+AC 2, x 2+(x )2=722. 解得:x=36. 故选C .9.如图,梯子(长度不变)跟地面所成的锐角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A.的值越大,梯子越陡B.的值越大,梯子越陡C.的值越小,梯子越陡D.陡缓程度与 的三角函数值无关 参考答案:A解析:根据锐角三角函数的变化规律,知的值越大,越大,梯子越陡,10.如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )(((参考答案:A解:根据题意可得:BC==AB ,BD==AB .第9题图∵CD=BC ﹣BD=AB(﹣1)=12,∴AB=6(+1).故选A .11.如图,已知45°<∠A <90°,则下列各式成立的是( )A.B. C.D.解析:在锐角三角函数中仅当45°时,,所以选项错误;因为即,所以选项正确,选项错误,<,所以选项错误12.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高为1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米 参考答案:B解析:由于某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,则目高以上旗杆的高度h 1=12×tan 30°=4(米),旗杆的高度h =h 1+1.6=1.6+4≈8.5(米).故选B . 13.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向正南方向走200 m 到C 地,此时王英同学离A 地 ( ) A.50 m B.100 mC.150 mD.100 m参考答案:D解析:设经过A 地正西方向上的D 点,则AD =AB •sin 60°=50 (m),BD=AB • cos 60°=50(m),∴ CD =150(m). ∴ AC ==100 (m).故选D .第11题图A .50°B .60°C .70°D .80°15.菱形ABCD 的对角线AC 长为10 cm,∠BAC=30°,那么AD 为( )A.3310 B.33 C.3315 D.3 参考答案:A解析:如图,∵AC ⊥BD,∴AD=331030cos 5=︒.16.菱形OABC 在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B 点的坐标是( )2+)﹣,2+,﹣,∵OA=2,∠AOC=45°,∴AE=AOsin45°=,OE=AOcos45°=,∴点B 的横坐标为﹣(2+),纵坐标为,∴B 点的坐标是(﹣2﹣,). 故选D .二、填空题(本大题共有4个小题,每小题3分,共12分.把答案写在题中的横线上.)17.若,则锐角α=__________。
(完整版)九年级上解直角三角形完美测试题及答案,推荐文档
.
14. 如图,在△ABC 中,tanA= 3 ,∠B=45°,AB=14. 则 BC 的长为
.
4
15. 如图,矩形 ABCD 中,AP 平分∠DAB,且 AP⊥DP 于点 P,
D
C
联结 CP,如果 AB﹦8, AD﹦4,求 sin∠DCP 的值为
..
P
三、解答题(本题共 70 分)
A
B
16.计算: 2 sin 30 ° 2 cos 45 ° 8 .
DO
B
A
O
C
D
20. 如图,建筑物的高CD 为 17. 32 米.在其楼顶C ,测得旗杆底部 B 的俯角 为 60 ,旗 杆顶部 A 的仰角 为 20,请你计算旗杆的高度.( sin20 0.342 , tan20 0.364 , cos20 0.940 , 3 1.732 ,结果精确到 0.1 米)
tan10°≈0.18, 2 ≈1.41, 3 ≈1.73)
22. 如图,△ABC 中,∠ACB=90°, sin A 4 , BC=8,D 是 AB 中点,
B
5 E
过点 B 作直线 CD 的垂线,垂足为 E.
(1)求线段 CD 的长;(2)求cos ABE 的值.
D
A
C
C
23. 已知:如图,在四边形 ABCD 中,BD 是一条对角线,∠DBC=30°,
21. 如图所示,某小组同学为了测量对面楼 AB 的高度,分工合作,有的组员测得两楼间 距离为 40 米,有的组员在教室窗户处测得楼顶端 A 的仰角为 30°,底端 B 的俯角为 10°,请你根据以上数据,求出楼 AB 的高度.(精确到 0.1 米) (参考数据:sin10°≈0.17, cos10°≈0.98,
九年级数学第一章《解直角三角形》测试卷(含答案)
第一章《解直角三角形》测试卷班级 姓名 得分一、选择题(每小题4分;共40分)1.在Rt △ABC 中;如果一条直角边和斜边的长度都缩小至原来的51;那么锐角A 的各个三角函数值( ) A .都缩小51B .都不变C .都扩大5倍D .无法确定 ∠A 是锐角;且sinA=32;那么∠A 等于( ) A .30° B .45° C .60° D .75° △ABC 中;∠C=90°;tanA=43;BC=8;则AC 等于( ) A .6 B .323C .10D .12 4. 如图所示;为了加快施工进度;要在小山的另一边同时施工;从AC 上的一点B;取∠ABD=1450; BD=500m;∠D=550; 要A 、C 、E 成一直线;那么开挖点E 离点D 的距离是 ( )A. 500sin550mB. 500cos550mC. 500tan550mD. 500cot550m α>30°时;则cos α的值是( ) A .大于12 B .小于12C .大于32D .小于326. 身高相等的三名同学甲、乙、丙参加风筝比赛;三人放出风筝的线长、线与地面夹角如下表(假设风筝线是拉直的);则三人所放的风筝中 ( )同学甲 乙 丙 放出风筝线长(m ) 10010090线与地面夹角040 015 060A .甲的最高B .丙的最高C .乙的最低 D. 丙的最低7.A 、B 、C 是△ABC 的三个内角;则2sinBA +等于( ) A .2cos CB .2sinC C .C cosD .2cos BA +8.在Rt △ABC 中;∠C =900;32cos =B ;则a ∶b ∶c 为( )A .2∶5∶3B .2∶5∶3C .2∶3∶13D .1∶2∶3 9.如图;小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上;量得CD =8米;BC =20米;CD 与地面成30º角;且此时测得1米杆的影长为2米;则电线杆的高度为( )A .9米B .28米C .()73+米 D .()3214+米 Rt △ABC 中;∠C =900;∠A 、∠B 的对边分别是a 、b ;且满足022=--b ab a ;则tanA 等于( )A 、1B 、251+ C 、251- D 、251± 二、填空题(每题5分;共30分) 1. 在Rt △ABC 中;∠ACB=900;SinB=27则cosB . 2.旗杆的上一段BC 被风吹断;顶端着地与地面成300角;顶端着地处B 与旗杆底端相距4米;则原旗杆高为_________米.3.在坡度为1:2的斜坡上;某人前进了100米;则他所在的位置比原来升高了 米. 4.已知△ABC 中;AB =24;∠B =450;∠C =600;AH ⊥BC 于H ;则CH = .5. 平行四边形ABCD 中;两邻边长分别为4cm 和6cm;它们的夹角为600;则较短的对角线的长为 cm 。
(完整版)初中解直角三角形练习题
解直角三角形练习题一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、在Rt △ABC 中,∠C =900,AB =,35cm BC cm=则SinA= cosA= 3、Rt △ABC 中,∠C =900,SinA=54,AB=10,则BC =4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\=5、 ∠B 为锐角,且2cosB -1=0则∠B =6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB=7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )A 、都扩大2倍B 、都扩大4倍C 、没有变化D 、都缩小一半2、若∠A 为锐角,且cotA <3,则∠A ( )A 、小于300B 、大于300C 、大于450且小于600D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、A a sin C 、acosA D 、Aa cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、15005、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形B 、直角三角形C 、钝角三角形D 、锐角三角形6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( )A 、41cmB 、21cmC 、43cmD 、23cm三、求下列各式的值1、sin 2600+cos 26002、sin600-2sin300cos3003. sin300-cos 24504. 2cos450+|32-|5. 0045cos 360sin 2+ 6. 130sin 560cos 300-7. 2sin 2300·tan300+cos600·cot300 8. sin 2450-tan 2300四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5, 求sinA, cosA, tanA, cotA2. 在Rt △ABC 中,∠C =900,若1312sin =A 求cosA, sinB, cosB3. 在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A四、根据下列条件解直角三角形。
【完整版】华师大版九年级上册数学第24章 解直角三角形含答案
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3B.C.D.22、课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为24米,那么旗杆AB的高度约是()A.12米B. 米C.24米D. 米3、已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2cB.2a+2bC.2cD.04、三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12B.14C.12或14D.以上都不对5、在△ABC中,∠C=90°,BC=2,AB=3,则cosB的值为A. B. C. D.6、如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B,C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为()A.πB. πC. πD. π7、在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是()A. B. C. D.8、已知锐角α,且sinα=cos38°,则α=()A.38°B.62°C.52°D.72°9、已知sinA= ,那么锐角等于()A.15°B.30°C.45°D.60°10、已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为()A.4cmB.6cmC.8cmD.10cm11、在△ABC中,若,则∠C的度数为( )A.30°B.60°C.90°D.120°12、下列长度的三条线段能组成三角形的是()A.1,2,3B.3,4,5C.3,1,1D.3,4,713、如图,是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=12m,∠A=30°,则立柱BC的长度为()A.4 mB.6 mC.8 mD.12 m14、平行四边形的对角线分别为x、y,一边长为 12,则x、y 的值可能是()A.8 与 14B.10 与 14C.18 与 20D.4 与 2815、如图是某河坝横断面示意图,迎水坡,为背水坡,过点A作水平面的垂线,设斜坡的坡度为,坡角为,斜坡的坡度为,坡角为,则下列结论正确的是( )A. B. C. D.二、填空题(共10题,共计30分)16、将一副三角尺如图所示叠放在一起,若 AB=4 cm,则阴影部分的面积是________cm217、如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若=1,则矩形的面积为________.18、纸片中,,将它折叠使与重合,折痕交于点,则线段的长为________.19、如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部的俯角为60°,热气球A与楼的水平距离为120 m,这栋楼的高度BC是________m(≈1.732,结果取整数).20、如图,在△ABC中,已知BC=5,,∠C=30°,EF 垂直平分BC,点 P 为直线EF上一动点,则 AP+BP 的最小值是________.21、在等腰△ABC中,AB=AC,如果cosC=,那么tanA=________.22、如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则∠DCB的正切值为________.23、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.24、在Rt△ABC中,∠C=90°,AC=5,BC=12,则sinA=________25、如图一张长方形纸片ABCD,其长AD为a,宽AB为b(a>b),在BC边上选取一点M,将△ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则的值为________.三、解答题(共5题,共计25分)26、计算:.27、为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)28、在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a= ,b= ,求这个直角三角形的其他元素。
解直角三角形测试题及答案
《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
(精练)华师大版九年级上册数学第24章 解直角三角形含答案
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、已知三角形三边的长为a、b、c,则代数式(a-b)2-c2的值为()A.正数B.负数C.0D.非负数2、长度分别为3,8,x的三条线段能组成一个三角形,x的值可能是( )A.11B.5C.7D.43、在□ABCD中,对角线AC,BD相交于O点,AC=10,BD=8,则AD长的取值范围是()A.AD>1B.AD<9C.1<AD<9D.AD>104、如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200 米C.220 米D.100(+1)米5、平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是()A.10和34B.18和20C.14和10D.10和126、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.()米B.()米C.()米 D.()米7、活动课上,老师给出长度分别是3cm,4cm,7cm,10cm的四根木棒,要求从中任选三根围成一个三角形,下面是四位同学分别选择的结果,你认为能围成三角形的是()A.3cm,4cm,7cmB.3cm,4cm,10cmC.3cm,7cm,10cm D.4cm,7cm,10cm8、如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A. 米B. 米C. 米D. 米9、一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B.若以港口O 为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A.(30 -50,30)B.(30,30 -50)C.(30 ,30) D.(30,30 )10、若菱形的周长为8,高为1,则菱形两邻角的度数比为()A.3:1B.4:1C.5:1D.6:111、在Rt△ABC中,∠C=90°,若BC=1,AB=,则tanA的值为A. B. C. D.212、如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC =" 4" cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离B.相切C.相交D.相切或相交13、若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cmB.8cmC.12cmD.16cm14、AE,CF是锐角三角形ABC的两条高,如果AE:CF=3:2,则sin∠BAC:sin∠ACB等于()A.3:2B.2:3C.9:4D.4:915、在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为()A. B. C. D.二、填空题(共10题,共计30分)16、定义;在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫做图形的γ(a,θ)变换。
初三数学解直角三角形试题答案及解析
初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。
历年初三数学中考解直角三角形练习题及答案
在Rt∆ADC中tanD=tan150=
评注: 利用含300角的直角三角形巧妙地构造出含150角的直角三角形,从而求出150角的三角函数值。利用此图还可以求出750的各三角函数值。
强化训练
一、填空题:
⒈ 在∆ABC中,若AC= 。BC= AB=3,则cosA=____________.
∴AB=4BD
在Rt∆ABD中,AD=
∴ sinB=
cosB=
tanB=
cotB=
[例4]计算
分析:本题主要是考察特殊角的三角函数值和分母有理化知识
解:原式= .
= =
=
[例5] 要求tan300的值.可构造如图19-5所示的直角三角形进行计算,作Rt∆ABC,使C=900,斜边AB=2,直角边AC=1,那么BC= ∠ABC=300,所以 tan300=
在此图的基础上,通过添加适当的辅助线,可求出tan150的值。请你就此图添加辅助线,并求出tan150的值。
分析:只需找出一个150的角,并放入一个可求出各边长的直角三角形中。
解:延长CB至D,使BD=AB。连结AD,如图19-6
A A
2 1
2 1
300
B C D B C
图19-5 图19-6
则BD=2,D=150
6、用计算器计算:sin56050/+cos39030/-tan46010/=_______
分析会用计算器求任意一个锐角的三角函数值,然后进行计算。原式=0.5671.
7、已知方程4x2-2(m+1)x+m=0的两根恰为一个直角三角形两锐角的余弦,则m=______
分析设这个直角三角形的两个锐角分别为α、β,且α+β=900。cosβ=sinα.由一元二次方程根与系数的关系得:cosα+cosβ= ,cosαcosβ=
解直角三角形测试题与答案
解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。
2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。
3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。
在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。
在 Rt△ABC 中,BC =。
4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。
5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。
因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。
在 Rt△BDE 中,tan∠DBE =。
二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。
答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。
初三数学解直角三角形试题
初三数学解直角三角形试题1.一公路大桥引桥长100米,已知引桥的坡度i=1:3,那么引桥的铅直高度为米(结果保留根号).【答案】10.【解析】根据坡度的定义:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,求解即可.试题解析:如图:由题意得,桥长AB=10米,∵BC:AC=1:3,∴设BC=x,AC=3x,则AB=解得:x=10【考点】解直角三角形的应用-坡度坡角问题.2.如图,若△ABC和△DEF的面积分别为、,则A.B.C.D.【答案】D.【解析】在两个图形中分别作BC、EF边上的高,求出、,比较即可.如图,过点A、D分别作AG⊥BC,DH⊥EF,垂足分别为G、H,在Rt△ABG中,AG="ABsinB=5×sin" 40°="5sin" 40°,在Rt△DHE中,∠DEH=180°﹣130°=50°,DH=DEsin∠DEH="5sin" 40°,∴AG=DH.∵BC=8,EF=5,∴.故选D.【考点】解直角三角形.3.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.B.C.D.【答案】D.【解析】∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,,∴.故选D.【考点】1.直角三角形两锐角的关系;2.锐角三角函数定义.4.如图,从热气球P上测得两建筑物A、B的底部的俯角分别为45°和30°,如果A、B两建筑物的距离为60米,P点在地面上的正投影恰好落在线段AB上,求热气球P的高度.(结果保留根号)【答案】(30-30)米.【解析】过P作AB的垂线,设垂足为G.分别在Rt△APG和Rt△BPG中,用PG表示出AG、BG的长,进而由AB=AG+BG=90求得PC的长,即热气球P的高度.试题解析:过点P作PG⊥AB与点G,设PG=x,则AG=PG=x,BG=x,∴x+x=60,∴x=30-30.答:热气球P的高度是(30-30)米.考点: 解直角三角形的应用----仰角俯角问题.5.如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.【答案】AB=4.1米 .【解析】作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.利用勾股定理和相似三角形的性质求出DF,FE,从而得到BE的长,再用相似三角形的性质求出AB即可.试题解析:过点C作CE⊥BD于点E,延长AC交BD延长线于点F在Rt△CDE中,∴设CE="8x" ,DE="15x" ,则CD=17x∵DC=3.4米∴CE=1.6米,DE=3米在Rt△MNH中,tan∠MHN∴在Rt△ABF中,tan∠F tan∠MHN∴EF=3.2米即BF=2+3+3.2=8.2米∴在Rt△CEF中,tan∠F∴AB=4.1米答:铁塔的高度是4.1米.【考点】1.解直角三角形的应用-坡度坡角问题;2.相似三角形的应用.6. tan60°的值等于A.1B.C.D.2【答案】C.【解析】试题解析:根据tan60°=即可得出答案.故选C.考点: 特殊角的三角函数值.7.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD= cm.【答案】2.【解析】如图,过点B作BE⊥AC,垂足为点E,AB的垂直平分线交AB于点F.∵在△ABC中,AB=BC,∠B=1200,AC=6cm,∴∠A=300,AE=3cm。
解直角三角形测试题与答案
解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。
设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。
2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。
所以 tanB =。
3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。
4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。
所以 cosB =。
5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。
6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。
7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。
初三数学解直角三角形试题答案及解析
初三数学解直角三角形试题答案及解析1.周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)]【答案】10.1【解析】根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出试题解析:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,【考点】解直角三角形的应用-仰角俯角问题2.在平面直角坐标系中,设点P到原点O的距离为,OP与x轴正方向的夹角为,则用[,]表示点P的极坐标;显然,点P的极坐标与它的坐标存在一一对应的关系.例如,点P的坐标(1,1),则极坐标为[,45°].若点Q的极坐标为[4,60°],则点Q的坐标为()A.B.C.D.(2,2)【答案】A.【解析】:作QA⊥x轴于点A,则OQ=4,∠QOA=60°,故OA=OQ×cos60°=2,AQ=OQ×sin60°=2,∴点Q的坐标为(2,2).故选A.【考点】点的坐标.3.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.【答案】6或2或4【解析】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.【考点】解直角三角形4.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【答案】CE的长为(4+)米【解析】根据题意过点A作AH⊥CD于H,由三角函数可求出CH的长,从而可求出CD的长,在Rt△CED中,由∠CED=60°,利用三角函数可求出CE的长.试题解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE=(米),答:拉线CE的长为(4+)米.【考点】1、三角函数;2、解直角三角形5.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)【答案】8.2米.【解析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=6米,即可得出关于x的方程,解出即可.试题解析:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x,在Rt△BCD中,∠CBD=45°,则BD=CD=x,由题意得x-x=6,解得:x=3(+1)≈8.2.答:生命所在点C的深度为8.2米.【考点】解直角三角形的应用.6.如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:(1)求∠CGF的度数;(2)求座面EF与地面之间的距离。
九年级上解直角三角形练习题(一)及答案
解直角三角形一、选择题1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点 B 旋转后,点 D 落在CB 的延长线上的D′处,那么tan∠BAD ′等于()(A) .1 (B) . 2(C).22(D).2 22、如果是锐角,且4cos ,那么sin 的值是().5(A)925(B)45(C)35(D)16253、等腰三角形底边长为10 ㎝,周长为36cm,那么底角的余弦等于().(A)513 (B)1213(C)1013(D)5124、. 以下不能构成三角形三边长的数组是( )2 2 2 (A)(1,3 ,2)(B)( 3 ,4 ,5 )(C)(3,4,5)(D)(3,4 ,5)5、在Rt△ABC 中,∠C=90°,下列式子中正确的是().(A)sin A sin B (B)sin A cos B(C)tanA tanB (D)cot A cot B6、在矩形ABCD 中,DE⊥AC 于E,设∠ADE= ,且3cos ,5A DAB = 4, 则AD 的长为().(A)3 (B)163(C)203(D)165B7、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美20米30米化环境,已知这种草皮每平方米 a 元,则购买这种草皮至少要().150 (A)450a 元(B)225a 元(C)150a 元(D)300a 元8、已知α为锐角,tan(90°-α)= 3,则α的度数为()(A)30°(B)45°(C)60°(D)75°9、在△ABC中,∠C=90°,BC=5,AB=13,则sin A的值是( )(A)513(B)1213(C)512(D)12510、如果∠ a 是等边三角形的一个内角,那么cosa 的值等于().1(A)12(B)22(C)32(D)1 C二、填空题A B11、如图,在△ABC 中,若∠A=30°,∠B=45°,AC=22,则BC=w12、如图,沿倾斜角为30 的山坡植树,要求相邻两棵树的水平距离AC为2m,那么相邻两棵树的斜坡距离AB为m 。
九年级数学上册试题 第23章《解直角三角形》单元测试卷 -沪科版(含答案)
第23章《解直角三角形》单元测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt ABC ∆中,90C ∠=︒,6AC =,4sin 5A =,则AB 的值为()A.8B.9C.10D.122.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,则cos B 的值为()A.13B.12C.22D.323.如图,某游乐场山顶滑梯的高BC 为50米,滑梯的坡比为5:12,则滑梯的长AB 为()A.100米B.110米C.120米D.130米4.如图,ABC ∆的顶点都在正方形网格的格点上,则tan ACB ∠的值为()A.13B.35C.23D.125.下列各式中正确的是()A.sin 46cos 44︒>︒B.2sin 40sin 80︒=︒C.cos 44cos 46︒<︒D.22sin 44sin 461︒+︒=6.如图,在44⨯的正方形网格中,小正方形的顶点称为格点若ABC ∆的顶点都在格点上,则cos ABC ∠的值是()A.13B.12C.55D.2557.如图,在ABC ∆中,90ACB ∠=︒,点D 在AB 的延长线上,连接CD ,若2AB BD =,2tan 3BCD ∠=,则ACBC的值为()A.1B.2C.12D.328.如图,Rt ABC ∆中,90ABC ∠=︒,6AB =,8BC =,D 为AC 边上一动点,且1tan 2ABD ∠=,则BD 的长度为()A.1558B.25C.5D.5119.如图,AC 垂直于AB ,P 为线段AC 上的动点,F 为PD 的中点, 2.8AC m =, 2.4PD m =, 1.2CF m =,15DPE ∠=︒.若90PEB ∠=︒,65EBA ∠=︒,则AP 的长约为()(参考数据:sin 650.91︒≈,cos 650.42︒≈,sin 500.77︒≈,cos500.64)︒≈A.1.2B.1.3m C.1.5m D.2.0m10.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是()A.23-B.23+C.36D.32二、填空题(本大题共8小题,每小题3分,共24分)11.如图,在ABC ∆中,90C ∠=︒,设A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,则正确的是.A .sin a c A =⋅B .cos b c B =⋅C .tan a b A =⋅D .tan a b B=⋅12.有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是BAC ∠,若坡比为2:5,则此斜坡的水平距离AC 为.13.在Rt ABC ∆中,90BCA ∠=︒,CD 是AB 边上的中线,8BC =,5CD =,则tan ACD ∠=.14.如图所示,MON ∠是放置在正方形网格中的一个角,则tan MON ∠的值是.15.在ABC ∆中,22AB =,1tan 3B =,BC 边上的高长为2,则ABC ∆的面积为.16.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB 与水平桥面的夹角是30︒,拉索BD 与水平桥面的夹角是60︒,两拉索底端距离20AD =米,则立柱BC 的高为米.(结果保留根号)17.如图是一款利用杠杆原理设计的平衡灯,灯管AB 与支架AD ,砝码杆AC 均成120︒角,且40AB cm =,18AC cm =,6AD cm =,底座是半径为2cm 的圆柱体,点P 是杠杆的支点.如图1,若砝码E 在端点C 时,当杠杆平衡时,支架AD 垂直于桌面,则此时垂直光线照射到最远点M 到支点P 的距离PM 为cm .由于特殊设计,灯管的重力集中在端点B ,砝码杆重力集中在砝码E 上,支架AD 的重力忽略不计,由杠杆原理可知,平衡时重力保持垂直水平桌面向下,且1122G h G h ⋅=⋅,如图2.为了使得平衡时砝码杆与桌面平行,则砝码E 到离A 点的距离为cm .18.用一副如图1所示的七巧板,拼出如图2所示中间有一个空白正方形的“风车图”,则图2中tan ABC ∠=.三、解答题(本大题共8小题,共66分.)19.计算:22sin 456cos303tan 454sin 60︒-︒+︒+︒.20.如图,在Rt ABC ∆中,90C ∠=︒,10AB =,6BC =,求sin A ,cos A ,tan A 的值.21.如图,在ABC∆中,90C∠=︒,AB的垂直平分线分别交边AB、BC于点D、E,连接AE.(1)如果25B∠=︒,求CAE∠的度数;(2)如果2CE=,2sin3CAE∠=,求tan B的值.22.如图,在ABC∆中,已知ABC m∠=︒,ACB n∠=︒.090m n︒<︒+︒<︒,1AC=.(1)求AB及BC的长度(用m︒,n︒的三角函数表示);(2)试判断sin()sin cos cos sinm n m n m n︒+︒=︒︒+︒︒是否成立并说明理由.23.如图,梯子斜靠在与地面垂直(垂足为)O 的墙上.当梯子位于AB 位置时,它与地面所成的角60ABO ∠=︒,当梯子底端向右滑动0.5m (即0.5)BD m =到达CD 位置时,它与地面所成的角5118CDO ∠=︒',求梯子的长.(参考数据:sin 51180.780︒'=,cos 51180.625︒'=,tan 5118 1.248)︒'=24.如图,在Rt ABC ∆中,90A ∠=︒,作BC 的垂直平分线交AC 于点D ,延长AC 至点E ,使CE AB =.(1)若1AE =,求ABD ∆的周长;(2)若13AD BD =,求tan ABC ∠的值.25.在太原郁郁葱葱的西山上,环绕着一条蜿蜒曲折、鲜艳夺目的公路,它就是太原环城旅游公路暨公路自行车赛道,该赛道环西山而建,全长约136千米,将百余处景点串连成一条线.(1)周日,某自行车骑行团组织甲、乙两个赛队在该赛道进行骑行活动,他们从赛道同一端出发,甲队出发25分钟时乙队出发,结果乙队比甲队提前15分钟到达终点(即赛道的另一端).已知乙队骑行的平均速度为甲队的1.2倍.求甲、乙两个赛队此次活动骑行的平均速度.(2)该赛道一端附近是太原市的摄乐桥如图(1),摄乐桥是太原市第18座跨汾河大桥,也是太原市首座仅靠主塔及缆索承担桥面重量的跨河大桥.某数学兴趣小组的同学们为了测量摄乐桥主塔的高AB,在地面上选取测点C放置测倾仪,测得主塔顶端A的仰角45∠=︒,将测ADM倾仪向靠近主塔的方向前移10m至点E处,测得主塔顶端A的仰角47.7∠=︒,测量示意图AFM如图(2)所示.已知测倾仪的高度 1.5︒≈,=,求摄乐桥主塔的高AB.(参考数据:sin47.70.74CD m︒≈︒≈,tan47.7 1.10)cos47.70.6726.山西省隰县盛产香梨,被称为“隰县玉露香”.县政府运用“互联网+玉露香梨”的发展思路,探索“爱心助农精准脱贫”的方式,构建“隰县玉露香”电商生态圈,使隰县成为中国北方最大的电商孵化基地.2021年春节期间,“隰县玉露香”在网上热销,某电商看准商机,用10000元购进一批“隰县玉露香”,销量可观,于是又用18000元购进一批同款规格的“隰县玉露香”,但第二次的进价比第一次每箱上涨20元,第二次所购数量恰好是第一次的1.5倍.(1)求第一次购进的“隰县玉露香”每箱的价格.(2)政府为推进农村电商高质量可持续发展,在隰县新建一批移动信号发射塔,以提高农村互联网的传输效率.如图,是一个新建的移动信号发射塔AC ,其高15AC m =.用测角仪在山脚下的点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒,点A ,C ,D 在同一条铅垂线上.果农要在山脚B 处修建房屋以方便管理梨园,按国家规定,通讯基站离居民居住地至少100m 就可不受信号塔辐射的影响.请判断在点B 处的房屋是否受信号塔塔顶A 发出的信号辐射的影响.(测角仪、房屋的高度忽略不计;结果精确到0.1m ;参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒=,sin 420.67︒=,cos 420.74︒=,tan 420.90)︒≈答案一、选择题C .B .D .D .D .C .B .D .B .A .二、填空题11.A 、C .12.75m .13.43.14.1.15.7或5.16..17.165.18.3.三、解答题19.原式22()6314222=⨯-⨯+⨯+⨯2234=⨯-+13=-++4=.20.在Rt ACB ∆中,由勾股定理得:8AC ===,所以63sin 105BC A AB ===,84cos 105AC A AB ===,63tan 84BC A AC ===.21.(1)DE 垂直平分AB ,EA EB ∴=,25EAB B ∴∠=∠=︒.40CAE ∴∠=︒.(2)90C ∠=︒ ,∴2sin 3CE CAE AE ∠==.2CE = ,3AE ∴=,AC ∴=3EA EB == ,5BC ∴=,∴tan AC B BC ==.22.(1)作AD BC ⊥于点D ,在Rt ACD ∆中,1AC =,sin AD n AD AC ︒==,cos CD n CD AC︒==,在Rt ABD ∆中,sin AD m AB ︒=,sin sin sin AD n AB m m ︒∴==︒︒,cos BD m AB︒= ,sin cos cos sin n BD AB m m m ︒∴=⋅︒=︒︒.sin cos cos sin n BC BD CD m n m ︒∴=+=︒+︒︒.(2)成立,理由如下:作CE BA ⊥交BA 延长线于点E ,EAC ∠ 为ABC ∆的外角,EAC B ACB m n ∴∠=∠+∠=︒+︒,在Rt EBC ∆中,sin CE m BC︒=,sin sin (cos cos )sin sin cos cos sin sin n CE BC m m n m m n m n m ︒∴=⋅︒=︒+︒︒=︒︒+︒︒︒.23.设梯子的长为xm ,在Rt ABO ∆中,cos OBABO AB∠=1cos cos 602OB AB ABO x x ∴=∠=︒=在Rt CDO ∆中,cos ODCDO CD∠=cos cos51180.625OD CD CDO x x ∴=∠=︒'≈ .BD OD OB =- ,0.5BD m =10.6250.52x x ∴-=,解得4x =.故梯子的长是4米.24.(1)如图,连接BD ,设BC 垂直平分线交BC 于点F ,BD CD ∴=,ABD C AB AD BD∆=++AB AD DC=++AB AC =+,AB CE = ,1ABD C AC CE AE ∆∴=+==,故ABD ∆的周长为1.(2)设AD x =,3BD x ∴=,又BD CD = ,4AC AD CD x ∴=+=,在Rt ABD ∆中,AB ==.tanAC ABC AB ∴∠===.25.(1)设甲队骑行的平均速度为/xkm h,则乙队骑行的平均速度为1.2/xkm h.根据题意,得13613625151.26060x x-=+,解得:34x=.经检验,34x=是原方程的根.1.2 1.23440.8x∴=⨯=.答:甲队骑行的平均速度为34/km h,乙队骑行的平均速度为40.8/km h.(2)如图,过点D作DG AB⊥于点G,则DG过点F.由题意得 1.5BG EF CD m===,10DF m=.设FG a=m.在Rt ADG∆中,45ADG∠=︒,(10)AG DG a m∴==+.在Rt AFG∆中,tanAG AFGFG∠=,tan tan47.7 1.10() AG FG AFG a x m∴=⋅∠=︒≈,10 1.10a a∴+=,解得:100a≈,10100110()AG m∴=+=,110 1.5111.5()AB AG BG m∴=+=+=.答:摄乐桥主塔的高AB约为111.5m.26.(1)设第一次购进隰县玉露香的进价为x 元/箱,根据题意可得:10000180001.520x x ⨯=+,解得100x =,经检验,100x =是原方程的解,答:第一次购进的“隰县玉露香”每箱的价格为100元;(2)由题意得,90ADB ∠=︒,在Rt ABD ∆中,tan AD ABD BD∠=,tan 42AD BD ∴=⋅︒,在Rt BCD ∆中,tan CD CBD BD ∠=,tan 36.9CD BD ∴=⋅︒,AC AD CD =- ,15AC m =,15tan 42tan 36.9BD BD ∴=⋅︒-⋅︒,解得100BD m ≈,100135.1()cos 0.74BD AB m ABD ∴=≈≈∠,135.1100> ,∴在点B 处的房屋不会受信号塔塔顶A 发出的信号辐射的影响.。
(附答案)《解直角三角形》典型例题
《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;(2)由abB =tan ,知 ;(3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵ ∴设 ,则由勾股定理,得∴ .∴.解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DC AC 在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.学习要有三心:一信心;二决心;三恒心.知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形
一、选择题
1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长
线上的D ′处,那么tan ∠BAD ′等于( ) (A).1 (B).2 (C).
2
2 (D).22
2、如果α是锐角,且5
4
cos =
α,那么αsin 的值是( ). (A )
259 (B ) 54 (C )53 (D )2516 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )
513
(B )
1213 (C )10
13
(D )512
4、. 以下不能构成三角形三边长的数组是 ( )
(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52) 5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ).
(A )B A sin sin = (B )B A cos sin = (C )B A tan tan = (D )B A cot cot = 6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且5
3cos =
α, AB = 4, 则AD 的长为( ).
(A )3 (B )316 (C )320 (D )5
16
7、某市在“旧城改造”中计划在一
块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 8、已知α为锐角,tan (90°-α)=3,则α的度数为( ) (A )30° (B )45° (C )60° (D )75°
9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( ) (A )
13
5 (B )1312 (C )125 (D )512
10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ).
A
B
C
D
E
︒15020米30米
(A )
2
1 (B )22
(C )23 (D )1
二、填空题
11、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =
22
, 则
BC = w
12、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水
平距离AC 为2m ,那么相邻两棵树的斜坡距离AB
为 m 。
(精确到0.1m)
13、离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α, 如果测角仪高为1.5米.那么旗杆的高为 米(用含α的三角函数表示).
14、校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米。
一只小鸟从一
棵树的顶端飞到另一棵树的顶端,小鸟至少要飞__________米。
15、某校自行车棚的人字架棚顶为等腰三角形,
D 是AB 的中点,中柱CD = 1米,∠A=27°,
则跨度AB 的长为 (精确到0.01米)。
三、解答题
16、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.
17、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).
C
B
A
C A D
B
M E N C
A 18、为申办2010年冬奥会,须改变哈尔滨市的交通状况。
在大直街拓宽工程中,要伐掉一棵树A
B ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从
C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°. 问:距离B 点8米远的保护物是否在危险区内?
19、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16
米,坝高 6米,斜坡BC 的坡度3:1=i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .(精确到0.1米)
20. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):
(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ;
(2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。
根据上述测量数据,即可求出旗杆的高度MN 。
如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2) 1) 在图2中,画出你测量小山高度MN 的示意图
(标上适当的字母) 2)写出你的设计方案。
((图2)
︒
60︒
30B
D
C A
D
C
B A
参考答案
一、选择题
1、B
2、C
3、A
4、D
5、B
6、B
7、C
8、A
9、A 10、A 二、填空题
11、
2
1
12、2.3 13、1.5 +20tan α 14、13 15、3.93米 三、解答题
16、83 17、18.1米 18、可求出AB= 43米 ∵8>43
∴距离B 点8米远的保护物不在危险区内 19、 ∠A =22 01′ AB=37.8米 20、1)
2)方案如下:
(1) 测点A 处安置测倾器,测得旗杆顶部
M 的仰角∠MCE =α ;
(2) 测点B 处安置测倾器,测得旗杆顶部
M 的仰角∠MDE =β;
(3) 量出测点A 到测点B 的水平距离AB =m; (4) 量出测倾器的高度AC =h 。
根据上述测量数据可以求出小山MN 的高度。