高一数学上学期期中试题(扫描版)

合集下载

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

深圳中学2023-2024学年度第一学期期中考试试题年级:高一科目:数学考试用时:120分钟 卷面总分:150分注意事项:答案写在答题卡指定的位置上,写在试题卷上无效.选择题作答必须用2B 铅笔. 参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以e(e 2.71828)= 为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{3P x x =∈≥N 或0}x ≤,{}2,4Q =,则()P Q =N ()A.{}1 B.{}2 C.{}1,2 D.{}1,2,4【答案】D 【解析】【分析】根据补集的定义和运算可得{}1,2P =N ,结合并集的定义和运算即可求解. 【详解】由题意知,{}1,2P =N ,{}2,4Q =,所以(){}1,2,4P Q =N ,故选:D .2.命题“()()31,,1,x x ∞∞∃∈+∈+”的否定是( )A.()1,x ∀∈+∞,都有()31,x ∞∉+B.()1,x ∀∉+∞,都有()31,x ∞∉+C.()1,x ∀∈+∞,都有()31,x ∞∈+D.()1,x ∀∉+∞,都有()31,x ∞∈+【答案】A 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题命题“()()31,,1,x x ∞∞∃∈+∈+ ”的否定是“()1,x ∀∈+∞,都有()31,x ∞∉+.故选:A. 3.函数()f x =的定义域是( ) A. (,1)(1,0)−∞−∪− B. [1,)−+∞ C. [1,0)− D. [1,0)(0,)−+∞【答案】D 【解析】【分析】根据根式与分式的定义域求解即可. 【详解】()f x =的定义域满足1020x x +≥ ≠ ,解得[1,0)(0,)x ∈−+∞ . 故选:D4. ()f x x 1x 2=−+−的值域是 A. ()0,∞+ B. [1,)+∞C. ()2,∞+D. [2,)+∞【答案】B 【解析】【分析】对x 的范围分类,把(f x 的表达式去绝对值分段来表示,转化成各段函数值域的并集求解.【详解】()32,1121,1223,2x x f x x x x x x −≤=−+−=<< −≥,作出函数()f x 的图像如图所以()12f x x x =−+−的值域为[)1,+∞, 故选B.【点睛】本题主要考查了绝对值知识,对x 的范围进行分类,可将含绝对值的函数转化成初等函数类型来解决5. 已知幂函数的图象经过点()8,4P ,则该幂函数在第一象限的大致图象是( )A. B. C. D.【答案】B 【解析】【分析】根据求出幂函数的解析式,再根据幂函数的性质即可得出答案. 【详解】设()af x x =,则328422a a =⇔=,所以32a =,所以23a =,所以()23f x x ==,因为2013<<, 因为函数()f x 在()0,∞+上递增,且增加的速度越来越缓慢, 故该幂函数在第一象限的大致图象是B 选项. 故选:B .6. 函数31()81ln 803x f x x -⎛⎫ ⎪=-- ⎪⎝⎭的零点位于区间( )A. (1,2)B. (2,3)C. (3,4)D. (4,5)【答案】B 【解析】【分析】根据函数的单调性及函数零点的存在性定理选择正确选项即可.【详解】因为函数81ln y x =与31803x y − =−−在()0,∞+上均为增函数,所以()f x 在()0,∞+上为增函数.因为()281ln 2830f =−<,()381ln 3810f =−>, 所以函数()f x 的零点位于区间()2,3内. 故选:B7. 已知不等式220ax bx ++>的解集为{}21x x −<<,则不等式220x bx a −+<的解集为( )A. 11,2 −B. 1,12−C. 1,12D. ()2,1−【答案】A 【解析】【分析】根据不等式解集,求得参数,a b ,再求不含参数的一元二次不等式即可.【详解】根据题意方程220ax bx ++=的两根为2,1−,则221,2b a a−+=−−=,解得1,1a b =−=−, 故220x bx a −+<,即2210x x +−<,()()2110x x −+<,解得11,2x ∈−. 即不等式220x bx a −+<的解集为11,2 −. 故选:A .8. 已知()f x 和()g x 分别是定义在R 上的奇函数和偶函数,且()()e x g x f x −=,则(1)(1)f g =( ) A. 22e 1e 1+− B. 22e 1e 1−+C. 221e 1e −+D. 221e 1e +−【答案】C 【解析】【分析】根据奇函数与偶函数的性质即可代入1x =和=1x −求解.【详解】因为()f x 为奇函数,()g x 为偶函数,所以由()()111e g f −−−−=有()()111e g f −+=, 又()()11e g f −=,所以()121e e g −=+,()121e ef −=−, 所以()()12121e e 1e 1e e 1e f g −−−−==++.故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列各组函数中,两个函数是同一函数的有( )A. ()1f x x =+与21()1x g x x −=−B. ()1f t t =−与()1g x x =−C. ()ln e x f x =与()g x =D. ln ()e x f x =与()g x =【答案】BC 【解析】【分析】根据题意,由同一函数的定义,对选项逐一判断,即可得到结果.【详解】对于A ,()f x 定义域为R ,()g x 定义域为{}|1x x ≠,定义域不相同,不是同一函数,A 错误; 对于B ,函数()f x 与()g x 的定义域相同,对应关系也相同,所以是同一函数,故正确;对于C ,函数()()f x x x =∈R ,函数()()g x x x =∈R ,两函数的定义域与对应关系都一致,所以是同一函数,故正确;对于D ,()()0f x x x =>,()g x x =,所以对应关系不相同,定义域也不同,不是同一函数,D 错误. 故选:BC10. 下列说法正确的是( ) A. 函数1y x x=+的最小值为2 B. 若a ,b ∈R ,则“220a b +≠”是“0a b +≠”充要条件 C. 若a ,b ,m 为正实数,a b >,则a m ab m b+<+ D. “11a b>”是“a b <”的充分不必要条件 【答案】BC 【解析】【详解】根据基本不等式满足的前提条件即可判定A ,根据绝对值和平方的性质可判定B ,根据不等式的性质可判断CD.【分析】对于A ,当x 取负值时显然不成立,故A 错误, 对于B ,若,a b ∈R ,由220a b +≠,可知a ,b 不同时为0, 由0a b +≠,可知a ,b 不同时为0,所以“220a b +≠”是“0a b +≠”的充要条件,故B 正确;对于C ,()()()()()0b a m a b m m b a a m a b m b b b m b b m +−+−+−==<+++,所以a m ab m b+<+,故C 正确, 对于D ,①若11a b>,则当0a >,0b >时,则0a b <<, 当0a <,0b <时,则0a b <<, 当a ,b 异号时,0a b >>.的②若a b <,则当a ,b 同号时,则11a b >, 当a ,b 异号时,0a b <<,则11a b<, 所以“11a b>”是“a b <”的既非充分也非必要条件,D 选项错误.故选:BC11. 下列命题正确的是( )A. 函数212log (23)y x x =−−在区间(1,)+∞上单调递减 B. 函数e 1e 1x xy −=+在R 上单调递增C. 函数lg y x =在区间(,0)−∞上单调递减D. 函数13xy =与3log y x =−的图像关于直线y x =对称【答案】BCD 【解析】【分析】A 项,由复合函数的定义域可知错误;B 项分离常数转化为()21e 1x f x =−+,逐层分析单调性可得;C 项由偶函数对称性可知;D 项,两函数互为反函数可知图象关于直线y x =对称.【详解】对于A ,由2230x x −−>,解得1x <−,或3x >, 故函数定义域为(,1)(3,)−∞−∪+∞,由复合函数的单调性可知该函数的减区间为()3,+∞,故A 错; 对于B ,()21e 1x f x =−+, 由于e 1x y =+在x ∈R 单调递增,且e 10x +>, 所以1e 1x y =+在R 上单调递减,2e 1xy =−+在R 上单调递增, 因此()f x 在R 上单调递增,B 正确;对于C ,当0x >时,lg y x =(即lg y x =)在区间()0,∞+上单调递增, 又因为lg y x =为偶函数,其图象关于y 轴对称, 所以在区间(),0∞−上单调递减,C 正确;对于D ,由于函数13xy =与13log y x =(即3log y x =−)互为反函数.所以两函数图象关于y x =对称,D 正确. 故选:BCD.12. 德国数学家狄里克雷在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵:只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图像、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是( ) A. ()D x 的解析式为()R 1,,0,.x Q D x x Q ∈ = ∈B. ()D x 的值域为[]0,1C. ()D x 的图像关于直线1x =对称D. (())1D D x = 【答案】ACD 【解析】【分析】根据题意,由狄里克雷函数的定义,对选项逐一判断,即可得到结果. 【详解】对于A ,用分段函数的形式表示狄里克雷函数,故A 正确. 对于B ,由解析式得()D x 的值域为{}0,1,故B 错误;过于C ,若x 为有理数,则2x −为有理数,则()()21D x D x =−=;若x 为无理数,则2x −为无理数.则()()20D x D x =−=;所以()D x 的图像关于直线1x =对称,即C 正确;对于D ,当x 为有理数,可得()1D x =,则()()1D D x =,当x 为无理数,可得()0D x =,则()()1D D x =,所以()()1D D x =,所以D 正确. 故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.110.752356416(4)−−−++++=________.【答案】414##1104【解析】【分析】根据题意,结合指数幂的运算法则和运算性质,准确化简、运算,即可求解. 【详解】根据指数幂的运算法则和运算性质,可得:11111430.752364353355426416(4)[()](2)(2)22233−−−−+=+−+++⋅ 221141821033444=−+++==. 故答案:414. 14. 已知a ,b 是方程22(ln )3ln 10x x −+=的两个实数根,则log log a b b a +=________. 【答案】52##2.5 【解析】【分析】方法一:利用韦达定理结合换底公式求解;方法二:解方程可得e a =,b =,代入运算求解即可.【详解】方法一:因为a ,b 是方程()22ln 3ln 10x x −+=的两个实数根, 由韦达定理得1ln ln 2a b ⋅=,3ln ln 2a b +=, 则()()()()2222ln ln ln ln 2ln ln ln ln ln ln 5log log 2ln ln ln ln ln ln ln ln 2a b a b a b a ba b b a b a a ba ba ba b++−⋅++=+===−=⋅⋅⋅,即5log log 2a b b a +=;方法二:因为22310t t −+=的根为1t =或12t =, 不妨设ln 1a =,1ln 2b =,则e a =,b =,所以e 15log log log 222e a b b a +==+=.故答案为:52.15. 已知0,0x y >>且2x y xy +=,则2x y +的最小值是__________. 【答案】8 【解析】【分析】运用“1”的代换及基本不等式即可求得结果.为【详解】因为2x y xy +=,所以211x y+=,所以()214222248x y x y x y x y y x +=++=+++≥+=,当且仅当4x y y x =,即4,2x y ==时取等号.所以2x y +的最小值为8. 故答案为:8.16. 记(12)(12)T x y =−−,其中221x y +=,则T 的取值范围是________.【答案】3,32 −+ . 【解析】【分析】根据基本不等式,结合换元法,将问题转化为213222T t =−− ,t ≤≤上的范围,由二次函数的性质即可求解.【详解】()124T x y xy =−++,设x y t +=,则212t xy −=, 所以221124212t T t t t −=−+⋅=−.因为22x y xy + ≤,所以22124t t −≤.所以t ≤≤又213222T t =−− ,所以当12t =时,T 有最小值32−,当t =T 有最大值3+.故答案为:3,32 −+ 四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}(,)|1Ax y y x ==−,{}2(,)|B x y y mx ax m ==++.(1)若1a =−,0m =,求A B ∩;(2)若1a =,且A B ∩≠∅,求实数m 的取值范围.【答案】(1)11,22A B=−(2)[]2,1−. 【解析】【分析】(1)联立两方程,求出交点坐标,得到交集;(2)联立后得到210mx m +++=,分0m =与0m ≠两种情况,,结合根的判别式得到不等式,求出答案. 【小问1详解】 若1a =,0m =,则(){},|Bx y y x ==. 由1y x y x =−=− ,得1212x y= =− . 所以11,22A B =−. 【小问2详解】由()211x y y mx x m −==+++消去y,得210mx m +++=①. 因为A B ∩≠∅,所以方程①有解.当0m =时,方程①可化为1=−,解得x =,所以1y , 所以0m =符合要求.当0m ≠时,要使方程①有解,必须(()2Δ410m m =−+≥,即220m m +−≤,解得21m −≤≤, 所以21m −≤≤,且0m ≠. 综上所述,m 的取值范围是[]2,1−. 18. 设不等式2514x x −≤−的解集为A ,关于x 的不等式2(2)20x a x a −++≤的解集为B . (1)求集合A ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1)[)1,4(2)[)1,4.【解析】【分析】(1)根据题意,结合分式不等式的解法,即可求解;(2)根据题意,转化为B A ,再结合一元二次不等式的解法,分类讨论,求得集合B ,进而求得a 取值范围.【小问1详解】 解:由不等式2514x x −≤−,可得2511044x x x x −−−=≤−−, 即()()140x x −−≤,且4x ≠,所以14x ≤<,所以[)1,4A =.【小问2详解】解:因为“x A ∈”是“x B ∈”的必要不充分条件,所以集合B 是A 的真子集,由不等式()2220x a x a −++≤,可得()()20x x a −−≤, 当2a <时,不等式的解集为2a x ≤≤,即[],2B a =,因为B A ,则12a ≤<;当2a =时,不等式为2(2)0x −≤,解得2x =,即{}2B =;B A 成立;当2a >时,不等式的解集为2x a ≤≤,即[]2,B a =,因为B A ,则24a <<,综上所述14≤<a ,即a 的取值范围是[)1,4.19. 已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示.(1)请将函数()f x 的图象补充完整,并求出()()f x x ∈R 的解析式;(2)求()f x 在区间[],0a 上的最大值.【答案】(1)作图见解析,()222,02,0x x x f x x x x +≤= −+>(2)答案见解析【解析】【分析】(1)根据函数奇函数的对称性,即可根据对称作出函数图象,进而可利用奇函数的定义求解解析式,(2)根据二次函数的性质,结合函数图象即可求解.【小问1详解】作出函数()f x 的图象,如图所示,当0x >时,0x −<,则()()22()22f x x x x x −=−+−=−, 因为()f x 为奇函数,所以()()22f x f x x x =−−=−+, 所以()222,02,0x x x f x x x x +≤= −+>. 【小问2详解】易如()()200f f −==,当2a <−时,()f x 在x a =处有最大值()22f a a a =+; 当20a −≤<时,()f x 在0x =处有最大值()00f =.20. 为了减少能源损耗,某建筑物在屋顶和外墙建造了隔热层,该建筑物每年节省的能源费用h (万元)与的隔热层厚度(cm)x 满足关系式:()()3232020h x x x k=−≤≤+.当隔热层厚度为1cm 时,每年节省费用为16万元,但是隔热层自身需要消耗能源,每年隔热层自身消耗的能源费用g (万元)与隔热层厚度(cm)x 满足关系:()2g x x =.(1)求k 的值;(2)在建造厚度为(cm)x 的隔热层后,每年建筑物真正节省的能源费用为()()()=−f x h x g x ,求每年该建筑物真正节省的能源费用的最大值.【答案】(1)1k =(2)18万元.【解析】【分析】(1)根据()116h =求解出k 值即可;(2)根据条件先表示出()f x ,然后利用基本不等式求解出最大值,注意取等条件.【小问1详解】由题知()116h =,所以3232161k −=+, 解得1k =;【小问2详解】由(1)知,()()32320201h x x x =−≤≤+, 所以()()323220201f x x x x =−−≤≤+, 所以()()()323232212342111f x x x x x −−++=−++= ++, 因为()3221161x x ++≥=+,当且仅当()32211x x =++,即3x =时取等号, 所以()341618f x ≤−=, 所以每年该建筑物真正节省的能源费用的最大值为18万元.21. 已知23()21x x a f x −−=+, (1)若定义在R 上的函数()ln ()g x f x =是奇函数,求a 的值;(2)若函数()()h x f x a =+在(1,)−+∞上有两个零点,求a 的取值范围.的【答案】(1)13− (2)41,3【解析】【分析】(1)根据题意,结合()()0g x g x −+=,得出方程,进而求得实数a 的值; (2)令()0h x =,得到()23210x x a a −−++=,得到()222210x x a a −⋅+=,令2x t =,转化方程可化为2210at at −+=1,2 +∞上有两个不相等的根, 方法一:设()221p t at at =−+,结合二次函数的性质,列出不等式组,即可求解;方法二:把方程化为()211a t a −−=,求得1t =±,结合11,2 +∞,即可求解. 【小问1详解】 解:因为()g x 是奇函数,所以()()2323ln ln 02121x x x x a a g x g x −−−−−+=+=++, 可得232312121x x x x a a −−−−⋅=++,即()()2312291x x a a −++=−恒成立, 因为220x x −+≠,所以310a +=且2910a −=,所以13a =−. 【小问2详解】 解:由232()()1x x h a x f a a x −=+−=++,令()0h x =,可得23021x x a a −−+=+, 所以()23210x x a a −−++=, 两边同乘以2x 并整理,得()222210x x a a −⋅+=. 令2x t =,因为1x >−,所以12t >, 于是方程可化为2210at at −+=,(*) 问题转化为关于t 的方程(*)在1,2 +∞上有两个不相等的根,显然0a ≠, 方法一:设()221p t at at =−+,抛物线的对称轴为1t =,()01p =.若a<0,由()00p >知,()p t 必有一个零点为负数,不合题意; 若0a >,要使()p t 在1,2 +∞ 上有两个零点,由于对数轴112t =>, 故只需2102Δ440p a a > =−> ,即31044(1)0a a a −> −> ,解得413a <<. 综上可得,实数a 的取值范围是41,3. 方法二:方程(*)可化为()211a t a −=−,若0a =,则01=−,矛盾,故0a ≠,故()211a t a −−=, 所以10a a−>,即a<0或1a >,①此时,1t −=,即1t =±,其中11,2 +∞ ,则112−>12<,即114a a −<,可得340a a −<,解得403a << ② 由①②得a 的取值范围是41,3. 22. 定义在R 上函数()f x 满足如下条件:①()()()4f x y f x f y +=+−;②(2)6f =;③当0x >时,()4f x >.(1)求(0)f ,判断函数()f x 的单调性,并证明你的结论; (2)当[)0,x ∈+∞时,不等式()()()ln 3e 122ln 310x f a f x a −++−−≤ 恒成立,求实数a 的取值范围.【答案】(1)()04f =,函数()f x 在R 上为增函数,证明见解析 (2)[]1,3【解析】的【分析】(1)令2,0x y ==,求得()04f =,再根据函数单调性的定义和判定方法,证得函数()f x 在R 上为增函数;(2)根据题意,转化为不等式()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立,由对数函数的性质,求得03a <≤,再由不等式()23e 3e 10x x a a +−−≥成立,转化为max 1e x a ≥ 对于任意[)0,x ∈+∞成立,求得1a ≥,即可求得实数a 的取值范围.【小问1详解】解:令2x =,0y =,可得()04f =.函数()f x 在R 上为增函数,证明如下:设12x x <,因为()()()4f x y f x f y +−=−,令1x y x +=,2x x =,则21y x x =−,可得()()()21214f x f x f x x −=−−, 因为210x x −>,所以()214f x x −>,所以()2140f x x −−>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 在R【小问2详解】解:由条件有()()()4f x f y f x y +=++,则不等式可化为()()ln 3e 122ln 3410x f a x a −++−−+≤ ,即()()ln 3e 122ln 36x f a x a −++−−≤ , 又由()26f =,所以()()()ln 3e 122ln 32xf a x a f −++−−≤ , 因为函数()f x 在R 上为增函数,可得()ln 3e 122ln 32x a x a −++−−≤即()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立, 根据对数函数的性质,可得()3e 10x a −+>,30a >对于任意[)0,x ∈+∞成立,则13e 0x a a <+ >,因为0x ≥,则e 1x ≥,所以101e x <≤, 可得1334ex <+≤,所以03a <≤ ①, 又由(*)式可化为()()2ln 3e 12ln 3ln 3e x x a x a a −+≤+= , 即对于任意[)0,x ∈+∞,()23e 13e x xa a −+≤成立,即()23e 3e 10x x a a +−−≥成立, 即对于任意[)0,x ∈+∞,()()3e 1e 10x x a +−≥成立, 因为3e 10x +>,所以e 10x a −≥对于任意[)0,x ∈+∞成立, 即max1e x a ≥ 对于任意[)0,x ∈+∞成立,所以1a ≥ ②. 由①②,可得13a ≤≤,所以实数a 的取值范围为[]1,3.。

福建省厦门双十中学2023-2024学年高一上学期期中考试数学试题(含答案)

福建省厦门双十中学2023-2024学年高一上学期期中考试数学试题(含答案)

福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B= B. A B ⋂=∅C. A BD. B A2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 04. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )A. B.C. D.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20B. 21C. 22D. 237. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A a c b<< B. b c a << C. b a c << D. c b a<<8. 已知定义域为()0,∞+函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 否定是R x ∀∈,2220xx++>.的的B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f g x 为偶函数>”是“x y >”的必要条件10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A.114ab ≥ B.122a b+≥ C.2≥ D. 228a b +≥11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2ff a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 212. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.14. 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.16. 已知正数x ,y ,z 满足222321x y z ++=,则1zs xyz+=的最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.18. 已知函数()22(11)1xf x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 取值范围.20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R aa f x mx x a x m =++---∈,且12f a ⎛⎫=⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力的的22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?22. 已知函数()()9230xx mf x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B =B. A B ⋂=∅C. A BD. B A【答案】D 【解析】【详解】根据集合相等的概念,集合交集运算法则,集合包含关系等知识点直接判断求解.【分析】因为集合{}2,0,3A =,{}2,3B =,所以A B ≠,{}2,3A B ⋂=, B 是A 的真子集,所以A,B,C 错误,D 正确.故选:D2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >【答案】C 【解析】【分析】利用特殊值举反例排除即可得到答案.【详解】对于A ,若0,1a b ==-,则22<a b ,故A 错误;对于B ,若1,1a b ==-,则11a b>,故B 错误;对于C ,由于2x y =在R 上单调递增,所以a b >时,22a b >,故C 正确;对于D ,若0c =,则22ac bc =,故D 错误.故选:C3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 0【答案】B 【解析】【分析】根据奇函数()00f =得到a 值再用定义法验证即可.【详解】因为函数()()()2221f x x a x a =+-+-为奇函数,定义域为(),-∞+∞,所以()()()0210f a a =--=,解得1a =或2a =,当1a =时,()()221f x xx =-,则()()()221f x x x f x -=--≠-,不满足题意;当2a =时,()()221f x x x =+,则()()()221f x x x f x -=-+=-,满足题意.所以a 的值是2.故选:B4. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念和对数函数相关概念求解即可.【详解】由22log 2log 4x <=,解得04<<x ,由“04<<x ”是“13x <<”的必要不充分条件,所以“2log 2x <”是“13x <<”的必要不充分条件.故选:B5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )的A. B.C. D.【答案】D 【解析】【分析】通过分析幂函数和对数函数的特征可得解.【详解】函数()0ay xx =≥,与()log 0a y x x =>,答案A 没有幂函数图像,答案B.()0ay x x =≥中1a >,()log 0a y x x =>中01a <<,不符合,答案C ()0ay xx =≥中01a <<,()log 0a y x x =>中1a >,不符合,答案D ()0ay xx =≥中01a <<,()log 0a y x x =>中01a <<,符合,故选D.【点睛】本题主要考查了幂函数和对数函数的图像特征,属于基础题.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20 B. 21C. 22D. 23【答案】D 【解析】【分析】根据题意可列出方程10000(10.2) 1.2x x ⨯-=,求解即可,【详解】设经过x 天“进步“的值是“退步”的值的10000倍,则10000(10.2) 1.2x x ⨯-=,即1.2(100000.8x=,1.20.8lg10000log 10000231.2lg3lg20.1761lg l 4443g 20.8x ∴====≈≈-,故选:D .7. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A. a c b <<B. b c a <<C. b a c <<D. c b a<<【答案】D 【解析】【分析】根据指数函数的单调性和对数运算法则计算即可.【详解】由题意得,3227311121log 9log 322233c ===⨯=;因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10.90.5111333⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,由于0.510.73⎛⎫=⎪⎝⎭,所以10.73b <<;因为0.9x y =在R 上单调递减,所以1130.90.90.9a ==.所以c b a <<.故选:D8. 已知定义域为()0,∞+的函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3【答案】C 【解析】【分析】将()()1221211x f x x f x x x ->-变为()()2121110f x f x x x ++->,结合构造函数())1(),(0f x xg x x +=>,即可判断()g x 的单调性,由此将不等式()1f x x <-可化为()(3)g x g <,结合函数单调性,即可得答案.【详解】由题意知对于任意1x ,()20,x ∈+∞,12x x ≠,不妨设12x x <,则210x x ->,由()()1221211x f x x f x x x ->-得()()12212110x f x x f x x x -->-,即()()21122121110f x f x x x x x x x ⎡⎤++-⎢⎥⎣⎦>-,结合21120,0x x x x ->>得()()2121110f x f x x x ++->,即()()212111f x f x x x ++>,设())1(),(0f x xg x x +=>,则该函数在()0,∞+上单调递增,且()3(3)113f g =+=,则()1f x x <-即()11f x x+<,即()(3)g x g <,故03x <<,即不等式()1f x x <-的解集为()0,3,故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++>B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f gx 为偶函数>”是“x y >”的必要条件【答案】BC 【解析】【详解】根据含有一个量词命题的否定可判断A ;判断“0m <”和“关于x 的方程220x x m -+=有一正一负根”之间的逻辑关系可判断B ;根据函数奇偶性定义判断C ;判断>”和“x y >”的推出关系可的判断D.【分析】对于A ,命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++≥,A 错误;对于B ,当0m <时,对于220x x m -+=有440m ∆=->,即方程有两个不等实根,设为12,x x ,则120x x m =<,即12,x x 一正一负;当220x x m -+=有一正一负根时,只需满足120x x <,即0m <,即“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件,B 正确;对于C ,由题意知()h x 的定义域为R ,由()(),()()f x f x g x g x -=--=可得()()()(())()h x f g x f g x h x -=-==,即函数()()()=h x f g x 为偶函数,C 正确;对于D >0x y >≥,反之,当x y >,比如0x y >>故>”是“x y >”的充分条件,D 错误,故选:BC 10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A. 114ab ≥B. 122a b +≥C. 2≥D. 228a b +≥【答案】AD【解析】【分析】运用基本不等式和特殊值法判断各个选项即可.【详解】对于A 和C ,因为0a >,0b >,所以4a b +=≥2≤,当且仅当2a b ==时等号成立,故04ab ≤<,则114ab ≥,故A 正确,C 错误;对于B ,代入2a b ==,12131222a b +=+=<,故B 错误;对于D ,()22282a b a b++≥=,当且仅当2a b ==时等号成立,故D 正确.故选:AD11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2f f a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 2【答案】BCD【解析】【分析】判断函数()2e e 122023x x f x x -+=+的奇偶性以及单调性,则由)()2f f a <+可得||2|a <+,将各选项中的数代入验证,即可得答案.【详解】由题意知()2e e 122023x x f x x -+=+的定义域为R ,()2e e 1()22)0(23x x f x f x x -+-==+-,即()f x 为偶函数,又0x >时,e 1x >,令e ,(1)x t t =>,且e x t =在(0,)+∞上单调递增,函数1y t t=+(1,)+∞上单调递增,故e e 2x xy -+=在(0,)+∞上单调递增,则()2e e 122023x x f x x -+=+在(0,)+∞上单调递增,在(,0)-∞上单调递减,故由)()2f f a <+得|||2|a <+,将各选项中的数代入验证,0,1,2适合,在故选:BCD12. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -【答案】BCD【解析】【分析】化简得到()()22f x f x +=,进而求得则()5.54f =,可判定A 错误;当12m =时,作出函数()y f x =的图象与曲线4log y x =的图象,结合图象,可判定B 正确;根据题意得出函数()f x 的值域对m 进行分类讨论,可判定C 正确;由()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数可判定D 正确.【详解】当2m =时,函数()()22f x f x =-可转化为()()22f x f x +=,则()()()()()5.5 3.522 3.521.524 1.5414f f f f =+==+==⨯=,所以A 错误;当12m =时,函数()y f x =的图象与曲线4log y x =的图象,如图所示,可得函数()y f x =的图象与曲线4log y x =的图象有3个交点,所以B 正确;对于C 中,依题意,max min ()()4f x f x -<,当[]0,2x ∈时,函数()f x 的值域为[]0,2;当1m >时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]0,2m ;若6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦, ;随着x 依次取值,值域将变成[0,)+∞,不符合题意,若1m <-时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]2,0m ;max min ()()224f x f x m -³->,不符合题意,所以C 正确;对于D ,当[]0,2x ∈时,可得函数()f x 的值域为[]0,2,当(2,4]x ∈时,函数()f x 的值域为[]0,2m ;当6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦……,当(24],22x n n ∈--时,函数()f x 的值域为20,2n m-⎡⎤⎣⎦,当(22,2]x n n ∈-时,函数()f x 的值域为10,2n m -⎡⎤⎣⎦当(2,22]x n n ∈+时,函数()f x 的值域为0,2n m ⎡⎤⎣⎦,若01m <<,12222n n m m m -<<<<,由图象可知,()y f x =的图象与直线12n y m -=在区间[]0,2,(2,4],……,],(2242n n --上均有2个交点,在(22],2n n -上有一个交点,在(2,)n +∞上无交点,所以()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -,所以D 正确.故选:BCD.【点睛】本题解题关键是准确作出函数的图象,数形结合可得判断B ,D ,利用()()22f x f x +=迭代可判断A ,对于C ,分1m >和1m <-两种情况讨论可判断.三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.【答案】72-## 3.5-【解析】【分析】根据题意,令19x =,准确运算,即可求解.【详解】由函数)311x f x ++=-,令19x =,可得13479()1)13219f f +=+==--.故答案为:72-.14 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.【答案】{}2-【解析】【分析】根据不等式的解法和对数函数的性质,求得集合B ,结合集合并集的运算,即可求解.【详解】由不等式234(4)(1)0x x x x --=-+>,解得1x <-或>4x ,即{|1B x x =<-或4}x >,因为集合{}2,1,0,1,2A =--,所以{}2A B =-I .故答案为:{}2-.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.【答案】8【解析】【分析】根据指对幂运算法则进行计算即可.【详解】由题意得,391log 10log 1029019==,1413181⎛⎫ =⎝=⎪⎭,3130.02710-==,66663311l 1og 2log 2log 2log 1log 2log 63+=+=+=+,所以原式110101833=+-+=.故答案为:816. 已知正数x ,y ,z 满足222321x y z ++=,则1z s xyz+=的最小值为______.【答案】【解析】【分析】先代换1z +,结合基本不等式求解可得答案..【详解】因为222321x y z ++=,所以()()22232111z z x y z +=-=-+;易知1z <,所以221132z zx y +=-+;所以()221321xyz z z x y s xyz ++==-,由()114z z -≤,当且仅当12z =时取等号,可得()22432s y x y x +≥=≥,当且仅当228323x y ==,即x y ==时,取到最小值.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.【答案】(1){}|23A B x x =≤< ,{}|13A B x x ⋃=<≤;(2)12a <<.【解析】【分析】(1)化简集合A ,B ,再利用交集、并集的定义直接计算得解.(2)由“x ∈A ”是“x ∈B ”的必要不充分条件可得集合B A ,再利用集合的包含关系列出不等式组求解即得.【小问1详解】当a =1时,{}{}|(1)(30)|13A x x x x x -<=<-=<,{|()()}{|23}320B x x x x x =≤-≤≤=-,所以{}|23A B x x =≤< ,{}|13A B x x ⋃=<≤.【小问2详解】因为a >0,则{}|3A x a x a =<<,由(1)知,{|23}B x x =≤≤,因为“x ∈A ”是“x ∈B ”的必要不充分条件,于是得B A ,则有233a a <⎧⎨>⎩,解得12a <<,所以实数a 的取值范围是12a <<.18. 已知函数()22(11)1x f x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.【答案】(1)()f x 是奇函数,理由见解析(2)()f x 在(1,1)-上单调递减,证明见解析【解析】【分析】(1)根据函数奇偶性定义进行判断证明;(2)根据函数单调性定义进行证明.【小问1详解】()f x 是奇函数,理由如下:函数()22(11)1x f x x x =-<<-,则定义域关于原点对称,因为()()221x f x f x x --==--,所以()f x 是奇函数;【小问2详解】任取1211x x -<<<,则22121211221222221212222222()()11(1)(1)x x x x x x x x f x f x x x x x --+-=-=---- 1221211221222212122()2()2(1)()(1)(1)(1)(1)x x x x x x x x x x x x x x -+-+-==----,因为1211x x -<<<,所以2212211210,0,10,10x x x x x x +>->-<-<,所以12())0(f x f x ->,所以()f x 在(1,1)-上单调递减.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-的奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)()02f =,函数()()2g x f x =-是奇函数,证明见解析(2)(],0-∞【解析】【分析】(1)利用赋值法即可求得()02f =,利用奇函数定义和已知条件即可证明函数()()2g x f x =-奇偶性;(2)根据条件得到函数()f x 单调性,再结合题中条件将原不等式化简,将恒成立问题转化为最值问题进而求解.【小问1详解】因为函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,所以令0y =,得到()()()20f x f x f =+-,所以()02f =;函数()()2g x f x =-定义域为(),-∞+∞,因为()()()()()()()422020g x g x f x f x f x f x f +-=+--=+---=-=⎡⎤⎣⎦,所以函数()()2g x f x =-奇函数【小问2详解】因为对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,所以函数()f x 在(),-∞+∞单调递增,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭,即()126f x f m x ⎛⎫+--≥ ⎪⎝⎭,即()()122f x f m f x ⎛⎫+--≥⎪⎝⎭,即()12f x m f x ⎛⎫+-≥ ⎪⎝⎭,所以12x m x +-≥,所以12m x x≤+-对(]0,4x ∈恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时等号成立,所以min12220m x x ⎛⎫≤+-=-= ⎪⎝⎭,即实数m 的取值范围为(],0-∞20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R a a f x mx x a x m =++---∈,且12f a ⎛⎫= ⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.【答案】(1)(0,1){9} 是(2)-13【解析】【分析】(1)根据指数幂的含义以及对数函数的单调性分别求得a 的取值范围,综合可得答案;(2)由题意确定a 的值,化简()f x ,由12f a ⎛⎫= ⎪⎝⎭可得919()9ln 322m =+-,再由911(9ln 222f m ⎛⎫-=-- -⎪⎝⎭,两式相加即可求得答案.【小问1详解】由123a ≤可得09a ≤≤,当01a <<时,由1log 32a ≤得12log 3log a a a ≤,则123,09a a ≤∴<≤,故01a <<;当1a >时,由1log 32a ≤得12log 3log a a a ≤,则123,9a a ≥∴≥,故9a ≥;综合可得实数a 的取值范围(0,1){9} ;【小问2详解】由题意知1a >,则9a =,则()()()99ln 19ln 12f x mx x x =++---,需满足11x -<<,则()919ln 21x f x mx x+=+--,故由12f a ⎛⎫= ⎪⎝⎭得919(9ln 322m =+-,则9119ln 3222f m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,则1194,1322f f ⎛⎫⎛⎫-+=-∴-=- ⎪ ⎪⎝⎭⎝⎭.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?【答案】(1)()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩(2)2t =时有最小值,最小值为5200kJ .【解析】【分析】(1)先写出速度v 关于时间t 的函数,进而求出剩余体力Q 关于时间t 的函数;(2)分01t <≤和14t <≤两种情况,结合函数单调性,结合基本不等式,求出最值.【小问1详解】由题可先写出速度v 关于时间t 的函数()()30,0130101,14t v t t t <≤⎧=⎨--<≤⎩,代入1ΔQ 与2ΔQ 公式可得()()()1000060230,016012301016400,1411t t Q t t t t t -⋅⋅⨯<≤⎧⎪=⎡⎤-⋅--⎨⎣⎦-<≤⎪-+⎩解得()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩;【小问2详解】①稳定阶段中()Q t 单调递减,此过程中()Q t 最小值()()min 16400kJ Q t Q ==;②疲劳阶段()48004001200(14)Q t t t t =++<≤,则有()480040012004005200kJ Q t t t =++≥+=,当且仅当48001200t t=,即2t =时,“=”成立,所以疲劳阶段中体力最低值为5200kJ ,由于52006400<,因此,在2h t =时,运动员体力有最小值5200kJ .22. 已知函数()()9230x x m f x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.【答案】(1)(,2]-∞;(2)()()12f x f x <;(3)1.【解析】【分析】(1)把1m =代入,结合一元二次不等式及指数函数单调性求解不等式即得.(2)利用差值比较法,结合基本不等式判断出两者的大小关系.(3)利用换元法化简()g x 的解析式,对3m 进行分类讨论,结合二次函数的性质求得m 的值.【小问1详解】当1m =时,函数123()92)633(x x x x f x +=-⋅-=⋅,不等式()27f x ≤化为2(3)63270x x -⋅-≤,即(33)(39)0x x +-≤,解得39x ≤,则2x ≤,所以不等式()27f x ≤的解集为(,2]-∞.【小问2详解】依题意,()()112212923923x x m x x mf x f x ++-⋅⋅-=-+()()()12121233332333x x x x x x m =+--⋅-()()1212333323x x x x m =-+-⋅,由210x x >>,得12330x x -<,又212x x m =,则123323x x m +>=>==⋅,因此()()120f x f x -<,所以()()12f x f x <.【小问3详解】令3x t =,0t >,则()()221323,9232mm x m x f x t t f x t t--=-⋅⋅-=-⋅=-⋅,于是()()()g x f x f x =+-2213232mmt t t t =-⋅⋅+-⋅2211(t t t =+)-2⋅3m ⋅(t +211()23()2m t t t t =+-⋅⋅+-221(3)23m m t t=+---,而12t t+≥=,当且仅当1t t =,即1t =,0x =时取等号,当32m ≤,即3log 2m ≤时,则当12t t +=时,()y g x =取得最小值313443211,log 4m m -⋅-=-=,矛盾;当32m >,即3log 2m >时,则当13m t t+=时,()y g x =取得最小值22311m --=-,解得1m =,则1m =,所以m 的值是1.【点睛】思路点睛:含参数的二次函数在指定区间上的最值问题,按二次函数对称轴与区间的关系分类求解,再综合比较即可.。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

南宁市2024-2025学年秋季学期期中考试高一数学试卷考试时长: 120分钟满分: 150分一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全称量词命题“∀x∈R,x²≥0”的否定是,( )^ ∀x∈R,x²≤0 B. ∃x∈R, x²<0C. ∃x∈R,x²≥0 D ∀x∈R, x²<02. 已知集合A={0,1,2}, B={x|-2<x≤3},则A∩B= ( )A. {1}B. {1,2}C. {0,1}D. {0,1,2}3. 集合{1,2}的子集个数为( )A. 1个B. 2个C. 3个D. 4个4. “我住在广西”是“我住在中国”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 如果m>0, 那么m+4的最小值为( )mA. 2B. 22C. 4D. 86. 函数f(x)=x+3的定义域是( )A. {x|x≥-3}B. {x|x>0}C. {x|x≥3}D. {x|x≥4}7. 已知f(x―3)=2x²―3x+1,则f(1)= ( )A. 15B. 21C. 3D. 08. 若不等式kx²―6kx+k+8≥0的解集为R,则实数k的取值范围是 ( )A. 0≤k≤1B. 0<k≤1C. k<0或k>1D. k≤0或k≥1第1页,共4页二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若a<b<0, 则下列不等式正确的是 ( )A1 a <1bB.ab<a⁷ c |a| D.1a>1b10. 下列各组函数表示同一函数的是( )A.f(x)=x,g(x)=x2B.f(x)=x²,g(x)=|x|²C.f(x)=x+1,g(x)=x2―1x―1D.f(x)=x0x,g(x)=xx211. 若函数y=x²+bx+c的图象与x轴的两个交点是A(-2,0),B(1,0),则下列结论正确的是( )A. b+c=-1B. 方程x²+bx+c=0的两根是-2, 1C. 不等式.x²+bx+c>0的解集是{x|-2<x<1}D. 不等式x²+bx+c≤0的解集是{x|-2≤x≤1}三、填空题:本题共3小题,每小题5分,共15分.12. 设集合A={2,1-a,5}, 若4∈A,则a= .13. 已知函数那么f(f(3))= .14. 不等式x+3x―5<0的解集为 .四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.15.(本题13分) 已知全集U=R, 集合.A=x|x≥4,B=x|―6≤x≤6.(1)求A∩B和A∪B;(2)求((C U A)∩(C U B)第2页,共4页16.(本题15分) 设集合U=R,A=x|0≤x≤3,B=x|m―1≤x≤2m.(1)m=3,求A∪(C U B);(2) 若B⊆A求m的取值范围.17.(本题15分) 已知二次函数f(x)=x²―ax+b,f(1)=2,f(3)=―6.(1) 求f(x)的解析式;(2) 写出f(x)的单调区间; 并求.x∈[―1,5]时,f(x)的最大值与最小值.第3页,共4页18.(本题17分) 求下列函数的最值. (1) 已知x>2, 求y=x+1x―2的最小值;(2) 已知:x>0,y>0,且2x+y=1.求1x +9y的最小值.(3) 已知(0<x<4,求x(4―3x)的最大值.19.(本题17分)已知函数f(x)=,且f(1)=10.(1) 求a的值;(2) 判断函数f(x)在[3,+∞)上的单调性,并用定义法证明;(3) 求函数f(x)在区间[3,6]上的最大值和最小值.第4页,共4页高一数学11月期中考试参考答案题号1234567891011答案BDDBCABABDBDABD1. B 【详解】全称量词命题“∀x∈R, x²≥0”的否定是 ∃x ∈R,x²<0,故选: B.2. D 【详解】由题意. A =0.1,2,B =x|―2<x ≤3,所以A∩B={0,1,2}.故选: D.3. D 【详解】因为A={0.1}, 所以集合A 有∅,{0},{1},{0,1}共4个子集.故选: D4. B 【详解】“我住在广西”则一定有“我住在中国”,反之不成立,所以“我住在广西”则一定有“我住在中国”的充分不必要条件.故选:B5. C 【详解】 m >0,m +4m ≥2m ⋅4m =4,当且仅当 m =4m ,即m=2时取等号,所以 m +4m 的最小值为4.故选:C6. A 【详解】要使函数 f (x )=x +3有意义, 需x+3≥0, 解得x≥-3, 即得函数的定义域为:{x|x≥-3}.故选: A.7. B 【详解】∵f(x-3)=2x²-3x+1, ∴f(1)=(4-3)=2×4²-3×4+1=21,故选B.8. A 【详解】若k=0, 则不等式为8>0, 满足条件,若k≠0,要使不等式恒成立,则满足 {k >0=36k 2―4k (k +8)≤0, 即 {k >0k 2―k ≤0 则 {k >00≤k ≤1,所以0<k≤1, 综上, 实数k 的取值范围为0≤k≤1. 故选: A9. BD 【详解】对于A 、D,因为a<b<0,所以 ab>0,则 1ab >0,所以 a ⋅1ab <b ⋅1ab ,即 1b <1a ,故A 错误, D 正确; 对于B, 因为a<b<0, 所以a·a>b·a, 即 ab <a²,故 B 正确;对于C, 若a<-1<b<0, 则|a|>1, 0<|b|<1, 所以有|a|>|b|, 故C 错误.故选: BD.10. BD 【分析】同一个函数的定义:如果两个函数的定义域相同,对应关系完全一致,那么这两个函数为同一个函数.根据定义判断选项.【详解】A. f(x)=x,g(x)=|x|,对应关系不一致,不是同一函数.B.f (x )=x²,g (x )=|x|²=x²,定义域相同,对应关系一致,是同一函数.C. f(x)定义域为R, g(x)定义域为{x|x≠1}, 定义域不同, 不是同一函数.D. f(x)定义域为{x|x≠0},可化为 f (x )=1x ,g(x)定义域为 x|x ≠0,可化为 g (x )=1x ,是同一函数.故选: BD.11. ABD 【详解】依题意, 方程 x²+bx +c =0的两根是-2, 1, B 正确;显然-b=-1,c=-2,即b=1,c=-2,b+c=-1, A 正确;不等式 x²+bx +c >0, 即 x²+x ―2>0的解集为{x|x<-2或x>1}, C 错误;不等式 x²+bx +c ≤0,即 x²+x ―2≤0的解集是 x|―2≤x ≤1,D 正确.故选: ABD 12. - 3【详解】集合A={2,1-a,5},若4∈A, 则1-a=4⇒a=-3.故答案为: - 313. - 1【详解】因为 f (x )={2―x (x ≥1)x 2+x ―1(x <1),所以f(3)=2-3=-1,所以 f (f (3))=f (―1)=(―1)²―1―1=―1, 故答案为: -1.14. {x|-3<x<5}【详解】 x +3x ―5<0(x +3)(x ―5)<0,解得 ―3<x <5..故答案为: x|―3<x <5答案第1页,共3页15.【详解】(1) A={x|x≥4},B={x|-6≤x≤6},A∩B={x|4≤x≤6}3分A∪B=x|x≥―6 .6分(2)C U A={x|x<4} .8分或x>6}- .10分(C U A)∩(C U B)={x|x<―6} .13分16. 【详解】A={x|0≤x≤3}(1)1分故可得或x>6}- .3分所以或x>6}-(2) 由题B⊆A:当B=∅时,m-1>2m,解得m<-1,符合题意;分 (9)分 (13)综上可得,m的取值范围为m<-1或 (15)17.【详解】(1) 因为f(x)=x²―ax+b,且f(1)=2,f(3)=-6,.............................................................................................2分解得(a=8, b=9, .........................................................5分(只有一个正确得2分)....................................................................................所以6分(2)由(1)知.对称轴为x=4,图象开口朝上分 (8)所以f(x)的减区间是(-∞,4],增区间是....................................[4,+∞)10又4∈[-1,5],所以f(x)在区间[-1,4]上单调递减,在区间[4,5]上单调递增, (12)所以f(x)ₘᵢₙ=f(4)=―7, ………………………………13分f(x)最大值在f(-1)或f(5)取到, f(-1)=18, f(5)=-6,∴f(-1)>f(5)·f(x)ₘₐₓ=f(―1)=18 ………………………………………15分18.【详解】(1)∵x>2,x―2>0,1x―2>0.6分…14分而y=x+1x―2=x―2+1x―2+2≥2(x―2)⋅1x―2+2=4, .3分当且仅当即x=3时取等号,所以……………………………………………………………5分(2)1x+9y=(1x+9y)(2x+y)=11+y x+18x y211+2yx ⋅18xy=11+62, ..8分当且仅当时,取等号,又2x+y=1,即时分101 x +9y取得最小值11+62 11分(3)15分当且仅当3x=4-3x时取等号,即(满足0<x<4)时x(4-3x)最大值为 (17)法二:函数y=x(4―3x)=―3x²+4x的开口向下,对称轴为x=―4―6=23, ..15分所以当时,x(4-3x)取得最大值为1719.【详解】(1) 函数f(x)=x2+ax,因为f(1)=10,…………………………………………………………………………………………………3分(2)函数f(x)在[3,+∞)上单调递增,知由下面证明单调区间,设3≤x₁<x₂,则f(x1)―f(x2)=x1―x2+9x1―9x2=(x1―x2)(x1x2―9x1x2), .8分由3≤x₁<x₂,则x₁x₂―9>0,x₁―x₂<0,x₁x₂>0, 11分所以(x1―x2)x1x2―9x1x2<0⇒f(x1)―f(x2)<0,即f(x₁)<f(x₂), ..12分……………………………………………………………………………………………13分(3)由(2)可知f(x)在区间[3,+∞)上单调递增,则在区间[3,6]上单调递增…………14分所以f(x)mn=f(3)=3+93=6,f(x)max=f(6)=6+96=152, 16分 (6)答案第3页,共3页。

高一(上学期)期中考试数学试卷

高一(上学期)期中考试数学试卷

高一(上学期)期中考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知集合{,}A x y =,集合{}22,2B x x =,且A B =,则x =_______ 2.已知函数1()4x f x a -=+的图象恒过定点P ,则点P 坐标是___________3.定义在R 上的奇函数()y f x =满足(1)(0)f f π+=,则(1)f -=___________.4.方程42log 13x +=的解x =___________.5.若关于x 的方程53=+x a 有负实根,则实数a 的取值范围是___________6.若函数2245y x x =-+的图象按向量a 平移后得到函数22y x =的图象,则向量a 的坐标为________. 7.在如今这个5G 时代,6G 研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G 速率有望达到1Tbps ,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G 数据传输速率有望比5G 快100倍,时延达到亚毫秒级水平.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率C 取决于信道宽带W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.若不改变宽带W ,而将信噪比S N从11提升至499,则最大信息传递率C 会提升到原来的_________倍.(结果保留一位小数)8.设a 是实数,若1x =是x a >的一个充分条件,则a 的取值范围是__________.9.设无穷等比数列{}n a 的公比为q ,且211a q =+,则该数列的各项和的最小值为__________. 10.已知0,0a b >>,且12223a b +=+,则2a b +的最小值为___________. 11.已知a 为奇数且0a >,则关于x 的不等式21a x x x ≤-的解集为___________. 12.设,x y ∈R ,若|||4||||1|5x x y y +-++-≤,则23x y xy -+的取值范围为___________.二、单选题13.设a 、b 、c 表示三条互不重合的直线,α、β表示两个不重合的平面,则使得“//a b ”成立的一个充分条件为( )A .a c ⊥,b c ⊥B .//a α,//b αC .//a α,b αβ=,a β⊂D .b α⊥,//c α,a c ⊥ 14.设集合{}02M x x =≤≤,{}02N y y =≤≤,那么下列四个图形中,能表示集合M 到集合N 的函数关系的有( )A .①①①①B .①①①C .①①D .①15.设20202021202120222121,2121a b ++==++,则下列说法中正确的是( ) A .a b > B .11a b > C .222a b +≥ D .2b a a b+= 16.设C ={复数},R ={实数},M ={纯虚数},全集U C =,则下列结论中正确的是( )A .⋃=R M CB .⋂=∅C R M C .C C R M ⋂=D .⋃=C C M R C三、解答题17.设全集为R ,已知301x A x x -⎧⎫=>⎨⎬+⎩⎭,{}223B x a x a =-<<+. (1)若1a =,求A B ⋂;(2)若A B ⋃=R ,求实数a 的取值范围.18.若不等式210mx mx +-<对x ∈R 恒成立,求m 的取值范围.19.研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟)之间的变化曲线如图所示,当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈时,曲线是函数0.880log ()y x a =++图像的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)20.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x ,使得00(1)()(1)f x f x f +=+成立. (1)函数1()f x x=是否属于集合M ?说明理由; (2)设函数2()lg ,1a f x M x =∈+求a 的取值范围; (3)设函数2x y =图像与函数y x =-的图像有交点且横坐标为a ,证明:函数2()2x f x x M =+∈,并求出对应的0x (结果用a 表示出来).21.设非空集合{}2|(2)10,A x x b x b b R =++++=∈,求集合A 中所有元素的和.参考答案:1.12【分析】根据A =B ,得到两个集合的元素相同,然后根据集合元素的特点建立方程即可.【详解】解:因为集合A :{x ,y },B :{2x ,2x 2},且A =B ,当x =2x 时,x =0,此时A ={0,0},B ={0,0},不成立,舍去.所以x =2x 2,y =2x 解得x 12=或x =0(舍). 当x 12=时,A ={12,1},B ={1,12}满足条件. 所以A ={12,1}. 故答案为:12【点睛】本题主要考查集合相等的应用,集合相等,对应元素完全相同.注意进行检验.2.()1,5【分析】根据指数函数的指数为0,求出函数过定点坐标;【详解】解:因为1()4x f x a -=+,令10x -=,即1x =,所以11(1)45f a -=+=,即函数恒过点()1,5P ; 故答案为:()1,53.π-【分析】利用奇函数的性质有(1)(0)(1)0f f f +=--+,结合已知即可求值.【详解】由题意(0)0f =且()()f x f x -=-,则(1)(0)(1)0f f f π+=--+=,则(1)f π-=-.故答案为:π-.4.4【分析】根据对数的定义可得.【详解】由42log 13x +=得4log 1x =,所以4x =.故答案为:4.5.()3,2--【分析】设方程53=+x a 有负实根为00(0)x x <,根据指数函数的性质,得到0051x <<,进而得到031a <+<,即可求解.【详解】设关于x 的方程53=+x a 有负实根为00(0)x x <,根据指数函数的性质,可得0051x <<,所以031a <+<,可得32a -<<,即实数a 的取值范围是()3,2--.故答案为:()3,2--.6.(1,3)--【分析】把函数式2245y x x =-+配方后,根据图象变换知可得.【详解】2245y x x =-+22(1)3x =-+,因此把它向左平移1个单位,再下平移3个单位可得22y x =的图象.①(1,3)a =--.故答案为:(1,3)--.【点睛】本题考查函数图象平移,考查向量的概念.属于基础题.7.2.5##52【分析】设提升前最大信息传递率为1C ,提升后最大信息传递率为2C , 再根据题意求21CC ,利用指数、对数的运算性质化简即可求解.【详解】设提升前最大信息传递率为1C ,提升后最大信息传递率为2C ,则由题意可知,122log (111)log 12C W W =+=,222log (1499)log 500C W W =+=, 所以()()()()log log log log lo log g C W C W ⨯⨯===⨯⨯223222222122210525500232123 log log log ...log log log ..+++⨯====≈+++23222232222523523232896252232158358倍. 所以最大信息传递率C 会提升到原来的2.5倍.故答案为:2.58.(),1-∞【分析】利用充分条件的定义,将问题转化为{}{}1|x x a ⊆>,由子集的定义求解即可.【详解】解:因为1x =是x a >的一个充分条件,则{}{}1|x x a ⊆>,所以1a <,则a 的取值范围是(),1-∞.故答案为:(),1-∞.9.)21 【分析】先写出无穷等比数列各项和的表达式,然后利用基本不等式求解即可.【详解】{}n a 是公比为q 的无穷等比数列,∴{}n a 数列的各项和为()()22111lim lim =11n n n n q q q S q q →+∞→+∞+-+=--,其中()()1,00,1q ∈-, 又11q -<<且0q ≠,012q ∴<-<且10q -≠,()())2211112122=21111q q q q q q ⎡⎤--++⎣⎦∴==-+-≥---,当且仅当211q q-=-,即1q =∴数列{}n a 的各项和的最小值为)21.故答案为:)21 10.8 【分析】根据0,0a b >>,且12223a b +=+,将2a b +转化为()2224a b a b +=++-()13222422a a b b =+⎛⎫+- ⎪+⎝⎤⎦⎭+⎡⎣,利用基本不等式求解. 【详解】因为0,0a b >>,且12223a b +=+, 所以()2224a b a b +=++-,()13222422a a b b =+⎛⎫+- ⎪+⎝⎤⎦⎭+⎡⎣, ()2324244a b a b +⎛⎫=++- ⎪+⎝⎭,24834⎛ ≥+-= ⎝, 当且仅当()422a b a b+=+,即1,6a b ==时,等号成立, 所以2a b +的最小值为8,故答案为:811.{|1x x ≥或10}2x ≤< 【分析】讨论0x <、102x ≤<、12x >分别求对应解集,最后取并即得结果. 【详解】由题设1(21)02121a a a x x x x x x x ----=≥--,又a 为奇数且0a >,则12,N a k k -=∈, 当0x <时,1210a a x x ---<,210x -<,则021a x x x -<-不满足题设; 当102x ≤<时,021a x x x ≤≤-成立; 当12x >时,不等式等价于1(21)1a x x --≥, 若112x <<时,10,211a x x -<-< ,即1(21)1a x x --<与题设矛盾;若1≥x 时,1,211a x x --≥,满足1(21)1a x x --≥;综上,不等式解集为{|1x x ≥或10}2x ≤<. 故答案为:{|1x x ≥或10}2x ≤< 12.[3,9]-【分析】利用绝对值三角不等式可得|||4||||1|5x x y y +-++-=,即04x ≤≤,01y ≤≤,利用23m x y xy=-+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点,讨论3x =或2y =-、3x ≠研究m 的范围即可.【详解】|||4||||4||4|4x x x x x x +-=+-≥+-=,当04x ≤≤时等号成立,|||1||||1||1|1y y y y y y +-=+-≥+-=,当01y ≤≤时等号成立,所以|||4||||1|5x x y y +-++-≥,而|||4||||1|5x x y y +-++-≤,故|||4||||1|5x x y y +-++-=,此时04x ≤≤,01y ≤≤,令23m x y xy =-+中(,)x y ,与{(,)|04,01}x y x y ≤≤≤≤所表示的区域有公共点,当3x =或2y =-时6m =,而3[0,4]x =∈,故6m =满足;当3x ≠时,由62[0,1]3m y x -=-∈-得:6233m x -≤≤-,而04x ≤≤, 若34x <≤时60m ->,此时23(1)x m x ≤≤-,故69<≤m ;若03x ≤<时60m ->,此时233x m x ≥≥-,故36m -≤<;综上,3m -≤≤9.故答案为:[3,9]-【点睛】关键点点睛:利用绝对值三角不等式得|||4||||1|5x x y y +-++-=确定x 、y 的范围,再将问题转化为23m x y xy =-+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点求m 的范围即可.13.C【分析】由线线垂直的性质可判断A ,由线面平行的性质可判断B ,由线面平行的性质可判断C ,由线面平行垂直的性质可判断D .【详解】选项A :当a c ⊥,b c ⊥时,则//a b 或a 与b 相交或异面,①A 错误,选项B :当//a α,//b α时,则//a b 或a 与b 相交或异面,①B 错误,选项C :由线面平行的性质定理,当//a α,a β⊂,b αβ=时,则//a b ,①C 正确,选项D :当b α⊥,//c α时,①b c ⊥,①a c ⊥,则//a b 或a 与b 相交或异面,①D 错误故选:C14.C【分析】根据函数的定义,逐项判定,即可求解. 【详解】由题意,函数的定义域为{}02M x x =≤≤,对于①中,函数的定义域不是集合M ,所以不能构成集合M 到集合N 的函数关系;对于①中,函数的定义域为集合M ,值域为集合N ,所以可以构成集合M 到集合N 的函数关系; 对于①中,函数的定义域为集合M ,值域为集合N ,所以可以构成集合M 到集合N 的函数关系;对于①中,根据函数的定义,集合M 中的元素在集合N 中对应两个函数值,不符合函数的定义,所以不正确.故选:C15.A【分析】令()()1111111212112222121212x x x x x f x +++++++===++++,判断函数的单调性,即可判断A ,再根据不等式的性质即可判断BC ,再利用基本不等式即可判断D.【详解】解:令()()1111111212112222121212x x x x x f x +++++++===++++, 因为121x y +=+在R 上递增,且1210x ++>,所以函数()f x 在在R 上递减,所以()()202020210f f >>,即0a b >>,所以11a b<, 故A 正确,B 错误; 因为2020202120212022212101,012121a b ++<=<<=<++, 所以222a b +<,故C 错误;因为2b a a b +≥, 当且仅当b a a b=,即a b =时,取等号,又a b >, 所以2b a a b +>,故D 错误. 故选:A.16.D【分析】注意复数域的构成,对选项逐一分析,可得结果.【详解】因为对于任意复数(,)z a bi a R b R =+∈∈,当0b =时z 为实数,当0b ≠时z 为虚数,当0,0a b =≠时z 为纯虚数,所以复数包括实数和虚数,纯虚数是特殊的虚数,所以对于A 项,并集中还少不是纯虚数的虚数,对于B 项,交集应该为R ,对于C 项,结果应该为虚数集,只有D 项是满足条件的,故选:D.【点睛】该题考查的是有关复数域的问题,涉及到的知识点有复数的分类,集合的运算,数域简单题目. 17.(1){|13}x x <≤;(2)3a >.【分析】(1)解分式不等式可得集合A ,并求出A ,由1a =得集合B ,再利用交集的定义直接计算作答.(2)由A B =R 可得A B ⊆,再借助集合的包含关系列式计算作答.(1) 解不等式:301x x ->+,即(3)(1)0x x -+>,解得:1x <-或3x >,则{|1A x x =<-或3}x >, 因全集为R ,于是得{|13}A x x =-≤≤,当1a =时,{|15}B x x =<<, 所以{|13}A B x x ⋂=<≤.(2)由(1)知,{|13}A x x =-≤≤,因A B =R ,因此有:A B ⊆,于是得21233a a -<-⎧⎨+>⎩,解得3a >, 所以实数a 的取值范围是:3a >.18.(]4,0-【分析】本题需要对0m =和0m ≠两种情况分别讨论. 当0m =时结论恒成立; 当0m ≠时,使用二次函数的性质分析求解; 最后综合两种情况的结论即可.【详解】由已知可得,当0m =时,10-<成立;当0m ≠时,要使不等式210mx mx +-<对x ∈R 恒成立,则二次函数开口向下, 即0m <,且最大值要小于0, 即和x 轴没有交点, 所以240m m ∆=+<, 解得40m -<<; 综上, m 的取值范围为(]4,0m ∈-.19.(1)20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩;(2)14分钟.【解析】(1)根据题意,分别求得(0,16]x ∈和(16,40]x ∈上的解析式,即可求解; (2)当(0,16]x ∈和(16,40]x ∈时,令()68f x <,求得不等式的解集,即可求解.【详解】(1)当(0,16]x ∈时,设函数2()(12)84(0)f x b x b =-+<,因为2(16)(1612)8480f b =-+=,所以14b =-,所以21()(12)844f x x =--+, 当(16,40]x ∈时,0.8()log ()80f x x a =++,由0.8(16)log (16)8080f a =++=,解得15a =-,所以0.8()log (15)80f x x =-+, 综上,函数的解析式为20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (2)当(0,16]x ∈时,令21()(12)84684f x x =--+<, 即2(12)64x ->,解得4x <或20x >(舍去),所以[0,4]x ∈,当(16,40]x ∈时,令0.8()log (15)8068f x x =-+<,得12150.829.6x -≥+≈,所以[30,40]x ∈,所以学生处于“欠佳听课状态”的时间长为40403014-+-=分钟. 20.(1)1()f x M x=∉,答案见解析;(2)3a ⎡∈⎣;(3)证明见解析;01x a =+. 【分析】(1)集合M 中元素的性质,即有()()()0011f x f x f +=+成立,代入函数解析式列出方程,进行求解即可;(2)根据()()()0011f x f x f +=+和对数的运算,求出关于a 的方程,再根据方程有解的条件求出a 的取值范围,当二次项的系数含有参数时,考虑是否为零的情况;(3)利用()()()0011f x f x f +=+和()22x f x x M =+∈,整理出关于0x 的式子,利用2x y =图象与函数y x=-的图象有交点,即对应方程有根,与求出的式子进行比较和证明.【详解】(1)若1(),f x M x=∈在定义域内存在0x , 则20000111101x x x x =+⇒++=+方程无解,所以1(),f x M x=∉第 11 页 共 11 页 (2)由题意得2()lg 1a f x M x =∈+ 222lg lg +lg (2)22(1)0(+1)112a a a a x ax a x x ∴=⇒-++-=++ 当2a =时,12x =; 当2a ≠时,由0∆≥,得2640a a -+≤,解的)(32,35a ⎡∈+⎣综上,3a ⎡∈⎣; (3)函数2()2,x f x x M =+∈001220000(1)()(1)2(1)23x x f x f x f x x +∴+--=++---00100=22(1)22(1),x x x x -⎡⎤+-=+-⎣⎦又函数2x y =图像与函数y x =-的图像有交点且横坐标为a则010202(1)0x a a x -+=⇒+-=,其中01x a =+00(1)()(1),f x f x f ∴+=+即2()2x f x x M =+∈.【点睛】此题的集合中的元素是集合,主要利用了元素满足的恒等式进行求解,根据对数和指数的元素性质进行化简,考查了逻辑思维能力和分析、解决问题的能力.21.答案见解析【分析】分一元二次方程有相等实根与两个不相等实根讨论,当有相等实根时,直接求解,当有不相等实根时由根与系数关系求解.【详解】当0b =时,解得121x x ==-,{1}A =-,所以A 中所有元素之和为1-,当0b ≠时,22(2)4(1)0b b b ∆=+-+=>,方程2(2)10x b x b ++++=有两个不等的实根,由根与系数的关系知12(2)x x b +=-+,即A 中所有元素之和为2b --,【点睛】本题主要考查了一元二次方程的根,分类讨论的思想,集合的描述法,属于中档题.。

四川省成都市2023-2024学年高一上学期期中数学试题(含答案)

四川省成都市2023-2024学年高一上学期期中数学试题(含答案)

成都2023-2024学年度上期高2026届半期考试数学试题(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全称量词命题“5,lg 4x x x ∀∈+≠R ”的否定是()A.x ∃∈R ,5lg 4x x +=B.x ∀∈R ,5lg 4x x +=C.x ∃∈R ,5lg 4x x +≠D.x ∀∉R ,5lg 4x x +≠【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题.【详解】“5,lg 4x x x ∀∈+≠R ”的否定是“x ∃∈R ,5lg 4x x +=”.故选:A .2.下列命题为真命题的是()A.若33a bc c<,则a b < B.若a b <,则33<ac bc C.若a b <,c d <,则a c b d -<- D.若a c b d -<-,c d <,则a c b d+<+【答案】D 【解析】【分析】举反例可判断选项A 、B 、C ,由不等式的性质可判断选项D.【详解】对于选项A ,当1c =-时,若33a bc c<,则a b >,与a b <矛盾,故选项A 错误;对于选项B ,当0c =时,若a b <,则330ac bc ==,与33<ac bc 矛盾,故选项B 错误;对于选项C ,当56a b ==,,10c d =-=,,满足a b <,c d <,但a c b d -=-,这与a c b d -<-矛盾,故选项C 错误;对于选项D ,因为a c b d -<-,c d <,所以由不等式性质可得:()()a c c b d d -+<-+,即a b <.因为a b <,c d <,由不等式性质可得:a c b d +<+,故选项D 正确.故选:D.3.设函数()ln 26f x x x x =+-,用二分法求方程ln 260x x x +-=在()2,3x ∈内的近似解的过程中,计算得(2)0,(2.5)0,(2.25)0f f f <>>,则下列必有方程的根的区间为()A.()2.5,3 B.()2.25,2.5 C.()2,2.25 D.不能确定【答案】C 【解析】【分析】利用零点存在性定理及二分法的相关知识即可判断.【详解】显然函数()ln 26f x x x x =+-在[]2,3x ∈上是连续不断的曲线,由于(2)0,(2.25)0f f <>,所以()()2· 2.250f f <,由零点存在性定理可得:()ln 26f x x x x =+-的零点所在区间为()2,2.25,所以方程ln 260x x x +-=在区间()2,2.25内一定有根.故选:C.4.函数2||3()33x x f x =-的图象大致为()A. B. C. D.【答案】D 【解析】【分析】根据函数的奇偶性、定义域、正负性,结合指数函数的单调性进行判断即可.【详解】由33011xx x -≠⇒≠⇒≠±,所以该函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,显然关于原点对称,因为()()()22||||333333x x x x f x f x ---===--,所以该函数是偶函数,图象关于纵轴对称,故排除选项AC ,当1x >时,()33=3300xxf x --<⇒<,排除选项B ,故选:D5.若0a >,0b >,则“221a b +≤”是“a b +≤”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据不等式之间的关系,利用充分条件和必要条件的定义进行判断即可得到结论.【详解】当0a >,0b >,且221a b +≤时,()()22222222a b a b ab a b +=++≤+≤,当且仅当2a b ==时等号成立,所以a b +≤,充分性成立;1a =,14b =,满足0a >,0b >且a b +≤,此时221a b +>,必要性不成立.则“221a b +≤”是“a b +≤”的充分不必要条件.故选:A6.已知当生物死亡后,它机体内原有的碳14含量y 与死亡年数x 的关系为573012x y ⎛⎫= ⎪⎝⎭.不久前,考古学家在某遗址中提取了数百份不同类型的样品,包括木炭、骨头、陶器等,得到了一系列的碳14测年数据,发现生物组织内碳14的含量是死亡前的34.则可以推断,该遗址距离今天大约多少年(参考数据ln 20.7≈,ln 3 1.1≈)()A.2355B.2455C.2555D.2655【答案】B 【解析】【分析】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,再根据对数的运算性质及换底公式计算即可.【详解】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,即057301324x ⎛⎫= ⎪⎝⎭,所以01222234ln 3 1.1log log log 4log 322573043ln 20.7x ===-=-≈-,所以0115730224557x ⎛⎫≈⨯-= ⎪⎝⎭,即该遗址距离今天大约2455年.故选:B .7.已知函数2295,1()1,1a x ax x f x xx -⎧-+≤=⎨+>⎩,是R 上的减函数,则a 的取值范围是()A.92,2⎡⎫⎪⎢⎣⎭B.94,2⎡⎫⎪⎢⎣⎭C.[]2,4 D.(]9,2,2⎛⎤-∞+∞⎥⎝⎦【答案】C 【解析】【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a aa a -⎧≥⎪⎪-<⎨⎪-⨯+≥+⎪⎩,解得24a ≤≤,所以a 的取值范围是[]2,4故选:C8.设358log 2,log 3,log 5a b c ===,则()A.a c b <<B.a b c<< C.b<c<aD.c<a<b【答案】B 【解析】【分析】利用中间值比较大小得到23<a ,2334b <<,34c >,从而得到答案.【详解】333log 22log 20o 33938l g a --=-=<,故23<a ,555log 27log 2522log 30333b --=-=>,555log 81log 12533log 30444b --=-=<,故2334b <<,888log 5log 33log 5054246124c --=-=>,34c >,故a b c <<故选:B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.任何集合都是它自身的真子集B.集合{},,,a b c d 共有16个子集C.集合{}{}42,Z 42,Zx x n n x x n n =+∈==-∈D.集合{}{}22|1,|22,x x a a x x a a a ++=+∈==-+∈N N 【答案】BC 【解析】【分析】根据真子集的性质、子集个数公式,结合集合的描述法逐一判断即可.【详解】A :根据真子集的定义可知:任何集合都不是它自身的真子集,所以本选项说法不正确;B :集合{},,,a b c d 中有四个元素,所以它的子集个数为42=16,所以本选项说法正确;C :因为{}(){}42,Z 412,Z x x n n x x n n =-∈==-+∈,所以{}42,Z x x n n =+∈与{}42,Z x x n n =-∈均表示4的倍数与2的和所组成的集合,所以{}{}42,Z 42,Z x x n n x x n n =+∈==-∈,因此本选项说法正确;D :对于{}2|22,x x a a a +=-+∈N ,当1a =时,2221x a a =-+=,即{}21|22,x x a a a +∈=-+∈N ,但{}21|1,x x a a +∉=+∈N ,所以两个集合不相等,因此本选项说法不正确.故选:BC.10.已知正实数x ,y 满足1x y +=,则下列不等式成立的有()A.22x y +≥ B.14≤xy C.124x x y+≥ D.1174xy xy +≥【答案】ABD【解析】【分析】选项A 用基本不等式性质判断即可;选项B 用基本不等式的推论即可;选项C 将1x y +=带入,再用基本不等式判断;D 利用对勾函数的单调性判断.【详解】对A :因为x ,y为正实数22x y +≥==,当且仅当12x y ==时取等号,所以A 正确;对B :因为2211224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12x y ==时取等号,所以B 正确;对C:因为1222111x x y x y x x y x y x y ++=+=++≥+=+2y x x y =时取等号,所以C 错误;对D :由B 选项可知14≤xy ,令xy t =,则104t <≤,11xy t xy t +=+()1104f t t t t ⎛⎫=+<≤ ⎪⎝⎭因为对勾函数在104t <≤上是减函数,所以()11744f t f ⎛⎫≥= ⎪⎝⎭,所以D 正确;故选:ABD 11.已知()1121xa f x +=+-是奇函数,则()A.1a = B.()f x 在()(),00,x ∈-∞⋃+∞上单调递减C.()f x 的值域为()(),11,-∞-⋃+∞ D.()()3log 2f x f >的解集为()0,9x ∈【答案】AC 【解析】【分析】由奇函数的定义可判定A 项,利用指数函数的性质可判定B 项,进而可求值域判定C 项,可结合对数函数的性质解不等式判定D 项.【详解】因为函数()1121xa f x +=+-是奇函数,易知2100x x -≠⇒≠,则有()()()()()11211112210212121x x x xa a a f x f x a -+-++-+=+++=+=-+=---,解之得1a =,故A 正确;则()2121xf x =+-,易知当0210x x y >⇒=->且有21xy =-单调递增,故此时()2121x f x =+-单调递减,又由奇函数的性质可知0x <时()f x 也是单调递减,故()f x 在(),0∞-和()0,∞+上单调递减,故B 错误;由上可知0x >时,222100112121xx x ->⇒>⇒+>--,即此时()1f x >,由奇函数的性质可知0x <时,()1f x <-,则函数()f x 的值域为()(),11,-∞-⋃+∞,故C 正确;由上可知()()()33log 20log 21,9f x f x x >⇒<<⇒∈,故D 错误.故选:AC12.已知定义在(0,)+∞上的函数()f x 在区间()0,6上满足()()6f x f x -=,当(]0,3x ∈时,()13log f x x =;当[)6,x ∈+∞时,()21448f x x x =-+-.若直线y m =与函数()f x 的图象有6个不同的交点,各交点的横坐标为()1,2,3,4,5,6i x i =,且123456x x x x x x <<<<<,则下列结论正确的是()A.122x x +>B.()5648,49x x ∈C.()()34661x x --> D.()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ 【答案】ABD 【解析】【分析】先利用函数的对称性和解析式作出函数图象,分别求出直线y m =与函数()f x 的图象的交点的横坐标的范围,运用基本不等式和二次函数的值域依次检验选项即得.【详解】如图,依题意可得13132log ,03()log (6),361448,6x x f x x x x x x ⎧<≤⎪⎪⎪⎪=-<<⎨⎪⎪-+-≥⎪⎪⎩,作出函数()y f x =在(0,)+∞上的图象,设直线1y =与()y f x =的图象分别交于,,,A B C D 四点,显然有1(,1),(3,1),(7,1)3A B D ,由()()6f x f x -=知函数()f x 在区间()0,6上关于直线3x =对称,故可得:17(,1)3C .对于A 选项,由12()()f x f x =可得121133x x <<<<,111233log log x x =-,化简得121=x x ,由基本不等式得:122x x +>=,故A 项正确;对于B 选项,当[)6,x ∈+∞时,由()21448f x x x =-+-可知其对称轴为直线7x =,故562714,x x +=⨯=又因56678x x <<<<,故()25655551414x x x x x x =-=-+25(7)+49x =--在区间()6,7上为增函数,则有564849x x <<,故B 项正确;对于C 选项,由34()()f x f x =可得34356x x <<<<,131433log (6)log (6)x x -=--,化简得1343log [(6)(6)]0x x --=,故有()()34661x x --=,即C 项错误;对于D 选项,依题意,1236()()()(),f x f x f x f x m ===== 且01m <<,故()()()112266126()x f x x f x x f x x x x m +++=+++ ,又因函数()f x 在区间()0,6上关于直线3x =对称,故1423236,x x x x +=+=⨯=又由B 项分析知5614,x x +=于是126661426,x x x +++=++= 故得:()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ ,故D 项正确.故选:ABD.【点睛】关键点点睛:本题考查分段函数与直线y m =的交点横坐标的范围界定,关键在于充分利用绝对值函数与对称函数的图象特征进行作图,运用数形结合的思想进行结论检验.三、填空题:本大题共4小题,每小题5分,共20分.13.若定义在[]4,4-上的奇函数()f x 的部分图象如图所示,则()f x 的单调增区间为______.【答案】[]2,4和[]4,2--【解析】【分析】直接根据图象结合奇函数性质得到答案.【详解】根据图象,0x >时函数在[]2,4上单调递增,函数为奇函数,故函数在[]4,2--上也单调递增.故答案为:[]2,4和[]4,2--.14.若()()2log ,0215,0xx x f x f x x >⎧=⎨++≤⎩,则(1)(7)f f --=______.【答案】32【解析】【分析】直接计算得到答案.【详解】()()2log ,0215,0x x x f x f x x >⎧=⎨++≤⎩,则()()2221113(1)(7)147log 14log 7log 22222f f f f --=+-=+-=+=.故答案为:32.15.石室中学“跳蚤市场”活动即将开启,学生们在该活动中的商品所卖款项将用来支持慈善事业.为了在这次活动中最大限度地筹集资金,某班进行了前期调查.若商品进货价每件10元,当售卖价格(每件x 元)在1025x <≤时,本次活动售出的件数()42105P x =-,若想在本次活动中筹集的资金最多,则售卖价格每件应定为______元.【答案】15【解析】【分析】结合已知条件,求出利润()f x 的解析式,然后结合换元法和基本不等式即可求解.【详解】由题意可知,利润4210(10)()(5)x f x x -=-,1025x <≤,不妨令10(0,15]t x =-∈,则利润44421010()50025(5)10t f x y t t t ===≤+++,当且仅当25t t=时,即5t =时,即15x =时,不等式取等号,故销售价格每件应定为15元.故答案为:15.16.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.那么,函数()323f x x x x =--图象的对称中心是______.【答案】()1,3-【解析】【分析】计算出()()b f x a b f x a +-++--()232662622a x a a a b =-+---,得到3266026220a a a a b -=⎧⎨---=⎩,求出13a b =⎧⎨=-⎩,得到对称中心.【详解】()()bf x a b f x a +-++--()()()()()()3232332x a x a x a x a x a x a b =+-+-++-+--+--+-32232232233336333x ax a x a x ax a x a x ax a x a =+++------+-+223632x ax a x a b-+-+--()232662622a x a a a b =-+---,要想函数()y f x a b =+-为奇函数,只需()2326626220a x a a a b -+---=恒成立,即3266026220a a a a b -=⎧⎨---=⎩,解得13a b =⎧⎨=-⎩,故()323f x x x x =--图象的对称中心为()1,3-故答案为:()1,3-四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)计算2173ln 383log 210e 22lg 527log 10-⎛⎫-⨯--⎪⎝⎭;(2)已知11224x x-+=,求3322x x -+的值.【答案】(1)0(2)52【解析】【分析】(1)结合指数运算及对数运算性质,换底公式即可求解;(2)考察两式间的内在联系,结合立方和公式即可求解.【详解】(1)21723ln 3833log 2101727e22lg 52()(lg 5lg 2)27log 10864-⎛⎫-⨯--=--+ ⎪⎝⎭1791088--==;(2)由11224x x-+=,则112122()216x x x x --+=++=,则114x x -+=,则3322x x-+()11122141352x x x x --⎛⎫=+-+=⨯= ⎪⎝⎭.18.已知全集R U =,集合5|1,{|16}2A x B x x x ⎧⎫=>=<≤⎨⎬-⎩⎭,{1C x x a =≤-∣或21}x a ≥+.(1)求()U A B ∩ð;(2)若()A B C ⊆ ,求实数a 的取值范围.【答案】(1){31}xx -<≤∣(2)(],2[7,)-∞-+∞ 【解析】【分析】(1)解出分式不等式,求出集合A ,再利用交集和补集的含义即可得到答案;(2)分R C =和R C ≠讨论即可.【小问1详解】{}5310(3)(2)0{32}22x A x x x x x x x x x +⎧⎫⎧⎫=>=>=+->=-<<⎨⎬⎨⎬--⎩⎭⎩⎭∣∣∣∣{16}B x x =<≤∣,{1U B x x ∴=≤∣ð或6}x >,(){31}U A B x x ∴=-<≤ ∣ð.【小问2详解】{36}A B x x =-<≤ ∣,且()A B C ⊆ ,①R C =,1212a a a -≥+⇒≤-,此时满足()A B C ⊆ ,②R C ≠,2a >-,此时213a +>-,则167-≥⇒≥a a ,此时满足()A B C ⊆ ,综上所述,实数a 的取值范围为(],2[7,)-∞-+∞ .19.在“①函数()f x 是偶函数;②函数()f x 是奇函数.”这两个条件中选择一个补充在下列的横线上,并作答问题.注:如果选择多个条件分别解答,按第一个解答计分.已知函数()ln(e )ln(e )f x x k x =++-,且______.(1)求()f x 的解析式;(2)判断()f x 在()0,e 上的单调性,并根据单调性定义证明你的结论.【答案】(1)选择①时,()ln(e )ln(e )f x x x =++-;选择②时,()ln(e )ln(e )f x x x =+--(2)答案见解析【解析】【分析】(1)根据函数的奇偶性的定义求解参数k ,即可得()f x 的解析式;(2)根据函数单调性的定义证明即可得结论.【小问1详解】选择①:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是偶函数,所以()()()()ln e ln e f x x k x f x -=-++=,则()()()()ln e ln e ln e ln e x k x x k x -++=++-,则1k =所以()ln(e )ln(e )f x x x =++-;选择②:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是奇函数,所以()()()()ln e ln e f x x k x f x -=-++=-,则()()()()ln e ln e ln e ln e x k x x k x -++=-+--,则1k =-所以()ln(e )ln(e )f x x x =+--;【小问2详解】选择①:函数22()ln(e )ln(e )ln(e )f x x x x =++-=-在()0,e 上单调递减.证明:1x ∀,()20,e x ∈,且12x x <,有,有22222221121212(e )(e )()()x x x x x x x x ---=-=+-,由120e x x <<<,得120x x +>,120x x -<,所以1212()()0x x x x +-<,于是222212e e 0x x ->->,所以222221e 01e x x -<<-,所以22222222121221e ()()ln(e )ln(e )ln ln10e xf x f x x x x --=---=<=-,即12()()f x f x >,所以函数22()ln(e )f x x =-在()0,e 上单调递减.选择②:函数e ()ln(e )ln(e )ln e xf x x x x+=+--=-在()0,e 上单调递增.证明:1x ∀,()20,e x ∈,且12x x <,则21211221212121e e (e )(e )(e )(e )2()e e (e )(e )(e )(e )x x x x x x x x x x x x x x +++--+---==------由120e x x <<<,得210x x ->,2e 0x ->,1e 0x ->,所以21212()0(e )(e )x x x x ->--,即2121e e 0e e x x x x ++>>--,于是2211e e 1e e x x x x +->+-,所以2212211211e e e e ()()lnln ln ln10e e e e x x x x f x f x x x x x +++--=-=>=+---,即12()()f x f x <,所以函数e ()lne xf x x+=-在()0,e 上单调递增.20.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的含量变化规律的“散点图"”如图,该函数近似模型如下:()20.43()49.18,02256.26e14.73,2x a x x f x x -⎧-+≤<⎪=⎨⎪⋅+≥⎩,又已知酒后1小时测得酒精含量值为46.18毫克/百毫升,根据上述条件,解答以下问题:(1)当02x ≤<时,确定()f x 的表达式;(2)喝1瓶啤酒后多长时间后才可以驾车?(时间以整分钟计算)(附参考数据:ln527 6.27,ln56268.63,ln14737.29===)【答案】(1)23()12()49.182f x x =--+(2)314分钟后【解析】【分析】(1)根据题中条件,建立方程(1)46.18f =,解出即可;(2)根据题意建立不等式,解出即可.【小问1详解】根据题意知,当02x ≤<时,23()()49.182f x a x =-+,所以23(1)(149.1846.182f a =-+=,解得12a =-,所以当02x ≤<,23()12()49.182f x x =--+.【小问2详解】由题意知,当车辆驾驶人员血液中的酒精含量小于20mg /百毫升时可以驾车,当02x ≤<时,()20f x >,此时2x ≥,由0.456.26e 14.7320x -⋅+<,得0.4 5.27527e56.265626x-<=,两边取自然对数可得,0.4ln 527ln 5626 6.278.36 2.09x -<-=-=-,所以 2.095.2250.4x >=,又5.225小时=313.5分钟,故喝1瓶啤酒314分钟后才可以驾车.21.已知函数12x y a -=-(0a >,且1a ≠)过定点A ,且点A 在函数()()ln 1f x x m =+-,(R)m ∈的图象上.(1)求函数()f x 的解析式;(2)若定义在[]1,2上的函数()()ln 2y f x k x =+-恰有一个零点,求实数k 的取值范围.【答案】(1)()ln 1f x x =-(2)e 2e,42⎛⎤++ ⎥⎝⎦【解析】【分析】(1)把定点A 代入函数()f x 的解析式求出m 的值即可;(2)问题等价于()22e g x x kx =-+在[]1,2上恰有一个零点,根据函数零点的定义,结合二次函数的性质进行求解即可;【小问1详解】函数12x y a -=-(0a >,且1a ≠)过定点()1,1A -,函数()()ln 1f x x m =+-(R)m ∈的图象过点()1,1A -,即()ln 111m +-=-,解得0m =,函数()f x 的解析式为()ln 1f x x =-.【小问2详解】函数()()()ln 2ln 1ln 2y f x k x x k x +--==+-定义在[]1,2上,20k x ->在[]1,2上恒成立,可得4k >,令()()2ln 1ln 2ln 210y x k x kx x =-+--=-=,得22e 0xkx -+=,设()22e g x x kx =-+,函数()()ln 2y f x k x =+-在[]1,2上恰有一个零点,等价于()g x 在[]1,2上恰有一个零点,函数()22e g x x kx =-+图像抛物线开口向上,对称轴14kx =>,若()()12e 0282e 0g k g k ⎧=-+=⎪⎨=-+<⎪⎩,无解,不成立;若()()()()122e 82e 0g g k k ⋅=-+-+<,解得e2e 42k +<<+,满足题意;若()24282e 0k g k ⎧≥⎪⎨⎪=-+=⎩,无解,不成立;若()()12e 0124282e 0g k kg k ⎧=-+<⎪⎪<<⎨⎪=-+=⎪⎩,解得e 42k =+,满足题意.所以实数k 的取值范围为e 2e,42⎛⎤++ ⎥⎝⎦.22.若函数()f x 与()g x 满足:对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x g x m =成立,则称()f x 是()g x 在区间D 上的“m 阶伴随函数”;对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x f x m=成立,则称()f x 是区间D 上的“m 阶自伴函数”.(1)判断()22111f x x x =+++是否为区间[]0,4上的“2阶自伴函数”?并说明理由;(2)若函数()32πx f x -=区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,求b 的值;(3)若()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”,求实数a 的取值范围.【答案】(1)不是,理由见解析(2)1b =(3)314a ≤≤【解析】【分析】(1)根据给定的定义,取12x =,判断2()1f x =在[]0,4是否有实数解即可;(2)根据给定的定义,当11,3x b ⎡⎤∈⎢⎥⎣⎦时,用1x 表示2x 并判断单调性,求出值域,借助集合的包含关系求解即可;(3)根据()g x 的单调性求解其在区间[0,2]上的值域,进而将问题转化为()f x 在区间[0,2]上的值域是[]4,1--的子集,再结合二次函数的性质,分类讨论即可求解.【小问1详解】假定函数()22111f x x x =+++是区间[]0,4上的“2阶自伴函数”,则对任意的[]10,4x ∈,总存在唯一的[]20,4x ∈,使()()122f x f x =成立,取10x =,1()2f x =,由12()()2f x f x =,得2()1f x =,则()222221111f x x x =++=+,则()()222221110x x +-++=,进而可得()222131024x ⎡⎤+-+=⎢⎣⎦显然此方程无实数解,所以函数()22111f x x x =+++不是区间[]0,4上的“2阶自伴函数”,【小问2详解】函数()32πx f x -=为区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,则对任意11,3x b ⎡⎤∈⎢⎥⎣⎦,总存在唯一的21,3x b ⎡⎤∈⎢⎥⎣⎦,使得12()()1f x f x =,即123232ππ1x x --=,进而1243x x +=,得2143x x =-,显然函数2143x x =-在11,3x b ⎡⎤∈⎢⎥⎣⎦上单调递减,且当113x =时,21x =,当1x b =时,243x b =-,因此对1,3b ⎡⎤⎢⎥⎣⎦内的每一个1x ,在4[,1]3b -内有唯一2x 值与之对应,而21,3x b ⎡⎤∈⎢⎥⎣⎦,所以41[,1][,]33b b -⊆,所以14133b b ≥⎧⎪⎨-≥⎪⎩,解得11b b ≥⎧⎨≤⎩,即1b =,所以b 的值是1.【小问3详解】由于41log 67,t x y t =-=分别为定义域内单调递增和单调递减函数,所以函数()4log (167)g x x =--在[0,2]上单调递增,且()()102,22g g =-=-得函数()g x 的值域为12,2⎡⎤--⎢⎥⎣⎦,由函数()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”可知,对任意的1[0x ∈,2],总存在唯一的2[0x ∈,2]时,使得12()()2f x g x =成立,于是[]122()4,1()f xg x =∈--,则()2214f x x ax a =-+-在区间上[0,2]的值域是区间[]4,1--的子集,而函数()2214f x x ax a =-+-图象开口向上,对称轴为x a =,显然(0)14f a =-,()258f a =-,()241f a a a =--+,当0a ≤时,()f x 在[0,2]上单调递增,则min max ()(0)4()(2)1f x f f x f =≥-⎧⎨=≤-⎩,即0144581a a a ≤⎧⎪-≥-⎨⎪-≤-⎩,无解;当2a ≥时,()f x 在[0,2]上单调递减,则min max ()(2)4()(0)1f x f f x f =≥-⎧⎨=≤-⎩,即2584141a a a ≥⎧⎪-≥-⎨⎪-≤-⎩,无解;当02a <<时,()f x 在[0,]a 上单调递减,在[a ,2]上单调递增,则()()4(2)101f a f f ≥-⎧⎪≤-⎨⎪≤-⎩,即202581141144a a a a a <<⎧⎪-≤-⎪⎨-≤-⎪⎪-+-≥-⎩,解得314a ≤≤;综上,a 的取值范围是314a ≤≤.。

(完整版)高一数学第一学期期中考试试题及答案

(完整版)高一数学第一学期期中考试试题及答案

A高一数学(必修1)第I 卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(C u M )∩N =A .B .C .D .{}4,3,2{}2{}3{}4,3,2,1,02.设集合,,给出如下四个图形,其中能表示从集{}02M x x =≤≤{}02N y y =≤≤合到集合的函数关系的是M NA .B .C .D .3. 设,用二分法求方程内近似解的过程中()833-+=x x f x()2,10833∈=-+x x x在得,则方程的根落在区间()()()025.1,05.1,01<><f f f A. B. C. D. 不能确定(1,1.25)(1.25,1.5)(1.5,2)4. 二次函数的值域为])5,0[(4)(2∈-=x x x x f A. B. C. D.),4[+∞-]5,0[]5,4[-]0,4[-5. =+--3324log ln 01.0lg 2733e A .14 B .0C .1 D . 66. 在映射,,且,则中B A f →:},|),{(R y x y x B A ∈==),(),(:y x y x y x f +-→A 中的元素在集合B 中的像为)2,1(-A . B .C .D . )3,1(--)3,1()1,3()1,3(-7.三个数,,之间的大小关系为231.0=a 31.0log 2=b 31.02=c A .a <c <b B .a <b <c C .b <a <cD .b <c <a8.已知函数在上为奇函数,且当时,,则当时,()y f x=R0x≥2()2f x x x=-0x<函数的解析式为()f xA. B.()(2)f x x x=-+()(2)f x x x=-C. D.()(2)f x x x=--()(2)f x x x=+9.函数与在同一坐标系中的图像只可能是xy a=log(0,1)ay x a a=->≠且A. B. C. D.10.设,则2log2log<<baA. B.10<<<ba10<<<abC . D.1>>ba1>>ab11.函数在区间上的最大值为5,最小值为1,则实数m的取值54)(2+-=xxxf],0[m范围是A. B.[2,4] C. [0,4] D.),2[+∞]4,2(12.若函数()f x为定义在R上的奇函数,且在(0,)+∞内是增函数,又(2)f0=,则不等式的解集为)(<xxfA.(2,0)(2,)-+∞B.(,2)(0,2)-∞-C.(,2)(2,)-∞-+∞D.)2,0()0,2(-高一数学(必修1)答题卷题 号一二三总分得 分一、选择题:(本大题小共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案第II 卷 非选择题(共90分)二、填空题:(本大题共4小题,每小题4分,共16分)13.函数,则的值为.⎩⎨⎧≥<--=-)2(2)2(32)(x x x x f x )]3([-f f 14.计算:.=⋅8log 3log 9415.二次函数在区间上是减少的,则实数k 的取值范围为 842--=x kx y ]20,5[.16.给出下列四个命题:①函数与函数表示同一个函数;||x y =2)(x y =②奇函数的图像一定通过直角坐标系的原点;③函数的图像可由的图像向右平移1个单位得到;2)1(3-=x y 23x y =④若函数的定义域为,则函数的定义域为;)(x f ]2,0[)2(x f ]4,0[⑤设函数是在区间上图像连续的函数,且,则方程()x f []b a ,()()0<⋅b f a f 在区间上至少有一实根;()0=x f []b a ,得分评卷人得分评卷人其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知全集,集合,,R U ={}1,4>-<=x x x A 或{}213≤-≤-=x x B (1)求、;B A )()(BC A C U U (2)若集合是集合A 的子集,求实数k 的取值范围.{}1212+≤≤-=k x k x M 18. (本题满分12分)已知函数.1212)(+-=x x x f ⑴判断函数的奇偶性,并证明;)(x f ⑵利用函数单调性的定义证明:是其定义域上的增函数.)(x f 19. (本题满分12分)已知二次函数在区间上有最大值,求实数的值2()21f x x ax a =-++-[]0,12a 20. (本题满分12分)函数)1,0)(3(log )(≠>-=a a ax x f a (1)当时,求函数的定义域;2=a )(x f (2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;a )(x f ]2,1[a 若不存在,请说明理由.21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则得分评卷人增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元.x (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)y x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出x y 最大值.22. (本题满分13分)设是定义在R 上的奇函数,且对任意a 、b ,当时,都有)(x f R ∈0≠+b a .0)()(>++ba b f a f (1)若,试比较与的大小关系;b a >)(a f )(b f (2)若对任意恒成立,求实数k 的取值范围.0)92()329(>-⋅+⋅-k f f xx x ),0[+∞∈x 高一数学参考答案一、选择题:题号123456789101112答案CDBCBDCAABBD二、填空题:13.14. 15. 16. ③⑤8143101,0()0,( -∞三、解答题:17. (1){}{}32213≤≤-=≤-≤-=x x x x B ………2分,∴{}31≤<=x x B A ………4分{}3,1)()(>≤=x x x B C A C U U 或 ………6分(2)由题意:或, 112>-k 412-<+k ………10分解得:或. 1>k 25-<k ………12分18. (1)为奇函数.)(x f ………1分 的定义域为,,012≠+x∴)(x f R ………2分又 )(121221211212)(x f x f x x x x xx -=+--=+-=+-=--- 为奇函数.)(x f ∴………6分(2)1221)(+-=x x f 任取、,设,1x R x ∈221x x <)1221(1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x , 又,022********<-∴<∴<x x x x x x 或 12210,210x x +>+>.在其定义域R 上是增函数.)()(0)()(2121x f x f x f x f <∴<-∴或)(x f ∴………12分19. 函数的对称轴为:,)(x f x a =当时,在上递减,,即; 0<a ()f x ]1,0[2)0(=∴f 1,21-=∴=-a a ………4分当时,在上递增,,即; 1>a ()f x ]1,0[2)1(=∴f 2=a ………8分当时,在递增,在上递减,,即,01a ≤≤()f x ],0[a ]1,[a 2)(=∴a f 212=+-a a 解得:与矛盾;综上:或 251±=a 01a ≤≤1a =-2=a ………12分20. (1)由题意:,,即,)23(log )(2x x f -=023>-∴x 23<x 所以函数的定义域为;)(x f 23,(-∞………4分(2)令,则在上恒正,,在ax u -=3ax u -=3]2,1[1,0≠>a a ax u -=∴3上单调递减,]2,1[,即023>⋅-∴a )23,1()1,0( ∈a ………7分又函数在递减,在上单调递减,,即)(x f ]2,1[ax u -=3 ]2,1[1>∴a )23,1(∈a ………9分又函数在的最大值为1,, )(x f ]2,1[1)1(=∴f 即,1)13(log )1(=⋅-=a f a 23=∴a ………11分与矛盾,不存在. 23=a )23,1(∈a a ∴………12分21. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[ ∴, ⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022………5分定义域为{}407<<∈+x N x ………7分 (2) ∵,⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,402041089247[(100,207],81)16[(40022∴ 当时,则,(元)020x <≤16x =max 32400y =………10分当时,则,(元)2040x <<472x =max 27225y =综上:当时,该特许专营店获得的利润最大为32400元. 16x =………13分22. (1)因为,所以,由题意得:b a >0>-b a ,所以,又是定义在R 上的奇函数,0)()(>--+ba b f a f 0)()(>-+b f a f )(x f ,即.)()(b f b f -=-∴0)()(>-∴b f a f )()(b f a f >………6分(2)由(1)知为R 上的单调递增函数,)(x f ………7分对任意恒成立,0)92()329(>-⋅+⋅-k f f x x x ),0[+∞∈x ,即,)92()329(k f f x x x -⋅->⋅-∴)92()329(x x x k f f ⋅->⋅-………9分,对任意恒成立,x x x k 92329⋅->⋅-∴x x k 3293⋅-⋅<∴),0[+∞∈x 即k 小于函数的最小值. ),0[,3293+∞∈⋅-⋅=x u xx………11分令,则,xt 3=),1[+∞∈t 13131(323329322≥--=-=⋅-⋅=∴t t t u x x .1<∴k (13)。

南通中学2023-2024学年高一上学期期中数学试题(含答案)

南通中学2023-2024学年高一上学期期中数学试题(含答案)

江苏省南通中学2023-2024学年第一学期期中考试高一数学一、选择题:本题共8小题,每小题5分,共40分.1.设集合{}02A x x =≤≤,{}1B x x =≤,则A B = ()A.(],1-∞ B.(],2∞- C.[]0,1 D.[]1,22.函数()f x =)A .(,0]-∞ B.[0,)+∞ C.(0,)+∞ D.(,)∞∞-+3.已知0.5log 2a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为()A.a b c<< B.b c a<< C.a c b<< D.c b a <<4.已知,,R a b c ∈,则a b c ==是222a b c ab bc ac ++=++成立的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.德国天文学家,数学家开普勒(J.Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为()A.4329dB.30323dC.60150dD.90670d6.下列可能是函数2||1x x y e-=(e 是自然对数的底数)的图象的是()A.B.C.D.7.已知函数()2,75,63x x m f x x x m⎧≥⎪=⎨+<⎪⎩的值域为R ,则实数m 的取值范围为()A.[]0,1 B.[]0,2 C.[]1,1- D.[]1,2-8.已知0x >,0y >,且2x y xy +=,则211x yx y +++的最小值为()A.45B.1C.32D.2二、选择题:本题共4小题,每小题5分,共20分.9.已知幂函数()y x R αα=∈的图象过点(2,8),下列说法正确的是()A.函数y x α=的图象过原点B.函数y x α=是偶函数C.函数y x α=是单调减函数D.函数y x α=的值域为R 10.下列不等式中成立的是()A.若0a b >>,则22ac bc >B.若0a b >>,则22a b >C.若0a b <<,则22a ab b >> D.若0a b <<,则11a b>11.已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则满足不等式()()212f t f t +>-的所有整数t 的值为()A.2- B.1- C.0D.112.已知()f x 、()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图像关于直线1x =对称,则下列说法中一定正确的是()A.()00f = B.()10g =C.()y g f x =⎡⎤⎣⎦为奇函数D.()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称三、填空题:本题共4小题,每小题5分,共20分.13.式子1239log 27+的值是________14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21f x g x x x +=-+,则()3g 的值是______.15.已知a ,b 是非零实数,若关于x 的不等式20x ax b -+≥恒成立,则212ba +的最小值是______.16.已知函数()2f x x ax =+-,当1a =时,函数()f x 的值域为______;若函数()f x 的最小值为2,则正实数a 的取值范围为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设全集U =R ,集合12644x A x ⎧⎫=≤≤⎨⎬⎩⎭,{}5B x x =>.(1)求U A B ð:(2)若集合{}C x x a =>满足B C B = ,求实数a 的取值范围.18.已知函数()222f x x x a =-+-,()xg x a =(0a >且1a ≠).(1)若函数()f x 在(],21m -∞-上单调递减,求实数m 的取值范围;(2)若()()20f g =.①求实数a 的值;②设()1t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.19.已知某观光海域AB 段的长度为3百公里,一超级快艇在AB 段航行,经过多次试验得到其每小时航行费用Q (单位:万元)与速度v (单位:百公里/小时)(03v ≤≤)的以下数据:v 0123Q0.71.63.3为描述该超级块艇每小时航行费用Q 与速度v 的关系,现有以下两种函数模型供选择:32Q av bv cv =++,0.5v Q a =+.(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB 段的航行费用最少?并求出期少航行费用.20.已知()42135x f x a++=+(0a >且1a ≠).(1)求函数()y f x =的解析式,并写出函数()y f x =图象恒过的定点;(2)若()235f x a>+,求x 的取值范围.21.已知二次函数()()2,f x x ax b a b =++∈R .(1)若()20f -=,且对于x ∈R ,()()11f x f x +=-恒成立,求a ,b 的值;(2)若函数()f x 的值域为[)1,+∞,关于x 的不等式()f x c <的解集为()(),8m m m +∈R ,求实数c 的值.22.设函数()()0,1xxf x a k aa a -=+⋅>≠是定义域为R 的奇函数.(1)求实数k 值;(2)若()10f <,试判断函数()f x 的单调性,并证明你的结论;(3)在(2)的条件下,不等式()()1192430x x f t f -+-+⋅++⋅<对任意实数x 均成立,求实数t 的取值范围.江苏省南通中学2023-2024学年第一学期期中考试高一数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}02A x x =≤≤,{}1B x x =≤,则A B = ()A.(],1-∞ B.(],2∞- C.[]0,1 D.[]1,2【答案】C 【解析】【分析】由交集定义计算.【详解】由已知{|01}A B x x = ≤≤.故选:C .2.函数()f x =)A.(,0]-∞ B.[0,)+∞ C.(0,)+∞ D.(,)∞∞-+【答案】A 【解析】【分析】根据函数的解析式有意义,列出不等式,结合指数函数的性质,即可求解.【详解】由题意,函数()f x =120x-≥,即21x ≤,解得0x ≤,所以函数()f x 的定义域为(,0]-∞.故选:A.3.已知0.5log 2a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为()A.a b c << B.b c a<< C.a cb << D.c b a<<【答案】C 【解析】详解】分析:利用对数函数与指数函数的性质,将a ,b ,c 与0和1比较即可.详解:0.5log 20a=<,0.521b =>;210.54c ==.故a c b <<.故选:C.点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.4.已知,,R a b c ∈,则a b c ==是222a b c ab bc ac ++=++成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件和必要条件的定义分析判断即可.【详解】当a b c ==时,222223,3a b c a ab bc ac a ++=++=,所以222a b c ab bc ac ++=++,当222a b c ab bc ac ++=++时,2220a b c ab bc ac ++---=,所以2222222220a b c ab bc ac ++---=,所以()()()2222222220aab b a ac c b bc c -++-++-+=,所以()()()2220a b a c b c -+-+-=,因为()()()2220,0,0a b a c b c -≥-≥-≥,所以()()()2220a b a c b c -=-=-=,所以a b c ==,所以a b c ==是222a b c ab bc ac ++=++成立的充要条件,故选:C5.德国天文学家,数学家开普勒(J.Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为()A.4329dB.30323d C.60150d D.90670d【答案】B 【解析】【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r ='',2rr '=,结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r ,土星的公转时间为T ',距离太阳的平均距离为r ',由题意知:2r r '=,10753T d '=,所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭,所以1075310753 2.82830409.484T d '==≈⨯=,故选:B.6.下列可能是函数2||1x x y e -=(e 是自然对数的底数)的图象的是()A. B.C.D.【答案】C 【解析】【分析】根据函数的定义域和部分区间的函数值确定正确选项.【详解】函数2||1x x y e -=的定义域为R ,所以AB 选项错误.当1x >时,2||10x x y e-=>,所以D 选项错误.故选:C 【点睛】本小题主要考查函数图象的识别,属于基础题.7.已知函数()2,75,63x x m f x x x m⎧≥⎪=⎨+<⎪⎩的值域为R ,则实数m 的取值范围为()A.[]0,1 B.[]0,2 C.[]1,1- D.[]1,2-【答案】D 【解析】【分析】由函数值域为R ,利用指数函数和一次函数函数单调性以及画出函数图像分析即可解决问题.【详解】当x m <时,()7563f x x =+单调递增,所以()7563f x m <+当x m ≥时,()2x f x =单调递增,所以()2m f x ≥,要使得函数值域为R ,则75263m m +≥恒成立,令1275,263m y m y =+=,如图所示:由图可知12,y y 有两个交点,且交点的横坐标分别为121,2m m =-=,所以若要75263m m +≥,则[]1,2m Î-,也即函数()f x 的值域为R 时,则实数m 的取值范围为:[]1,2m Î-,故选:D.8.已知0x>,0y >,且2x y xy +=,则211x yx y +++的最小值为()A.45B.1C.32D.2【答案】A 【解析】【分析】先根据题意得到112y x +=,从而得到1215y x y x+++=,再根据“1”的妙用及基本不等式即可求解.【详解】由0x>,0y >,2x y xy +=,则112y x +=,则11121125y x y x y x+++++=+=,所以12112112115x y x y y x x y x y y x ⎛⎫⎛⎫+++=+⨯+⨯ ⎪ ⎪++++⎝⎭⎝⎭1211112115x y y x x y y x ⎛⎫++=⨯+++⨯++⎝⎭12114221155x y y x x y y x ⎛⎫++≥+⨯⨯⨯⨯= ⎪ ⎪++⎝⎭.当且仅当121211x y y x x y y x ++⨯=⨯++,即2x =,23y =时,等号成立,所以211x y x y +++的最小值为45.故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知幂函数()y x R αα=∈的图象过点(2,8),下列说法正确的是()A.函数y x α=的图象过原点B.函数y x α=是偶函数C.函数y x α=是单调减函数D.函数y x α=的值域为R 【答案】AD 【解析】【分析】根据幂函数所过点求得幂函数解析式,结合幂函数的图象与性质对选项逐一分析,由此确定正确选项.【详解】由于幂函数y x α=过点()2,8,所以28α=,解得3α=,所以3y x =.()0,0,满足3y x =,A 选项正确.3y x =是奇函数,所以B 选项错误.3y x =在R 上递增,所以C 选项错误.3y x =值域为R ,所以D 选项正确.故选:AD【点睛】本小题主要考查幂函数的图象与性质,属于基础题.10.下列不等式中成立的是()A.若0a b >>,则22ac bc > B.若0a b >>,则22a b >C.若0a b <<,则22a ab b >> D.若0a b <<,则11a b>【答案】BCD 解析】【分析】根据不等式的性质、差比较法判断出正确答案.【详解】A 选项,若0,0ab c >>=,则22ac bc =,所以A 选项错误.B 选项,若0a b >>,则()()22220,a b a b a b a b -=+->>,所以B 选项正确.C 选项,若0a b <<,0a b -<,则()220,a ab a a b a ab -=->>,()220,ab b b a b ab b -=->>,则22a ab b >>,所以C 选项正确.D 选项,若0a b <<,0b a ->,所以11110,b a a b ab a b--=>>,所以D 选项正确.故选:BCD 11.已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则满足不等式()()212f t f t +>-的所有整数t 的值为()A.2- B.1- C.0 D.1【答案】ABC 【解析】【分析】利用函数的奇偶性和单调性,不等式转化为21<2t t +-,求解即可.【详解】已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则()f x 在(),0-∞上是单调增函数,由()()212f t f t +>-,得21<2t t +-,即23830t t +-<,解得133t -<<,范围内的整数有2,1,0--.故选:ABC12.已知()f x 、()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图像关于直线1x =对称,则下列说法中一定正确的是()A.()00f = B.()10g =C.()y g f x =⎡⎤⎣⎦为奇函数D.()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称【答案】AD 【解析】【分析】A.根据()f x 是定义在R 上的函数,且()f x 为奇函数判断;B.由()g x 的图像关于直线1x =对称,得到()()11g x g x -=+判断;C.利用奇偶性的定义判断;D.由()()11g x g x -=+,得到()()11f g x f g x 轾轾-=+臌臌判断.【详解】解:因为()f x 是定义在R 上的函数,且()f x 为奇函数,所以()00f =,故A 正确;因为()g x 是定义在R 上的函数,且()g x 的图像关于直线1x =对称,所以()()11g x g x -=+,()1g 不一定为0,故B 错误;因为()()()g f x g f x g f x 轾轾轾-=-¹-臌臌臌,故C 错误;因为()()11g x g x -=+,则()()11f g x f g x 轾轾-=+臌臌,所以()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称,故D 正确.故选:AD三、填空题:本题共4小题,每小题5分,共20分.13.式子1239log 27+的值是________【答案】6【解析】【分析】根据指数、对数运算,化简求得表达式的值.【详解】依题意,原式()123233log 3336=+=+=.故答案为:6【点睛】本小题主要考查指数、对数运算,属于基础题.14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21f x g x x x +=-+,则()3g 的值是______.【答案】3-【解析】【分析】由()()21f xg x x x +=-+可得()()21f xg x x x -+-=++,从而结合奇偶性根据函数的奇偶性可得()()21f x g x x x -=++,于是解得()g x x =-,即可得所求.【详解】因为()()21f x g x x x +=-+①,所以()()21f xg x x x -+-=++由函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,则()(),()()f x f xg x g x =-=--所以()()21f x g x x x -=++②则①-②可得:()22g x x =-,所以()g x x =-则()33g =-.故答案为:3-.15.已知a ,b 是非零实数,若关于x 的不等式20x ax b -+≥恒成立,则212ba +的最小值是______.【答案】2解析】【分析】由题意得240a b -≤,再利用基本不等式求解即可【详解】因为a ,b 是非零实数,且不等式20x ax b -+≥恒成立,所以20x ax b -+=有两个相等的实数根或无实数根,即240a b ∆=-≤得24a b ≤,2112422b b a b +≥+≥=,当且仅当24142a bb b ⎧=⎪⎨=⎪⎩,解得22a b ⎧=⎪⎨=⎪⎩满足条件且同时取等号.故答案为:216.已知函数()2f x x ax =+-,当1a =时,函数()f x 的值域为______;若函数()f x 的最小值为2,则正实数a 的取值范围为______.【答案】①.[)2,+∞②.(]0,1【解析】【分析】(1)1a =代入函数解析式,利用零点分段讨论,去绝对值,根据单调性,求函数的值域.(2)a 为正实数时,利用零点分段讨论,去绝对值,分类讨论函数的单调性,求函数最小值,得到函数最小值为2时a 的取值范围.【详解】(1)当1a =,函数()22,02=2,0222,2x x f x x x x x x -<⎧⎪=+-≤<⎨⎪-≥⎩,0x <时,()22f x x =-单调递减,有()()02f x f >=;02x ≤<时,()2f x =;2x ≥时,()22f x x =-单调递增,有()()22f x f ≥=,所以当1a =,函数()f x 的值域为[)2,+∞.(2)a 为正实数时,()()()()21,022=12,0212,a x x f x x ax a x x a a x x a ⎧⎪-+<⎪⎪=+--+≤<⎨⎪⎪+-≥⎪⎩,0x <时,()()21f x a x =-+单调递减,有()()02f x f >=;2x a ≥时,()()12f x a x =+-单调递增,有()22f x f a a⎛⎫≥= ⎪⎝⎭,20x a ≤<时,()()12f x a x =-+,①若01a <<,函数()()12f x a x =-+单调递增,有a 22<,()22f x a ≤<,此时函数()2f x x ax =+-有最小值2,符合题意;②若1a =,()2f x =,22a=,此时函数()2f x x ax =+-有最小值2,符合题意;③若1a >,函数()()12f x a x =-+单调递减,有a 22>,()22f x a <≤,此时函数()2f x x ax =+-有最小值2a ,a22>,不合题意.综上可知,正实数a 的取值范围为(]0,1.故答案为:[)2,+∞;(]0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设全集U =R ,集合12644x A x ⎧⎫=≤≤⎨⎬⎩⎭,{}5B x x =>.(1)求U A B ð:(2)若集合{}Cx x a =>满足B C B = ,求实数a 的取值范围.【答案】(1){}|25U A B x x =-<≤ ð(2)5a ≤【解析】【分析】(1)求出集合A 、U B ð,再求交集可得答案;(2)根据B CB = 可得BC ⊆,求出a 的范围即可.【小问1详解】{}{}261264222264x x A x x x x -⎧⎫=≤≤=≤≤=-≤≤⎨⎬⎩⎭,{}|5U B x x =≤ð,所以{}|25U A B x x =-<≤ ð;【小问2详解】若B CB = ,则B ⊆,所以5a ≤,所以实数a 的取值范围为5a ≤.18.已知函数()222f x x x a =-+-,()x g x a =(0a >且1a ≠).(1)若函数()f x 在(],21m -∞-上单调递减,求实数m 的取值范围;(2)若()()20f g =.①求实数a 的值;②设()1t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.【答案】(1)(],1-∞(2)12t t <【解析】【分析】(1)根据二次函数的单调性求解即可;(2)根据两个函数在()0,1上的值域来比较较1t ,2t 的大小即可.【小问1详解】函数()222f x x x a =-+-,对称轴1x =,所以函数()f x 在(],1-∞上单调递减,在()1,+∞上单调递增,若函数()f x 在(],21m -∞-上单调递减,则211m -≤,1m £,故实数m 的取值范围为(],1-∞.【小问2详解】①()()20f g =,即20242=a a -+-,解得3a =;②当()0,1x ∈时,()()()212232=10,1x x t f x x =-+-∈=-,()()2=31,3x t g x =∈,所以121t t <<,即12t t <.19.已知某观光海域AB 段的长度为3百公里,一超级快艇在AB 段航行,经过多次试验得到其每小时航行费用Q (单位:万元)与速度v (单位:百公里/小时)(03v ≤≤)的以下数据:v0123Q 00.7 1.6 3.3为描述该超级块艇每小时航行费用Q 与速度v 的关系,现有以下两种函数模型供选择:32Q av bv cv =++,0.5v Q a =+.(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB 段的航行费用最少?并求出期少航行费用.【答案】(1)选择函数模型32Q av bv cv =++;()320.10.20.803Q v v v v =-+≤≤(2)该超级快艇应以1百公里/小时速度航行才能使AB 段的航行费用最少为2.1【解析】【分析】(1)对题中所给的函数解析式进行分析,对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式;(2)根据题意列出函数解析式,之后应用配方法求得最值,得到结果.【小问1详解】若选择函数模型0.5v Q a =+,则该函数在[]0,3v ∈上为单调减函数,这与实验数据相矛盾,所以不选择该函数模型.从而只能选择函数模型32Q av bv cv =++,由实验数据可得:0.7842 1.62793 3.3a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,得0.10.20.8a b c =⎧⎪=-⎨⎪=⎩,故所求函数解析式为()320.10.20.803Q v v v v =-+≤≤.【小问2详解】设超级快艇在AB 段的航行费为y (万元),则所需时间为3v(小时),其中03v ≤≤,结合(1)知()()23230.10.20.8v 0.317y v v v v ⎡⎤=-+=-+⎣⎦,所以当1v =时,y 取最小值为2.1所以当该超级快艇应以1百公里/小时速度航行才能使AB 段的航行费用最少为2.120.已知()42135x f x a ++=+(0a >且1a ≠).(1)求函数()y f x =的解析式,并写出函数()y f x =图象恒过的定点;(2)若()235f x a>+,求x 的取值范围.【答案】(1)()7235x f x a +=+,定点()7,8-;(2)见解析.【解析】【分析】(1)令21xt +=,可得出12t x -=,然后利用换元法可求出函数()y f x =的解析式,并利用指数等于零求出函数()y f x =图象所过定点的坐标;(2)由()235f x a>+,可得出722x a a +->,然后分01a <<和1a >两种情况讨论,利用函数x y a =的单调性可解出不等式722x a a +->.【详解】(1)令21x t +=,可得出12t x -=,()174223535t t f t a a -++∴=+=+,()7235x f x a +∴=+,令702x +=,得7x =-,且()07358f a -=+=,因此,函数()y f x =图象恒过的定点坐标为()7,8-;(2)由()235f x a >+,即7223355x a a++>+,可得722x a a +->.当01a <<时,函数x y a =是减函数,则有722x +<-,解得11x <-;当1a >时,函数x y a =是增函数,则有722x +>-,解得11x >-.【点睛】本题考查利用换元法求函数解析式,同时也考查了指数型函数图象过定点以及指数不等式的求解,一般在解指数不等式时,需要对底数的取值范围进行分类讨论,考查分析问题和解决问题的能力,属于中等题.21.已知二次函数()()2,f x x ax b a b =++∈R .(1)若()20f -=,且对于x ∈R ,()()11f x f x +=-恒成立,求a ,b 的值;(2)若函数()f x 的值域为[)1,+∞,关于x 的不等式()f x c <的解集为()(),8m m m +∈R ,求实数c 的值.【答案】(1)2a=-,8b =-(2)=17c 【解析】【分析】(1)根据条件得出关于,a b 的方程,解出即可;(2)先由顶点坐标得,a b 关系,则不等式化为2244a x ax c +++<,则,8m m +是对应方程的两根,结合韦达定理即可求.【小问1详解】由()()11f x f x +=-,得22(1)(1)1)1(()a b a bx x x x ++=+-+++-,解得2a =-由()20f -=,得()2420f a b -=-+=,则8b =-.【小问2详解】函数()f x 的值域为[)1,+∞,又其顶点坐标为24(,24a b a --,即2414b a -=,则244a b +=,不等式()f x c <可化为:2244a x ax c +++<,即22404a x ax c +++-<的解集为(),8m m +,即方程22404a x ax c +++-=的两根为12,8x m x m ==+,所以1221244x x a a x x c +=-⎧⎪⎨+⋅=-⎪⎩,可得22121212||()464x x x x x x -=+-⋅=,即224()4()644a a c +---=,解得=17c 22.设函数()()0,1x x f x a k a a a -=+⋅>≠是定义域为R 的奇函数.(1)求实数k 值;(2)若()10f <,试判断函数()f x 的单调性,并证明你的结论;(3)在(2)的条件下,不等式()()1192430x x f t f -+-+⋅++⋅<对任意实数x 均成立,求实数t 的取值范围.【答案】22.1k =-23.()f x 在R 上单调递减,证明见解析24.6t >-【解析】【分析】(1)由()00f =求得k 的值.(2)由()10f <求得a 的取值范围,利用函数单调性的定义证得()f x 在R 上单调递减.(3)根据函数的单调性、奇偶性化简不等式()()1192430x x f t f -+-+⋅++⋅<,利用分离常数法,结合二次函数的性质求得t 的取值范围.【小问1详解】由于()f x 是定义域为R 的奇函数,所以()010,1f k k =+==-,此时()x x f x a a -=-,()()x x f x a a f x --=-=-,满足()f x 是奇函数,所以1k =-.【小问2详解】由(1)得()()0,1x x f x a a a a -=->≠,若()()()2111110a a a f a a a a+--=-==<,则01a <<,所以()f x 是减函数,证明如下:任取12x x <,则()()()112212x x x x f x f x a a a a ---=---1221122111x x x x x x x x a a a a a a a a --=-+-=-+-()121212121211x x x x x x x x x x a a a a a a a a a a -⎛⎫=-+=-+ ⎪⎝⎭,由于12x x <,01a <<,所以1212,0x x x x a a a a >->,所以()()()()12120,f x f x f x f x ->>,所以()f x 在R 上单调递减.【小问3详解】由(1)得()()0,1x x f x a a a a -=->≠,()f x 是定义在R 上的奇函数,依题意,不等式()()1192430x x f t f -+-+⋅++⋅<恒成立,即()()119243x x f t f -+-+⋅+<-⋅恒成立,由(2)得()f x 在R 上单调递减,所以119243x x t -+-+⋅+>-⋅,1112143439322x x x x t -+-+-+-+-+=⋅--⋅>()211211122232333x x x x ++-+-+⎛⎫=-+=-+⋅ ⎪⎝⎭恒成立,令13,10,1x t x t +=+≥≥,则对于函数()221y t t t =+≥,函数在[)1,+∞上单调递增,最小值为21213+⨯=,所以()2113232x x ++-+⋅的最大值为236-´=-,所以6t >-.【点睛】根据奇函数的定义求参数,当奇函数在0x =处有定义时,必有()00f =,由这个方程求得参数后,要注意验证函数是否满足奇偶性的定义.求解二次项的函数的最值问题,可以考虑利用换元法,结合二次函数的性质来进行求解.。

贵州省六盘水市纽绅中学2024-2025学年高一上学期11月期中考试数学试题(含解析)

贵州省六盘水市纽绅中学2024-2025学年高一上学期11月期中考试数学试题(含解析)

六盘水市纽绅中学2024~2025学年度高一(上)期中考试数学试卷考生注意:1.满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色.墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

3.本卷命题范围:人教A 版必修第一册第一章~第三章3.2。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合的真子集的个数为A.4B.6C.7D.82.命题“,”的否定是A.,B.,C.,D.,3.已知,下列不等式错误的是A. B. C. D.4.已知函数,则A.6B.1C.0D.-35.函数的图象为AB C D 6.下列各组函数是同一函数的是①与;②与;{}2,0,3-x ∀∈R 240x x -+=x ∀∈R 240x x -+≠x ∀∈R 240x x -+>x ∃∈R 240x x -+<x ∃∈R 240x x -+≠0a b <<11a b <a c b c +<+2a ab <22ac bc ≤()()21,02,0f x x f x x x x ⎧+≤=⎨-+>⎩()()3f f -=()21f x x x=+()1f x x =+()1,11,1x x g x x x +>-⎧=⎨--<-⎩()f x =()g x =③与;④与.A.①②B.②④C.③④D.①④7.已知函数是上的减函数,则实数的取值范围是A. B. C. D.8.已知,,且,则的最小值是A.18 B.16C.15D.10二、选择题:本题共3小题,每小题6分,共18分。

在每小题给出的四个选项中,有多项符合要求。

全部选对的得6分,部分选对的得部分分,有选错的得0分。

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题一、单选题(本大题共8小题)1. 已知集合{}2Z160U x x =∈-≤∣,集合{}2Z 340A x x x =∈--<∣,则UA =( )A .{14xx ≤≤∣或4}x =- B .{41xx -≤≤-∣或4}x = C .{}4,3,2,1,4---- D .{}4,3,2,1----2. 24x =是2x =-的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 若,,a b c R ∈,a b >则下列不等式成立的是( ) A .11a b<B .22a b <C .a c b c >D .2211a bc c >++ 4. 设函数()21,01,0x x f x x x -+≤⎧=⎨->⎩,若()3f a =,则实数=a ( )A .2B .2-或2C .4-或2D .4-5. 幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( )A .27B .9C .19D .1276. 下列函数中,既是其定义域上的单调函数,又是奇函数的是( ) A .4y x = B .1y x=C .y =D .3y x =7. 若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围为( )A .41,3⎛⎫- ⎪⎝⎭B .()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭C .4,13⎛⎫- ⎪⎝⎭D .()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭8. 已知函数()f x 的定义域是()0,∞+,且满足()()()1,12f xy f x f y f ⎛⎫=+= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,则不等式()()232f x f x +-≥-的解集为( ) A .[]1,2 B .][(),12,-∞⋃+∞C .()()0,12,3D .][()0,12,3⋃二、多选题(本大题共4小题)9. 已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=AB B .()1,2A ∈C .1B ∉D .2A ∈10. 已知关于x 的不等式20ax bx c ++>的解集为{}|23<<x x ,则下列说法正确的有( ) A .0a >B .0a b c ++<C .24c a b ++的最小值为6D .不等式20cx bx a -+<的解集为1|32x x x ⎧⎫<->⎨⎬⎩⎭或11. 下列说法正确的是( )A .偶函数()f x 的定义域为[]21,a a -,则1a =B .若函数()21y f x =-的定义域是[]2,3-,则f x y =的定义域是(]3,5-C .奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为1-,则()()24215f f -+-=-D .若集合{}2|420A x ax x =-++=中至多有一个元素,则2a ≤-12. 已知定义在R 上的函数()f x 的图像是连续不断的,且满足以下条件:①()()R,x f x f x ∀∈-=;② ()12,0,x x ∀∈+∞,当12x x ≠时,()()21210f x f x x x ->-;③()10f -=.则下列选项成立的是( )A .()f x 在(),0∞-上单调递减,B .()()53f f -<C .若()()12f m f -<,则3m <D .若()0f x x>,则()()1,01,x ∈-⋃+∞三、填空题(本大题共3小题)13. 已知()y f x =为奇函数,当0x ≥时()()1f x x x =+,则()3f -= . 14. 已知1x >,则1411y x x =++-的最小值是 . 15. 已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()()2,01f x f x f +=-=,则()()()()()12320212022f f f f f +++++= .四、双空题(本大题共1小题)16. 已知函数()22,31,3x x x c f x c x x ⎧+-≤≤⎪=⎨<≤⎪⎩,若0c ,则()f x 的值域是 ;若()f x 的值域是[]1,3-,则实数c 的取值范围是 .五、解答题(本大题共6小题)17. (1)某网店销售一批新款削笔器,每个削笔器的最低售价为15元.若按最低售价销售,每天能卖出30个;若一个削笔器的售价每提高1元,日销售量将减少2个.为了使这批削笔器每天获得400元以上的销售收入,应怎样制定这批削笔器的销售价格?(2)根据定义证明函数1y x x=+在区间()1,+∞上单调递增. 18. 已知命题2120p x x a ∀≤≤-≥:,,命题22R +2+2+=0q x x ax a a ∃∈:,. (1)若命题p 的否定为真命题,求实数a 的取值范围;(2)若命题p 为真命题,命题q 为假命题,求实数a 的取值范围.19. 已知函数()f x A ,集合={1<<1+}B x a x a -.(1)当=2a 时,求R A B ⋂();(2)若B A ⊆,求a 的取值范围.20. 已知幂函数()22()55m f x m m x -=-+的图象关于点(0,0)对称.(1)求该幂函数()f x 的解析式;(2)设函数()|()|g x f x =,在如图的坐标系中作出函数()g x 的图象; (3)直接写出函数()g x 的单调区间.21. 已知函数()223,R f x x bx b =-+∈. (1)求不等式()24f x b <-的解集;(2)当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.22. 设函数()()22,52(0)1x f x g x ax a a x ==+->+,(1)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x ≥,求实数a 的取值范围; (2)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x =,求实数a 的取值范围.参考答案1. 【答案】C【分析】解一元二次不等式求得集合U 和A ,根据补集的概念即可求得答案.【详解】解不等式2340x x --<得14,{Z 14}{0123}x A x x -<<∴=∈-<<=∣,,,, 由2160x -≤,可得44x -≤≤,{}Z 44{432101234}U x x ∴=∈-≤≤=----∣,,,,,,,,, {}4,3,2,1,4U A ∴=----故选:C. 2. 【答案】B【分析】先解方程24x =,进而判断出.24x =是2x =-的必要不充分条件. 【详解】①当24x =时,则2x =±,∴充分性不成立,②当2x =-时,则24x =,∴必要性成立,∴24x =是2x =-的必要不充分条件. 故选:B. 3. 【答案】D【分析】通过反例1a =,1b ,0c 可排除ABC ;利用不等式的性质可证得D 正确.【详解】若1a =,1b,则1111a b=>=-,221a b ==,则A 、B 错误; 若a b >,0c ,则0a c b c ==,则C 错误;211c +≥,21011c ∴<≤+,又a b >,2211a bc c ∴>++,则D 正确.故选:D. 4. 【答案】B【分析】根据()21,01,0x x f x x x -+≤⎧=⎨->⎩,分0a ≤和 0a >讨论求解. 【详解】解:()21,01,0x x f x x x -+≤⎧=⎨->⎩,当0a ≤时,13a -+=,则2a =-, 当0a >时,令24a =,则2a =, 故实数2a =-或2, 故选:B. 5. 【答案】A【分析】根据幂函数的概念及性质,求得实数m 的值,得到幂函数的解析式,即可求解.【详解】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-,当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A. 6. 【答案】D【分析】根据幂函数的单调性与奇偶性分析判断.【详解】对于A :∵()44x x -=,则4y x =是偶函数,故A 错误; 对于B :∵11=--x x ,则1y x=为奇函数,在()(),0,0,-∞+∞单调递减,但在定义域上不单调,故B 错误;对于C :y =[)0,∞+,在定义域上单调递增,但定义域不关于原点对称,即y =C 错误;对于3D :y x =在定义域R 上单调递增,且33()x x -=-,即3y x =为奇函数,故D 正确; 故选:D. 7. 【答案】B【分析】根据基本不等式,结合不等式有解的性质进行求解即可. 【详解】不等式234y x m m +<-有解,2min 3,0,04y x m m x y <⎛⎫∴+->> ⎪⎝⎭,且141x y +=,144224444y y x y x x x y y x ⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当44x y y x =,即2,8x y ==时取“=",min 44y x ⎛⎫∴+= ⎪⎝⎭,故234m m ->,即()()1340m m +->,解得1m <-或4,3m >∴实数m 的取值范围是()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭. 故选:B. 8. 【答案】D【分析】由赋值法得()42f =-,由函数的单调性转化后求解,【详解】由于()()()f xy f x f y =+,令1x y ==得()()121f f =,即()10f =,则()()11122022f f f f ⎛⎫⎛⎫=⨯=+= ⎪ ⎪⎝⎭⎝⎭,由于112f ⎛⎫= ⎪⎝⎭,则()21f =-, 即有()()4222f f ==-,由于对于0x y <<,都有()()f x f y >,则()f x 在()0,∞+上递减, 不等式()()232f x f x +-≥-即为()()234f x x f ⎡⎤-≥⎣⎦.则20302(3)4x x x x >⎧⎪->⎨⎪-≤⎩,解得01x <≤或23x ≤<,即解集为][()0,12,3⋃. 故选:D9. 【答案】CD【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∵{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∴2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∴(1,2)B ∈,(1,2)A ∉,故B 错误. 故选:CD . 10. 【答案】BC【分析】由不等式与方程的关系得出02323a b a c a ⎧⎪<⎪⎪+=-⎨⎪⎪⨯=⎪⎩,从而得到:5b a =-,6c a =,且a<0,再依次对四个选项判断即可得出答案.【详解】不等式20ax bx c ++>的解集为{}|23<<x x ,02323a b a c a ⎧⎪<⎪⎪∴+=-⎨⎪⎪⨯=⎪⎩,解得:5b a =-,6c a =,且a<0,故选项A 错误;5620a b c a a a a ++=-+=<,故选项B 正确;()2243641964c a a a b a a ++⎛⎫==-+-≥ ⎪+-⎝⎭, 当且仅当13a =-时等号成立,故选项C 正确;20cx bx a -+<可化为:2650ax ax a ++<,即26510x x ++>,则解集为1123x x x ⎧⎫--⎨⎬⎩⎭或,故选项D 错误;综上所述选项B 、C 正确, 故选:BC. 11. 【答案】BC【分析】根据偶函数的定义域关于原点对称,可判断A 项错误;根据抽象函数定义域的求解法则,以及使得分式根式有意义,可列出不等式组,可判断B 项正确;根据条件可得()21f =-,()48f =,根据奇函数的性质可求得()2f -与()4f -的值,代入即可得出C 项正确;由题意可知,方程2420ax x -++=至多有一个解,对a 是否为0讨论,可得D 项错误.【详解】由偶函数()f x 的定义域为[]21,a a -,可得210a a -+=,解得13a =,A 错;因为函数()21y f x =-的定义域是[]2,3-,所以23x -≤≤,即5215x -≤-≤.所以函数()f x 的定义域为[]5,5-.要使f x y =5530x x -≤≤⎧⎨+>⎩,解得35x -<≤,即y =(]3,5-,B 对;因为,奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为-1, 则()21f =-,()48f =,根据奇函数的性质可得,()()221f f -=-=,()()448f f -=-=-, 则()()()24228115f f -+-=⨯-+=-,则C 项正确;因为集合{}2420A x ax x =-++=∣中至多有一个元素, 所以方程2420ax x -++=至多有一个解,当0a =时,方程420x +=只有一个解12x =-,符合题意;当0a ≠时,由方程2420ax x -++=至多有一个解,可得Δ1680a =+≤,解得2a ≤-. 所以,0a =或2a ≤-,则D 项错误. 故选:BC. 12. 【答案】AD【分析】由①可得,()f x 为偶函数.由②可得,()f x 在()0,∞+上单调递增.后分析选项可得答案.【详解】由()()()21121221,0,,,0f x f x x x x x x x ∞-∀∈+≠>-得:()f x 在()0,∞+上单调递增,由R x ∀∈,()()f x f x -=得:函数()f x 是R 上的偶函数.对于A 选项,因()f x 在()0,∞+上单调递增,且()f x 为偶函数,则()f x 在(),0∞-上单调递减,故A 正确.对于B ,C 选项,因()f x 为偶函数,则()()f x f x =.又()f x 在()0,∞+上单调递增,则()()()553,f f f -=>故B 错误;()()()()1212f m f f m f -<⇔-<,又函数()f x 的图像是连续不断的,则有12m -<,解得13,m -<<故C 错误;对于D 选项,由()0f x >及()10f -=得:()()11f x f x >⇔>,解得1x <-或1x >,由()0f x <得:()()11f x f x <⇔<,解得11x -<< 则()0f x x>可化为:()00f x x ⎧>⎨>⎩或()00f x x ⎧<⎨<⎩,解得1x >或10x -<<,即()()1,01,x ∈-⋃+∞,故D 正确.故选:AD13. 【答案】-12【分析】利用奇函数的性质()()f x f x -=-即可得到答案. 【详解】因为()y f x =为奇函数,所以()()f x f x -=-, 故()()()3331312f f -=-=-⨯+=-. 故答案为:-12. 14. 【答案】9【分析】将目标式变形,利用基本不等式即可得出其最值. 【详解】1x >,10x ->,()(11414152415911x x x x x ∴++=-++-=--, 当且仅当()1411x x -=-即3=2x 时取等号, 32x ∴=时, 1411y x x =++-取最小值9. 故答案为:9. 15. 【答案】1-【分析】由()()2f x f x +=-知函数是周期为4的周期函数,再结合偶函数可求()()()()1234f f f f ,,,的值,从而可求()()()()()12320212022f f f f f +++++的值.【详解】由()f x 满足()()2f x f x +=-,则()()()42f x f x f x +=-+=,即函数是周期为4的周期函数;根据题意,()f x 是定义域为(),-∞+∞的偶函数,则有()()11f f -=,又由()f x 满足()()2f x f x +=-,则()()()111f f f -=-=,所以()()110f f =-=,由()()2f x f x +=-,可得()()()()201,310f f f f =-=-=-=, 则()()()()12340f f f f +++=, 所以()()()()()12320212022f f f f f +++++()()()()()()5051234121f f f f f f ⎡⎤=+++++=-⎣⎦. 故答案为:1-.16. 【答案】 [1,)-+∞ 1[,1]3.【分析】作出函数()f x 的图象,根据二次函数与反比例函数的图象与性质,结合图象,即可求解.【详解】由0c 时,函数()22,301,03x x x f x x x⎧+-≤≤⎪=⎨<≤⎪⎩,当[3,0]x ∈-时,函数()22f x x x =+,可得函数()f x 在[3,1]--上单调递减,在[1,0]-上单调递增, 且()()(3)3,11,00f f f -=-=-=,所以函数的值为[1,3]-; 当(0,3]x ∈时,函数()1f x x =为单调递减函数,其值域为1[,)3+∞, 综上可得,函数()f x 的值域为[1,)-+∞; 作出函数()f x 的图象,如图所示, 若函数()f x 的值域为[1,3]-,当1y =-时,即221x x +=-,解得=1x -, 当3y =时,即223x x +=,解得3x =-或1x =, 当13x=时,可得13x =,结合图象,可得实数c 的取值范围是1[,1]3.故答案为:[1,)-+∞;1[,1]3.17. 【答案】(1)应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元);(2)证明见解析.【分析】(1)设这批削笔器的销售价格定为()15x x 元/个,解不等式()30152400x x ⎡⎤--⨯⋅>⎣⎦即得解;(2)利用函数单调性的定义证明.【详解】(1)设这批削笔器的销售价格定为()15x x 元/个,由题意得()30152400x x ⎡⎤--⨯⋅>⎣⎦,即2302000,x x -+<方程230200x x -+=的两个实数根为1210,20x x ==,2302000x x ∴-+<解集为{1020}x x <<∣, 又15,1520x x ≥∴≤<,故应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元),才能使这批削笔器每天获得400元以上的销售收入.(2)证明:()12,1,x x ∀∈+∞,且12x x <,有()()()211212121212121212121211111x x x x y y x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,1,x x ∈+∞,得121,1x x >>.所以12121,10x x x x >->. 又由12x x <,得120x x -<.于是()12121210x x x x x x --<,即12y y <. 所以,函数1y x x=+在区间()1,+∞上单调递增. 18. 【答案】(1)(1,)+∞ (2)(0,1]【分析】(1)先求出p ⌝,然后利用其为真命题,求出a 的取值范围即可; (2)由(1)可知,命题p 为真命题时a 的取值范围,然后再求解q 为真命题时a 的取值范围,从而得到q ⌝为真命题时a 的取值范围,即可得到答案. 【详解】(1)根据题意,当12x ≤≤时,214x ≤≤, p ⌝:存在12x ≤≤,20x a -<为真命题,则1a >, 所以实数a 的取值范围是(1,)+∞;(2)由(1)可知,命题p 为真命题时,1a ≤, 命题q 为真命题时,2244(2)0a a a ∆=-+≥,解得0a ≤, 所以q ⌝为真命题时,0a >,所以1>0a a ≤⎧⎨⎩,解得01a <≤,所以实数a 的取值范围为(0,1]. 19. 【答案】(1){3<1x x -≤-或}34x ≤≤(2){3}aa ≤|【分析】(1)求出定义域,得到{-34}A xx =<≤|,进而计算出RB 及()R A B ⋂;(2)分B =∅与B ≠∅,列出不等式,求出a 的取值范围. 【详解】(1)要使函数()f x 40+3>0x x -≥⎧⎨⎩,解得:34x -<≤, 所以集合{-34}A x x =<≤|. 2a =,∴{}{}=1<<1+=1<<3B x a x a x x --, ∴{=1RB x x ≤-或}3x ≥,∴{=3<1RA B x x ⋂-≤-或}34x ≤≤;(2)B A ⊆,①当B =∅时,11a a -≥+,即0a ≤,满足题意;②当B ≠∅时,由B A ⊆,得1<1+131+4a a a a --≥-≤⎧⎪⎨⎪⎩,解得:03a <≤,综上所述:a 的取值范围为{}3a a ≤.20. 【答案】(1)1()f x x -=(2)作图见解析(3)递增区间是(,0)-∞,递减区间是(0,)+∞【分析】(1)利用幂函数的定义求出m 值,再结合其图象性质即可得解.(2)由(1)求出函数()g x ,再借助反比例函数、对称性作出()g x 的图象.(3)根据(2)中图象特征写出函数()g x 的单调区间.【详解】(1)因幂函数()22()55m f x m m x -=-+,则2551m m -+=,解得1m =或4m =,当1m =时,函数11()f x x x-==定义域是(,0)(0,)-∞+∞,()f x 是奇函数,图象关于原点对称,则1m =,当4m =时,函数2()f x x =是R 上的偶函数,其图象关于y 轴对称,关于原点不对称,所以幂函数()f x 的解析式是1()f x x -=(2)因函数()|()|g x f x =,由(1)知,1()||g x x =,显然()g x 是定义域(,0)(0,)-∞+∞上的偶函数,当0x >时,1()g x x =在(0,)+∞上单调递减,其图象是反比例函数1y x =在第一象限的图象,作出函数()g x 第一象限的图象,再将其关于y 翻折即可得()g x 在定义域上的图象,如图,(3)观察(2)中图象得,函数()g x 的递增区间是(,0)-∞,递减区间是(0,)+∞. 21. 【答案】(1){|11}x b x b -<<+(2)答案见解析【分析】(1)根据题意解一元二次不等式即可;(2)分类讨论函数单调区间,找到最小值点,由最小值为1,求出系数b ,再求函数在区间内的最大值.【详解】(1)若()24f x b <-,即22234x bx b -+<-,则()()110x b x b ⎡⎤⎡⎤---+<⎣⎦⎣⎦,∵11b b -<+,所以11b x b -<<+,故不等式()0f x <的解集为{|11}x b x b -<<+.(2)因为()223f x x bx =-+是开口向上,对称轴为x b =的二次函数,①若1b ≤-,则()f x 在[]1,2-上单调递增,∴函数()y f x =的最小值为()1421f b -=+=,解得32b =-, 故函数()y f x =的最大值为()27413f b =-=;②若2b ≥,则()f x 在[]1,2-上单调递减,∴函数()y f x =的最小值为()2741f b =-=,解得32b =(舍去); ③若12b -<<,则()f x 在[]1,b -上单调递减,在(],2b 上是单调递增,∴函数()y f x =的最小值为()231f b b =-=,解得b =b =(舍去),故函数()y f x =的最大值为()1424f b -=+=+综上所述: 当32b =-时,()f x 的最大值为13;当b =()f x 最大值为4+22. 【答案】(1)5,2⎡⎫+∞⎪⎢⎣⎭(2)5,42⎡⎤⎢⎥⎣⎦【分析】(1)根据题意,分别求出两个函数的最小值,将问题等价转化为min min ()()g x f x ≤,解不等式即可求解;(2)根据题意,分别求出两个函数的值域,然后将问题等价转化为()f x 在[0,1]上值域是()g x 在[0,1]上值域的子集,结合集合的包含关系即可求解.【详解】(1)因为()()()2221221214111x x f x x x x x -+⎡⎤===++-⎢⎥+++⎣⎦,利用1y x x =+函数图像性质可知()f x 在[]0,1上单调递增,于是()f x 在0x =处取得最小值,即()min ()00f x f ==,因为()52g x x a α=+-,注意到0a >,则()g x 在[]0,1上单调递增,于是()g x 在0x =处取得最小值,即()min ()052g x g a ==-,由题意可得:520a -≤,即得5,2a ∞⎡⎫∈+⎪⎢⎣⎭,所以实数a 的取值范围为5,2⎡⎫+∞⎪⎢⎣⎭. (2)由(1)可知:()f x 在1x =处取得最大值,即()max ()11f x f ==于是当[]0,1x ∈时,()f x 的值域[]0,1A = ()g x 在1x =处取得最大值,即()max ()15g x g a ==- 于是当[]0,1x ∈时,()g x 的值域[]52,5B a a =-- 要使得对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x = 根据()f x 与()g x 的连续性可知A B ⊆成立 则52051a a -≤⎧⎨-≥⎩,解得5,42a ⎡⎤∈⎢⎥⎣⎦,所以实数a 的取值范围为5,42⎡⎤⎢⎥⎣⎦.。

高一上学期期中考试数学试题(解析版)

高一上学期期中考试数学试题(解析版)
可得 在 上单调递增排除选项C
故选:D.
7.荀子曰:“故不积跬步无以至千里;不积小流无以成江海.“这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】
【分析】利用命题间的关系及命题的充分必要性直接判断.
【小问1详解】
解:设 的长为 米( )
是矩形
由 得
解得 或
即 的取值范围为
【小问2详解】
令 ( )则
当且仅当 即 时等号成立此时 最小面积为48平方米
22.已知函数 为偶函数.
(1)求实数a的值;
(2)判断 的单调性并用定义法证明你的判断:
(3)设 若对任意的 总存在 使得 成立求实数k的取值范围.
则 即 解得:
所以实数 的取值范围 .
【点睛】易错点睛:本题考查利用集合子集关系确定参数问题易错点是要注意: 是任何集合的子集所以要分集合 和集合 两种情况讨论考查学生的逻辑推理能力属于中档题.
18.已知关于x的不等式 .
(1)若不等式的解集是 求 的值;
(2)若 求此不等式的解集.
【答案】(1) ;(2)分类讨论答案见解析.
【详解】由已知设“积跬步”为命题 “至千里”为命题
“故不积跬步无以至千里”即“若 则 ”
其逆否命题为“若 则 ”反之不成立
所以命题 是命题 的必要不充分条件
故选:B.
8.中国宋代的数学家秦九韶曾提出“三斜求积术”即假设在平面内有一个三角形边长分别为abc三角形的面积 可由公式 求得其中 为三角形周长的一半这个公式也被称为海伦——秦九韶公式现有一个三角形的边长满足 则此三角形面积的最大值为()

江西省南昌市进贤县第二中学2024-2025学年高一上学期期中考试数学试题(含答案)

江西省南昌市进贤县第二中学2024-2025学年高一上学期期中考试数学试题(含答案)

2024-2025学年高一上学期数学期中考试一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合,若,则( )A .1B .2C .1或4D .42.已知函数的值域为( )A .B .C .D .3.“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数的定义域为,则函数)A .B .C .D .5.你见过古人眼中的烟花吗?那是朱淑真元宵夜的“火树银花触目红”,是隋炀帝眼中的“灯树千光照,花焰七枝开”.烟花,虽然是没有根的花,是虚幻的花,却在达到最高点时爆裂用其灿烂的一秒换来人们真心的喝彩.已知某种烟花距地面的高度(单位:米)与时间(单位:秒)之间的关系式为,则烟花在冲击后爆裂的时刻是( )A .第4秒B .第5秒C .第6秒D .第7秒6.设,则的大小顺序是()A .B .C .D .7.已知函数,则( )A .-2B.-1C .0D .18.已知函数的定义域为,且,当时,,则不等式的解集为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得部分分,有选错的得0分。

{}22,1,24A a a a =--+3A ∈a =()2f x x =+()f x (),8-∞-(],8-∞[)4,+∞[)6,+∞0a b +=22a b =()1f x +[]0,4()g x =[]1,3[)1,2()0,2[]1,7-h 2330h t t =-+P Q R ===,,P Q R Q R P>>Q P R >>P R Q >>P Q R >>()()()21,012,0x x f x f x f x x +≤⎧=⎨--->⎩()2f =()f x ()()()R,33,63f x f x f -=+=(]12,,3x x ∀∈-∞12x x ≠()()12120f x f x x x ->-()263f x x x +->{}17x x x <->或{}17x x -<<{}06x x x <>或{}06x x <<9.下列说法正确的有( )A .若是幂函数,则或3B .与C .已知函数,则D .函数的值域为10.若函数满足关系式,则下列结论正确的是( )A .B .C .D .11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:,其中表示不超过x 的最大整数,例如:.令函数,则下列说法正确的是( )A .B .是奇函数C .的最小值为0,没有最大值D .三、填空题12.已知函数是偶函数,则实数_________.13.命题“”为假命题,则实数的取值范围为_________.14.已知函数是定义在的单调函数,且对于任意的,都有,则_________.四、解答题:本题共5小题,共77分。

人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)

人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)

-2-
18.(本小题满分 12 分)
已知函数 f x log4 4x 1 kx k R 是偶函数.
(1)证明:对任意实数 b ,函数 y

f
x 的图象与直线 y

3 2
x b 最多只有一个交点;
(2)若方程 f x log4
a 2 x

4 3

有且只有一个解,求实数 a 的取值范围.
19.(12 分)某投资公司投资甲乙两个项目所获得的利润分别是 M (亿元)和 N (亿元),它们与
投资额 t (亿元)的关系有经验公式: M

1 3
t,
N

1 6
t
,今该公司将
3
亿元投资这个项目,若设甲
项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
集为
.
14.幂函数 y

x

1 2
p
2

p

3 2
p Z 为偶函数,且
f
1
f
4 ,则实数 p

.
15.用 min a, b, c 表示 a 、 b 、 c 三个数中的最小值设 f x min 2x, x 2,10 x x 0 ,则
f x 的最大值为
22.(12
分)已知函数
f

x

11x1x1
, ,
0 x1
. x 1
(1)当 0

a

log1 a ,
3
1 3
b
log1 b,
3
1 3
c
lo g3 c ,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档