微积分公式表
高等数学一(微积分)常用公式表
高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
大学数学微积分基本公式
空间解析几何和向量代数:
空间2点的距离:d = M 1 M 2 = ( x2 − x1 ) 2 + ( y 2 − y1 ) 2 + ( z 2 − z1 ) 2 向量在轴上的投影: Pr ju AB = AB ⋅ cos ϕ ,ϕ是 AB与u轴的夹角。 � � � � Pr ju (a1 + a 2 ) = Pr ja1 + Pr ja 2 � � � � a ⋅ b = a ⋅ b cosθ = a x bx + a y by + a z bz , 是一个数量, 两向量之间的夹角: cosθ =
n k ( n−k ) ( k ) (uv) ( n ) = ∑ C n u v k =0
= u ( n ) v + nu ( n−1) v′ +
n(n − 1) ( n− 2) n(n − 1)⋯(n − k + 1) ( n− k ) ( k ) u v′′ + ⋯ + u v + ⋯ + uv ( n ) 2! k!
dx 1 x ∫ a 2 + x 2 = a arctg a +C dx 1 x−a ∫ x 2 − a 2 = 2a ln x + a + C dx 1 a+x ∫ a 2 − x 2 = 2a ln a − x + C dx x ∫ a 2 − x 2 = arcsin a + C
π 2 π 2
1− x2 1 (arccos x)′ = − 1− x2 1 (arctgx)′ = 1+ x2 1 (arcctgx)′ = − 1+ x2
∫ tgxdx = − ln cos x + C ∫ ctgxdx = ln sin x + C ∫ sec xdx = ln sec x + tgx + C ∫ csc xdx = ln csc x − ctgx + C
大学微积分公式大全
2u 1 u 2 x 2du , cos x , u tg , dx 2 1 u 2 1 u 2 1 u 2
1 / 12
一些初等函数:
两个重要极限:
e x ex 双曲正弦 : shx 2 x e ex 双曲余弦 : chx 2 shx e x e x 双曲正切 : thx chx e x e x arshx ln( x x 2 1) archx ln( x x 2 1) 1 1 x arthx ln 2 1 x
空间解析几何和向量代数:
b
空间2点的距离:d M 1 M 2 ( x2 x1 ) 2 ( y 2 y1 ) 2 ( z 2 z1 ) 2 向量在轴上的投影: Pr ju AB AB cos ,是 AB与u轴的夹角。 Pr ju (a1 a2 ) Pr ja1 Pr ja2 a b a b cos a x bx a y b y a z bz , 是一个数量, 两向量之间的夹角: cos i c a b ax bx j ay by a x bx a y b y a z bz a x a y a z bx b y bz
多元函数微分法及应用
全微分:dz
z z u u u dx dy du dx dy dz x y x y z
全微分的近似计算:z dz f x ( x, y )x f y ( x, y )y 多元复合函数的求导法: dz z u z v z f [u (t ), v(t )] dt u t v t z z u z v z f [u ( x, y ), v( x, y )] x u x v x 当u u ( x, y ),v v( x, y )时, u u v v du dx dy dv dx dy x y x y 隐函数的求导公式: Fx F F dy dy d2y 隐函数F ( x, y ) 0, , 2 ( x )+ ( x ) dx Fy x Fy y Fy dx dx Fy F z z 隐函数F ( x, y, z ) 0, x , x Fz y Fz
常用微积分公式大全
常用微积分公式大全1.导数的基本定义和性质:- 导数的定义:设函数y=f(x),在点x_0处可导,则函数在该点的导数定义为f'(x_0)=lim_(h→0)[f(x_0+h)-f(x_0)]/h。
-常用导数公式:-常数函数的导数:(k)'=0,其中k为常数。
- 幂函数的导数:(x^n)'=nx^(n-1),其中n为常数。
-指数函数的导数:(e^x)'=e^x。
- 对数函数的导数:(lnx)'=1/x。
-导数的运算法则:-和差法则:(f±g)'=f'+g'。
-常量倍法则:(k·f)'=k·f',其中k为常数。
-乘法法则:(f·g)'=f'·g+g'·f。
-商法则:(f/g)'=(f'·g-g'·f)/g^2,其中g(x)≠0。
2.积分的基本定义和性质:- 不定积分的定义:设函数y=f(x),则f(x)的不定积分记作∫f(x)dx。
- 增量法:∫f(x)dx=F(x)+C,其中F(x)是f(x)的一个原函数,C为常数,称为积分常数。
-常用积分公式:- 幂函数的积分:∫x^n dx=(x^(n+1))/(n+1)+C,其中n≠-1-三角函数的积分:- ∫sinx dx=-cosx+C。
- ∫cosx dx=sinx+C。
- ∫tanx dx=-ln,cosx,+C。
- 指数函数的积分:∫e^x dx=e^x+C。
- 对数函数的积分:∫1/x dx=ln,x,+C。
- 反函数的积分:若F'(x)=f(x),则∫f(x)dx=F(x)+C。
- 定积分的定义:设函数y=f(x),在区间[a,b]上有定义,则f(x)在[a,b]上的定积分记作∫(a,b)f(x)dx。
-定积分的性质:- 定积分的线性性质:∫(a,b)[f(x)+g(x)]dx=∫(a,b)f(x)dx+∫(a,b)g(x)dx。
微积分公式大全
微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。
1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。
1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。
高等数学积分公式和微积分公式大全
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax bC b x +-+6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++ 7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x+-++10.x =C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b C a -14.2x=22232(34815a x abx b C a -++ 15.(0)(0)C b C b ⎧+><16.2a bx b -- 17.x=b + 18.2d x x ⎰=2a + (三)含有22x a ±的积分 19.22d x x a +⎰=1arctan x C a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x a C a x a-++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b +⎰=2d x b xa a axb -+⎰ 25.2d ()xx ax b +⎰=221ln 2x C b ax b++26.22d ()xx ax b +⎰=21d a x bx b ax b --+⎰27.32d ()xx ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()xax b +⎰=221d 2()2x x b ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+> 30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a+=ln(x C ++ 32.C +33.xC34.x=C +35.2x 2ln(2a x C ++36.2x ⎰=ln(x C +++37.1C a38.C +39.x =2ln(2a x C +40.x =2243(25ln(88x x a a x C +++41.x ⎰=C42.xx ⎰=422(2ln(88x a x a x C +++43.d x x⎰a C +44.x =ln(x C ++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x C48.x =C +49.2x 2ln 2a x C ++50.2x ⎰=ln x C +++51.1arccos aC a x+52.2C a x +53.x 2ln 2a x C ++54.x =2243(25ln 88x x a a x C -++55.x ⎰=C56.xx ⎰=422(2ln 88x a x a x C --++57.d x x⎰arccos a a C x -+58.2d x x ⎰=ln x C x-+++(0)a >的积分 59.=arcsinxC a+ 60.C +61.x =C62.x C +63.2x =2arcsin 2a x C a + 64.2x ⎰arcsinxC a-+65.1C a +66.2C a x -+67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.x lna a C x +72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x2n 2a x b c C++++75.xn 2a x b c C-+++ 76.=C +77.x 2C +78.x =C +79.x =((x b b a C --+80.x =((x b b a C --81.C +()a b <82.x 2()4b a C - ()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m nm x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰=tan xa b C ++22()a b >104.d sin x a b x +⎰=C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a++114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d xx x a ⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccosxx C a-117.arccos d xx x a ⎰=22()arccos 24x a x C a --118.2arccos d xx x a ⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d xx x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d ax x x ⎰=21(1)e axax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x xx a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n xn x a x a x a a --⎰ 128.e sin d axbx x ⎰=221e (sin cos )ax a bx b bx C a b -++ 129.e cos d ax bx x ⎰=221e (sin cos )axb bx a bx C a b+++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e s i n d a x n n n b b x x a b n--++⎰ 131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e c o s d a x n n n b b x x a b n--++⎰ (十四)含有对数函数的积分 132.ln d x x ⎰=ln x x x C -+133.d ln xx x ⎰=ln ln x C +134.ln d nx x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n nx x n x x --⎰136.(ln )d m nx x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=ln ch x C +140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++(十六)定积分 142.cos d nx x π-π⎰=sin d nx x π-π⎰=0143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m nm n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅- (n 为正偶数),0I =2π一、 (系数不为0的情况)00101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩二、重要公式(1)0sin lim 1x xx →=(2)()1lim 1xx x e→+= (3)lim )1n a o →∞>=(4)lim 1n →∞= (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)lim arc cot 0x x →∞= (8)lim arc cot x x π→-∞= (9)lim 0x x e →-∞=(10)lim x x e →+∞=∞(11)0lim 1x x x +→=三、下列常用等价无穷小关系(0x →)sin x x t a n x x a r c s i n x x a r c t a n x x211c o s 2x x -()ln 1x x+ 1x e x - 1l n xa x a -()11x x∂+-∂四、导数的四则运算法则()u v u v '''±=± ()u v u v uv '''=+2u u v u vv v '''-⎛⎫=⎪⎝⎭五、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()s i n c o sx x '=⑷()cos sin x x '=- ⑸()2t a n s e c x x'= ⑹()2c o t c s c x x'=-⑺()sec sec tan x x x '=⋅ ⑻()c s c c s c c o tx x x '=-⋅⑼()xxe e '= ⑽()ln xx a a a'= ⑾()1ln x x '=⑿()1log ln x a x a '=⒀()a r c s i n x '=⒁()a r c c o s x '=⒂()21arctan 1x x '=+ ⒃()21a r c c o t 1x x '=-+⒄()1x '=⒅'=六、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦(2)()()()()n n cu x cux =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()nn n k kk nk u x v x c ux v x -=⋅=⎡⎤⎣⎦∑七、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax b n ax be a e ++=⋅ (3)()()ln n x x n a a a=(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5)()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+八、微分公式与微分运算法则 ⑴()0d c = ⑵()1d x x d xμμμ-= ⑶()s i n c o s d x x d x=⑷()cos sin d x xdx=- ⑸()2t a n s e c d x x d x= ⑹()2c o t c s cd x x d x=-⑺()sec sec tan d x x xdx=⋅ ⑻()c s c c s c c o t d x x x d x=-⋅⑼()xxd ee dx = ⑽()ln xxd a aadx= ⑾()1ln d x dx x =⑿()1log ln xa d dxx a = ⒀()arcsin d x =⒁()a r c c o s d x d x=⒂()21arctan 1d x dx x =+ ⒃()21a r c c o t 1d x d x x =-+九、微分运算法则⑴()d u v du dv±=±⑵()d cu cdu=⑶()d uv vdu udv=+⑷2u vdu udvdv v-⎛⎫=⎪⎝⎭十、基本积分公式⑴kdx kx c=+⎰⑵11xx d x cμμμ+=++⎰⑶lndxx cx=+⎰⑷lnxxaa dx ca=+⎰⑸x xe dx e c=+⎰⑹c o s s i nx d x x c=+⎰⑺sin cosxdx x c=-+⎰⑻221s e c t a nc o sd x x d x x cx==+⎰⎰⑼221csc cotsinxdx x cx==-+⎰⎰⑽21a r c t a n1d x x cx=++⎰⑾arcsin x c =+十一、下列常用凑微分公式十二、补充下面几个积分公式tan ln cos xdx x c =-+⎰ c o t l n s i n x d x x c=+⎰sec ln sec tan xdx x x c =++⎰c s c l n c s c c o t xd x x x c=-+⎰2211arctan x dx c a x a a =++⎰2211ln 2x adx c x a a x a -=+-+⎰arcsinxc a =+ln x c=+十三、分部积分法公式⑴形如n axx e dx⎰,令n u x =,ax dv e dx = 形如sin nx xdx⎰令n ux =,sin dv xdx = 形如cos n x xdx⎰令n ux =,cos dv xdx =⑵形如arctan n x xdx⎰,令arctan u x =,n dv x dx =形如ln n x xdx⎰,令ln u x =,n dv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。
微积分公式大全
k nk (4) x v( k ) x u x v x cn u
n k 0
n
四、基本初等函数的 n 阶导数公式 (1) x
n
n
n!
n
(2) e
ax b
n
a n eax b
(3) a
2
⑻ csc x csc x cot x ⑽ a
e
x
x
a
x
x
ln a
1 1 x2
⑾ ln x
1 x
⑿ log a
x
1 x ln a 1 1 x2
⒀ arcsin x
⒁ arccos x
x
(9) lim e 0
x x
(10) lim e
x x
x 1 (11) lim
x x 0
(12) lim
a0 x n a1 x n 1 x b x m b x m 1 0 1
a0 b 0 an 0 bm
sin a sin b 2cos
ab a b sin 2 2 ab a b cos a cos b 2sin sin 2 2
tan a tan b
5.积化和差公式
sin a b cos a cos b
cos a cos b cos a s ib n 1 2 1 cos a b cos a b 2 n b s ia
三、高阶导数的运算法则
n n (1 ) u x v x u x v x
史上最全的数学微积分公式+三角函数+定理
sin 3 3sin 4sin3
cos 3 4 cos3 3cos
tg 3
3tg tg 3 1 3tg 2
·半角公式:
sin 1 cos cos 1 cos
2
2
2
2
tg 1 cos 1 cos sin ctg 1 cos 1 cos sin
x p};参数方程: y
x0 y0
mt nt
z z0 pt
二次曲面:
1、椭球面:x a
2 2
y2 b2
z2 c2
1
2、抛物面:x2 y 2 z(, p, q同号) 2 p 2q
3、双曲面:
单叶双曲面:x 2 a2
y2 b2
z2 c2
1
双叶双曲面:x 2 a2
拉格朗日中值定理:f (b) f (a) f ( )(b a) 柯西中值定理:f (b) f (a) f ( )
F(b) F(a) F( ) 当F(x) x时,柯西中值定理就是拉格朗日中值定理。
曲率:
弧微分公式:ds 1 y2 dx,其中y tg
csc2
xdx
ctgx
C
sec x tgxdx sec x C
csc x ctgxdx csc x C a xdx a x C
ln a
shxdx chx C
chxdx shx C dx ln(x
x2 a2
x2 a2 )C
(arctgx) 1 1 x2
(arcctgx
微积分公式大全
微积分公式cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α - sin β = 2 cos ?(α+β) sin ?(α-β)cos α + cos β = 2 cos ?(α+β) cos ?(α-β)cos α - cos β = -2 sin ?(α+β) sin ?(α-β)tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ?n (n +1)∑=ni i12=61n (n +1)(2n +1) ∑=ni i13= [?n (n +1)]2Γ(x) =⎰∞tx-1e -td t = 2⎰∞t2x-12t e -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Α α alpha Ι ι iota Ρ ρrhoΒ β beta Κ κ kappa Σ σ, ? sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi ΘθthetaΠπpiΩω omega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ? 顺位高d 顺位低 ;0*? =∞1 *? = ∞∞= 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲)顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)中位数(Median) 取排序后中间的那位数字1 000 000 000 000 000 000 000 000 10 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y。
微积分公式大全.doc
导数公式:(tan x) sec 2x (cot x) csc 2 x(sec x) sec x tan x (csc x)csc x cot x ( a x ) a x ln a( x x )x x (ln x 1)1(log a x)x ln a(arcsin x )1 1 x 2(arccos x )11 x 2(arctan x)1 21 x(arc cot x )11 x 2(thx )1ch2tanxdx ln cosx C cot xdx ln sin x Csecxdx ln secx tan x C cscxdx ln cscx cot x Cdx2cos 2 xsec xdxtan xCdxcsc 2 xdxcot x Csin 2 xsecx tan xdx secxCcsc x cot xdx csc x Cdx 22a xx 2a 2dx 22a xa 2 x 21 arctan x C a a1 ln x a C 2a x a 1 a xC 2a lnx aarcsinxCaa x dxa x Cln ashxdx chx C chxdx shx Cdx ln( xx 2 a 2 ) Cx 2 a 22sin n xdx 2cos n xdx n 1I nIn 2nx 2a 2dxx x 2 a 2a 2 x2a 2) C2ln( x2x2a 2dx x x 2a2a 2 ln x x 2 a 2C2 2 a 2x 2 dx x a 2 x 2a 2 x C2arcsin a2基本积分表:三角函数的有理式积分:sin x2u , cos x1 u2 , u tg x, dx 2du1 u2 1 u 221 u 2一些初等函数:双曲正弦: shx e x e x2双曲余弦: chx e x e x2双曲正切: thx shx e x e chx e x earshx ln( x x 2)1archx ln( x x2 1) arthx 1 ln 1 x2 1 x两个重要极限:lim sin x 1xx 0lim (11) x e 2.718281828459045...x xxx三角函数公式:sin sin2sin cos2 2 sin sin 2 cos sin2 2 cos cos 2 cos cos2 2 cos cos2sin sin2 2 sin cos 1 sin( ) sin( )2cos sin 1 sin( ) sin( )2cos cos 1 cos( ) cos( )2sin sin1) cos( )cos(2·和差化积公式:·积化和差公式:sin( ) sin cos cos sincos( ) cos cos msin sintan( )tan tan 1mtan tancot( ) cot cot m1cot cot2 tanx1 tan2 xsin x 2 , cosx 21 tan2 x 1 tan2 x2 2cos2 x11 , sin2 x tan2 xtan2 x 1 tan2 xtan2 x sec2 x 1, cot2 x csc2 x 1| sin x | | x | | tan x |·和差角公式:·万能公式、正切代换、其他公式:·倍角公式:sin 2 2sin cos4sin3 cos2 2cos2 1 1 2sin 2 cos2 sin2 sin3 3sincot2 cot2 1 cos3 4cos3 3cos 2cottan33tan tan3 2 tan 1 3tan2tan21 tan2·半角公式:sin 1 cos cos 1 cos2 22 2tan 1 cos 1 cos sin cot 1 cos 1 cos sin1 cos sin 1 cos 1 cos sin 1 cos2 2a b c2R·正弦定理: sin A sin B sin C ·余弦定理: c2 a2 b2 2ab cosCarcsin x arccos x arctan x arccot x·反三角函数性质:2 2高阶导数公式——莱布尼兹(Leibniz )公式:n(uv) ( n ) C n k u (n k ) v(k)k 0u( n)v nu ( n 1) v n( n 1) u( n 2)v n(n 1) ( n k 1) u(n k )v(k ) uv (n)2! k!中值定理与导数应用:拉格朗日中值定理:f (b) 柯西中值定理:f (b) f (a) f ( )(b a) f (a) f ( )F (a) F ( )当 F( x) x时,柯西中值定理就是拉格朗日中值定理。
微积分公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数微积分公式大全
微積分公式希腊字母 (Greek Alphabets)倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 顺位高d 顺位低 ;1 000 000 000 000 000 000 000 000 10 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y重点在三方面:一、函数与反函数的关系:(Function and Inverse Function)以前我们学过的相反运算有:加<------->减;乘<------->除;平方<----->开方;指数<----->对数;三角<----->反三角。
微积分公式大全
微积分公式⼤全导数公式:基本积分表:三⾓函数的有理式积分:2222212sin cos 1121u u x dux x u tg dx u u u -====+++, , , 22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+'=222(arcsin )(arccos )1(arctan )11(arc cot )11()x x x x x x thx ch '='='=+'=-+'=2222sec tan cos csc cot sin sec tan sec csc cot csc ln ln(xxdx xdx x C x dx xdx x Cx x xdx x C x xdx x Ca shxdx chx C chxdx shx C x C==+==-+?=+?=-+=+=+=+=+222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x Cdx xC a x a a dx x aC x a a x a dx a xC a x a a x xC a=-+=+=++=-+=++-=+-++=+--=+++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ⼀些初等函数:两个重要极限:三⾓函数公式:·和差化积公式: ·积化和差公式:·和差⾓公式: ·万能公式、正切代换、其他公式:·倍⾓公式:[][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+--sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x 3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααα=-=--=-222222sin 22sin cos cos 22cos 112sin cos sin cot 1cot 22cot 2tan tan 21tan αααααααααααααα==-=-=--==-2222222222222tan1tan 22sin cos 1tan 1tan 221tan cos sin 1tan 1tan tan sec 1cot csc 1|sin ||||tan |x xx x x xx x x x xx x x x x x x -==++==++=-=-<<,,, sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1 cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=±=±m m m·半⾓公式:sin cos 221cos sin 1cos sin tancot 2sin 1cos 2sin 1cos αααααααααααα+-·正弦定理:R C cB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三⾓函数性质:arcsin arccos arctan arccot 22x x x xππ=-=-⾼阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应⽤:拉格朗⽇中值定理。
高数微积分公式大全
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln xa x a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v u v v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()nn n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()nn cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nx n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln x a d dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin dx x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ c o t l n s i n x d x x c =+⎰ sec ln sec tan xdx x x c =++⎰ c s c l n c s cc o t xd x x x c=-+⎰ 2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin axe xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。
ap微积分公式表
ap微积分公式表微积分公式表是数学中的基础工具,它包含了微积分领域中常用的公式和定理。
下面是一个关于微积分的公式表,供参考:1. 导数公式:- 常数函数的导数:常数C的导数为0。
- 幂函数的导数:对于函数f(x) = x^n,其中n是常数,则f(x)的导数为f'(x) = nx^(n-1)。
- 指数函数的导数:对于函数f(x) = e^x,其中e是自然对数的底,则f(x)的导数为f'(x) = e^x。
- 对数函数的导数:对于函数f(x) = ln(x),其中ln表示自然对数,则f(x)的导数为f'(x) = 1/x。
- 三角函数的导数:对于函数f(x) = sin(x),其中sin表示正弦函数,则f(x)的导数为f'(x) = cos(x)。
类似地,cos(x)的导数为-sin(x),tan(x)的导数为sec^2(x),等等。
2. 积分公式:- 常数函数的积分:对于函数f(x) = C,其中C是常数,则f(x)的不定积分为∫f(x)dx = Cx + K,其中K是常数。
- 幂函数的积分:对于函数f(x) = x^n,其中n不等于-1,则f(x)的不定积分为∫f(x)dx = (1/(n+1)) * x^(n+1) + K。
- 指数函数的积分:对于函数f(x) = e^x,则f(x)的不定积分为∫f(x)dx = e^x + K。
- 对数函数的积分:对于函数f(x) = ln(x),其中ln表示自然对数,则f(x)的不定积分为∫f(x)dx = x(ln(x) - 1) + K。
- 三角函数的积分:对于某些三角函数,如sin(x),cos(x),tan(x)等,其不定积分可以通过查表得到。
3. 基本定理:- 第一基本定理:如果函数F(x)是函数f(x)的一个原函数,则∫f(x)dx = F(x) + C,其中C是常数。
- 第二基本定理:如果函数F(x)是函数f(x)的一个原函数,且区间[a, b]上的连续函数f(x)的一个原函数,那么∫(a tob)f(x)dx = F(b) - F(a)。