概率大题训练汇总(高考经典概率问题文科)
高考文科数学试卷概率题
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 从装有5个红球、4个蓝球、3个绿球的袋子里随机取出一个球,取出红球的概率是:A. 1/4B. 1/3C. 1/2D. 5/122. 一个袋子里装有5个白球和3个黑球,从袋子里随机取出两个球,取出两个白球的概率是:A. 5/18B. 5/12C. 5/9D. 1/33. 某班有40名学生,其中有20名男生,30名学生成绩在80分以上,已知至少有5名男生成绩在80分以上,则成绩在80分以上的男生占男生总数的概率是:A. 1/4B. 1/2C. 3/4D. 14. 某人有5把钥匙,其中只有一把能打开房门,他随机拿出一把钥匙尝试开门,直到成功为止,他第3次尝试成功的概率是:A. 1/10B. 1/5C. 1/3D. 1/25. 抛掷一枚均匀的六面骰子,得到偶数的概率是:A. 1/2B. 1/3C. 2/3D. 3/46. 一批产品中有100件,其中有10件次品,从这批产品中随机抽取3件,至少抽到1件次品的概率是:A. 9/10B. 8/10C. 7/10D. 6/107. 一批产品的合格率为90%,从中随机抽取10件产品,其中恰好有8件合格的概率是:A. 0.387B. 0.409C. 0.421D. 0.4348. 甲、乙两人参加数学竞赛,甲得奖的概率为0.6,乙得奖的概率为0.4,则甲、乙两人都得奖的概率是:A. 0.24B. 0.36C. 0.48D. 0.609. 一批产品的次品率为5%,从这批产品中随机抽取10件,其中至多有1件次品的概率是:A. 0.937B. 0.877C. 0.814D. 0.75610. 抛掷两枚均匀的硬币,至少出现一次正面的概率是:A. 1/4B. 1/2C. 3/4D. 7/8二、填空题(本大题共5小题,每小题10分,共50分。
把答案填在题中的横线上。
)11. 从1到10中随机选取一个整数,选出的数是奇数的概率是________。
高考概率大题及答案
高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。
已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。
现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。
2.一批产品某种型号有20%的不合格品。
现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。
首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。
而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。
因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。
假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。
因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。
3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。
现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。
文科《概率与统计》高考常考题型专题训练
文科《概率与统计》高考常考题型专题训练1.流行性感冒(简称流感)是流感病毒引起的急性呼吸道感染,是一种传染性强、传播速度快的疾病.其主要通过空气中的飞沫、人与人之间的接触或与被污染物品的接触传播.流感每年在世界各地均有传播,在我国北方通常呈冬春季流行,南方有冬春季和夏季两个流行高峰.儿童相对免疫力低,在幼儿园、学校等人员密集的地方更容易被传染.某幼儿园将去年春期该园患流感小朋友按照年龄与人数统计,得到如下数据:(1)求y 关于x 的线性回归方程;(2)计算变量x 、y 的相关系数r (计算结果精确到0.01),并回答是否可以认为该幼儿园去年春期患流感人数与年龄负相关很强?(若[]0.75,1r ∈,则x 、y 相关性很强;若[)0.3,0.75r ∈,则x 、y 相关性一般;若[]0,0.25r ∈,则x 、y 相关性较弱.)57.47≈.参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx====---==--∑∑∑∑,相关系数()()niix x y y r --=∑.1.【解析】(1)由题意得,2345645x ++++==,2222171410175y ++++==,()()()()()()()()()51522222212515001327ˆ 3.221012iii ii x x y y b x x ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆ17 3.2429.8a y bx=-=+⨯=, 故y 关于x 的线性回归方程为 3.229.8y x =-+;(2)()()()()1221132160.9710108330niii n niii i x x y y r x x y y ===----===≈-⨯-⋅-∑∑∑,0r ∴<,说明x 、y 负相关,又[]0.75,1r ∈,说明x 、y 相关性很强.因此,可以认为该幼儿园去年春期患流感人数与年龄负相关很强.2.为推进中小学体育评价体系改革,某调研员从一中学4000名学生中按照男女学生比例采用分层抽样的方法,从中随机抽取了400名学生进行某项体育测试(满分100分),记录他们的成绩,将记录的数据分成7组:(]30,40,(]40,50,(]50,60,(]60,70,(]70,80,(]80,90,(]90,100,并整理得到如图频率分布直方图.(1)根据该频率分布直方图,估计样本数据的中位数及4000名学生的平均成绩(同一组中的数据用该组区间的中点值作代表)(精确到0.01);(2)已知样本中有三分之二的男生分数高于60分,且分数高于60分的男女人数相等,试估计该校男生和女生人数的比例;(3)若测试成绩2x x s <-(其中x 是成绩的平均值,s 是标准差),则认为该生测试成绩不达标,试估计该中学测试成绩不达标人数. 参考公式:()221ni i i s x x p ==-∑(i p 是第i 组的频率)2 1.4≈11710.8≈.2.【解析】(1)前4组的频率和为0.050.10.10.20.45+++=,故中位数为0.055707071.670.033+=+≈ 4000名学生的平均成绩为:0.05350.1450.1550.2650.3750.2850.059569⨯+⨯+⨯+⨯+⨯+⨯+⨯=;(2)由频率分布直方图得样本中高于60分的人数占总人数的0.75, 又因为分数高于60分的男女人数相等,故高于60分的男生、女生人数均为4000.750.5150⨯⨯=人, 又因为样本中有三分之二的男生分数高于60分, 所以样本中共有男生的21502253÷=人,女生175人, 又因为样本是按照男女学生比例采用分层抽样的方法得到, 故该校男生和女生人数的比例为225:1759:7=; (3)()()()2222135690.0545690.1ni i i s x x p ==-=-⨯+-⨯∑()255690.1+-⨯()()2265690.275690.3+-⨯+-⨯()()2285690.295690.05234+-⨯+-⨯=所以234211715.12s ==⨯≈,26915.12238.76x s -=-⨯=故测试成绩2x x s <-占比为0.050.8760.0438⨯=, 该中学测试成绩不达标人数约为0.0438*******⨯≈.3.为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成[)0,2,[)2,4,[)4,6,[)6,8,[)8,10,[]10,12六组,得到如下频率分布直方图.(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);(2)若从答对题数在[)2,6内的学生中随机抽取2人,求恰有1人答对题数在[)2,4内的概率. 3.【解析】(1)因为答对题数的平均数约为()10.02530.02550.037570.12590.1875110.1⨯+⨯+⨯+⨯+⨯+⨯27.9⨯=.所以这40人的成绩的平均分约为7.91079⨯=.(2)答对题数在[)2,4内的学生有0.0252402⨯⨯=人,记为A ,B ;答对题数在[)4,6内的学生有0.03752403⨯⨯=人,记为c ,d ,e .从答对题数在[)2,6内的学生中随机抽取2人的情况有(),A B ,(),A c ,(),A d ,(),A e ,(),B c ,(),B d ,(),B e ,(),c d ,(),c e ,(),d e ,共10种,恰有1人答对题数在[)2,4内的情况有(),A c ,(),A d ,(),A e ,(),B c ,(),B d ,(),B e ,共6种, 故所求概率63105P ==. 4.某商店销售某海鲜,统计了春节前后50天海鲜的需求量x ,(1020x ≤≤,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为y 元.(1)求商店日利润y 关于需求量x 的函数表达式; (2)假设同组中的每个数据用该组区间的中点值代替. ①求这50天商店销售该海鲜日利润的平均数;②估计日利润在区间[]580760,内的概率. 4.【解析】(1)商店的日利润y 关于需求量x 的函数表达式为:()()50143014,1420501014,1014x x y x x x ⎧⨯+⨯-≤≤⎪=⎨-⨯-≤<⎪⎩化简得:30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩(2)①由频率分布直方图得:海鲜需求量在区间[)10,12的频率是20.080.16⨯=;海鲜需求量在区间[)12,14的频率是20.120.24⨯=; 海鲜需求量在区间[)14,16的频率是20.150.30⨯=; 海鲜需求量在区间[)16,18的频率是20.100.20⨯=; 海鲜需求量在区间[]18,20的频率是20.050.10⨯=; 这5050天商店销售该海鲜日利润y 的平均数为:()()()(116014100.16136014100.24153020140.301730⨯-⨯⨯+⨯-⨯⨯+⨯+⨯⨯+⨯+)()20140.20193020140.1083.2153.621915885698.8⨯⨯+⨯+⨯⨯=++++=(元)②由于14x =时,30142806014140700⨯+=⨯-=显然30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩在区间[]10,20上单调递增, 58060140y x ==-,得12x =; 76030280y x ==+,得16x =;日利润y 在区间[]580,760内的概率即求海鲜需求量x 在区间[]12,16的频率:0.240.300.54+=5. 2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办数学趣味知识竞赛活动,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[]40,100,分数在[)80,90,[)90,100分别获二等奖和一等奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图.(1)填写下面的22⨯列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”? 文科生 理科生 合计 获奖 5 不获奖(2)将上述调查所得的频率视为概率,现从参赛学生中,通过分层抽样的方法从这些获奖人中随机抽取4人,再从这4人中任意选取2人,求2人均获二等奖的概率. 临界值表:参考格式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.5.【解析】(1)补全22⨯列联表如下表.()2220051153545254.167 3.84150150401606K ⨯⨯-⨯==≈>⨯⨯⨯.所以有超过95%的把握认为“获奖与学生的文理科有关”. (2)由已知可得,分数在[)80,90获二等奖的参赛学生中抽取3人, 分数在[]90,100获一等奖的参赛学生中抽取1人. 记二等奖的3人分别为a ,b ,c ,一等奖的1人为A , 事件E 为“从这4人中抽取2人且这2人均是二等奖”.从这4人中随机抽取2人的基本事件为(),a b ,(),a b ,(),a A ,(),b c ,(),b A ,(),c A ,,共6种,其中2人均是二等奖的情况有(),a b ,(),a b ,(),b c 共3种, 由古典概型的概率计算公式得()3162P E ==.故2人均获二等奖的概率为12. 7.为增强学生法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50人,统计他们的竞赛成绩,并得到如表所示的频数分布表.(Ⅰ)求频数分布表中的m 的值,并估计这50名学生竞赛成绩的中位数(精确到0.1);(Ⅱ)将成绩在[]70,100内定义为“合格”,成绩在[)0,70内定义为“不合格”.请将列联表补充完整.试问:是否有95%的把握认为“法律知识的掌握合格情况”与“是否是高一新生”有关?说明你的理由;(Ⅲ)在(Ⅱ)的前提下,在该50人中,按“合格与否”进行分层抽样,随机抽取5人,再从这5人中随机抽取2人,求恰好2人都合格的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.7.【解析】(Ⅰ)50(5151512)3m =-+++=.设成绩的中位数为x ,则515151(70)505002x ++-⨯=,解得17373.33x =+≈. (Ⅱ)补全2×2列联表如下所示:22()()()()()n ad bc K a b c d a c b d -=++++250(1261418)26243020⨯⨯-⨯=⨯⨯⨯ 4.327 3.841≈>, 所以有95%的把握认为“法律知识的掌握合格情况”与“是否是高一新生”有关. (Ⅲ)分层抽样的比例为515010=,故抽取的5人中成绩合格的有130310⨯=(人),分别记为a ,b ,c ;成绩不合格的有120210⨯=(人),分别记为m ,n . 从5人中随机抽取2人的基本事件有ab ,ac ,bc ,am ,an ,bm ,bn ,cm ,cn ,mn ,共10种,2人都合格的基本事件有ab ,ac ,bc ,共3种, 所以恰好2人都合格的概率30.310P ==. 9.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为M ,当85M ≥时,产品为一级品;当7585M ≤<时,产品为二级品;当7075M ≤<时,产品为三级品.现用两种新配方(分别称为A 配方和B 配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表B 配方的频数分布表(1)从A 配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;(2)若这种新产品的利润率y 与质量指标M 满足如下条件:22,85,5,7585,,7075,t M y t M t M ≥⎧⎪=≤<⎨⎪≤<⎩,其中10,7t ⎛⎫∈ ⎪⎝⎭,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?9.【解析】(1)由题知,按分层抽样抽取的5件产品中有2件为二级品,记为a ,b ,有3件为一级品,记为x ,y ,z ,从5件产品中任取3件共有10种取法,枚举如下:(,,)a b x ,(,,)a b y ,(,,)a b z ,(,,)a x y ,(,,)a x z ,(,,)a y z ,(,,)b x y ,(,,)b x z ,(,,)b y z ,(,,)x y z其中恰好取到1件二级品共有6种取法,所以恰好取到1件二级品的概率为63105=. (2)由题知A 配方生产的产品平均利润率22(1030)5(4020)()20.6100t tE A t t +⨯++==+,B 配方生产的产品平均利润率2225(1015)5(3040)() 1.30.7100t t tE B t t ++⨯++⨯==+,所以2()()0.70.10.1(71)E A E B t t t t -=-=-, 因为107t <<,所以()()E A E B <,所以投资B 配方的产品平均利润率较大. 10.某工厂生产了一批零件,从中随机抽取100个作为样本,测出它们的长度(单位:厘米),按数据分成[]10,15,(]15,20,(]20,25,(]25,30,(]30,355组,得到如图所示的频率分布直方图.(1)估计该工厂生产的这批零件长度的平均值(同一组中的每个数据用该组区间的中点值代替); (2)若用分层抽样的方式从第1组和第5组中抽取5个零件,再从这5个零件中随机抽取2个,求抽取的零件中恰有1个是第1组的概率. 10.【解析】(1)由频率分布直方图可得各组频率依次为0.08,0.18,0.4,0.22,0.12, 则这批零件长度的平均值为12.50.0817.50.1822.50.427.50.2232.50.1223.1x =⨯+⨯+⨯+⨯+⨯=.(2)由题意可知第1组和第5组的零件数分别是0.081008⨯=和0.1210012⨯=, 则应从第1组中抽取582812⨯=+个零件,记为A ,B ;应从第5组中抽取3个零件,记为c ,d ,e .从这5个零件中随机抽取2个的情况有AB ,Ac ,Ad ,Ae ,Bc ,Bd ,Be ,cd ,ce ,de ,共10种,其中符合条件的情况有Ac ,Ad ,Ae ,Bc ,Bd ,Be ,共6种. 故所求概率63105P ==. 11.搪瓷是在金属坯体表面涂搪瓷釉而得到的制品.曾经是人们不可或缺的生活必备品,厨房用具中的锅碗瓢盆;喝茶用到的杯子,洗脸用到的脸盆;婚嫁礼品等,它浓缩了上世纪整整一个时代的记忆.某搪瓷设计公司新开发了一种新型复古搪瓷水杯,将其细分成6个等级,等级系数X 依次3,4,5,6,7,8,该公司交给生产水平不同的A 和B 两个厂生产,从B 厂生产的搪瓷水杯中随机抽取30件,相应的等级系数组成一个样本,数据如图所示.(1)依据图表,若从上述等级系数为7和8的搪瓷水杯中抽取2件,求这两件全部来自等级系数为8的搪瓷水杯的概率;(2)若A 厂生产搪瓷水杯的等级系数的平均值为6,在电商平台上A 厂生产的搪瓷水杯的零售价为36元/件,B 厂生产的搪瓷水杯的零售价为30元/件.设L =产品等级系数的平均值产品零售价,若以L 的值越大,产品越具可购买性为判断标准,根据以上数据,哪个工厂的产品更具可购买性?说明理由. 11.【解析】(1)设等级系数为7的搪瓷水杯为A ,B ,C ,等级系数为8的搪瓷水杯为a ,b ,c ,则从中抽取2件的基本事件为(),A B ,(),A C ,(),A a ,(),A b ,(),A c ,(),B C ,(),B a ,(),B b ,(),B c ,(),C a ,(),C b ,(),C c ,(),a b ,(),a c ,(),b c ,共15种,其中两件全部来自等级系数为8的搪瓷水杯的基本事件为(),a b ,(),a c ,(),b c , 共3种,所以概率为31155=. (2)A 厂的产品更具可购买性,理由如下:将频率视为概率,可得B 厂生产的搪瓷水杯的等级系数的平均值为3946566373834.830X ⨯+⨯+⨯+⨯+⨯+⨯==,即B 厂生产的搪瓷水杯的等级系数的平均值等于4.8,因为A 厂生产搪瓷水杯的等级系数的平均值等于6,价格为36元/件, 所以61366A L ==. 因为B 厂生产的搪瓷水杯的等级系数的平均值等于4.8,价格为30元/件, 所以 4.80.1630B L ==. 因为10.166>,故A 厂生产的搪瓷水杯更具可购买性. 12.为了检测某种抗病毒疫苗的免疫效果,研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分组,绘制频率分布直方图如图所示,并经进一步检测,发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的小白鼠有110只.(1)求a 值;(2)求200只小白鼠该项指标值的平均数;(3)填写下面的22⨯列联表,并根据列联表判断是否有95%的把握认为注射疫苗后小白鼠产生抗体与指标值不小于60有关?参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.12.【解析】(1)由各频率之和为1,可得:0.0025200.0062520200.025200.0075201a ⨯+⨯+⨯+⨯+⨯=,解得0.00875a =.(2)200只小白鼠某项指标值的平均数0.002520100.0062520300.0087520x =⨯⨯+⨯⨯+⨯500.02520700.0075209061.5⨯+⨯⨯+⨯⨯=.(3)由频率分布直方图,200只小白鼠某项指标值的数据分布为:在[)0,20内有0.00252020010⨯⨯=个;[)20,40内有0.006252020025⨯⨯=个;[)40,60内有0.008752020035⨯⨯=个;[)60,80内有0.025********⨯⨯=个; []80,100内有0.00752020030⨯⨯=个;由已知,小白鼠体内产生抗体的共有160只,其中指标值不小于60的有110只,故有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570=++只,所以指标值小于60没有抗体的小白鼠有20,同理,指标值不小于60没有抗体的小白鼠有20只,故列联表如下:由()2220010002200 4.945 3.8411604070130K ⨯-=≈>⨯⨯⨯ 所以有95%的把握认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.13.党的十九大提出,要推进绿色发展,倡导简约适度、绿色低碳的生活方式.天然气作为一种清洁高效能源,不仅可以优化能源结构,缓解供需矛盾,而且对于改善环境、提高人民生活质量和实现可持续发展都起到十分重要的作用.某研究小组为了研究燃气灶烧水如何节省燃气的问题设计了一个实验,并获得了燃气开关旋钮旋转的弧度数x 与烧开一壶水所用时间y 的一组数据,且作了一定的数据处理(如下表),得到了散点图(如图).xyω()2101ii x x =-∑()2101ii ωω=-∑()()101iii x x yy =--∑()()101iii y y ωω=--∑1.4720.6 0.782.35 0.8119.3-16.2表中21i i x ω=,101110i i ωω==∑.(1)根据散点图判断,y a bx =+与2dy c x=+哪一个更适宜作烧水时间y 关于开关旋钮旋转的弧度数x 的回归方程类型?(不必说明理由)并求出y 关于x 的回归方程;(2)若旋转的弧度数x 与单位时间内煤气输出量t 成正比,那么x 为多少时,烧开一壶水最省煤气? 附:对于一组数据()11,u v ,()22,u v ,()33,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121niii nii v v u u u u β==--=-∑∑,v u αβ=-.13.【解析】(1)2dy c x =+更适宜. 令21xω=,则y c d ω=+. 由公式可得:()()()101102116.2200.81iii ii y y d ωωωω==--===-∑∑, 20.3200.785c y d ω=-=-⨯=,所以所求回归方程为2205y x =+. (2)设t kx =,则煤气用量2202020552520k kS yt kx kx kx k x x x⎛⎫==+=+≥⋅= ⎪⎝⎭, 当且仅当205kkx x=时取“=”,即2x =时,煤气用量最小. 14.加班,系指除法定或者国家规定的工作时间外,即正常工作日延长工作时间或者双休日以及国家法定假期期间延长工作时间.有的工作人员在正常工作日不能积极主动工作,致使有的工作任务要到正常工作日延长工作时间完成,这不能称为“加班”,只有建立合理的考核方案,才能调动广大工作人员的积极性.某劳动组织对“工作时间”的评价标准如下表: 每天的工作时间(单位:小时) [)6,8 [)8,10 [)10,12 []12,14评价级别良好普通加班 严重加班超重加班2019年5月1日,该劳动组织从某单位某个月中随机抽取10天“工作时间”的统计数据绘制出的频率分布直方图如下:(1)若严重加班的天数是普通加班天数的2倍,求m ,n 的值;(2)在(1)条件下,若从这10天中评价级别是“良好”或“普通加班”的天数里随机抽取2天,求“这2天的‘工作时间’属于同一评价级别”的概率.14.【解析】(1)依题意1 322151210 m n nnmm⎧⨯+⨯==⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩.(2)由(1)可知这10天中评价级别是“良好”有1210210⨯⨯=天,设为,a b;评价级别是“普通加班”有1210210⨯⨯=天,设为,c d.从中抽取2天,所有可能为,,,,,ab ac ad bc bd cd共6种,其中这2天的“工作时间”属于同一评价级别的为,ab cd共2种,所以“这2天的‘工作时间’属于同一评价级别”的概率为21 63 =.15.搪瓷是在金属坯体表面涂搪瓷釉而得到的制品.曾经是人们不可或缺的生活必备品,厨房用具中的锅碗瓢盆;喝茶用到的杯子;洗脸用到的脸盆;婚嫁礼品等,它浓缩了上世纪整整一个时代的记忆.某搪瓷设计公司新开发了一种新型复古搪瓷水杯,将其细分成6个等级,等级系数X依次3,4,5,6,7,8,该公司交给生产水平不同的A和B两个广生产,从B厂生产的搪瓷水杯中随机抽取30件,相应的等级系数组成一个样本,数据如图所示:(1)依据上表,若从上述等级系数为7和8的搪瓷水杯中抽取2件,求这2件全部来自等级系数为8的搪瓷水杯的概率;(2)下图是5位网友对两厂生产的搪瓷水杯对比评分图,根据图表,利用评分均值和标准差比较两种搪瓷水杯的评分情况,并说明理由.15.【解析】(1)设等级系数为7的搪瓷水杯为A ,B ,C ,等级系数为8的搪瓷水杯为a ,b ,c ,则从中抽取2件的基本事件为(),A B ,(),A C ,(),A a ,(),A b ,(),A c ,(),B C ,(),B a ,(),B b ,(),B c ,(),C a ,(),C b ,(),C c ,(),a b ,(),a c ,(),b c ,共15种,其中2件全部来自等级系数为8的搪瓷水杯的基本事件为(),a b ,(),a c ,(),b c ,共3种, 所以31155P ==. (2)因为()467895 6.8B x =++++÷=,所以B 厂生产的搪瓷水杯的评分平均分为6.8,标准差为()()()()()2222214 6.86 6.87 6.88 6.89 6.8 1.725S ⎡⎤=-+-+-+-+-=⎣⎦, 所以B 厂生产的搪瓷水杯的评分标准差为1.72,因为()56 6.5785 6.5A x =++++÷=,所以A 厂生产的搪瓷水杯的评分平均分为6.5,()()()()()2222215 6.56 6.5 6.5 6.57 6.58 6.515S ⎡⎤=-+-+-+-+-=⎣⎦ 所以A 厂生产的搪瓷水杯的评分标准差为1,综上,B 厂生产的糖瓷水杯的评分的均值较高;A 厂生产的搪瓷水杯的评分的标准差较小,比较稳定.16.新型冠状病毒疫情发生后,口罩的需求量大增,某口罩工厂为提高生产效率,开展技术创新活动,提出两种新的生产方式.为比较两种生产方式的效率,选取80名工人,将他们随机分成两组,每组40人,第一组工人用第一种生产方式,第二组工人用第二种生产方式. 第一种生产方式40名工人完成同一生产任务所用时间(单位:min )如表68 72 85 77 83 82 90 83 89 84 88 87 76 91 79 90 87 91 86 92 88 87 81 76 95 94 63 87 85 71 96637485929987827569第二种生产方式40名工人完成同一生产任务所用时间(单位:min )如饼图所示:(1)填写第一种生产方式完成任务所用时间的频数分布表并作出频率分布直方图; 生产时间 [)60,70[)70,80[)80,90[)90,100频数(2)试从饼图中估计第二种生产方式的平均数;(3)根据频率分布图和饼图判断哪种生产方式的效率更高?并说明理由.16.【解析】(1)根据第一种生产方式40名工人完成同一生产任务所用时间的表格数据,可得:生产时间 [)60,70[)70,80[)80,90[)90,100频数481810则所用时间的频数分布表并作出频率分布直方图:(2)根据平均数的计算公式,试从饼图中估计第二种生产方式的平均数为:⨯+⨯+⨯+⨯=650.25750.5850.2950.0575.5min(3)从频率分布直方图中估计第一种生产方式的平均数为:⨯+⨯+⨯+⨯=650.1750.2850.45950.2583.5min从平均数的角度发现:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.18.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为E的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率.18.【解析】(1)从条形图中可知这100人中,有56名学生成绩等级为B,故可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩等级为B 的人数约有1480044825⨯=. (2)这100名学生成绩的平均分为()1321005690780370260100⨯+⨯+⨯+⨯+⨯ 91.3=(分), 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)按分层抽样抽取的4人中有1名男生,3名女生,记男生为a ,3名女生分别为1b ,2b ,3b .从中抽取2人的所有情况为1ab ,2ab ,3ab ,12b b ,13b b ,23b b ,共6种情况,其中恰好抽到1名男生的有1ab ,2ab ,3ab ,共3种情况,故所求概率12P =. 19.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专项规定.某小区采取一系列措施,宣传垃圾分类的知识与意义,并采购分类垃圾箱.为了了解垃圾分类的效果,该小区物业随机抽取了200位居民进行问卷调查,每位居民对小区采取的措施给出“满意”或“不满意”的评价.根据调查结果统计并做出年龄分布条形图和持不满意态度的居民的结构比例图,如图,在这200份问卷中,持满意态度的频率是0.65.(1)完成下面的22⨯列联表,并判断能否有95﹪的把握认为“51岁及以上”和“50岁及以下”的居民对该小区采取的措施的评价有差异满意 不满意 总计 51岁及以上的居民 50岁及以下的居民 总计200(2)按“51岁及以上”和“50岁及以下”的年龄段采取分层抽样的方法从中随机抽取5份,再从这5份调查问卷中随机抽取2份进行电话家访,求电话家访的两位居民恰好一位年龄在51岁及以上,另一位年龄在50岁及以下的概率.20()P K k ≥0.050 0.025 0.010 0.005 0.001附表及参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.【解析】(1)在这200份问卷中,持满意态度的频数为2000.65130⨯=,持不满意态度和频数为20013070-=,∴22⨯列联表如下:∴222()200(45358535) 4.487 3.841()()()()8012013070n ad bc K a b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯. 故有95﹪的把握认为“51岁及以上”和“50岁及以下”的居民对该小区采取的措施的评价有差异. (2)利用分层抽样的特点可知:“51岁以上”居民抽到2份记为:12,a a ; “50岁以下”居民抽到3份记为:123,,b b b .∴基本事件共有:121112132122(,),(,),(,),(,),(,),(,),a a a b a b a b a b a b 2312(,),(,),a b b b1323(,),(,)b b b b ,共有10个. 满足条件的事件有:11121321(,),(,),(,),(,)a b a b a b a b 2223(,),(,)a b a b ,共有6个.∴求得电话家访的两位居民恰好一位年龄在“51岁以上”,另一位年龄在“50岁以下” 的概率为:63()105P A ==. 20.为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康,2019年6月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭2019年1至6月的人均月纯收入,作出散点如下:根据盯关性分析,发现其家庭人均月纯收入y 与时间代码x 之间具有较强的线性相关关系(记2019年1月、2月……分别为1x =,2x =,…,依此类推),由此估计该家庭2020年能实现小康生活.但2020年1月突如其来的新冠肺炎疫情影响了奔小康的进展,该家庭2020年第一季度每月的人均月纯收入只有2019年12月的预估值的23. (1)求y 关于x 的线性回归方程;(2)求该家庭2020年3月份的人均月纯收入;(3)如果以该家庭3月份人均月纯收入为基数,以后每月增长率为8%,问该家庭2020年底能否实现小康生活? 参考数据:619310i ii x y==∑,68610x y =,101.08 2.16≈参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.20.【解析】(1)依题意得:123456 3.56x +++++==,686104106 3.56x y y x⋅===⨯,62191ii x==∑,619310i i i x y ==∑,所以616222169310861040916 3.56i ii i i x y x yb x x==--===-⨯-∑∑, 41040 3.5270a y bx =-=-⨯=,所以y 关于x 的线性回归方程为40270y x =+.(2)令12x =,得2019年12月该家庭人均月纯收入预估值为4012270750⨯+=元故,2020年3月份该家庭的人均月纯收入为27505003⨯=元. (3)每月的增长率为8%,设从3月开始到12月的纯收入之和为10S , 则()()91050050010.08...50010.08S =+⨯+++⨯+,()105001 1.0872501 1.08⎡⎤⨯-⎣⎦==-,1210100082508000S S =+=>,故到2020年底能如期实现小康.21.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在[)220,240的用户中应抽取多少户?21.【解析】 (1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)×20=1得:x =0.0075,所以直方图中x 的值是0.0075. ------------- 3分 (2)月平均用电量的众数是2202402+=230. ------------- 5分 因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内, 设中位数为a ,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a =224,所以月平均用电量的中位数是224. ------------ 8分 (3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户, 月平均用电量为[260,280)的用户有0. 005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户, -------------10分 抽取比例=112515105+++=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5户.-- 12分22.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数: 温度x (单位:C ) 21 23 24 27 29 32 死亡数y (单位:株) 61120275777经计算:611266i i x x ===∑,611336i i y y ===∑,61()()557i i i x x y y =--=∑,621()84i i x x =-=∑,621()3930ii y y =-=∑,621()23.6ˆ64i i y y=-=∑,8.0653167e ≈,其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i =.(1)若用线性回归模型,求y 关于x 的回归方程^^^y b x a =+(结果精确到0.1);(2)若用非线性回归模型求得y 关于x 的回归方程0.23030.06ˆxye =,且相关指数为20.9522R =.(i)试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好;(ii )用拟合效果好的模型预测温度为35C 时该紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,)u v ,22(,)u v ,,(,)n n u v ,其回归直线ˆˆv u αβ∧=+的斜率和截距的最小二乘估计分别为:121()()()niii ni i u u v v u u β∧==--=-∑∑,a v u β∧∧=-;相关指数为:22121()1()niii niii v v R v v ∧==-=--∑∑.22.【解析】(1)利用回归方程的公式,求得线性回归方程为:ˆy =6.6x −139.4;(2)(i )()()6221621236.641110.06020.93983930ˆi i i i ii y y R y y ==-=-=-≈-=-∑∑,因为0.9398<0.9522,所以回归方程0.2303ˆ0.06x y e =比线性回归方程ˆy =6.6x −138.6拟合效果更好;(ii )当温度35x C =时,。
概率大题训练总结(高考经典概率问题文科)
1(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数;(2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分,求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=,236112136472222222=++++++)2在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?3已知向量()1,2a =-,(),b x y = .(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1a b =-的概率;(2)若实数,x y ∈[]1,6,求满足0a b >的概率.4某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.5为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t 、m 、n 为递减的等差数列,且第一组与第八组的频数相同,求出x 、t 、m 、n 的值;(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为x ,y ,求事件“||5x y ->”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.频率分数901001101201300.050.100.150.200.250.300.350.40807019题图7某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组[)14,13;第二组[)15,14,……,第五组[]18,17.右图是按上述分组方法得到的频率分布直方 图.(I )若成绩大于或等于14秒且小于16秒认为 良好,求该班在这次百米测试中成绩良好的人数;(II )设m 、n 表示该班某两位同学的百米测试成绩,且已知[][18,17)14,13,⋃∈n m , 求事件“1>-n m ”的概率.8一人盒子中装有4张卡片,每张卡上写有1个数字,数字分别是0,1、2、3。
文科数学概率高考题(含答案)
文科数学概率高考题(含答案)概率是历年高考数学文科考试经常出现的题型。
为了帮助考生掌握数学中概率知识点,下面是店铺为大家整理的数学概率高考题,希望对大家有所帮助!文科数学概率高考题(一)1.[2014•新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.1.132.[2014•全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.2.233.[2014•浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.3.134.[2014•陕西卷] 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元) 0 1000 2000 3000 4000车辆数(辆) 500 130 100 150 120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.4.解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,所以赔付金额大于投保金额的概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,得样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24.由频率估计概率得P(C)=0.24.5.、[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.5.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.K2 古典概型6.[2014•福建卷] 根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12 616美元为中等偏上收入国家;人均GDP不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10 000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.6.解:(1)设该城市人口总数为a,则该城市人均GDP为8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件M为“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个.所以所求概率为P(M)=310.7.[2014•广东卷] 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.7.258.[2014•湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )A.p1C.p18.C9.[2014•湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b).其中a,a分别表示甲组研发成功和失败;b,b分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.9.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x甲=1015=23,方差为s2甲=1151-232×10+0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙=915=35,方差为s2乙=1151-352×9+0-352×6=625.因为x甲>x乙,s2甲(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为715.将频率视为概率,即得所求概率为P(E)=715.文科数学概率高考题(二)10.[2014•江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.10.1311.[2014•江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118B.19C.16D.11211.B12.[2014•江西卷] 将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.12.解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=n,1≤n≤9,2n-9,10≤n≤99,3n-108,100≤n≤999,4n-1107,1000≤n≤2014.(3)当n=b(1≤b≤9,b∈N*),g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=0,1≤n≤9,k,n=10k+b,11,n=100.1≤k≤9,0≤b≤9,k∈N*,b∈N,同理有f(n)=0,1≤n≤8,k,n=10k+b-1,1≤k≤8,0≤b≤9,k∈N*,b∈N,n-80,89≤n≤98,20,n=99,100.由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0.当n=90时,p(90)=g(90)F(90)=9171=119.当n=10k+9(1≤k≤8,k∈N*)时,p(n)=g(n)F(n)=k2n-9=k20k+9,由y=k20k+9关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n∈S时,p(n)的最大值为119.13.[2014•辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生 60 20 80北方学生 10 10 20合计 70 30 100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n(n11n22-n12n21)2n1+n2+n+1n+2,P(χ2≥k) 0.100 0.050 0.010k 2.706 3.841 6.63513.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n(n11n22-n12n21)2n1+n2+n+1n+2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},其中ai表示喜欢甜品的学生,i=1,2,bj表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A由7个基本事件组成,因而P(A)=710.14.[2014•山东卷] 海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量 50 150 100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.14.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3}{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D为“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.15.[2014•陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.4515.B16.[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.16.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.17.[2014•天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学 A B C女同学 X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.17.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.18.[2014•重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.18.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.文科数学概率高考题(三)19.[2014•福建卷] 如图15所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.19.1820.[2014•湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.1520.B21.[2014•辽宁卷] 若将一个质点随机投入如图11所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π821.B22.[2014•重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)22.932K4 互斥事件有一个发生的概率K5 相互对立事件同时发生的概率23.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.23.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.K6 离散型随机变量及其分布列24.[2014•江苏卷] 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X 的概率分布和数学期望E(X).24.解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P=C24+C23+C22C29=6+3+136=518.(2)随机变量X所有可能的取值为2,3,4.{X=4}表示的随机事件是“取到的4个球是4个红球”,故P(X=4)=C44C49=1126;{X=3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P(X=3)=C34C15+C33C16C49=20+6126=1363;于是P(X=2)=1-P(X=3)-P(X=4)=1-1363-1126=1114.所以随机变量X的概率分布如下表:X 2 3 4P 111413631126因此随机变量X的数学期望E(X)=2×1114+3×1363+4×1126=209.K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布25.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.25.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.。
高三文科概率大题汇总
(2010东城二模文)16.(本小题满分13分)随机抽取100名学生,测得他们的身高(单位:cm ),按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图(如图). (Ⅰ)求频率分布直方图中x 的值及身高在170cm 以上的学生人数;(Ⅱ)将身高在[170,175),[175,180),[180,185]区间内的学生依次记为A ,B ,C 三个组,用分层抽样的方法从三个组中抽取6人,求从这三个组分别抽取的学生人数;(Ⅲ)在(Ⅱ)的条件下,要从6名学生中抽取2人,用列举法计算B 组中至少有1人被抽中的概率.(2010西城二模文)16.(本小题满分15分)在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图。
在选取的40名学生中。
(I )求成绩在区间[)90,80内的学生人数;(II )从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间[90,100]内的概率。
(2010海淀二模文)16.(本小题满分13分)某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株. 现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:树干周长(单位:cm)[)30,40[)40,50[)50,60[)60,70株数418x6(I )求x 的值 ;(II )若已知树干周长在30cm 至40cm 之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.(2010昌平二模文)(17)(本小题满分13分)设关于x 的一元二次函数2()41(,R).f x ax bx a b =-+∈(I )设集合P={1,2, 4}和Q={-1,1,2},分别从集合P 和Q 中随机取一个数作为函数()f x 中a 和b 的值,求函数)(x f y =有且只有一个零点的概率;(II)设点(a,b)是随机取自平面区域240x yxy+-≤⎧⎪>⎨⎪>⎩内的点,求函数()(,1]y f x=-∞在区间上是减函数的概率.(2011西城二模文)17.(本小题满分13分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45人,求n的值;(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率;(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:,,,,,,,.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过的概率.(2011海淀二模文)17.(本小题共14分)某学校餐厅新推出A B C D、、、四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:(Ⅰ)若同学甲选择的是A 款套餐,求甲的调查问卷被选中的概率;(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D 款套餐的概率.(2011昌平二模文)16.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(,],(,],… ,(,].经过数据处理,得到如下频率分布表:(I)求频率分布表中未知量n,x,y,z 的值;(II )从样本中视力在(,]和(,]的所有同学中随机抽取两人,求两人的视力差的绝对值低于的概率.(2012东城二模文)(16)(本小题共13分)某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了100名学生,相关的数据如下表所示:(Ⅰ) 用分层抽样的方法从喜欢语文的学生中随机抽取5名,高中学生应该抽取几名 (Ⅱ) 在(Ⅰ)中抽取的5名学生中任取2名,求恰有1名初中学生的概率.(2012海淀二模文)16、(本小题满分13分)在一次“知识竞赛”活动中,有12,,,A A B C 四道题,其中12,A A 为难度相同的容易题,B 为中档题,C 为较难题. 现甲、乙两位同学均需从四道题目中随机抽取一题作答.(Ⅰ)求甲、乙两位同学所选的题目难度相同的概率; (Ⅱ)求甲所选题目的难度大于乙所选题目的难度的概率.(2012昌平二模文)16.(本小题满分13分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下表所示:(Ⅰ)若所抽取的20件日用品中,等级系数为2的恰有4件,Array求a,b,c的值;(Ⅱ)在(Ⅰ)的条件下,从等级为4的2件日用品和等级为5的3件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.(2013年东城二模文)(本小题共13分)用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人)⑴ 求x ,y ; ⑵若从高二、高三年级抽取的人中选2人,求这二人都来自高二年级的概率.(2014东城二模文)16.(本小题共13分)汽车的碳排放量比较大,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km 的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km ).经测算得乙品牌轻型汽车二氧化碳排放量的平均值为120g /km x 乙.(Ⅰ) 从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130g /km 的概率是多少(Ⅱ) 求表中x 的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.年级 相关人数 抽取人数高一 99 x高二 27 y高三182(2014西城二模文)16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:,,,,.B 班5名学生的视力检测结果:,,,,.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好 (Ⅱ)由数据判断哪个班的5名学生视力方差较大(结论不要求证明) (Ⅲ)根据数据推断A 班全班40名学生中有几名学生的视力大于(2014海淀二模文)16.(本小题满分13分)下图为某地区2012年1月到2013年1月鲜蔬价格指数的变化情况:记Δx =本月价格指数-上月价格指数. 规定:当Δ0x >时,称本月价格指数环比增长; 当0x ∆<时,称本月价格指数环比下降;当0x ∆=时,称本月价格指数环比持平. (Ⅰ)比较2012年上半年与下半年鲜蔬价格指数月平均值的大小(不要求计算过程); (Ⅱ)直接写出从2012年2月到2013年1月的12个月中价格指数环比下降..的月份.若从这12个月中随机选择连续的两个月进行观察,求所选两个月的价格指数都.环比下降的概率;(Ⅲ)由图判断从哪个月开始连续三个月的价格指数方差最大.(结论不要求证明)(2014昌平二模文)16、(本小题满分13分)某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得到的频率分布直方图如图所示. (Ⅰ)根据图中数据求a 的值(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组 各抽取多少名新生(Ⅲ)在(Ⅱ)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.(2015西城二模文)18.(本小题满分13分)某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.频率/组距时间 (分钟)0.0350.03a0.010.0055040302010 频率/组距时间(分钟)(Ⅰ)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(Ⅱ)若在这10个卖场中,乙型号电视机销售量的平均数为,求a >b 的概率; (Ⅲ)若a =1,记乙型号电视机销售量的方差为s 2,根据茎叶图推断b 为何值时,s 2达到最小值.(只需写出结论) (注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为1x ,2x ,…,n x的平均数)(2014年高考文)18. (本小题满分13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)(2013高考文)(16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大(结论不要求证明)空气质量指数。
文科概率大题(几何概率、古典概型)
几何概型1.已知地铁列车每 是 ( ) A.110 B.19 C.111 D.182.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为一边作正方形,则此正方形的面积介于36 cm 2与81 cm 2 之间的概率为 ( ) A.116 B.18 C.14 D.123.《广告法》对插播广告的时间有一定的规定,某人对某台的电视节目做了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率为910,那么该台每小时约有________分钟的广告.4.(2009·辽宁高考ABCD 内随机取一点,取到的点到O 的距离大于1的概率为 ( ) A.π4 B .1-π4 C.π8 D .1-π85.设-1≤a ≤1,-1≤b ≤1,则关于x 的方程x 2+ax +b 2=0有实根的概率是 ( ) A.12 B.14 C.18 D.1166.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 ( ) A.13 B.23 C.19 D.297.在区域⎩⎨⎧x +y -2≤0,x -y +2≥0,y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2B.π8C.π6D.π4 8.(2010·济南模拟)在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是________. 9.已知函数f (x )=x 2-2ax +b 2,a ,b ∈R.(1)若a 从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2}中任取一个元素,求方程f (x )=0有两个不相等实根的概率;(2)若a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,求方程f (x )=0没有实根的概率.10. 1 cm 的硬币任意平掷在这个平面,则硬币不与任何一条平行线相碰的概率是 ( )11.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是__________.A.14B.13C.12D.2312.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必需等待一段时间的概率.答案1解析:设乘客到达站台立即乘上车为事件A ,试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110.答案:A2解析:正方形的面积介于36 cm 2与81 cm 2之间,所以正方形的边长介于6 cm 到9 cm 之间.线段AB 的长度为12 cm ,则所求概率为9-612=14.答案:C3解析:60×(1-910)=6分钟.答案:64解析:对应长方形的面积为2×1=2,而取到的点到O 的距离小于等于1时,其是以O 为圆心,半径为1所作的半圆,对应的面积为12×π×12=12π,那么满足条件的概率为:1-12π2=1-π4.答案:B5解析:由题知该方程有实根满足条件⎩⎪⎨⎪⎧-1≤a ≤1,-1≤b ≤1,a 2-4b 2≥0,作平面区域如右图:由图知阴 影面积为1,总的事件对应面积为正方 形的面积,故概率为14.答案:B6解析:作出两集合表示的平面区域如图所示.容易得出 Ω所表示的平面区域为三角形AOB 及其边界,A 表示的 区域为三角形OCD 及其边界.容易求得D (4,2)恰为直线x =4,x -2y =0,x +y =6三线的交点. 则可得S △AOB =12×6×6=18,S △OCD =12×4×2=4.所以点P 落在区域A 的概率为418=29.答案:D7解析:区域为△ABC 内部(含边界),则概率为 P =S 半圆S △ABC =π212×22×2=π4.答案:D8解析:以A 、B 、C 为圆心,以1为半径作圆,与△ABC 相交出 三个扇形(如图所示),当P 落在阴影部分时符合要求. ∴P =3×(12×π3×12)34×22=3π6.答案:36π9解:(1)∵a 取集合{0,1,2,3}中任一个元素,b 取集合{0,1,2}中任一个元素,∴a ,b 的取值的情况有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值, 即基本事件总数为12.设“方程f (x )=0有两个不相等的实根”为事件A ,当a ≥0,b ≥0时,方程f (x )=0有两个不相等实根的充要条件为a >b . 当a >b 时,a ,b 取值的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2), 即A 包含的基本事件数为6,∴方程f (x )=0有两个不相等实根的概率 P (A )=612=12.(2)∵a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,则试验的全部结果构成区域Ω={(a ,b )|0≤a ≤2,0≤b ≤3}, 这是一个矩形区域,其面积S Ω=2×3=6.设“方程f (x )=0没有实根”为事件B ,则事件B 所构成的区域为 M ={(a ,b )|0≤a ≤2,0≤b ≤3,a <b }, 即图中阴影部分的梯形,其面积 S M =6-12×2×2=4.由几何概型的概率计算公式可得方程f (x )=0没有实根的概率P (B )=S M S Ω=46=23.11.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是__________.10解析:平面被这一组平行线分割成条状区域,现对两条平行线之间的区域考虑:平行线间的距离为3 cm ,硬币半径为1 cm ,要想硬币不与两条平行线相碰,硬币中心与两条平行线的距离都应大于1 cm ,如图:硬币中心只有落在阴影部分(不包括边界)时,才能让硬币与两条平行线都不相碰,则硬币中心落在阴影部分的概率为13.整个平面由无数个这样的条状区域组成,故所求概率是13.答案:B11解析:如图:区域D 表示边长为4的正方形ABCD 的内部(含边界), 区域E 表示单位圆及其内部,因此P =π×124×4=π16.答案:π1612解:甲比乙早到4小时内乙需等待,甲比乙晚到2小时内甲需等待. 以x 和y 分别表示甲、乙两船到达泊位的时间,则有一艘船停靠泊位时需等待一段时间的充要条件为-2≤x -y ≤4,在如 图所示的平面直角坐标系内,(x ,y )的所有可能结果是边长为24的正方形,而事件A “有一艘船停靠泊位时需等待一段时间”的可能结果由阴影部分表示.由几何概型公式得: P (A )=242-12×222-12×202242=67288. 故有一艘船停靠泊位时必需等待一段时间的概率是67288.古典概率模型的综合运用概率11、某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:若单科成绩85分以上(含85分),则该科成绩为优秀. (1)根据上表完成下面的2⨯2列联表(单位:人):数学成绩优秀数学成绩不优秀合 计物理成绩优秀 物理成绩不优秀合 计20(2间有关系?(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率. 参考数据:则随机变量()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量;独立检验随机变量2K 的临界值参考表:序号12345678910 11 12 13 14 15 16 17 18 1920 数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83 物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 7886(单位:mg/100m0.0250.0200.0150.0100.0052、“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80 mg/100ml (不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车.”2009年8月15日晚8时开始某市交警一队在该市一交通岗前设点对过往的车辆进行抽查,经过两个小时共查出酒后驾车者60名,图甲是用酒精测试仪对这60 图甲 名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.(1)求这60名酒后驾车者中属醉酒驾车的人数;(图甲中每组包括左端点,不包括右端点)(2)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S 并说明S 的统计意义;(图乙中数据i m 与i f 分别表示图 图乙甲中各组的组中值及频率)(3)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上,但他俩坚称没喝那么多,是测试仪不准,交警大队陈队长决定在被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上的酒后驾车者中随机抽出2人抽血检验,求吴、李两位先生至少有1人被抽中的概率.3、汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对2CO 排放量超过130g/km 的M1型新车进行惩罚.某检测单位对甲、乙两类M1型品牌车各抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ).经测算发现,乙品牌车2CO 排放量的平均值为120x =乙g/km .(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合2CO 排放量的概率是多少?(Ⅱ)若90130x <<,试比较甲、乙两类品牌车2CO 排放量的稳定性.4、某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[)70,80内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[)80,70的概率.5、某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽日期3月1日3月2日3月3日3月4日3月5日温差x(°C)10 11 13 12 8发芽数y(颗)23 25 30 26 16(1)求这5天发芽数的中位数;(2)求这5天的平均发芽率;(3)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,后面一天发芽种子数为n,用(m,n)的形式列出所有基本事件,并求满足“25253030mn≤≤≤≤⎧⎨⎩”的概率.6、一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:第18题图(Ⅰ)连续取两次都是白球的概率;(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0分,连续取三次分数之和为4分的概率.7、某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在[)70,80内的频率,并补全 这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组 区间的中点值作为代表,据此估计本次考试的 平均分;(Ⅲ)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本, 将该样本看成一个总体,从中任取2人, 求至多有1人在分数段[)80,70的概率.8、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计第18题图已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)。
概率大题训练总结(高考经典概率问题文科)汇编
1(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数;(2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分,求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=,236112136472222222=++++++)2在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?3已知向量()1,2a =-,(),b x y =.(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1a b =-的概率;(2)若实数,x y ∈[]1,6,求满足0a b >的概率.4某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组 [500,900) [900,1100) [1100,1300) [1300,1500) [1500,1700) [1700,1900) [1900,+∞)频数 48 121 208 223 193 165 42 频率(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.5为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t 、m 、n 为递减的等差数列,且第一组与第八组的频数相同,求出x 、t 、m 、n 的值;(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为x ,y ,求事件“||5x y ->”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.气温(℃) 频数 频率 [5,1]-- x = 0.03 [0,4]8 [5,9]12 [10,14]22 [15,19] 25 [20,24] t = [25,29] m = [30,34] n = 合计100 1频率分数901001101201300.050.100.150.200.250.300.350.408070O19题图181716151413秒频率组距0.060.080.160.320.387某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组[)14,13;第二组[)15,14,……,第五组[]18,17.右图是按上述分组方法得到的频率分布直方 图.(I )若成绩大于或等于14秒且小于16秒认为 良好,求该班在这次百米测试中成绩良好的人数;(II )设m 、n 表示该班某两位同学的百米测试成绩,且已知[][18,17)14,13,⋃∈n m , 求事件“1>-n m ”的概率.8一人盒子中装有4张卡片,每张卡上写有1个数字,数字分别是0,1、2、3。
文科概率大题汇编经典好用
文科概率大题1.某人摆一个摊位卖小商品,一周内出摊天数x 与盈利y (百元),之间的一组数据关系见表:已知52190i i x ==∑,51112.3i i i x y ==∑.(Ⅰ)计算x ,y ,并求出线性回归方程;(Ⅱ)在第(Ⅰ)问条件下,估计该摊主每周7天要是天天出摊,盈利为多少? (参考公式:1122211()()()n niii ii i nni i i i x x y y x y nx yb x x x nx====---==--∑∑∑∑,a y bx =-.)2.某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下(单位:分):甲:37,21,31,20,29,19,32,23,25,33 乙:10,30,47,27,46,14,26,10,44,46(1)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,利用茎叶图的优点写出统计结论;(2)设甲篮球运动员10场比赛得分平均值x ,将10场比赛得分i x 依次输入如图所示的程序框图进行运算,问输出的S 大小为多少?并说明S 的统计学意义;(3)如果从甲、乙两位运动员的10场得分中,各随机抽取一场不小于30分的得分,求甲的得分大于乙 的得分的概率.3.调查某桑场采桑员和辅助工桑毛虫皮炎发病情况结果如下表:利用2×2列联表的独立性检验估计“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是22n(ad bc)K (a b)(c d)(a c)(b d)-=++++4.某班为了调查同学们周末的运动时间,随机对该班级50名同学进行了不记名的问卷调查,得到了如下表所示的统计结果:运动时间不超过2小时 运动时间超过2小时 合计 男生 10 20 30 女生 13 7 20 合计 23 27 50(1)根据统计结果,能否在犯错误概率不超过0.05的前提下,认为该班同学周末的运动时间与性别有关?(2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率.附:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中n a b c d =+++.5.某市为鼓励居民节约用电,将实行阶梯电价,该市每户居民每月用电量划分为三档,电价实行分档递增.第一档电量:用电量不超过200千瓦时,电价标准为0.5元/千瓦时;第二档电量:用电量超过200但不超过400千瓦时,超出第一档电量的部分,电价标准比第一档电价提高0.1元/千瓦时;第三档电量:用电量超过400千瓦时,超出第二档电量的部分,电价标准比第一档电价提高0.3元/千瓦时.随机调查了该市1000户居民,获得了他们某月的用电量数据,整理得到如下的频率分布表:a b c的值;(Ⅰ)根据频率分布表中的数据,写出,,(Ⅱ)从该市调查的1000户居民中随机抽取一户居民,求该户居民用电量不超过300千瓦时的概率;(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该市每户居民该月的平均电费.6.某活动将在辽宁沈阳举行,组委会在沈阳某大学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm),身高在175 cm以上(包括175 cm)定义为“高个子”,身高在175 cm以下(不包括175 cm)定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180 cm以上(包括180 cm)的志愿者中选出男、女各一人,求这2人身高相差5 cm以上的概率.7.某小组共有A、B、C、D、E五位同学,他们的身高(单位:m)以及体重指标(单位:kg/m2)如下表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.8.某网站针对2015年中国好声音歌手A,B,C三人进行网上投票,结果如下(1)在所有参与该活动的人中,用分层抽样的方法抽取人,其中有6人支持,求的值.(2)在支持的人中,用分层抽样的方法抽取5人作为一个总体,从这5人中任意选取2人,求恰有1人在20岁以下的概率.9.(10分)为了了解某学校餐厅的饭菜质量问题,采用分层抽样的方法从高一、高二、高三三个年级中抽取6个班进行调查,已知高一、高二、高三年级分别有18、12、6个班.①求从高一、高二、高三年级分别抽取的班级个数;②若从抽取的6个班中随机抽取2个进行调查结果的对比,试列出所有可能的抽取结果,并且计算抽取的2个班中至少有1个来自高一年级的概率.10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作四次试验,得到的数据如下: 零件的个数x (个) 234 5 加工的时间y (小时)2.5 344.5(1)已知零件个数与加工时间线性相关,求出y 关于x 的线性回归方程; (2)试预测加工10个零件需要多少时间?1221ˆˆˆni ii nii x y nx ybay bx xnx ==-⋅==--∑∑参考公式:, 11.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(Ⅰ)补全频率分布直方图并求n 、a 、p 的值;(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.12.在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为,,,,A B C D E 五个等级.某考场考生的两颗考试成绩数据统计如图所示,其中“科目一”成绩为D 的考生恰有4人.(1)分别求该考场的考生中“科目一”和“科目二”成绩为A 的考生人数;(2)已知在该考场的考生中,恰有2人的两科成绩均为A ,在至少一科成绩为A 的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为A 的概率.13.某校高三文科分为五个班.高三数学测试后, 随机地在各班抽取部分学生进行成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了18人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率. 频率分数901001101201300.050.100.150.200.250.300.350.40807014.某城市城镇化改革过程中最近五年居民生活用水量逐年上升,下表是2011年至2015年的统计数据:(1)利用所给数据求年居民生活用水量与年份之间的回归方程y bx a =+;(2)根据改革方案,预计在2020年底城镇改革结束,到时候居民的生活用水量将趋于稳定,预测该城市2023年的居民生活用水量.参考公式:^1221()ni ii nii x y nx yb xn x ==-=-∑∑,^^^a yb x =-.15.根据国家环保部新修订的《环境空气质量标准》规定:居民区 2.5PM 的年平均浓度不得超过35微克/立方米, 2.5PM 的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20(1)从样本中的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天2.5PM 的24小时平均浓度超过75微克/立方米的概率;(2)求样本平均数,并根据样本估计总体的思想,从 2.5PM 的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.16.某高校调查了20名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.(1)求直方图中a 的值;(2)从每周自习时间在[]25,30的受调查学生中,随机抽取2人,求恰有1人的每周自习时间在[]27.5,30的概率.17.某城市100户居民的月平均用电量(单位:度),以[)[)[)[)[)[)[]160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图所示.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)[)[)[]220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,…,第五组[]17,18,下图是按上述分组方法得到的频率分布直方图.(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.19.2015年五一节”期间,高速公路车辆“较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h )分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:(1)求a 的值,并说明交警部门采用的是什么抽样方法?(2)若该路段的车速达到或超过90km/h 即视为超速行驶,求超速行驶的概率 (3)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1)。
(完整版)高三复习文科统计概率(概率专项)练习
单学一些计算原理(特别是相乘原理),以提高解答速度高三复习文科统计概率(概率专项)练习必须掌握知识点:① 随机事件的定义;正确理解概率的定义,能理解频率与概率的联系与区别解析:判断事件是否随机抓住不能确保发生或不发生的事件,通常未发生的不是自然科学规律的事件为随机事件, 而已发生、自然科学规律、公式以及定理等确定的事件为必然事件,违背自然科学的未发生的为不可能事件;事件 发生的概率通俗讲就是事件发生的可能性大小,故可能发生也可能不发生,如天气预报有雨却没下雨,某人说某事 99%的概率发生缺没发生等并不表示天气预报有误也不表示某人说法错误;频率是统计得来,随着试验次数不同而 浮动,概率可看着是对频率的固定值估计,是一个定值,但试验次数无限增加时,频率无限趋近该事件的概率•② 掌握对立事件与互斥事件的区别与联系•解析:对立事件与互斥事件都不能同时发生,而互斥事件可以同时不发生,对立事件却必然有事件发生,故对立事 件是互斥事件充分不必要条件;互斥事件与对立事件经常作为间接求解使用③ 掌握古典概型和几何概型•解析:古典概型成立的特征需两个条件,条件一是试验的结果是有限的(如抛一枚硬币出现正面、方面两种情况) 条件二是试验的所有结果发生可能性相同(如抛一枚硬币出现正面、反面的概率一样),解答古典概型题计算方式具”的量有关,且为其“量比” (如长度比、面积比、事件比、空间比、数轴比等,典型的如等公交车、过交通岗、设靶、数轴取数、抛黄豆以等)•②独立性检验解析:独立性检验是经常出现在大题当中,固定的考试模式以及固定的求解步骤对考生来说没有难度,需要注意的 是几种求问法:(1)是否有不低于99.5%的把握认为吸烟与患肺炎相关; (2 )是否能在犯错误的概率不超过0.5%前提下,认为吸烟与患肺炎有关;(3)若低于95%的把握,则认为吸烟与患肺炎无关,反之亦然,从上表统计数据是否能判断吸烟与患肺炎有关,请注明你的结论。
(完整版)文科统计概率大题1
bx a+.=++x y z,则该产品为一等品。
现从一批该产品中,随机抽取10件产品作为样本,其质量指质量指标(,,x y z )()1,1,2()2,1,1 ()2,2,2 ()1,1,1()1,2,1产品编号 6A7A8A 9A10A质量指标(,,x y z )()1,2,2 ()2,1,1 ()2,2,1 ()1,1,1 ()2,1,2(1)利用上表提供的样本数据估计该批产品的一等品率; (2)在该样本的一等品中,随机抽取2件产品, (i )用产品编号列出所有可能的结果;(ii )设事件B 为“在取出的2件产品吕,每件产品的综合指标S 都等于4”,求事件B 发生的概率。
4.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间。
将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,…,第五组[]17,18,右图是按上述分组方法得到的频率分布直方图。
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率。
5.为丰富课余生活,某班开展了一次有奖知识竞赛,在竞赛后把成绩(满分为100分,分数均为整数)进行统计,制成如右图的频率分布表: (Ⅰ)求,,,a b c d 的值;(Ⅱ)若得分在[]100,90之间的有机会得一等奖,已知其中男女比例为2∶3,如果一等奖只有两名,写出所有可能的结果,并求获得一等奖的全部为女生的概率.6.现从某100件中药材中随机抽取10件,以这10件中药材的重量(单位:克)作为样本,样本数据的茎叶图如下:(1)求样本数据的中位数、平均数,试估计这100件中药材的总重量;(2)记重量在15克以上的中药材为优等品,在该样本的优等品中,随机抽取2件,求这2件中药材的重量之差不超过2克的概率。
7.某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。
高考概率经典大题
1.在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答对.这道题的概率是34,甲、丙两人都回答错....的概率是112,乙、丙两人都回答对....的概率是14. (Ⅰ)求乙、丙两人各自回答对这道题的概率. (Ⅱ)求甲、乙、丙三人中恰有两人回答对该题的概率.2将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率;(3)以第一次向上点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x,y)在圆x 2+y 2=15的内部的概率.3.某工厂在试验阶段大量生产一种零件.这种零件有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若A 项技术指标达标的概率为43,有且仅有一项技术指标达标的概率为125.按质量检验规定:两项技术指标都达标的零件为合格品.(Ⅰ)求一个零件经过检测为合格品的概率;(Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率;(Ⅲ)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求E ξ与D ξ.4.甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达次时,或在此前某人已赢得所有福娃时游戏终止。
记游戏终止时投掷骰子的次数为ξ(1)求掷骰子的次数为7的概率;(2)求ξ的分布列及数学期望Eξ。
5.有人预测:在2010年的广州亚运会上,排球赛决赛将在中国队与日本队之间展开,据以往统计, 中国队在每局比赛中胜日本队的概率为23,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛.(Ⅰ)求中国队以3:1获胜的概率;(Ⅱ).设ξ表示比赛的局数,求ξ的期望值.6.某射击测试规则为:每人最多有3次射击机会,射手不放过每次机会,击中目标即终止射击,第i次击中目标得4i-(123)i=,,分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响(1)求该射手恰好射击两次的概率;(2)该射手的得分记为ξ,求ξ分布列及期望.7某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10﹪,可能损失10﹪,可能不赔不赚,这三种情况发生的概率分别为21,41,41;如果投资乙项目,一年后可能获利20﹪,也可能损失20﹪,这两种情况发生的概率分别为)(和1 =+βαβα.(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的概率分布及ξE ;(2)若把10万元投资投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.8.甲、乙两名同学参加一项射击游戏,两人约定中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为35和p ,且甲、乙两人各射击一次所得分数之和为2的概率为920,假设甲、乙两人射击互不影响(1)求p 的值; (2) 记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.9袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求:.(1)随机变量ξ的概率分布律;(2)随机变量ξ的数学期望与方差.10.某同学参加3门课程的考试。
概率大题训练总结(高考经典概率问题文科)
概率大题训练总结(高考经典概率问题文科)案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
概率大题练习题及讲解高中
概率大题练习题及讲解高中概率论是高中数学中的一个重要分支,它涉及到随机事件及其发生的可能性。
以下是一些概率大题的练习题及简要讲解,供高中生参考和练习。
练习题1:一个袋子里有5个红球和3个蓝球,随机从袋子中取出一个球,观察其颜色。
求取出红球的概率。
解答:总共有8个球,其中5个是红球。
取出红球的概率为红球数除以总球数,即:\[ P(\text{红球}) = \frac{5}{8} \]练习题2:一个班级有50名学生,其中30名男生和20名女生。
现在随机抽取3名学生,求至少有1名女生的概率。
解答:首先计算没有女生的概率,即抽取的3名学生都是男生的概率。
从30名男生中抽取3名,总共有\[ C_{30}^{3} \]种组合,而从50名学生中抽取3名,总共有\[ C_{50}^{3} \]种组合。
因此,没有女生的概率为:\[ P(\text{无女生}) = \frac{C_{30}^{3}}{C_{50}^{3}} \]至少有1名女生的概率为1减去没有女生的概率:\[ P(\text{至少1名女生}) = 1 - P(\text{无女生}) \]练习题3:一个工厂生产的零件中,有2%是次品。
现在随机抽取10个零件进行检查,求至少有1个次品的概率。
解答:这是一个二项分布问题。
次品的概率为0.02,非次品的概率为0.98。
使用二项分布公式计算至少有1个次品的概率:\[ P(\text{至少1个次品}) = 1 - P(\text{0个次品}) - P(\text{1个次品}) \]其中,\( P(\text{0个次品}) \)和\( P(\text{1个次品}) \)分别使用二项分布公式计算。
练习题4:一个骰子有6个面,每个面上的数字是1到6。
投掷骰子两次,求两次投掷结果之和为7的概率。
解答:两次投掷结果之和为7的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1)六种。
每次投掷有6种可能,所以总共有\[ 6 \times 6 \]种可能的组合。
高考文科数学概率与统计题型归纳与训练
高考文科数学概率与统计题型归纳与训练2020年高考文科数学《概率与统计》题型归纳与训练题型归纳古典概型例1:从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()。
A。
55.B。
25.C。
9.D。
128解析:可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为4/10=2/5.故选B。
例2:将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________。
解析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数2;数2,数1,语;数2,语,数1;语,数2,数1;语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:p=4/6=2/3.易错点:列举不全面或重复,就是不准确。
思维点拨:直接列举,找出符合要求的事件个数。
几何概型例1:如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是()。
解析:不妨设正方形边长为a,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半。
由几何概型概率的计算公式得,所求概率为1/2πa^2=π/4a^2.故选B。
例2:在区间[0,5]上随机地选择一个数p,则方程x^2+2px-3p^2=0有两个负根的概率为________。
解析:方程x^2+2px-3p^2=0有两个负根的充要条件是Δ=4p^2-4(3p-2)x<0,即3p^2-x^2<2.因为x^2<p,所以3p^2-p^2<2,即p∈(0,1]∪[2,5],又因为p∈[0,5],所以使方程x^2+2px-3p^2=0有两个负根的p的取值范围为(√3,1]∪[2,5],故所求的概率为(5-√3)/5.220度,中位数是235度。
最新概率大题训练总结(高考经典概率问题文科)
1(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分,求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=,236112136472222222=++++++)2在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?3已知向量()1,2a =-r,(),b x y =r .(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1a b =-r rg 的概率;(2)若实数,x y ∈[]1,6,求满足0a b >r rg 的概率.4某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.5为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t 、m 、n 为递减的等差数列,且第一组与第八组的频数相同,求出x 、t 、m 、n 的值;(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为x ,y ,求事件“||5x y ->”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.频率分数901001101201300.050.100.150.200.250.300.350.40807019题图7某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组[)14,13;第二组[)15,14,……,第五组[]18,17.右图是按上述分组方法得到的频率分布直方 图.(I )若成绩大于或等于14秒且小于16秒认为 良好,求该班在这次百米测试中成绩良好的人数;(II )设m 、n 表示该班某两位同学的百米测试成绩,且已知[][18,17)14,13,⋃∈n m , 求事件“1>-n m ”的概率.8一人盒子中装有4张卡片,每张卡上写有1个数字,数字分别是0,1、2、3。
文科概率大题(几何概率、古典概型)
几何概型题组一与长度有关的几何概型1.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率 是 ( ) A.110 B.19 C.111 D.182.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为一边作正方形,则此正方形的面积介于36 cm 2与81 cm 2 之间的概率为 ( ) A.116 B.18 C.14 D.123.《广告法》对插播广告的时间有一定的规定,某人对某台的电视节目做了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率为910,那么该台每小时约有________分钟的广告.题组二与面积(或体积)有关的几何概型4.(2009·辽宁高考)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为 ( ) A.π4 B .1-π4 C.π8 D .1-π85.设-1≤a ≤1,-1≤b ≤1,则关于x 的方程x 2+ax +b 2=0有实根的概率是 ( ) A.12 B.14 C.18 D.1166.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 ( ) A.13 B.23 C.19 D.297.在区域⎩⎨⎧x +y -2≤0,x -y +2≥0,y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2B.π8C.π6D.π4 8.(2010·济南模拟)在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是________. 9.已知函数f (x )=x 2-2ax +b 2,a ,b ∈R.(1)若a 从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2}中任取一个元素,求方程f (x )=0有两个不相等实根的概率;(2)若a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,求方程f (x )=0没有实根的概率.题组三生活中的几何概型10.平面上有一组平行线且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意平掷在这个平面,则硬币不与任何一条平行线相碰的概率是 ( )11.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是__________.A.14B.13C.12D.2312.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必需等待一段时间的概率.答案1解析:设乘客到达站台立即乘上车为事件A ,试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110.答案:A2解析:正方形的面积介于36 cm 2与81 cm 2之间,所以正方形的边长介于6 cm 到9 cm 之间.线段AB 的长度为12 cm ,则所求概率为9-612=14.答案:C3解析:60×(1-910)=6分钟.答案:64解析:对应长方形的面积为2×1=2,而取到的点到O 的距离小于等于1时,其是以O 为圆心,半径为1所作的半圆,对应的面积为12×π×12=12π,那么满足条件的概率为:1-12π2=1-π4.答案:B5解析:由题知该方程有实根满足条件⎩⎪⎨⎪⎧-1≤a ≤1,-1≤b ≤1,a 2-4b 2≥0,作平面区域如右图:由图知阴 影面积为1,总的事件对应面积为正方 形的面积,故概率为14.答案:B6解析:作出两集合表示的平面区域如图所示.容易得出 Ω所表示的平面区域为三角形AOB 及其边界,A 表示的 区域为三角形OCD 及其边界.容易求得D (4,2)恰为直线x =4,x -2y =0,x +y =6三线的交点. 则可得S △AOB =12×6×6=18,S △OCD =12×4×2=4.所以点P 落在区域A 的概率为418=29.答案:D7解析:区域为△ABC 内部(含边界),则概率为 P =S 半圆S △ABC =π212×22×2=π4.答案:D8解析:以A 、B 、C 为圆心,以1为半径作圆,与△ABC 相交出 三个扇形(如图所示),当P 落在阴影部分时符合要求. ∴P =3×(12×π3×12)34×22=3π6.答案:36π9解:(1)∵a 取集合{0,1,2,3}中任一个元素,b 取集合{0,1,2}中任一个元素,∴a ,b 的取值的情况有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值, 即基本事件总数为12.设“方程f (x )=0有两个不相等的实根”为事件A ,当a ≥0,b ≥0时,方程f (x )=0有两个不相等实根的充要条件为a >b . 当a >b 时,a ,b 取值的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2), 即A 包含的基本事件数为6,∴方程f (x )=0有两个不相等实根的概率 P (A )=612=12.(2)∵a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,则试验的全部结果构成区域Ω={(a ,b )|0≤a ≤2,0≤b ≤3}, 这是一个矩形区域,其面积S Ω=2×3=6.设“方程f (x )=0没有实根”为事件B ,则事件B 所构成的区域为 M ={(a ,b )|0≤a ≤2,0≤b ≤3,a <b }, 即图中阴影部分的梯形,其面积 S M =6-12×2×2=4.由几何概型的概率计算公式可得方程f (x )=0没有实根的概率P (B )=S M S Ω=46=23.11.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是__________.10解析:平面被这一组平行线分割成条状区域,现对两条平行线之间的区域考虑:平行线间的距离为3 cm ,硬币半径为1 cm ,要想硬币不与两条平行线相碰,硬币中心与两条平行线的距离都应大于1 cm ,如图:硬币中心只有落在阴影部分(不包括边界)时,才能让硬币与两条平行线都不相碰,则硬币中心落在阴影部分的概率为13.整个平面由无数个这样的条状区域组成,故所求概率是13.答案:B11解析:如图:区域D 表示边长为4的正方形ABCD 的内部(含边界), 区域E 表示单位圆及其内部,因此P =π×124×4=π16.答案:π1612解:甲比乙早到4小时内乙需等待,甲比乙晚到2小时内甲需等待. 以x 和y 分别表示甲、乙两船到达泊位的时间,则有一艘船停靠泊位时需等待一段时间的充要条件为-2≤x -y ≤4,在如 图所示的平面直角坐标系内,(x ,y )的所有可能结果是边长为24的正方形,而事件A “有一艘船停靠泊位时需等待一段时间”的可能结果由阴影部分表示.由几何概型公式得: P (A )=242-12×222-12×202242=67288. 故有一艘船停靠泊位时必需等待一段时间的概率是67288.古典概率模型的综合运用概率11、某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:若单科成绩85分以上(含85分),则该科成绩为优秀. (1)根据上表完成下面的2⨯2列联表(单位:人):数学成绩优秀数学成绩不优秀合 计物理成绩优秀 物理成绩不优秀合 计20(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率. 参考数据:则随机变量()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量;独立检验随机变量2K 的临界值参考表:序号12345678910 11 12 13 14 15 16 17 18 1920 数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83 物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 7886i=i+1S=S+m i ×f i 输入m i ,f i开始否结束输出S i>=7?i =1S =0是9080706050403020(单位:mg/100m0.0250.0200.0150.010频率/组距酒精含量0.005()2P K o k ≥0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001o k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.8282、“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80 mg/100ml (不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车.”2009年8月15日晚8时开始某市交警一队在该市一交通岗前设点对过往的车辆进行抽查,经过两个小时共查出酒后驾车者60名,图甲是用酒精测试仪对这60 图甲 名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.(1)求这60名酒后驾车者中属醉酒驾车的人数;(图甲中每组包括左端点,不包括右端点)(2)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S 值, 并说明S 的统计意义;(图乙中数据i m 与i f 分别表示图 图乙甲中各组的组中值及频率)(3)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上,但他俩坚称没喝那么多,是测试仪不准,交警大队陈队长决定在被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上的酒后驾车者中随机抽出2人抽血检验,求吴、李两位先生至少有1人被抽中的概率.3、汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对2CO 排放量超过130g/km 的M1型新车进行惩罚.某检测单位对甲、乙两类M1型品牌车各抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ).甲 80 110 120140 150 乙100120xy160经测算发现,乙品牌车2CO 排放量的平均值为120x =乙g/km .(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合2CO 排放量的概率是多少?(Ⅱ)若90130x <<,试比较甲、乙两类品牌车2CO 排放量的稳定性.4、某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[)70,80内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[)80,70的概率.5、某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x(°C)10 11 13 12 8发芽数y(颗)23 25 30 26 16(1)求这5天发芽数的中位数;(2)求这5天的平均发芽率;(3)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,后面一天发芽种子数为n,用(m,n)的形式列出所有基本事件,并求满足“25253030mn≤≤≤≤⎧⎨⎩”的概率.6、一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:第18题图(Ⅰ)连续取两次都是白球的概率;(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0分,连续取三次分数之和为4分的概率.7、某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在[)70,80内的频率,并补全 这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组 区间的中点值作为代表,据此估计本次考试的 平均分;(Ⅲ)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本, 将该样本看成一个总体,从中任取2人, 求至多有1人在分数段[)80,70的概率.8、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计第18题图男生5 女生10 合计 50 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. 下面的临界值表供参考:2()p K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.072 2.7063.841 5.024 6.635 7.879 10.828 (参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率大题训练汇总(高考经典概率问题文科)————————————————————————————————作者:————————————————————————————————日期:1(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示(1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分,求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=,236112136472222222=++++++)2在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?3已知向量()1,2a =-r,(),b x y =r .(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1a b =-r rg 的概率;(2)若实数,x y ∈[]1,6,求满足0a b >r rg 的概率.4某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组 [500,900) [900,1100) [1100,1300) [1300,1500) [1500,1700) [1700,1900) [1900,+∞)频数 48 121 208 223 193 165 42 频率(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.5为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t 、m 、气温(℃) 频数 频率 [5,1]-- x = 0.03 [0,4] 8 [5,9] 12 [10,14] 22 [15,19]25频率组距0.38n 为递减的等差数列,且第一组与第八组的频数相同,求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期,分别记它们的平均 温度为x ,y ,求事件“||5x y ->”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.7某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组[)14,13;第二组[)15,14,……,第五组[]18,17.右图是按上述分组方[20,24] t = [25,29] m = [30,34] n = 合计 100 1频率分数901001101201300.050.100.150.200.250.300.350.408070法得到的频率分布直方 图.(I )若成绩大于或等于14秒且小于16秒认为 良好,求该班在这次百米测试中成绩良好的人数;(II )设m 、n 表示该班某两位同学的百米测试成绩,且已知[][18,17)14,13,⋃∈n m , 求事件“1>-n m ”的概率.8一人盒子中装有4张卡片,每张卡上写有1个数字,数字分别是0,1、2、3。
现从盒子中随机抽取卡片。
(I )若一次抽取3张卡片,求3张卡片上数字之和大于等于5的概率;(II )若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字2的概率。
9为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C 三个区中抽取7个工厂进行调查。
已知A,B,C 区中分别有18,27,18个工厂, (1)求从A,B,C 区中应分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率;10某市一公交线路某区间内共设置六个站点,分别为012345,,,,,A A A A A A ,现有甲乙两人同时从0A 站点上车,且他们中的每个人在站点(1,2,3,4,5)i A i =下车是等可能的. (Ⅰ)求甲在2A 站点下车的概率;(Ⅱ)甲,乙两人不在同一站点下车的概率.1解:(1)运动员甲得分的中位数是22,运动员乙得分的中位数是23 …2分(2)Θ21732232224151714=++++++=甲x …………3分12131123273130217x ++++++==乙…………………4分()()()()()()()2222222221-1421-1721-1521-2421-2221-2321-3223677S ++++++==甲…5分()()()()()()()2222222221-1221-1321-1121-2321-2721-3121-3046677S++++++==乙22S 乙甲<∴S ,从而甲运动员的成绩更稳定………………………………8分(3)从甲、乙两位运动员的7场得分中各随机抽取一场的得分的基本事件总数为49其中甲的得分大于乙的是:甲得14分有3场,甲得17分有3场,甲得15分有3场甲得24分有4场,甲得22分有3场,甲得23分有3场,甲得32分有7场,共计26场 …………………………………………………………11分 从而甲的得分大于乙的得分的概率为2649P =………………………………12分 2解:(1)因为60x121464324=⇒=+++++x所以本次活动共有60件作品参加评比. ……………………4分 (2)因为1860x1464326=⇒=+++++x所以第四组上交的作品数量最多,共有18件. ……………………8分(3)因为360x1464321=⇒=+++++x所以321810<,所以第六组获奖率高. ……………………12分3解(1)设(),x y 表示一个基本事件,则抛掷两次骰子的所有基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),……,(6,5),(6,6),共36个.用A 表示事件“1=-g a b ”,即21x y -=-.则A 包含的基本事件有(1,1),(3,2),(5,3),共3个.∴()313612P A ==. 答:事件“1=-g a b ”的概率为112.…………………6分(2)用B 表示事件“0>g a b ”,即20x y ->. 试验的全部结果所构成的区域为(){},16,16x y x y ≤≤≤≤, 构成事件B 的区域为(){},16,16,20x y x y x y ≤≤≤≤->,如图所示.所以所求的概率为()142425525P B ⨯⨯==⨯. 答:事件“0>g a b ”的概率为425.………………………12分4解:(I ) 分组 [500,900) [900,1100) [1100,1300) [1300,1500) [1500,1700) [1700,1900) [1900,+∞) 频数 48 121 208 223 193 165 42 频率0.0480.1210.2080.2230.1930.1650.042………………………………………………(4分) (II )由(I )可得0.0480.1210.2080.2230.6+++=,所以灯管使用寿命不足1500小时的频率为0.6. …………………………(8分) (III )由(II )知,1支灯管使用寿命不足1500小时的概率10.6P =,另一支灯管使用寿命超过1500小时的概率21110.60.4P P =-=-=,则这两支灯管中恰有1支灯管的使用寿命不足1500小时的概率是122120.60.40.48PP P P +=⨯⨯=.所以有2支灯管的使用寿命不足1500小时的概率是0.48.…………………………(12分)5解:(1)3x =,17t =,10m =,n =3 …………………………………6分(2)93155= …………………………………………………12分6解:(1) 由频率分布条形图知, 抽取的学生总数为51000.05=人. ………………………………4分 ∵各班被抽取的学生人数成等差数列,设其公差为d ,由4226d ⨯+=100,解得2=d .∴各班被抽取的学生人数分别是22人,24人,26人,28人. ……………8分(2) 在抽取的学生中,任取一名学生, 则分数不小于90分的概率为0.35+0.25+0.1+0.05=0.75. ……………………………………………12分7解:(Ⅰ)由直方图知,成绩在)[16,14内的人数为:2738.05016.050=⨯+⨯(人) 所以该班成绩良好的人数为27人.(Ⅱ)由直方图知,成绩在[)14,13的人数为306.050=⨯人,设为x 、y 、z ;成绩在[)18,17 的人数为408.050=⨯人,设为A 、B 、C 、D . 若[)14,13,∈n m 时,有yz xz xy ,,3种情况;若[)18,17,∈n m 时,有CD BD BC AD AC AB ,,,,,6种情况; 若n m ,分别在[)14,13和[)18,17内时, A B C D x xA xB xC xD y yA yB yC yD zzAzBzCzD共有12种情况.所以基本事件总数为21种,事件“1>-n m ”所包含的基本事件个数有12种. ∴P (1>-n m )=742112=…………12分9解析:(1)从A,B,C 区中应分别抽取的工厂个数为2,3,2(2)设抽得的A,B,C 区的工厂为2132121C C B B B A A ,随机地抽取2个,所有的结果为,21A A ,31A A ,11B A ,21B A ,31B A ,11C A ,21C A ,31C A Λ共21个,记事件=A “至少有1个来自A 区”,包含11个,2111=∴P10解: (Ⅰ)设事件“=A 甲在2A 站点下车”, 则1()5P A =(Ⅱ)设事件“=B 甲,乙两人不在同一站点下车”,则14()155P B =-= 11 解:(1)设红球有x 个,白球y 个,依题意得 L L L L 1分11,104103x y x y x y ==++++ , L L L L L L L L 3分解得6x = 故红球有6个.L L L L L L L L L L 6分 (2)记“甲取出的球的编号大”为事件A , 所有的基本事件有:(1,2),(l ,3),(1,4),(2,1),(2,3),(2,4), (3,1),(3,2),(3,4), (4,1),(4,2),(4,3), 共12个基本事件L L L L L L L L L L 8分事件A 包含的基本事件有:(1,2),(1,3),(1,4)(2,1),(2,3),(3,1),(3,2)(4,1), 共8个基本事件 L L L L L L 11分所以,. 32128)(==A P L L L L L L 12分。