全国各地2008年数学高考真题及答案-(山东.文)含详解
【高考数学】2008年真题试卷及答案解析--山东省08年高考数学试题分析
山东省08年高考数学试题分析2008年山东省高考数学试题包括文理试卷各一份。
两份试卷均以新课程标准和2008年山东省考试说明为依据,结构与2007年相比基本保持稳定。
试卷针对我省各地使用不同版本教材的实际情况,结合中学数学在思想方法和能力等方面的要求,贯彻新课程的理念和2008年山东考试说明的精神。
2008年高考数学试题从整体看,贯彻了“总体保持稳定,深化能力立意,积极改革创新”的指导思想,在强调积极深化教育改革,全面推进新课标的方向上指导了中学教学,继续稳步向前推进素质教育。
试题在保持连续稳定继承历年特点的同时,又注重了改革创新;试卷既注重了对基础知识的重点考查,也注重了对能力的考查。
从考生的反映看试题难度题目偏难,尤其是最后几道大题考查深入较难,有较好的梯度和区分度,有利于高校选拔;坚持重点内容重点考,考潜能,考数学应用,在“知识的交叉处命题”有新的突破,且没有片面追求知识及基本思想、方法的覆盖面,反映了新课程的理念,试卷注重对常规数学思想方法以及通性、通法的考查,注重认识能力的考查,注重创新意识,稳中求新,新中求活,活中凸显能力。
一、试卷结构保持稳定今年的数学试题与2007年的试题在题量上、题型分布上仍保持不变,各种题型个数没有发生变化,选择题仍为12道,分值60分;填空题仍为4道,分值为16分;解答题仍为6道,分值为74分,第17-21题每题仍为12分,第22题为14分。
选择题、填空题、解答题的分值比例为60:16:74。
二、体现新课程标准的理念,发挥试题的导向作用2008年山东省数学试题围绕着新课程标准中的内容主线、核心能力、改革理念进行命题。
试题兼顾到各地不同版本的教材,关注必修和选修的比例以及文理科的差异,有利于推进课程改革和素质教育的深入实施。
例如理科卷的第(6)(7)(8)(14)(18)题,文科的第(6)(9)(14)(18)题。
对三视图、算法框图、茎叶图以及统计等新增内容进行了充分的考查,尤其是理科第(7)(18)和文科第(18)题均以奥运为背景,在考查新增的统计知识的基础上,使试题更具时代感。
历年高考真题 附答案(山东卷)2008数学
2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则z z等于( )A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<<⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πC .11πD .12π 7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,xxA .B .C .D .俯视图 正(主)视图 侧(左)视图8.已知a b c ,,为A B C △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( )A .ππ63, B .2ππ36, C .ππ36, D .ππ33, 9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A .B .5C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .5-B .5C .45- D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( ) A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<< B .101b a -<<<C .101ba -<<<- D .1101ab --<<<第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =, 则输出的n =.15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .x16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P A B C D -中,平面P A D ⊥平面A B C D ,AB D C ∥,P A D △是等边三角形,已知28B D A D ==,2AB D C ==(Ⅰ)设M 是P C 上的一点,证明:平面M B D ⊥平面PAD ; (Ⅱ)求四棱锥P A B C D -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10aABCMPD记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)n n n nb n b S S=-≥.(Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.22.(本小题满分14分)已知曲线11(0)x y C a b a b+=>>:所围成的封闭图形的面积为曲线1C3记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设A B 是过椭圆2C 中心的任意弦,l 是线段A B 的垂直平分线.M 是l 上异于椭圆中心的点. (1)若M O OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求A M B △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D8.C9.B10.C11.B12.A二、填空题 13.221412xy-= 14.4 15.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12sin()cos()22x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=.所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫-⎪⎝⎭的图象, 所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==.(Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.19.(Ⅰ)证明:在ABD △中, 由于4AD =,8B D =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面P A D ⊥平面A B C D ,平面PAD 平面A B C D A D =,ABCM PD OBD ⊂平面A B C D ,所以B D ⊥平面PAD , 又BD ⊂平面M BD , 故平面M B D ⊥平面PAD .(Ⅱ)解:过P 作P O A D ⊥交A D 于O , 由于平面P A D ⊥平面A B C D , 所以P O ⊥平面A B C D .因此P O 为四棱锥P A B C D -的高, 又P A D △是边长为4的等边三角形.因此42PO ==在底面四边形A B C D 中,A B D C ∥,2A B D C =,所以四边形A B C D 是梯形,在R t AD B △中,斜边A B5=此即为梯形A B C D 的高, 所以四边形A B C D的面积为2425S ==.故1243P A B C D V -=⨯⨯=20.(Ⅰ)证明:由已知,当2n ≥时,221n n n nb b S S =-,又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--,即112()1n n n n S S S S ---=-,所以11112nn S S --=,又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=,即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n nn n -=-=-=-++.因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== ,所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列, 因此28113491a b q ==- .又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)kkkk b q S k qk k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e (2)32x f x x x ax bx -'=+++1e(2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e 1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =. 因为当(2)x ∈-∞-,(01) ,时,()0f x '<; 当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x -=--,故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥. 所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得23ab ⎧=⎪⎨=.又0a b >>, 解得25a =,24b =.因此所求椭圆的标准方程为22154xy+=.(Ⅱ)(1)假设A B 所在的直线斜率存在且不为零,设A B 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Akk OA x y kkk+=+=+=+++.设()M x y ,,由题意知(0)M O OA λλ=≠,所以222M O OA λ=,即2222220(1)45k x y kλ++=+,因为l 是A B 的垂直平分线, 所以直线l 的方程为1y x k =-,即x k y=-,因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠, 所以2225420x y λ+=, 故22245xyλ+=.又当0k =或不存在时,上式仍然成立. 综上所述,M 的轨迹方程为222(0)45xyλλ+=≠.(2)当k 存在且0k ≠时,由(1)得222045Ax k=+,2222045Aky k=+,由221541x yy x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k+=+=+,222280(1)445k ABOAk+==+,22220(1)54k OMk+=+.解法一:由于22214A MB S A B O M= △2222180(1)20(1)44554k k kk++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥ 222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k O A O M k k+=+++++2224554920(1)20k k k +++==+, 又22112O A O M O A O M + ≥,409O A O M ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立, 此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409.。
2008年普通高等学校招生全国统一考试数学卷山东文含详解
2008年普通高等学校招生全国统一考试(山东文科数学及答案第I 卷(共60分)参考公式:1锥体的体积公式: V Sh ,其中S 是锥体的底面积,h 是锥体的高.32球的表面积公式: S =4 T R ,其中R 是球的半径. 如果事件 A , B 互斥,那么P (A BHP (A ) P (B ).一、选择题:本大题共 12小题,每小题5分,共 有一项是符合题目要求的.C . 3函数y =1 ncosxi n::: x ::: n的图象是I 2 2丿6.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A . 9 n B . 10 n60分.在每小题给出的四个选项中,只 1.满足 M 三问,a 2, O J , a 4?,且 M Pp. a ,a ,乱:-〔a a 2的集合M 的个数是2. 设z 的共轭复数是Z.z=8 , 则-等于(zC . -1D . _i3. y 二f (x )是幕函数,则函数 f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中, A . 35.设函数 f(x)C . 1D 011 -x 2, x < f 1 ]< 2则fx +x -2,X A1,lf(2)丿15 A .1627 16D . 18俯视图 o L 2 V o丿I 3 v4 .给出命题:若函数真命题的个数是( B . 2的值为(2侧(左)视图2正(主)视图C . 11nD . 12 nx 亠57•不等式 ------- 2》2的解集是()(X-1)2准方程是( )2 2B . (x -2)2 (y -1)2 hx12.已知函数f (x )=log a (2 ,b-1)(a 0, a=1)的图象如图所示,贝U a, b 满足的关系A.(x —3)2 y_7” (n4L rt f rf 10.已知 cos 1sin :- =—\ 3,则 sin l165 I2怎2.34A .B .c .55511•若圆C 的半径为1,圆心在第一象限,且与直线¥的值是2 2C . (x -1) (y -3) =1D . 2(y-1)2 =1B .,3C .D .三,18 .已知a ,△ ABC 的三个内角A, BC 勺对边,向的大小分别为 A ,m L n ,且 acosB bcosA =csin C ,则角 An n A. -6 39.从某项综合能力测试中抽取B .2 n n ~3,6亠 n n … n n C . 一,一D . -3 63 3分数5 4 3 2 1 人数2010303010A . ,3B .4x-3y=0和x 轴相切,则该圆的标是( )A . 0 :: a ' ::b :: 14_1B. 0 < b a :: 1-14D . 0 :: a ::C . 3D .100人的成绩,统计如表,则这100人成绩的标准差为(第H卷(共90分)二、填空题:本大题共 4小题,每小题4分,共16分.2 213.已知圆C: x y -6x -4y • 8 = 0 •以圆C 与坐标轴的交点分别作为双曲线的一个焦则z = 2x y 的最大值为 ______________ . 三、解答题:本大题共 6小题,共74分. 17. (本小题满分12分)已知函数 f (x) = . 3sin(• ■ x ?丨)- cos( x " ■ ) ( 0 ::: • ::: n ,> 0 )为偶函数,且函数ny = f (x)图象的两相邻对称轴间的距离为-.(I)求f I n 的值;8n(n)将函数y = f(x)的图象向右平移个单位后,得到函数y = g(x)的图象,求g(x)的6单调递减区间.18. (本小题满分12分)现有8名奥运会志愿者,其中志愿者 A , A ,, A 3通晓日语,B 1, B 2, B 3通晓俄语,C 1, C 2 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各(I)求A 被选中的概率;点和顶点,则适合上述条件的双曲线的标准方程为 14•执行右边的程序框图,若 p =0.8, 则输出的n 二 ____________ . x15.已知 f (3 ) =4xlog 2 3 233 , 则 f (2) f(4) f (8) ||( f (28)的值等于16.设x , y 满足约束条件x - y +2》0, 』5x-y-10 < 0, x 》0,n = n +1__________ J结束1名,组成一个小组.否.输出n(n)求B1和G不全被选中的概率.19. (本小题满分12分)如图,在四棱锥 P _ ABCD 中,平面PAD _平面ABCD , AB // DC , △ PAD 是等边三 角形,已知 BD=2AD=8,AB=2DC=4.,5 .(I)设M 是PC 上的一点,证明:平面 MBD _平面PAD ; (n)求四棱锥 P - ABCD 的体积.20. (本小题满分12 分) 将数列'a n 』中的所有项按每一行比上一行多一项的规则排成如下数表:a 1a 2 a 3a 4 a5a6a 7 a 8a9a10记表中的第一列数 6, a 2, 34, 37,构成的数列为 Z , ^=^=1. S n 为数列 g 的前n 项和,且满足b S2b:S 2"(n > 2).b n SnSn(I)证明数列1 .... ...................... . •、成等差数列,并求数列bn f 的通项公式;(n)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为4同一个正数•当a 8i时,求上表中第k(k > 3)行所有项的和.9121. (本小题满分12分)设函数f (x)二x 2e x4 ' ax 3 bx 2,已知x ~ -2和x = 1为f (x)的极值点.(I)求a 和b 的值; (n)讨论f (x)的单调性;2 3 2(川)设g(x^-x -x,试比较f (x)与g(x)的大小.322. (本小题满分14分)已知曲线C i:凶+国=1(a Ab >0)所围成的封闭图形的面积为4亦,曲线C i的内切圆半径a b2 5为•记C2为以曲线C i与坐标轴的交点为顶点的椭圆.3(I)求椭圆C2的标准方程;(n)设AB是过椭圆C2中心的任意弦,I是线段AB的垂直平分线. M是I上异于椭圆中心的点.(1)若MO| =》OA ( O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;(2)若M是I与椭圆C2的交点,求△AMB的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题1. B2. D3. A4. C5. A6. D9. B 10. C 11. B 12. A7. D 8. C二、填空题2 2x y ’14. 4 15.2008 16. 1113. 14 121.满足M —0, a2, a s, a/,且M 门”©, a?, a?』的集合M的个数是(B )A . 1B . 2 C. 3 D . 4解析:本小题主要考查集合子集的概念及交集运算。
2008高考山东数学文科试题含答案(全word版)
2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( )A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( )A .1516B .2716-C .89D .18xxA .B .C .D .6.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )AB .5 C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A . BC .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)x a fx b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101ba -<<<-D .1101ab --<<<x俯视图 正(主)视图 侧(左)视图第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = . 15.已知2(3)4log 3233x f x =+, 则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.ABCMPD21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ+-+12)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+-⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=. 所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫- ⎪⎝⎭的图象,所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=. 19.(Ⅰ)证明:在ABD △中,由于4AD =,8BD =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , 所以BD ⊥平面PAD ,ABCM PD O又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO AD ⊥交AD 于O , 由于平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高, 又PAD △是边长为4的等边三角形.因此4PO == 在底面四边形ABCD 中,AB DC ∥,2AB DC =,所以四边形ABCD 是梯形,在Rt ADB △中,斜边AB5=, 此即为梯形ABCD 的高, 所以四边形ABCD的面积为2425S ==.故1243P ABCD V -=⨯⨯= 20.(Ⅰ)证明:由已知,当2n ≥时,221nn n nb b S S =-, 又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--, 即112()1n n n nS S S S ---=-,所以11112n n S S --=, 又1111S b a ===. 所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列. 由上可知1111(1)22n n n S +=+-=, 即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n n n n -=-=-=-++. 因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== , 所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列,因此28113491a b q ==-. 又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)k k k k b q S k q k k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e(2)32x f x x x ax bx -'=+++1e (2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =.因为当(2)x ∈-∞-,(01) ,时,()0f x '<;当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e3x f x x x x -=--, 故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥.所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得2ab ⎧=⎪⎨=又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=.(Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠, ()A A A x y ,. 解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Ak k OA x y k k k +=+=+=+++. 设()M x y ,,由题意知(0)MO OA λλ=≠, 所以222MO OA λ=,即2222220(1)45k x y k λ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k =-, 即x k y=-, 因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠,所以2225420x y λ+=, 故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 的轨迹方程为222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k +=+. 解法一:由于22214AMB S AB OM = △ 2222180(1)20(1)44554k k k k++=⨯⨯++ 2222400(1)(45)(54)k k k +=++ 22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k OA OM k k+=+++++2224554920(1)20k k k +++==+, 又22112OA OMOA OM + ≥,409OA OM ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.当0k =,140229AMB S =⨯=>△.当k 不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409.。
山东2008年全国各地高考理科数学试题及参考答案及参考答案
2008年全国各地高考试题(山东卷)理科数学 第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k n p k (1-p )n-k(k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是 (A)1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A)1 (B)-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <)2π的图象是(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1 (5)已知cos(α-6π)+sin α=的值是则)67sin(,354πα- (A)-532 (B)532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B)10π (C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A)511 (B)681 (C)3061 (D)4081(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A)304.6 (B)303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A)1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A)106 (B)206 (C)306 (D)406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A)[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. (16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为(5,7).三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π (Ⅰ)美洲f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立,因此 sin(-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos(ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24cos2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π(k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z)(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。
2008年高考山东卷(文科数学)
2008年普通高等学校招生全国统一考试文科数学(山东卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足1234{,,,}M a a a a ⊆,且12312{,,}{,}Ma a a a a =的集合M 的个数是A .1B .2C .3D .4 2. 2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 A .i B .i - C .1± D .i ±3.函数ln cos y x =(22ππx -<<)的图象是4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-≤=⎨+->⎩,则1()(2)f f 的值为 A .1516 B .2716- C .89D .18 6.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A .9π B .10π C .11π D .12π7.不等式252(1)x x +≥-的解集是 A .1[3,]2- B .1[,3]2- C .1[,1)(1,3]21 D .1[,1)(1,3]2-8.已知ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .向量(3,1)m =-,(cos ,sin )n A A =.若m n ⊥,且cos cos sin a B b A c C +=,则角A ,B 的大小分别为 A .6π,3π B .23π,6π C .3π,6π D .3π,3πA B C .3 D .8510.已知cos()sin 6παα-+=7sin()6πα+的值是 A ..532 C .45- D .54 11.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切,则该圆的标准方程是正(主)视图俯视图 侧(左)视图A .227(3)()13x y -+-= B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223()(1)12x y -+-=12.已知函数()log (21)x a f x b =+-(1a >,1a ≠)的图象如图所示,则a ,b 满足的关系是A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆C :226480x y x y +--+=,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233x f x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x ,y 满足约束条件20510000x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,则2z x y =+的最大值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为2π. (Ⅰ)求()8πf 的值;(Ⅱ)将函数()y f x =的图象向右平移6π个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者1A 、2A 、3A 通晓日语,1B 、2B 、3B 通晓俄语,1C 、2C 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率; (Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB ∥DC ,PAD ∆是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.ABC DMP20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数1a ,2a ,4a ,7a ,构成的数列为{}n b ,111b a ==,n S 为数列{}n b 的前n 项和,且满足221nn n nb b S S =-(2n ≥). (Ⅰ)证明数列1{}nS 成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当91481-=a 时,求上表中第k (3k ≥)行所有项的和.21.(本小题满分12分)设函数2122()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分1414分) 已知曲线1C :1x ya b+=(0a b >>)所围成的封闭图形的面积为2C的内切圆半径为3,记2C 为以曲线1C 与坐标轴的交点顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆2C 的交点,求AMB ∆的面积的最小值.1a 2a 3a 4a 5a 6a 7a 10a9a 8a。
2008年普通高等学校招生全国统一考试数学卷山东文含详解
2008年普通高等学校招生全国统一考试(山东文科数学及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图C .11πD .12π7.不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A .5-B .5C .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a=+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分) 已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.ABCMPD(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)x yC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.111.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
2008年高考文科数学试题及参考答案(山东卷)
答 案 : ( 5, 5, 5); (1, 1, 1).
2
(08数学一)
6 . (11 分 ) f ( x ) 1 x (0 x ), 展 开 成 余 弦 级 数 , 并求级数
(08数学一)
( 1) n
2
n1
的 和.
n1
答案: f (x) 1
2
3
(11年数学一)
( B ) f (0 ) 1, f (0 ) 0, ( D ) f (0 ) 1, f (0 ), 0.
( A ) f (0 ) 1, f (0 ) 0, ( C ) f (0 ) 1, f (0 ) 0,
xy 0
6. 设 函 数 F ( x , y )
(08数学四)
答 案 : (1)d z
1
1
[( 2 x )d x ( 2 y )d y ];
(2)
u x
2 (1 2 x ) ( 1)2 Nhomakorabea7
2011考研真题
------高数下册部分题
8
1. 已 知 函 数 f ( x , y )具 有 二 阶 连 续 的 偏 导 数 , 且 f (1, y ) 0, f ( x , 1) 0, f ( x , y )d x d y a ,其 中 D {( x , y ) 0 x 1, 0 y 1},
D
计 算 二 重 积 分 xyf xy ( x , y )d x d y .
D
(11年数学一,二)
2 . 设 z f ( xy , yg ( x )), 其 中 函 数 f 具 有 二 阶 连 续 的 偏 导 数 , 函 数 g ( x ) 可 导 且 在 x 1处 取 得 极 值 g (1 ) 1, 求 z
2008年高考数学(理)试题及答案(山东卷)
2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πR 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k n p k (1-p )n-k(k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )²P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是(A )1 (b)2 (C)3 (D)4 (2)设z 的共轭复数是z ,若z +z =4, z ²z =8,则zz等于 (A )i (B )-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <2π=的图象是 ( )(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1(5)已知cos (α-6π)+sin α7sin()6πα+则的值是 (A )-532 (B )532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D) 12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手。
若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081(8)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎 叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表 示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数 的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A )106 (B )206 (C )306 (D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = . (14)设函数f (x )=ax 2+c (a ≠0),若)()(01x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A , sin A )。
【高考数学】2008年真题试卷及答案解析--山东省试卷分析
2008年全国高考数学(山东卷)试卷分析山东省高考数学试卷阅卷组山东省考试院一、试卷综述2008年的高考是我省实施新课程改革后的第二次自主命题。
今年的高考试题是新课程改革的一次真正的检验,是新课程改革的主要指向标,对今后新课程改革具有指导作用。
命题严格遵守《2008年普通高等学校招生全国统一考试大纲(课程标准实验版)》(以下简称《大纲》)和《2008年普通高等学校招生全国统一考试(课程标准实验版)山东卷考试说明》(以下简称《说明》),遵循“有利于高等学校选拔新生、有利于中学推进素质教育和课程改革、有利于扩大高校办学自主权、有利于考试科学、公正、安全、规范”的命题原则.命题根据山东省高中教学的实际情况,不拘泥于某一版本,重点考查高中数学的主体内容,注意考查新课标的新增内容,体现了新课程改革的理念。
试卷在考查基础知识、基本技能和基本能力的基础上,突出了对考生数学思维能力的考查。
试卷的知识覆盖面较广,题目数量、难度安排适宜,题目立意新颖,文、理科试卷区别恰当,两份试卷难、中、易比例恰当。
试卷具有较高的信度、效度和区分度。
达到了考基础、考能力、考素质、考潜能的考试目标。
命题稳中有变,稳中有新,延续了前三年我省高考自主命题的风格,具有浓郁的山东特色。
二试卷特点1 继续稳步发展,突出考查中学数学主干知识试卷长度、题型比例配置与《考试说明》一致,也和去年保持一致。
全卷共22题,其中选择题12个,共60分,占总分的40%;填空题4个,共16分,约占总分的10.7%;解答题6个,共74分,约占总分的49.3%,全卷合计150分。
全卷重点考查中学数学主干知识和方法 (见表2);侧重于中学数学学科的基础知识和基本技能的考查;侧重于知识交汇点的考查。
2008年山东高考数学试卷全面考查了考试说明中要求的内容,如复数、旋转体、简易逻辑和新增内容不等式选讲等内容,试卷都有所考查。
在全面考查的前提下,高中数学的主干知识如函数、三角函数、不等式、空间几何体、直线和平面、圆锥曲线、概率统计等仍然是支撑整份试卷的主体内容,尤其是两份试卷的解答题,涉及内容均是高中数学的重点知识。
2008年全国高考理科数学试题及答案-山东
2008年普通高等学校招生全国统一考试(山东卷)数 学(理科)第Ⅰ卷(共60分)参考公式:球的表面积公式:,其中是球的半径.24πS R =R 如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的A p n A k 概率:.()(1)(012)kkn kn n P k C p p k n -=-= ,,,,如果事件互斥,那么.A B ,()()()P A B P A P B +=+如果事件相互独立,那么.A B ,()()()P AB P A P B =A 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(08山东理)满足,且的集合的个数{}1234M a a a a ⊆,,,{}{}12312M a a a a a = ,,,M 是( )A .1B .2C .3D .4解:本小题主要考查集合子集的概念及交集运算。
集合中必含有,M 12,a a 则或.选B.{}12,M a a ={}124,,M a a a =2.(08山东理)设的共轭复数是,若,,则等于( )z z 4z z +=8z z =A zzA .B .C .D .ii-1±i±解:本小题主要考查共轭复数的概念、复数的运算。
可设,由2z bi =+8z z ⋅=得选D.248, 2.b b +==±()2222.88i z z i z ±===±3.(08山东理)函数的图象是( )ππln cos 22y x x ⎛⎫=-<<⎪⎝⎭xx A .B .C .D .解:本小题主要考查复合函数的图像识别。
是偶函数,ln cos ()22y x x ππ=-<<可排除B 、D ,由排除C,选A.cos 1ln cos 0x x ≤⇒≤4.(08山东理)设函数的图象关于直线对称,则的值为( )()1f x x x a =++-1x =a A .3B .2C .1D .1-解:、在数轴上表示点到点、的距离,他们的和关于1x +x a -x 1-a ()1f x x x a =++- 对称,因此点、关于对称,所以1x =1-a 1x =3a =(直接去绝对值化成分段函数求解比较麻烦,如取特殊值解也可以)5.(08山东理)已知,则的值是( )πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭A .BC .D .45-45解:,3cos()sin sin 62παααα-+=+=14cos 25αα+=714sin()sin()cos .6625ππαααα⎫+=-+=-+=-⎪⎪⎭6.(08山东理)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .9π10πC .D .11π12π解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=7.(08山东理)在某地的奥运火炬传递活动中,有编号为的18名火炬手.若从中任选3人,12318 ,,,,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )A .B .C .D .15116813061408解:古典概型问题,基本事件总数为。
2008年高考理科数学试题及参考答案(山东卷)
2
(A)
1,3
(B) 2, 10
(C) 2,9
(D) 10,9
第二 卷(共 90 分) 二、境空题:本大题共 4 小题,每小题 4 分,共 16 分 ( 13 )执行右边的程序框图,若 P=0. 8 ,则输出的 n= 4 ( 14 ) 设函数 f ( x ) ax 2 c ( a 0) ,若
(2)设 Z 的共轭复数是 z ,若 z z 4, z z 8 ,则 A. i B. -i C.
z ( z
)
1
D.
i
)
y
(3)函数 y ln cos x (
x ) 的图像是( 2 2
y
y
y
x
x
x
x
A.
B.
C.
D. )
(4)设函数 f ( x ) x 1 x a 的图像关于直线 x=1 对称,则 a 的值为( A. 3 B. 2 C. 1 D. -1
俯视图
2
3
3
2 正(主)视图
2 侧(左)视图
(7)在某地的奥运火炬传递活动中,有编号为 1 , 2 , 3…18 的 18 名火炬手,若从中任选 3 人,则选出的火炬手的编号能组成以 3 为公差的等差数列的概率为( ) (A)
1 5
(B)
1 68
(C)
1 308
(D)
1 408
2 3 3 9 0 1 1 2 0 1 6 2 4 7 5 8
有互斥事件的概率得 P ( AB ) P (C ) P ( D )
34 243
解法二:用 A 表示“甲队得 k 分” 这一事件、用 B 表示“乙队得 k 分”这一事件,k=0, k k 1,2,3,由于事件 A3 B0 与 A2 B1 为互斥事件故有
2008年高考数学试卷(全国Ⅱ.文)含详解
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-=,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分) 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C 2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式4.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算 9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项的负号 10.函数x x x f cos sin )(-=的最大值为( ) A .1 B .2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题 11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O 【高考考点】球的有关概念,两平面垂直的性质13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .【答案】 2 【解析】设过M的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4k k x x -=,由题意144=⇒=k k,于是直线方程为x y = 421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴ABF △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ··································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分 (Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥. ········································································· 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA AC FC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分EF =CE CF CG EF ⨯==3EG ==. AB CDE A 1B 1C 1D 1 FH G13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DBDE D =,所以1A C ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分 1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42A C A C A C<>==,n n n . 所以二面角1A DE B --的大小为arccos42. ················································· 12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=, 故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 1525(14k =+== ≤当21k =,即当12k =时,上式取等号.所以S 的最大值为. ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
2008年高考文科数学试题及参考答案(山东卷)
历史会考内容标准解答☆人民版(必修3) (按照《福建省普通高中学业水平测试说明》编写)★专题一、中国传统文化主流思想的演变(一)知道儒家、道家、墨家、法家代表人物及主要观点,认识百家争鸣局面形成的重要意义;了解孔子、孟子和荀子对儒家思想形成的重要贡献。
1、春秋战国时期诸子百家的代表人物及思想主张儒家——孔子①提出“仁”与“礼”的学说(仁者爱人,克己复礼)——思想核心是“仁”②政治思想:主张“德治”(含民本思想)孟子:①“仁政”②“民贵君轻”荀子:“天行有常”,提出了“制天命而用之”的重要思想(唯物主义)道家——老子哲学思想:①“道”是世界的根本②朴素辩证法思想(矛盾对立面及转化)政治主张:“无为而治”、“小国寡民”法家——韩非①法、术、势结合,主张建立君主专制中央集权,厉行赏罚、奖励耕战②认为历史是发展的,主张变法革新。
墨家——墨子“兼爱”、“非攻”、“节俭”(代表了下层劳动群众,特别是手工业者的利益)2、春秋战国时期百家争鸣局面形成的重要意义①“百家争鸣”是中国历史上第一次思想解放运动。
②奠定了中国传统文化体系的基础。
(二)知道罢黜百家和汉代儒学成为正统思想的史实。
1、思想来源:董仲舒将法家思想糅合进儒家,形成新儒学2、成为正统思想:汉武帝时期,采纳董仲舒“罢黜百家,独尊儒术”的主张,儒家思想成为封建社会的统治思想(根本原因:改造后的儒家思想适应了封建专制中央集权的需要)(三)知道朱熹理学以及地位1、主要内容:程朱理学:南宋朱熹是理学的集大成者,“理”是世界万物的本源;“理”体现在社会上是儒家伦理道德;把握“理”就要“格物致知”(接触万事万物才能明“理”)2、地位:(四)列举李贽、黄宗羲、顾炎武、王夫之等思想家,结合他们的基本观点简要说明明清时期儒学思想的发展。
1、“异端”李贽:反对“存天理,灭人欲”,提出“穿衣吃饭,即是人伦物理”,认为理在百姓日常生活之中,对正统思想发出大胆挑战。
认为不能以“圣人”之言作为判别是非的标准,提出“绝假纯真”的“童心说”,反对礼教的虚伪和官场的欺诈。
2008年高考理科数学试题及参考答案(山东卷)
2008年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为( ) A .3B .2C .1D .1-5.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A.5-B.5C .45-D .456.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π 7.在某地的奥运火炬传递活动中,有编号为12318 ,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( ) A .151B .168C .1306D .14088.右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.69.12x ⎛⎝展开式中的常数项为( )xxA .B .C .D .俯视图 正(主)视图 侧(左)视图 2 9 1 1 5 83 0 2 63 1 0 24 7A .1320-B .1320C .220-D .22010.设椭圆1C 的离心率为513,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A .2222143x y -=B .22221135x y -=C .2222134x y -=D .222211312x y -=11.已知圆的方程为22680x y x y +--=.设该圆过点(35),的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A.B.C.D.12.设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ,使函数(01)xy a a a =>≠,的图象过区域M 的a 的取值范围是( )A .[13],B.[2C .[29],D. 二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右边的程序框图,若0.8p =, 则输出的n = .14.设函数2()(0)f x ax c a =+≠,若100()()f x dx f x =⎰,001x ≤≤,则0x 的值为 .15.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)=-m ,(cos sin )A A =,n .若⊥m n ,且cos cos sin a B b A c C +=,则角B = . 16.若不等式34x b -<的解集中的整数有且仅有123,,, 则b 的取值范围为 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫ ⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为221332,,,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分. (Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求()P AB .19.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a……记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.20.(本小题满分12分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点.(Ⅰ)证明:AE PD ⊥;(Ⅱ)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值. 21.(本小题满分12分) 已知函数1()ln(1)(1)nf x a x x =+--,其中*x ∈N ,a 为常数. (Ⅰ)当2n =时,求函数()f x 的极值;(Ⅱ)当1a =时,证明:对任意的正整数n ,当2n ≥时,有()1f x x -≤. 22.(本小题满分14分)如图,设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,. (Ⅰ)求证:A M B ,,三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(22)p -,时,AB =(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.PBDFA2008年普通高等学校招生全国统一考试(山东卷)理科数学(答案)一、选择题 1.B 2.D 3.A 4.A5.C6.D7.B8.B9.C10.A 11.B 12.C二、填空题13.4 14. 15.π616.(57),三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭.即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭.因为0ω>,且x ∈R ,所以πcos 06ϕ⎛⎫-= ⎪⎝⎭.又因为0πϕ<<, 故ππ62ϕ-=. 所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭.由题意得2ππ22ω= ,所以2ω=.故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫== ⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫- ⎪⎝⎭的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到π46x f ⎛⎫- ⎪⎝⎭的图象.所以πππ()2cos 22cos 464623x x x g x f ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.当π2π2ππ23x k k -+≤≤(k ∈Z ),即2π8π4π4π33k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为2π8π4π4π33k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.(Ⅰ)解法一:由题意知,ξ的可能取值为0,1,2,3,且30321(0)1327P C ξ⎛⎫==⨯-= ⎪⎝⎭,213222(1)1339P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭, 223224(2)1339P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,33328(3)327P C ξ⎛⎫==⨯= ⎪⎝⎭.所以ξ的分布列为ξ的数学期望为124801232279927E ξ=⨯+⨯+⨯+⨯=. 解法二:根据题设可知,2~33B ξ⎛⎫⎪⎝⎭,,因此ξ的分布列为3333222()1333kkkk k P k C C ξ-⎛⎫⎛⎫==⨯⨯-=⨯ ⎪ ⎪⎝⎭⎝⎭,0123k =,,,.因为2~33B ξ⎛⎫⎪⎝⎭,,所以2323E ξ=⨯=.(Ⅱ)解法一:用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,所以AB C D = ,且C D ,互斥,又22322211121111()133332332332P C C ⎛⎫⎛⎫⎡⎤=⨯⨯-⨯⨯⨯+⨯⨯+⨯⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦4103=,333521114()33323P D C ⎛⎫⎛⎫=⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 由互斥事件的概率公式得4551043434()()()333243P AB P C P D =+=+==. 解法二:用k A 表示“甲队得k 分”这一事件,用k B 表示“乙队得k 分”这一事件,0123k =,,,. 由于事件30A B ,21A B 为互斥事件,故有30213021()()()()P AB P A B A B P A B P A B ==+ . 由题设可知,事件3A 与0B 独立,事件2A 与1B 独立,因此30213021()()()()()()()P AB P A B P A B P A P B P A P B =+=+ 3221322222211211123433232323243C C ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 19.(Ⅰ)证明:由已知,当2n ≥时,221nn n nb b S S =-, 又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--, 即112()1n n n nS S S S ---=-,所以11112n n S S --=, 又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=, 即21n S n =+. 所以当2n ≥时,12221(1)n n n b S S n n n n -=-=-=-++. 因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== , 所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第31行第三列, 因此28113491a b q ==- . 又1321314b =-⨯, 所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)k k k k b q S k q k k k k --==-=--+-+ ≥. 20.(Ⅰ)证明:由四边形ABCD 为菱形,60ABC ∠= ,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥. 又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PA AD A = , 所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(Ⅱ)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(Ⅰ)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. 在Rt EAH △中,AE = 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大.此时tan 2AE EHA AH AH ∠===,因此AH =2AD =,所以45ADH ∠= , 所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E 作EO AC ⊥于O ,则EO ⊥平面PAC ,过O 作OS AF ⊥于S ,连接ES ,则ESO ∠为二面角E AF C --的平面角,在Rt AOE △中,sin 30EO AE ==3cos302AO AE == , 又F 是PC 的中点,在Rt ASO △中,sin 45SO AO ==又4SE === 在Rt ESO △中,cos SO ESO SE ∠===即所求二面角的余弦值为5. 解法二:由(Ⅰ)知AE AD AP ,,两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系,又E F ,分别为BC PC ,的中点,所以(000)10)0)(020)A B C D -,,,,,,,,,,1(002)0)122P E F ⎛⎫ ⎪ ⎪⎝⎭,,,,,,,, P BF A HO S所以10)12AE AF⎫==⎪⎪⎝⎭,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF⎧=⎪⎨=⎪⎩,,mm因此1111122x y z=++=⎪⎩,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PA AC A=,所以BD⊥平面AFC,故BD为平面AFC的一法向量.又(0)BD=,,所以cos5BDBDBD<>===,mmm.因为二面角E AF C--为锐角,所以所求二面角的余弦值为5.21.(Ⅰ)解:由已知得函数()f x的定义域为{}|1x x>,当2n=时,21()ln(1)(1)f x a xx=+--,所以232(1)()(1)a xf xx--'=-.(1)当0a>时,由()0f x'=得111x=+>,211x=-<,此时123()()()(1)a x x x xf xx---'=-.当1(1)x x∈,时,()0f x'<,()f x单调递减;当1()x x∈+∞,时,()0f x'>,()f x单调递增.(2)当0a≤时,()0f x'<恒成立,所以()f x无极值.综上所述,2n =时,当0a >时,()f x 在1x =+211ln 2a f a ⎛⎛⎫=+ ⎪ ⎝⎭⎝. 当0a ≤时,()f x 无极值.(Ⅱ)证法一:因为1a =,所以1()ln(1)(1)n f x x x =+--. 当n 为偶数时, 令1()1ln(1)(1)n g x x x x =-----, 则1112()10(1)11(1)n n n x n g x x x x x ++-'=+-=+>----(2x ≥). 所以当[)2x ∈+∞,时,()g x 单调递增, 又(2)0g =, 因此1()1ln(1)(2)0(1)n g x x x g x =----=-≥恒成立, 所以()1f x x -≤成立.当n 为奇数时,要证()1f x x -≤,由于10(1)n x <-,所以只需证ln(1)1x x --≤, 令()1ln(1)h x x x =---, 则12()1011x h x x x -'=-=--≥(2x ≥), 所以当[)2x ∈+∞,时,()1ln(1)h x x x =---单调递增,又(2)10h =>, 所以当2x ≥时,恒有()0h x >,即ln(1)1x x -<-命题成立. 综上所述,结论成立.证法二:当1a =时,1()ln(1)(1)n f x x x =+--. 当2x ≥时,对任意的正整数n ,恒有11(1)n x -≤,故只需证明1ln(1)1x x +--≤.令()1(1ln(1))2ln(1)h x x x x x =--+-=---,[)2x ∈+∞,, 则12()111x h x x x -'=-=--, 当2x ≥时,()0h x '≥,故()h x 在[)2+∞,上单调递增, 因此当2x ≥时,()(2)0h x h =≥,即1ln(1)1x x +--≤成立. 故当2x ≥时,有1ln(1)1(1)nx x x +---≤. 即()1f x x -≤.22.(Ⅰ)证明:由题意设221212120(2)22x x A x B x x x M x p p p ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,,,,,,. 由22x py =得22x y p =,得x y p '=, 所以1MA x k p =,2MB x k p=. 因此直线MA 的方程为102()x y p x x p +=-, 直线MB 的方程为202()x y p x x p+=-. 所以211102()2x x p x x p p+=-,① 222202()2x x p x x p p+=-.② 由①、②得121202x x x x x +=+-, 因此1202x x x +=,即0122x x x =+. 所以A M B ,,三点的横坐标成等差数列. (Ⅱ)解:由(Ⅰ)知,当02x =时,将其代入①、②并整理得:2211440x x p --=,2222440x x p --=,所以12x x ,是方程22440x x p --=的两根, 因此124x x +=,2124x x p =-, 又222101221222ABx x x x x p p k x x p p -+===-, 所以2AB k p=.由弦长公式得AB ==又AB =所以1p =或2p =,因此所求抛物线方程为22x y =或24x y =. (Ⅲ)解:设33()D x y ,,由题意得1212()C x x y y ++,,则CD 的中点坐标为12312322x x x y y y Q ++++⎛⎫ ⎪⎝⎭,, 设直线AB 的方程为011()x y y x x p-=-, 由点Q 在直线AB 上,并注意到点121222x x y y ++⎛⎫ ⎪⎝⎭,也在直线AB 上, 代入得033x y x p=. 若33()D x y ,在抛物线上,则2330322x py x x ==, 因此30x =或302x x =.即(00)D ,或20022x D x p ⎛⎫ ⎪⎝⎭,.(1)当00x =时,则12020x x x +==,此时,点(02)M p -,适合题意.(2)当00x ≠,对于(00)D ,,此时2212022x x C x p ⎛⎫+ ⎪⎝⎭,, 2212022CD x x p k x +=221204x x px +=, 又0AB x k p=,AB CD ⊥, 所以22220121220144AB CDx x x x x k k p px p ++===- , 即222124x x p +=-,矛盾. 对于20022x D x p ⎛⎫ ⎪⎝⎭,,因为2212022x x C x p ⎛⎫+ ⎪⎝⎭,,此时直线CD 平行于y 轴, 又00AB x k p=≠, 所以直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点. 综上所述,仅存在一点(02)M p -,适合题意.。
2008年普通高等学校招生全国统一考试数学(山东卷·理科)试卷与答案
2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k n p k (1-p )n-k(k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A )1 (B )-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <)2π的图象是(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为 (A) 3 (B)2 (C)1 (D)-1 (5)已知cos (α-6π)+sin α=的值是则)67sin(,354πα (A )-532 (B )532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 (A)9π (B )10π (C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 (A )511(B )681 (C )3061(D )4081 (8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 (A )304.6(B )303.6 (C)302.6 (D)301.6(9)(X -31x)12展开式中的常数项为(A )-1320(B )1320(C )-220 (D)220(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 (A )106(B )206(C )306(D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a>0,a ≠1)的图象过区域M 的a 的取值范围是(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. (13)执行右边的程序框图,若p =0.8,则输出的n = 4 .(14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. (16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为(5,7).三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)美洲f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立, 因此 sin (-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π), 整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos (ϕ-6π)=0. 又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω. 由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24cos 2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π(k ∈Z)时,g (x )单调递减. 因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z) (18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年普通高等学校招生全国统一考试(山东文科数学及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( )A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图C .11πD .12π7.不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A . BC .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)x a f x b a a=+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = . 15.已知2(3)4log 3233x f x =+, 则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.ABCMPD(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)x yC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.111.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,, 的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( D ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos x 的值域可以确定.选A.4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限. 在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3 B .2 C .1 D .0解析:本小题主要考查四种命题的真假。
易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中, 真命题 有一个。
选C.5.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A )A .1516B .2716-C .89D .18解析:本小题主要考查分段函数问题。
正确利用分段函数来进行分段求值。
(2)4,f = 11115()1.(2)41616f f f ⎛⎫∴==-= ⎪⎝⎭选A. 6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( D ) A .9π B .10π C .11π D .12πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图解析:本小题主要考查三视图与几何体的表面积。
从三视图可以看出该几何体是由一个球和 一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=选D 。
7.不等式252(1)x x +-≥的解集是( D ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,解析:本小题主要考查分式不等式的解法。
易知1x ≠排除B;由0x =符合可排除C;由3x =排除A, 故选D 。
也可用分式不等式的解法,将2移到左边直接求解。
8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( C ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,解析:本小题主要考查解三角形问题。
sin 0A A -=,;3A π∴=2sin cos sin cos sin ,A B B A C ⇒+=2sin cos sin cos sin()sin sin A B B A A B C C +=+==,.2C π=π6B ∴=.选C. 本题在求角B 时,也可用验证法. 9.( B )AB C .3D .85解析:本小题主要考查平均数、方差、标准差的概念及其运算。
100409060103,100x ++++==2222121[()()()]n S x x x x x x n ∴=-+-++-22221[202101301102]100=⨯+⨯+⨯+⨯1608,1005==S ⇒=选B.10.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( C )A.5- B.5C .45- D .45解析:本小题主要考查三角函数变换与求值。