概率论与数理统计(二)
概率论与数理统计第二版课后答案
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布
以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法
全国自考概率论与数理统计(二)试题和答案
B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。
概率论与数理统计(二)
欢迎阅读内容串讲第一章 随机事件及其概率1. 事件的关系与运算必然事件:Ω—随机试验全部结果构成的集合。
不可能事件:φ 一般事件A :A φ⊂⊂Ω若A 若A 11111,,nnni i i i i i i i A A A A ∞=====等等。
例1 2(1(2(3(4(5))()()(AB P A P B A P -=-(6)若n A A A ,,21两两互不相容,则∑===ni i ni i A P A P 11)()((7)若n A A A ,,21相互独立,则例2 设1.0)(,4.0)(,2.0)(===AB P B P A P则5.0)()()(1)(1)(=+--=⋃-=⋃AB P B P A P B A P B A P3.古典概型古典概型:当随机试验的结果为有限个且诸结果等可能发生时,任一事件A 的概率为例3 从五个球(其中两个白球、三个红球)中任取两球,设A :取到两个白球;B :一白一红球,求)(),(B P A P(1)无放回抽样:(2)有放回抽样:每次有放回的取一球,连取两次[注]:若设X 为两次有放回取球中取到白球数,则X ~)52,2(B ,从而)(=P A P 4(1(2例103 (3,j i j i ,,≠)(i B(4例5 某工厂生产的产品以100个为一批,在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的,设每批产品中的次品最多不超过4个,并且恰有)4,3,2,1(=i i 个次品的概率如下(1)求各批产品通过的概率;(2)求通过检查的各批产品中恰有i 个次品的概率。
)4,3,2,1(=i解:(1)设事件i B 是恰有i 个次品的一批产品)4,3,2,1(=i ,则由题设设事件A 是这批产品通过检查,即抽样检查的10个产品都是合格品,则我们有1)(0=B A P由全概率公式,即得8142.0)()()(40≈=∑=i i i B A P B P A P(2)由Bayes 公式,所求概率分别为5.事件的独立性(1)定义:A 、B 相互独立等价于)()()(B P A P B A P ⋅=(2)若n A A A ,,,21 相互独立,则有)()()()(2121n n A P A P A P A A A P =(3)有放回抽样中的诸事件是相互独立的。
自考概率论与数理统计(二)(02197)及答案
概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。
一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。
《概率论与数理统计》第二章考点手册
《概率论与数理统计》第二章随机变量及其概率分布考点10 随机变量的概念(★三级考点,选择、填空)设Ω={ω}是试验的样本空间,如果对每个ω∈Ω,总有一个实数X(ω)与之对应,则称Ω上的实值函数X(ω)为E的一个随机变量。
随机变量常用X、Y、Z等表示。
考点11 离散型分布变量及其分布律(★★二级考点,选择、填空、计算)1.若随机变量X取值x1,x2,…,x n,…且取这些值的概率依次为p1,p2,…,p n,…,则称X为离散型随机变量,而称P{X=x k}=p k,(k=1,2,…)为X的分布律或概率分布。
可表为X~P{X=x k}=p k,(k=1,2,…),2.分布律的矩阵(表格)表示方法:3.分布律的性质1)p k ≥0,k=1,2,…;2)∑≥11kkp=考点12 0-1分布与二项分布(★★★一级考点,选择、填空)1.0-1分布设E是一个只有两种可能结果的随机试验,用Ω={ω1,ω2}表示其样本空间。
P({ω1})=p,P({ω2})=1-p记则称X服从参数p的(0-1)分布(或两点分布),记成X~B(1,p)。
2.二项分布设试验E只有两个结果AA或,记p=P(A),将试验E独立重复进行n次,则称这n次试验为n重伯努利试验。
若以X表示n重贝努里试验事件A发生的次数,则称X服从参数为n,p的二项分布。
记作X~B(n,p)其分布律为:),...,1,0(,)1(}{nkppkXP k nkknC=-==-考点13 泊松分布(★★★一级考点,选择、填空)1.泊松分布:设随机变量X所有可能取的值为:0,1,2,…,概率分布为:其中λ>0为常数,则称随机变量X 服从参数为λ的泊松分布,记为X~P (λ)。
2.二项分布与泊松分布的关系(泊松定理)对二项分布B (n ,p ),当n 充分大,p 又很小时,对任意固定的非负整数k ,有近似公式 .,!)1(), ( n k np e k p p C p n k k k n k k n <=»-=--,其中;l l l B 理解:泊松定理表明,泊松分布是二项分布的极限分布,当n 很大,p 很小时,二项分布就可近似地看成是参数λ=np 的泊松分布。
《概率论与数理统计》第二章 随机变量及其分布
两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2
…
xn
…
pk
p1
p2
…
pn
…
在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
全国历自学考试概率论与数理统计二试题与答案
全国2011年4月自学考试概率论与数理统计(二)课程代码:02197 选择题和填空题详解试题来自百度文库 答案由王馨磊导师提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )=( B ) A .253B .2517C .54D .25233.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c =( A ) A .41B .21C .2D .4解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为则称 (X ,Y )服从区域D 上的均匀分布,由0≤x ≤2,0≤y ≤2,知S=4,所以c=1/4,故选A.7.设二维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( ) A .N (-3, -5) B .N (-3,13) C .N (1, 13) D .N (1,13)解:由题设知,X~N(-1,22),Y~N(-2,32),且X 与Y 相互独立, 所以E(X-Y)=E(X)-E(Y)=-1-(-2)=1,D(X-Y)=D(X)+D(Y)=13,故选D. 8.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ=( )A .321 B .161 C .81D .419.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( )A .2χ (5)B .t (5)C .F (2,3)D .F (3,2)10.在假设检验中, H 0为原假设, 则显着性水平α的意义是 ( ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}解:在0H 成立的情况下,样本值落入了拒绝域W 因而0H 被拒绝,称这种错误为第一类错误;二、填空题 (本大题共15小题, 每小题2分, 共30分)请在每小题的空格中填上正确答案。
概率论与数理统计第二章
1 ,max= 2
4. 渐近线 以X轴为渐进线
5. 曲线的变化规律
设X~ N ( , ) ,
2
X的分布函数是
1 F ( x) 2
x
(t ) 2 22Fra bibliotekedt , x
标准正态分布
0, 1 的正态分布称为标准正态分布.
若随机变量X的概率分布为: P(X=1)=p,0<p<1 P(X=0)=1-p=q 则称X服从参数为p的两点分布.
二项分布
例4 设射手每一次击中目标的概率为p,现连续 射击n次,求恰好击中次数X 的概率分布.
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
3. F(x+0)=F(x)
例1:设随机变量X的分布函数为
a be x , x 0 F ( x) x0 0 ,
求常数a, b及概率 P( X 2)
2.2
离散型随机变量的概率分布
定义1 :设xk(k=1,2, …)是离散型随机变量X 所取的一切可能值,pk是X取 xk值的概率,称
0
1 8
1
a
2
2a
Pk
(1)求常数a ; (2) P( X 1), P(2 X 0), P( X 2)
例2 在五件产品中有两件次品,从中任取出两 件。用随机变量X表示其中的次品数,求X的分 布律和分布函数.
X
P
0
0.3
1
0.6
2
0.1
1.0 0.9
0 0.3 F ( x) 0.9 1.0
均匀分布
自考概率论与数理统计二试题及答案解析
2016年10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码 02197)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题(共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A与B是两个随机事件,则P(A-B)=2.设随机变量石的分布律为A.O.1 B.O.2 C.O.3 D.0.6 3.设二维随机变量∽,n的分布律为且X与y相互独立,则下列结论正确的是A.d=0.2,b=0,2 B.a=0-3,b=0.3C.a=0.4,b=0.2 D.a=0.2,b=0.44.设二维随机变量(x,D的概率密度为5.设随机变量X~N(0,9),Y~N(0,4),且X与Y相互独立,记Z=X-Y,则Z~6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)= A.4 B.5 C.8 D.108.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则第二部分非选择题(共80分)二、填空题(本大题共l5小题,每小题2分,共30分)11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。
12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。
13.已知10件产品中有1件次品,从中任取2件,则末取到次品的概率为_____.14.设随机变量x的分布律为,则常数a=_______.15.设随机变量石的概率密度,X的分布函数F(x)=_________.16.设随机变量,则_______.17.设二维随机变量(X,Y)的分布律为18.设二维随机变量(X,Y)的概率密度为分布函数f(x,y),则f(3,2)=________。
概率论与数理统计 第二版(刘贵基)
概率论与数理统计第二版(刘贵基)1. 引言概率论与数理统计是数学的两个重要分支,它们既是理论学科也是实际应用的基础。
概率论研究随机现象的规律性质和数学描述,而数理统计则研究了从观测数据中获取随机现象的基本信息和进行推断的方法。
本文档将对《概率论与数理统计第二版(刘贵基)》的内容进行总结和回顾。
2. 概率论概率论是研究随机现象的数学理论,主要包括概率空间、事件与概率、随机变量、概率分布等内容。
2.1 概率空间概率空间是概率论的基本概念,它由一个样本空间和一个定义在样本空间上的概率测度组成。
概率空间的三个重要性质为非负性、规范性和可列可加性。
2.2 事件与概率事件是样本空间的子集,用来描述随机现象。
事件的基本运算包括并、交和补等。
概率是对事件发生可能性的度量,它满足非负性、规范性和可列可加性。
常用的概率计算方法包括古典概型、几何概型和统计概率等。
2.3 随机变量随机变量是用来描述随机现象的数学量,它可以是离散型或连续型的。
离散型随机变量的概率分布可以由概率质量函数表示,而连续型随机变量的概率分布可以由概率密度函数表示。
2.4 概率分布概率分布描述了随机变量的取值和概率之间的关系。
常见的概率分布包括离散型分布(如伯努利分布、二项分布和泊松分布)和连续型分布(如均匀分布、正态分布和指数分布)。
3. 数理统计数理统计是研究从观测数据中获取随机现象基本信息和进行推断的方法和理论。
主要包括描述统计和推断统计两个方面。
3.1 描述统计描述统计是通过统计量对数据进行总结和描述。
常用的统计量包括样本均值、样本方差、样本标准差等。
描述统计的方法主要包括图表分析和数字特征分析。
3.2 推断统计推断统计是利用样本数据对总体特征进行推断。
主要包括参数估计和假设检验两个部分。
参数估计是根据样本数据来估计总体参数的值,常用的估计方法有最大似然估计和矩估计。
假设检验是通过样本数据来判断总体参数是否满足某个给定的假设。
4. 实例分析本书还包括大量的实例分析,通过具体问题来说明概率论和数理统计的应用。
概率论与数理统计02(2)
19. (1)由统计物理学知, 分了运动速度的绝对值X 服从马克斯韦尔(Maxwall)分布, 其概率密度为⎩⎨⎧>=-其他00)(/22x e Ax x f b x ,其中kTm b 2=, k 为Boltzmann 常数, T 为绝对温度, m 是分子的质量,试确定常数A .(2)研究了项格兰在1875年~1951年期间, 矿山发生导致10人或10人以上死亡的事故的频繁程度, 得知相继两次事故之间的时间T (以日计)服从指数分布, 其概率密度为⎪⎩⎪⎨⎧>=-其他002411)(241/t e t f t T .求分布函数F T (t ), 并求概率P (50<T <100). 解: (1)由于⎰+∞∞-=1)(dx x f , 因此有10/22=⎰+∞-dx e Ax b x , 从而解得bb A π4=.(2)⎰⎰⎰--===-∞-tt x x tT T x e dx e dx x f t F 00241/241/)241(2411)()( 241/0241/1|t t x e e ---=-= (t ≥0),故 ⎩⎨⎧<≥-=-0001)(241/t t e t F t T . 24110024150)50()100()10050(---=-=<<e e F F T P T T .20. 某种型号的电子管的寿命X (以小时计)具有以下的概率密度:⎪⎩⎪⎨⎧>=其它010001000)(2x x x f .现有一大批此种管子(设各电子管损坏与否相互独立). 任取5只, 问其中至少有2只寿命大于1500小时的概率是多少? 解: 一个电子管寿命大于1500小时的概率为 }1500{1}1500{≤-=>X P X P⎰--=-=15001000150010002)1(1000110001x dx x 32)321(1=--=.用Y 表示任取5只此种电子管中寿命大于1500小时的电子管的个数. 则)32,5(~B Y ,)2(1)2(<-=≥Y P Y P }]1{}0{[1=+=-=Y P Y P])31()32()31[(14155⋅⋅+-=C 243232243111325115=-=⨯+-=.21. 设顾客在某银行的窗口等待服务的时间X (以分计)服从指数分布, 其概率密度为:⎪⎩⎪⎨⎧>=-其它0051)(5x e x F x X .某顾客在窗口等待服务, 若超过10分钟他就离开. 他一个月要到银行5次. 以Y 表示一个月内他未等到服务而离开窗口的次数, 写出Y 的分布律. 并求P (Y ≥1).解: 该顾客一次等待服务未成而离去的概率为21051051051)()10(-∞+-∞+-∞+=-===>⎰⎰e e dx e dx x f X P x x X , 因此Y ~B (5, e -2), 即k k k e e C k Y P ----==5225)1()((k =1, 2, 3, 4, 5).P (Y ≥1)=1-P (Y <1)=1-P (Y =0) 5552)1353363.01(1)389.711(1)1(1--=--=--=-e=1-0.86775=1-0.4833=0.5167.22. 设K 在(0, 5)上服从均匀分布, 求方程4x 2+4xK +K +2=0有实根的概率.解: 因为K 的分布密度为⎪⎩⎪⎨⎧<<-=其他050051)(K K f .要方程有根, 就是要K 满足 (4K )2-4×4×(K +2)≥0.解不等式, 得K ≥2时, 方程有实根, 所以53051)()2(5522=+==≥⎰⎰⎰∞+∞+dx dx dx x f K P .23. 设X~N (3.22).(1)求P (2<X ≤5), P (-4<X ≤10), P (|X|>2), P (X >3); 解: 因为若X~N (μ, σ 2), 则)()()(σμασμββα-Φ--Φ=≤<X P , 所以 )5.0()1()232()235()51(-Φ-Φ=-Φ--Φ=≤<X P=0.8413-0.3085=0.5328,)5.3()5.3()234()235()104(-Φ-Φ=--Φ--Φ=≤<-X P=0.9998-0.0002=0.9996. P (|X |>2)=1-P (|X |<2)= 1-P (-2<P <2) )]232()232([1--Φ--Φ-==1-Φ(-0.5)+Φ(-2.5)=1-0.3085+0.0062=0.6977.P (X >3)=1-P (X ≤3)5.05.01)233(1=-=-Φ-=.(2)确定C 使得P (X >C )=P (X ≤C );解: 因为P (X >C )=1-P (X ≤C )=P (X ≤C ), 得 P (X ≤C )=1/2=0.5.又 5.0)23(}{=-Φ=≤C C X P ,查表可得023=-C , 所以C =3.24. 某地区18岁的女青年的血压(收缩压, 以mm-Hg 计)服从N (110, 122)在该地区任选一18岁女青年, 测量她的血压X . 求: (1)P (X ≤105), P (100<X ≤120); 解: )12110105(}105{-Φ=≤X P=Φ(-0.4167)=1-Φ(0.4167)=1-0.6616=0.3384. )12110100()12110120(}120100{-Φ--Φ=≤<X P1)65(2)65()65(-Φ=-Φ-Φ==2Φ(0.8333)-1=2⨯0.7976-1=0.5952. (2)确定最小的x 使P (X >x )≤0.05. 解: 按要求, 有05.0)12110(1}{1}{≤-Φ-=≤-=>x x X P x X P ,即 95.0)12110(≥-Φx ,查表得 645.112110≥-x ,解得x ≥110+19.74=129.74, 故最小的x =129. 74.25. 由某机器生产的螺栓长度(单位: cm)服从参数为μ=10.05, σ=0.06的正态分布. 规定长度在范围10.05±0.12内为合格品, 求一螺栓为不合格的概率是多少?解: 设螺栓长度为X , 所求概率为 P (X ∉(10.05-0.12, 10.05+0.12)) =1-P (9.93<X <10.17))]06.005.1097.9()06.005.1017.10([1-Φ--Φ-==1-[Φ(2)-Φ(-2)] =1-[0.9772-0.0228] =0.0456.26. 一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160, σ的正态分布, 若要求P (120<X ≤200)≥0.80, 允许σ最大为多少? 解: 因为)160120()160200(}200120{σσ-Φ--Φ=≤<X P80.0)40()40(=-Φ-Φ=σσ,又对标准正态分布有Φ(-x )=1-Φ(x ), 所以上式变为 80.0)]40(1[)40(≥Φ--Φσσ,解得9.0)40(≥Φσ. 再查表, 得281.140≥σ, 于是25.31281.140=≤σ.27. 设随机变量X 的分布律为:求Y =X 2的分布律. 解: 由已知分布得再把X 2的取值相同的合并, 并按从小到大排列, 就得函数Y 的分布律为:28. 设随机变量X 在(0, 1)上服从均匀分布. (1)求Y =e X 的分布密度; 解: X 的分布密度为⎩⎨⎧<<=为其他x x x f 0101)(.Y =g (X )=e X 是单调增函数, 又X =h (Y )=ln Y , 反函数存在, 且 α=min{g (0), g (1)}=min{1, e }=1, β=max{g (0), g (1)}=max{1, e }=e , 所以Y 的分布密度为⎪⎩⎪⎨⎧<<⋅=⋅=为其他y ey yy h y h f y 0111|)('|)]([)(ψ. (2)求Y =-2ln X 的概率密度.解: Y =g (X )=-2ln X 是单调减函数, 又2)(Y e Y h X -==反函数存在, 且 α=min{g (0), g (1)}=min{+∞, 0}=0, β=max{g (0), g (1)}=max{+∞, 0}=+∞, 所以Y 的分布密度为⎪⎩⎪⎨⎧+∞<<=-⋅=⋅=--为其他y y e e y h y h f y y y 0121|21|1|)('|)]([)(22ψ.29. 设X~N (0, 1).(1)求Y =e X 的概率密度; 解: X 的概率密度是2221)(x e x f -=π(-∞<x <+∞). Y =g (X )=e X 是单调增函数, 又X =h (Y )=ln Y , 反函数存在, 且 α=min{g (-∞), g (+∞)}=min{0, +∞}=0, β=max{g (-∞), g (+∞)}=max{0, +∞}=+∞, 所以Y 的分布密度为⎪⎩⎪⎨⎧+∞<<⋅=⋅=-为其他y y y e y h y h f y y 00121|)('|)]([)(2)(ln 2πψ. (2)求Y =2X 2+1的概率密度;解: 在这里, Y =2X 2+1在(+∞, -∞)不是单调函数, 没有一般的结论可用.设Y 的分布函数是F Y (y ), 则 F Y (y )=P (Y ≤y )=P (2X 2+1≤y ))2121(-≤≤--=y X y P . 当y <1时F Y (y )=0;当y ≥1时:⎰----=⎪⎭⎫⎝⎛-≤≤--=212122212121)(y y x y dx e y X y P y F π, 故Y 的分布密度ψ(y )是:当y ≤1时, ψ(y )=[F Y (y )]'=(0)'=0;当y >1时,ψ(y )=[F Y (y )]')21(212122'=⎰----y y x dx e π41)1(21---=y e y π.(3)求Y =| X |的概率密度.解: 因为Y 的分布函数为F Y (y )=P (Y ≤y )=P (|X|≤y ), 当y <0时, F Y (y )=0;当y ≥0时, F Y (y )=P (|X|≤y )=P (-y ≤X ≤y )⎰--=yyx dx e 2221π, 所以Y 的概率密度为:当y ≤0时, ψ(y )=[F Y (y )]'=(0)'=0; 当y <0时, ψ(y )=[F Y (y )]'22222)21(y y yx edx e ---='=⎰ππ.30. (1)设随机变量X 的概率密度为f (x )(-∞<x <+∞), 求Y =X 3的概率密度.解: 因为Y =g (X )=X 3是X 单调增函数,又 31)(Y Y h X ==, 反函数存在,且 α=min{g (-∞), g (+∞)}=min{0, +∞}=-∞, β=max{ g (-∞), g (+∞)}=max{0, +∞}=+∞, 所以Y 的分布密度为323131)(|)(|)]([)(-⋅='⋅=y y f y h y h f y ψ (-∞<y <+∞), 但y ≠0, ψ(0)=0.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其它00)(x e x f x , 求Y =X 2的概率密度.解法一: 因为X 的分布密度为⎩⎨⎧≤>=-000)(x x e x f x . y =x 2是非单调函数,当x <0时, y =x 2 ↘, 反函数是y x -=; 当x <0时, y =x 2↗, y x =,所以)(())(()(~+'--=y f y y f y f Y Y ⎪⎩⎪⎨⎧≤>+=-000210y y e y y⎪⎩⎪⎨⎧≤>=-00021y y e y y .解法二: 因为)()()(~y X y P y Y P y F Y Y ≤<-=≤= )()(y X P y X P -≤-≤=⎪⎩⎪⎨⎧≤>+=⎰-0000y y dx e y x⎩⎨⎧≤>-=-001y y e y ,所以⎪⎩⎪⎨⎧≤>=-00021)(~y y e y y f Y y Y .31.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=为其他x x x x f 002)(2ππ, 求Y =sin X 的概率密度.解: 因为F Y (y )=P (Y ≤y )=P (sin X ≤y ), 当y <0时, F Y (y )=0; 当0≤y ≤1时,F Y (y )=P (sin X ≤y )=P (0≤X ≤arcsin y 或π-arcsin y ≤X ≤π)⎰⎰-+=ππππy y dx x dx x arcsin 2arcsin 0222; 当1<y 时, F Y (y )=1, 所以Y 的概率密度ψ(y )为当y ≤0时, ψ(y )=[F Y (y )]'=(0)'=0; 当0<y <1时, ψ(y )=[F Y (y )]'2arcsin 2arcsin 0212)22(ydx x dx x yy-='+=⎰⎰-πππππ; 当1≤y 时, ψ(y )=[F Y (y )]'=(1)'=0.32. 设电流I 是一个随机变量, 它均匀分布在9~11A 之间, 若此电流通过2Ω的电阻, 在其上消耗的功率W =2I 2, 求W 的概率密度.解: ⎪⎩⎪⎨⎧<<-=001199111)(i i f I .W =2I 2 ,)2()2()()(22w I P w I P w W P w F W ≤=≤=≤=.当w <0时, F W (w )=0; 当w ≥0时,)22()2()(2w i w P w I P w F W ≤≤-=≤= ⎰⎰⎰⎰=+==--2/92/992/2/2/)()()()(w I w I w I w w I di i f di i f di i f di i f .当9<i <11, 即162<w <242时,)92(2121)29()(2/9-==<<=⎰w di w I P w F w W , 故 ww F w f W W 241)()(='=. 当w ≤162时, F W (w )=0, ϕ(w )=0;当w ≥242时, F W (w )=1, ϕ(w )=0,最后得⎪⎩⎪⎨⎧<<=其他0242162241)(w w w f W .33. 某物体的温度T (︒F )是一个随机变量, 且有T ~N (98.6, 2), 试求θ(︒C )的概率密度. 已知)32(95-=T θ. 解法一: 因为T 的概率密度为22)6.98(2221)(⨯--=t e t f π(-∞<t <+∞), 又)32(95)(-==T T g θ是单调增函数. 3259)(+==θθh T 反函数存在, 且 α=min[g (-∞), g (+∞)]=min(-∞, +∞)=-∞,β=max[g (-∞), g (+∞)]=max(-∞, +∞)=+∞,所以θ的概率密度ψ(θ)为59221|)('|)]([)(4)6.983259(2⋅=⋅=-+-θπθθθψe h h f 100)37(812109--=θπe (-∞<θ<+∞). 解法二: 根据定理: 若X~N (μ, σ2), 则Y =aX+b ~N (a μ+b , a 2σ2), 由于T ~N (98.6, 2), 故⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-⨯-=295,9333295,91606.9895~91609522N N T θ, 故θ的概率密度为100)37(81295293332210929521)(--⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛--==θθππθψe e (-∞<θ<+∞).。
概率论与数理统计试题及答案 (2)
一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
现任选4人,则4人血型全不相同的概率为: ( ))(A 0.0024; )(B 40024.0; )(C 0. 24; )(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量;)(C 不独立同分布的随机变量;)(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与.5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ))(A 32112110351ˆX X X ++=μ; )(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ; )(D 32141254131ˆX X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α) ( ))(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率 =≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题 (54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
概率论与数理统计答案(2)
习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ==========(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)02235353312(1)(1)(1)2235341(12)(2)(1)(2)10.3535P X F P X F F P X P X P X P X F F P X ≤==<≤=-=-=≤≤==+<≤=<<=--==--=3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的分布律为分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a .【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 ea λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ (2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==12322333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++ 33221233(0.6)(0.3)C (0.6)0.4C 0.7(0.3)++ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3+=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即2002002001C(0.02)(0.98)0.01k k k k N -=+<∑利用泊松近似, 2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001)(2)1(0)(1)P X P X P X ≥=-=-=0.10.11e0.1e --=--⨯8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)eP X -== (2) 52(1)1(0)1e P X P X -≥=-==-11.设P {X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mmmp p --44)1(C , m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+ 321131313()()444444k -=++++ 213141451()4==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).【解】(1) 由()d 1f x x ∞-∞=⎰得||01e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰ 当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰ 11e 2x-=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰ 33128[(150)]()327p P X =>==(2) 1223124C ()339p ==(3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率.【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+= 19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42).(1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1) 求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }. 【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X (小时)服从正态分布N (160,σ2),若要求P {120<X ≤200=≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤⎪⎝⎭ 404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故 4031.251.29σ≤= 24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e)e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=,01,2,12,0,.x x x x else ≤<⎧⎪-≤<⎨⎪⎩求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d xF x f t t -∞=⎰1011122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e - |x |,λ>0;(2) f (x )=2,01,1,12,0,.bx x x x else <<⎧⎪⎪≤<⎨⎪⎪⎩试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||21ed 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1 即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时01211()()d 0d d d x xF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩27.求标准正态分布的上α分位点,(1)α=0.01,求z α;(2)α=0.003,求z α,/2z α. 【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即()0.09z αΦ=故 2.33z α=(2) 由()0.003P X z α>=得1()0.003z αΦ-= 即 ()0.997z αΦ= 查表得 2.75z α=由/2()0.0015P X z α>=得/21()0.0015z α-Φ= 即/2()0.9985z αΦ=查表得 /2 2.96z α=求Y =X 的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律.【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1).(1) 求Y =e X 的概率密度;(2) 求Y =2X 2+1的概率密度;(3) 求Y =|X |的概率密度. 【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )x Y F y P Y y P y P X y =≤=≤=≤ln ()d yX f x x -∞=⎰故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤≤ ⎪ ⎝⎭⎝()d X f x x =故d ()()d Y Y X X f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+-2/2,0y y -=> 31.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数;(2) Z =-2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e )1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )X Y F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1X Y F y P y =≤= 即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他(2) 由P (0<X <1)=1知 (0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥/21/2ed 1e z z x --==-⎰即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0 故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩032.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x x x x -=+⎰⎰ 222211arcsin 1πarcsin ππy y =+--()() 2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为201π()0,Y y f y ⎧<<⎪=⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。
概率论与数理统计(二) 自考试题及答案
概率论与数理统计(二) 自考试题及答案一、填空题(共14题,共28分)1.一枚硬币连丢3次,观察正面H﹑反面T出现的情形.样本空间是:S=2.丢一颗骰子.A:出现奇数点,则A=();B:数点大于2,则B=()3.一枚硬币连丢2次,A:第一次出现正面,则A=();B:两次出现同一面,则=();C:至少有一次出现正面,则C=()4.一枚硬币连丢3次,观察出现正面的次数.样本空间是:S=5.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A 、B、C都不发生表示为:6.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都发生,而C不发生表示为:7.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都不发生,而C发生表示为:8.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中最多二个发生表示为:9.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中至少二个发生表示为:10.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中不多于一个发生表示为:11.设S{x:0x5},A{x:1x3},B{x:24}:则12.设S{x:0x5},A{x:1x3},B{x:24}:则AB=13.丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是14.已知P(A)1/4,P(B|A)1/3,P(A|B)1/2,则二、问答题(共9题,共54分)15.有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。
16.第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。
17.某班有30个同学,其中8个女同学,随机地选10个,求正好有2个女同学的概率18.某班有30个同学,其中8个女同学,随机地选10个,求最多有2个女同学的概率19.某班有30个同学,其中8个女同学,随机地选10个,求至少有2个女同学的概率20.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品,求未经调试的概率。
概率论与数理统计第二章
4. 条件概率的计算
1) 用定义计算:
P( A | B) P( AB) , P(B)
P(B)>0
2)从加入条件后改变了的情况去算
例:A={掷出2点},B={掷出偶数点}
掷骰子
P(A|B)= 1 3
B发生后的 缩减样本空间 所含样本点总数
在缩减样本空间 中A所含样本点
个数
27
例8 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
实际上,这个假定并不完 全成立,有关问题的实际概 率比表中给出的还要大 .
当人数超过23时,打赌 说至少有两人同生日是有利 的.
18
例3 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求 电话号码由五个不同数字组成的概率.
解:
a
A150 105
=0.3024
问:
b
P( A) =1-0.524=0.476
即22个球迷中至少有两人同生日的概率为0.476.
这个概率随着球迷人数的增加而迅速增加.
17
人数 至少有两人同
生日的概率
20
0.411
21
0.444
22
0.476
23
0.507
24
0.538
30
0.706
40
0.891
50
0.970
60
0.994
所有这些概率都是在假 定一个人的生日在 365天的 任何一天是等可能的前提下 计算出来的.
25
3. 条件概率的性质 设B是一事件,且P(B)>0,则 1. 对任一事件A,0≤P(A|B)≤1;
概率论与数理统计-(2)
第二篇 网络助学平台测试题汇编阶段测验一一、单项选择题1.在一批由90件正品,3件次品组成的产品中,不放回接连抽取两件产品,问第一件取正品,第二件取次品的概率( )。
A .0.0216 B .0.0316 C .0.0251 D .0:0.03262.设某种动物有出生起活20岁以上的概率为80%,活25岁以上的的概率为40%.如果现在有一个20岁的这种动物,问它能活25岁以上的概率( )?A .0.25B .0.5C .0.6D .0.753.甲乙两人相约8-12点在预定地点会面.先到的人等候另一人30分钟后离去,求甲乙两人能会面的概率( ). A .15/64 B .5/62 C .11/53 D .12/534.、在一个均匀陀螺的圆周上均匀地刻上(0,4)上的所有实数,旋转陀螺,求陀螺停下来后,圆周与桌面的接触点位于[0.5,1]上的概率( ) (提示:陀螺及刻度的均匀性,它停下来时其圆周上的各点与桌面接触的可能性相等). A.1/2 B.1/4 C.1/8 D.1/165.在1~9的整数中可重复的随机取6个数组成6位数,求6个数完全不同的概率为( ). A.0.06 B .0.08 C .0.11 D. 0.126. 在1~9的整数中可重复的随机取6个数组成6位数,求6个数不含奇数的概率为( ). A.46/96 B.45/95 C.45/96 D.1—46/967.在1~9的整数中可重复的随机取6个数组成6位数,6个数中5恰好出现4次的概率为( ).A.64898CB.624898C C.624698C D.524698C8. 将N 个球随机地放入n 个盒子中(n>N),那么每个盒子最多有一个球的概率( ).A.Nn N)L(n )1(--n n B .Nn 1)N L(n )1(---n nC.Nn 1)N L(n )1(-+-n n D.Nn 1)LNn(n -9. 将N 个球随机地放入n 个盒子中(n>N),那么某指定的盒子中恰有m(m<N)个球的概率为( ).A .Nm N n )1(n C mN -- B.Nm N n )1(n C mN -+C.N1m N n )1(n C m N -+- D.Nm 1N n )1(n C mN -+-10. 在箱中装有100个产品,其中有3个次品,为检查产品质量,从这箱产品中任意抽5个,求抽得5个产品中恰有一个次品的概率( ).A.0.128 B .0.138 C.0.238 D.0.14811. 实验室共有40台同类仪器,其中有5台仪器不能正常工作.某班实验课随机取其中的34台做实验,求取到的不能正常工作的仪器台数 X 的分布列( ).A.P(X=k)=34403435k 5C C C k-,k=0,1,…,5 B. P(X=k)=34403434k 5C C C k-,k=0,1,…,5C. P(X=k)= 34403535k 5C C C k -,k=0,1,…,5 D. P(X=k)=344035k 5C C C k,k=0,1,…,512.设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他10),1()( 0,x X Ax x f 计算根率P (-1<x<21) ( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容串讲第一章 随机事件及其概率1. 事件的关系与运算必然事件:Ω—随机试验全部结果构成的集合。
不可能事件:φ 一般事件A :A φ⊂⊂Ω若A 、B 为两事件 若B A ⊂,则其蕴含:“A 发生导致B 发生”。
若φ=⋂=B A AB ,这表示A 发生时,B 必不发生,反之亦然。
若 A-B=A ,则AB=φ; 若 AB=A ,则B A ⊂; 若A ∪B =A ,则B ⊂A 。
若n A A A Λ,,21为n 个事件,由它们的运算可产生诸多新事件,如1111,,n n n iiii i i i i A A A A ∞=====U U U I等等。
例1 事件Y ni iA 1=发生等于“n A A A Λ,,21至少有1个发生”。
2.常用概率公式(1)1)(≤≤A P O ,1)(=ΩP ,0)(=φP (2)若B A ⊂,则)()(B P A P ≤(3))()()()(AB P B P A P B A P -+=⋃;当φ=AB ,则)()()(B P A P B A P +=⋃)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃(4))(1)(A P A P -=(5))()()(AB P A P B A P -=- (6)若n A A A Λ,,21两两互不相容,则∑===ni in i iA P A P 11)()(Y(7)若n A A A Λ,,21相互独立,则)()()()(211n ni i A P A P A P A P ΛY ==)()()()(211n ni i A P A P A P A P ΛY ==例2 设1.0)(,4.0)(,2.0)(===AB P B P A P则5.0)()()(1)(1)(=+--=⋃-=⋃AB P B P A P B A P B A P1.0)()()()(=-=-=AB P A P B A P B A P3.古典概型古典概型:当随机试验的结果为有限个且诸结果等可能发生时,任一事件A 的概率为的样本点个数的样本点个数Ω==A n r A P )(例3 从五个球(其中两个白球、三个红球)中任取两球,设A :取到两个白球;B :一白一红球,求)(),(B P A P (1)无放回抽样:101)(2522==C C A P 53)(251312==C C C B P (2)有放回抽样:每次有放回的取一球,连取两次2)52()(=A P1223()()()55P B C =[注]:若设X 为两次有放回取球中取到白球数,则X ~)52,2(B ,从而12122)521()52()2()(--===C X P A P4.条件概率(1)若0)(>B P ,则)()()(B P AB P B A P =,其中A 为任一事件。
(2)乘法公式:)()()(A B P A P AB P = )()(B A P B P =)()()()(AB C P A B P A P ABC P = (其中0)(>AB P )例4 箱中有两白球、三红球,i A 表第i 次取到白球,则P (“前两次取到白球”)1014152)()()(12121=⋅===A A P A P A A P P (“第一次取到白球,第二次取到红球”)1034352)()()(12121=⋅===A A P A P A A P(3)全概率公式:设n B B B Λ,,21是一完备事件组(或Ω的一个划分),即:φ=j i B B ,n j i j i ,,2,1,,Λ=≠(即诸i B 互不相容)且Y ni iB1=Ω=,则对任一事件A 有)()()(1i ni i B P B A P A P ∑==(4)Bayes 公式 ∑==ni iiK K K B A P B P B A P B P A B P 1)()()()()(例5 某工厂生产的产品以100个为一批,在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的,设每批产品中的次品最多不超过4个,并且恰有)4,3,2,1(=i i 个次品的概率如下(1)求各批产品通过的概率;(2)求通过检查的各批产品中恰有i 个次品的概率。
)4,3,2,1(=i解:(1)设事件i B 是恰有i 个次品的一批产品)4,3,2,1(=i ,则由题设1.0)(,2.0)(,4.0)(,2.0)(,1.0)(43210=====B P B P B P B P B P设事件A 是这批产品通过检查,即抽样检查的10个产品都是合格品,则我们有1)(0=B A P900.0)(1010010991==C C B A P809.0/)(1010010982≈=C C B A P 727.0/)(1010010973≈=C C B A P 652.0/)(1010010964≈=C C B A P由全概率公式,即得8142.0)()()(4≈=∑=i iiB A P B P A P(2)由Bayes 公式,所求概率分别为123.08142.011.0)(0≈⨯=A B P221.08142.09.02.0)(1≈⨯=A B P397.08142.0809.04.0)(2≈⨯=A B P179.08142.0727.02.0)(3≈⨯=A B P080.08142.0652.01.0)(4≈⨯=A B P5.事件的独立性(1)定义:A 、B 相互独立等价于)()()(B P A P B A P ⋅=(2)若n A A A ,,,21Λ相互独立,则有)()()()(2121n n A P A P A P A A A P ΛΛ= (3)有放回抽样中的诸事件是相互独立的。
例6 袋中有3白球,2个红球,今有放回的抽取3次,求先后抽到(白、红、白)的概率 解:设i A 表第i 次抽到的白球,则所求为12527535253)()()()(321321=⋅⋅==A P A P A P A A A P(4)在n 重贝努利(Bernoulli )试验中,若每次试验事件A 发生的概率为φ,即)10()(<<=p p A P ,则事件A 发生K 次的概率为n k p p C k P k n k kn n ,,2,1,0,)1()(Λ=-=-例7 一射手对同一目标独立射击4次,每次射击的命中率为0.8,求:(1)恰好命中两次的概率;(2)至少命中一次的概率。
解:由于每次射击相互独立,故本题可视为4=n 的贝努利试验,其中8.0=p(1)设2A :“4次射击恰命中两次”,则1536.0)2.0()8.0()2()(222442===C P A P(2)设B :“4次射击中至少命中一次”,0A 表“4次皆未命中”,则9984.0)2.0()8.0(1)0(1)(1)()(4004400=-=-=-==C P A P A P B P第二章 随机变量及其概率分布1. 离散型随机变量()01k K K KP X x p p ==≥⎧⎪⎨=⎪⎩∑ 例1 设 ,则3.02.05.01=--=c2.常见离散型随机变量(1)0—1分布:设X ~),1(p B ,则应用背景:一次抽样中,某事件A 发生的次数X ~),1(p B ,其中EX X P A P p ====)1()(例2 设某射手的命中率为p ,X 为其一次射击中击中目标的次数,则X ~),1(p B(2)二项分布:设X ~),(p n B ,则()(1),0,1,2,,k k n kn P X k C p p k n -==-=L应用背景:n 次独立重复抽样中某事件A 发生的次数X ~),(p n B ,其中()p P A =为事件A 在一次抽样中发生的概率。
例3 某射手的命中率为0.8,X 为其5次射击中命中目标的次数,则X 取的可能值为5,,1,0Λ,52()0.80.2k k k P X k C -==,即X ~)8.0,5(B记住:若X ~),(p n B ,则np EX =,)1(p np DX -=(3)泊松(Poisson )分布 若(),0,1,2,!KP X k e k k λλ-===L 则称X 服从参数λ的泊松分布,且DX EX ==λ,记X ~)(λB ,0>λ应用背景:偶然性事件发生的次数X 一般服从某个参数的泊松分布,如某地的降雨的次数,车祸发生的次数等等。
另外,当Y ~),(p n B ,且n 很大,P 很小时,令np =λ,则()!kP Y k e k λλ-=≈例4 一个工厂生产的产品中的次品率0.005,任取1000件,计算解:设X 表任取的1000件产品中的次品数,则X ~)005.0,100(B ,由于n 很大,p 很小,令5==np λ则(1)55551506151!15!051)1()0(1)2(------=--=--≈=-=-=≥e e e e e X P X P X P (2)5505(5)!k k P X e k -=≤≈∑3.随机变量的分布函数:X 的分布函数为)()(x X P X F ≤=,+∞<<∞-x )(x F 的性质:①1)(0≤≤x F②若21x x <,则0)()(12≥-x F x F ③1)(,0)(=+∞=-∞F F④)()(b F b X P =≤,)(1)(),()()(b F b X P a f b F b X a P -=>-=≤<例5 设X 的分布函数⎩⎨⎧≤>+=-0,00,)(x x be a x F x λ,其中0>λ,则______=a b=______.解:由1)(=+∞F 知1=a (因为a bea F xx =+=+∞-+∞→)(lim )(λ)由0)(=-∞F ,及题设0≤x 时0)(=x F ,故0)1()()(lim 0=+=+=-→+b bea x F xx λ综上有⎩⎨⎧≤>-=-0,00,1)(x x e x F x λ,即1,1-==b a例6 设X 的分布函数⎪⎩⎪⎨⎧≥<≤<=e x e x x x x F ,11,ln 1,0)(求 )5.22(),30(),2(≤<≤<≤X P X P X P 解:2ln )2()2(==≤F X P101)0()3()30(=-=-=≤<F F X P25.1ln 2ln 5.2ln )2()5.2()5.22(=-=-=≤<F F X P4. 连续型随机变量若((,))()baP X a b f x dx ∈=⎰,其中b a <任意,则称X 为连续型随机变量。