画树状图求概率

合集下载

人教版九年级数学课件《画树状图求概率》

人教版九年级数学课件《画树状图求概率》
人教版数学九年级上册
第二十五章第2节
画树状图求概率
PEOPLE EDUCATION VERSION OF THE NINTH GRADE MATH VOLUME
学校:XXXX
老师:XXXX
学习目标
进一步理解等可能事件概率的意义. 学习运用树状图计算事件的概率.
人教版数学九年级上册
复习回顾
人教版数学九年级上册
4. 9
达标检测
人教版数学九年级上册
5.现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个
糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘 中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包 .如果老师从每个盘中各选一个包子(馒头除外),那么老师 选的包子全部是酸菜包的概率是多少?
CB A
开始
一次游戏共有9个可能结果,而且它们出现的可能性相等.
知识精讲
事件A发生的所有可能结果: (石头,剪刀)(剪刀,布)(布,石头);
事件B发生的所有可能结果: (剪刀,石头)(布,剪刀)(石头,布);
人教版数学九年级上册
事件C发生的所有可能结果: (石头,石头)(剪刀,剪刀)(布,布).
因此P(A)=
第三辆左直右左直右 左直右 左直右 左直右 左直右 左直右 左直右 左直右
共有27种行驶方向 (1)P(全部继续直行)= 1 ;
1
27
(2)P(两车向右,一车向左)=
(3)
P(至少两车向左)=
1. 27
9;
针对练习
人教版数学九年级上册
2.现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,
甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2

树状图法求概率

树状图法求概率

树状图法求概率


当一次试验需要两步完成或者试验的结果需由两个 因素决定时,用树状图列举法可以吗?
(2013年)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到 古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一 个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择 古隆中为第一站的概率是多少? 解:李老师先选择,然后儿子选择,画出树状图如下:
课堂练习
1、(2012年)襄阳市教育局为提高教师业务素质,扎实开展了“课 内比教学”活动。在一次数学讲课比赛中,每个参赛选手都从两个分别 标有“A”、“B”内容的签中,随机抽取一个作为自己的讲课内容,某 校有三个选手参加这次讲课比赛,请你求出这三个选手中有两个抽中内 容“A”,一个抽中内容“B”的概率。 2、(2014年)从长度分别为2,4,6,7的四条线段中随机抽取三 条,能构成三角形的概率是多少?
树状图法求概率
复习回顾
解:列表如下:
乙 甲
剪刀
(剪刀,剪刀) (剪刀,锤子) (剪刀,布)
锤子
(锤子,剪刀) (锤子,锤子) (锤子,布)

(布,剪刀) (布,锤子) (布,布)
剪刀 锤子 布
由上表可知,甲和乙猜拳所有可能的结果有9种,其中甲获胜 (记为事件A)的结果有3 种,所以甲获胜的概率为:
本题中元音字母:
A 、E、I
辅音字母:
B 、C、D、H
在这个试验中,一个结果由几个因素决定 ?
当一次试验涉及3个因素或3个以上的因素时,列表法 能胜任吗?
树状图法求概率
解决问题
(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?

人教版九年级上册2第2课时用画树状图法求概率课件

人教版九年级上册2第2课时用画树状图法求概率课件



正 反正反
正 反 正 反正 反正反
25.2 第2课时 用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次实验的几个步骤及顺序; (2)画出树状图列举一次实验的所有可能结果; (3)数出随机事件A包含的结果数m,实验的所有 可能结果数n; (4)代入概率公式进行计算.
25.2 第2课时 用画树状图法求概率
色上的区分,随机从袋中摸出2个小球,两球恰好是一个黄
球和一个红球的概率为( A )
A. 1
2
B. 1
3
C. 1
4
D. 1
6
25.2 第2课时 用画树状图法求概率
3.某市教育局为提高教师业务素养,扎实开展了“课内比教学” 活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有 “A”“B”内容的签中,随机抽出一个作为自己的讲课内容, 某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中 内容“A”,一个抽中内容“B”的概率是___3__.
②在摸球实验一定要弄清“放回”还是“不放回”.
25.2 第2课时 用画树状图法求概率
第二十五章 概率初步
25.2 第2课时 用画树状图法求概率
25.2 第2课时 用画树状图法求概率
情景导入 问题1:同时掷两枚质地均匀的硬币,落地后,两枚都是正面向上的
概率是多少?
解:设正面向上为1,反面向上为2.
第二枚
第一枚
1
2
1
(1,1) (1,2)
2
(2,1) (2,2)
25.2 第2课时 用画树状图法求概率
取球实验

A
B

CD ECD E
丙 H I H I H I H IH I H I

【课件】用画树状图法求概率课件+2024-2025学年人教版数学九年级上册

【课件】用画树状图法求概率课件+2024-2025学年人教版数学九年级上册
数字之和为奇数的结果有8种,




∴这两个数字之和为奇数的概率为 = .
返回
当堂小练
2. 老师为帮助学生正确理解物理变化和化学变化,将四种
生活现象:“滴水成冰”“酒精燃烧”“光合作用”“木已成
舟”制作成无差别卡片,置于暗箱中摇匀,随机抽取两
1
张均为物理变化的概率是________.
6
当堂小练




字之积恰好是有理数的概率为 = .
返回
当堂小练
5. [2023 沈阳]为弘扬中华优秀传统文化,学校举办“经典
诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类
(分别用A,B,C依次表示这三类比赛内容). 现将正面
写有A,B,C的三张完全相同的卡片背面朝上洗匀,由
选手抽取卡片确定比赛内容. 选手小明先从三张卡片中

返回
当堂小练
6. 暗箱内有三个形状、大小完全相同的小球,分别标注数
字1,2,3,甲、乙两人按照下列规则决定胜负. 从箱中
连续摸出两个小球(摸出后不放回),并将第一次摸出的
数作为十位数字,将第二次摸出的数作为个位数字,组
成一个两位数,如果这个两位数是2的倍数,则甲获胜,
如果这个两位数是3的倍数,则乙获胜,你认为这样的
胜;若m,n都不是方程x2 -5x+6=0的解,则小刚获
胜,请说明此游戏规则是否公平?
课堂讲练
【解】解x2-5x+6=0,得x1=2,x2=3.当m,n都是方
程x2-5x+6=0的解时,共有(2,2),(2,3),(3,3),


(3,2)这4种情况,则小明获胜的概率为 =

,当m,n

25.2第2课时画树状图法求概率

25.2第2课时画树状图法求概率
开始
第一个因素
A
B
第二个因素 1
2
3
1
2
3
第三个因素 a b a b a b a b a b a b 树状图法:按事件发生的次序,列出事件可能出现的结果.
所有可能出现的情况 n=2×3×2=12
一、利用画树状图法求概率
引例示范 同时掷三枚质地均匀的硬币,求恰有两枚正面向上的概率?
解:根据题意,可画树状图得: 开始
第一枚


第二枚




第三枚 正 反 正 反 正 反 正 反
由上图可知,共有8种等可能的情况, 其中恰有两枚正面向上的情况有 3 种。 ∴P(两枚正面向上)=38
一、利用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出试验的所有可能结果数n,随机事件A包含的结果数m; (4)用概率公式进行计算。
拓展训练
有两把不同的锁和三把钥匙,其中两把钥匙恰好能分别打开这两把锁,第三
把钥匙不能打开这两把锁。任意取一把钥匙去开任意一把锁,一次打开锁的
概率是多少?
解: 设有A,B两把锁和a,b,c三把钥匙,其中钥匙a,b分别可以打开锁A,B。
列出所有可能的结果如下:
开始
由树状图可知,共有6种等可能的情况,

B. 1
C. 1
D. 3
4
3
2
4
课堂检测
4. 某班要派出一对男女混合双打选手参加学校的乒乓球比赛,准备在小娟、 小敏、小华三名女选手和小明、小强两名男选手中选男、女选手各一名组成 一对参赛,一共能够组成 6 对;采用随机抽签的办法,恰好选出小敏和

用画树状图法求概率(22张PPT)

用画树状图法求概率(22张PPT)

⑴.取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? ⑵.取出的3个小球上全是辅音字母的概率是多少?
分析: 前面“两步试验的树状图”的例题和练习其实用“列表 法”也是可以的,但本例当一次试验是从三个口袋中取球时, 列表法就不方便了,为不重不漏地列出所有可能的结果,通常 采用画树状图法.
从树形图可以看出总共有(红1,红2),(红1,蓝1),……12 种等可能情矿,而都是蓝色球体有(蓝1,蓝2),(蓝2,蓝1) 两种,故:
用树状图法求概率的“四个步骤”:
1.定:确定该试验的几个步骤、顺序、每一步可能产生的结果. 2.画:列举每一环节可能产生的结果,得到树状图. 3.数:数出全部均等的结果数m和该事件出现的结果数n. 4.算:代入公式 .
1.学习用树形图法计算概率,并通过比较概率 大小作出合理的决策. 2.会运用树形图法计算事件的概率(重点);能 根据不同情况选择恰当的方法进行列举,解决 较复杂事件概率的计算问题(难点). 3.经历探索知识过程,感受数学知识的价值和 魅力,培养合作学习的意识和探索精神.
问:你知道孙膑给田忌将军的是怎样的建议吗?
6.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每 张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡 片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下 字母,用画树状图的方法,求小玲两次抽出的卡片上的字母相同的 概率. a b c 略解:画出树状图为
a
b
c
a
b
c
第一摸取 第二摸取 共12种等可能的情况;即:A 1 A 2 ,A 1 B2 ,……其中恰好能组
成一张完整图片的结果有4种,则:
新课引入的)
第一场

用列表法或画树状图法求概率

用列表法或画树状图法求概率

用列表法或画树状图法求概率(放回、不放回)
【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出
n
m A P )(即得所求事件的概率。

【出错点】求m 或n 的值。

【分类】放回、不放回
(一)明确写出放回、不放回类型
例1:(2018·威海中考)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?
例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?
(二)隐含放回、不放回类型
例3:选人(不放回)(2019济南)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率。

例4:选课(放回)(2016济南中考)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小容两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是?。

25.2.2+用画树状图求概率课件2024-2025学年人教版数学九年级上册

25.2.2+用画树状图求概率课件2024-2025学年人教版数学九年级上册

25.2.2 用画树状图求概率 (2)根据题意,列表如下:
由表格可知,共有12种等可能的结果,甲、丁同学都被选为宣传员
的结果有2种,
∴P(甲、丁同学都被选为宣传员)=
2 12
1 6
.
25.2.2 用画树状图求概率
一题多解 根据题意,画树状图如解图: 由树状图可得,共有12种等可能的结果,甲、丁同学都被选为宣传员 的结果有2种, ∴P(甲、丁同学都被选为宣传员)= 2 1
(2)这个游戏不公平.理由如下:画树状图如图,由树状图可知,共有 16种等可能的结果,其中
两数之积为偶数的结果有12种,两数之积为
奇 ∴P数(小的明结胜果)=有412种,3,P(小亮胜)= 4 1
16 4
16 4
∵ 31
44
∴这个游戏不公平
25.2.2 用画树状图求概率
课堂小结
步骤
①确定每一步有几种结果 ②在树状图下面对应写出所有可能的结果 ③利用概率公式进行计算
12 6
25.2.2 用画树状图求概率
4.如图,可以自由转动的转盘被4等分, 指针落在每个扇形内的机会 均等.
(1)若转动转盘一次,求转出的数字是
1
2的概率为____4____;(2)小明、小亮利用这个转盘做游戏.若采用下 列游戏规则,你认为这个游戏公平吗?请利用画树状图或列表的方法 说明理由.
25.2.2 用画树状图求概率
25.2.2 用画树状图求概率

A
B

CDE
CD E
丙 结果:
HIH I H I
A AA A A A C CD D E E HI HI H I
H I HIHI
B B BB B B C C DD E E H I HI H I

用列举法求概率---画树状图法(2步或3步及以上概率)

用列举法求概率---画树状图法(2步或3步及以上概率)

25.2(3)用列举法求概率---画树状图法(2步或3步及以上概率)一.【知识要点】1.画树状图法(2步或3步及以上概率)二.【经典例题】1.一个不透明的口袋里装有分别标有汉字“美”、“丽”“四”、“川”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任选一个球,球上的汉字刚好是“四”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 1.(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明).2. 有四个一模一样的小球,上面分别标有-2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b 能使关于x 的一元二次方程()0112=++-bx x a 有实数根的概率为_______。

3. 有甲、乙、丙3个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm 、5cm 、7cm ;乙盒子中装有2张卡片,卡片上分别写着2cm 、5cm ;丙盒子中装有2张卡片,卡片上分别写着5cm 、7cm 。

所有卡片的形状、大小都完全相同。

现随机从甲、乙、丙三个盒子中各取出一张卡片放在一起,用卡片上标明的数量分别作为一条线段的长度。

(1)请用树状图的方法求这三条线段能组成三角形的概率。

(2)求这三条线段能组成直角三角形的概率。

4.(绵阳2019年第20题11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.5.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球出颜色外无其他差别,分别从每个口袋中随机摸出1个球.(1)摸出的2个球都是白球的概率为__________.(2)下列事件中,概率最大的是( )A.摸出的两个球的颜色都相同.B.摸出的两个球的颜色不相同.C.摸出的两个球中至少有1个红球.D.摸出的两个球中至少有1个白球.6.(2020年绵阳期末第20题)(本题满分12分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a ,b ),其中第一枚骰子的点数记为a ,第二枚骰子的点数记为b .(1)用列举法或树状图法求(a ,b )的结果有多少种?(2)求方程02=++a bx x 有实数解的概率.三.【题库】【A 】【B 】1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A. 14B. 12C. 34D. 562.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率为__________.3. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作把作为点的横、纵坐标.(1)请你通过列表法或画树状图求点的个数;(2)求点在函数的图象上的概率.【C 】1.田忌赛马的故事为我们所熟知,小亮与小齐学习概率初步知识后设计如下游戏:小亮手中有方块10,8,6三张扑克牌,小齐手中有方块9,7,5三张扑克牌,每人从各自手中取一张牌进行比较,数据大的为本“局”获胜,每次取的牌不能放回,若本局采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,则小齐本次比赛获胜的概率是 ( )A.16B.12C.19D.13 2.某校甲乙丙丁四名同学在运动会上参加4x100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是____________.3.(11分)每年3月12日,是中国的植树节。

画树状图求概率

画树状图求概率
(1)取出的3个小球上恰好有1个、2个和3个元音字母 的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是多少?
AB
C DE
HI
分析:当一次试验要涉及3个或更多的因素(例如从3个口袋中取球) 时,列表就不方便了,为不重不漏地列出所有可能的结果,通常采用树 形图。
解:根据题意,画树形图:
开始
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
请你计算试一试
练习
1. 如图,袋中装有两个完全相同的球,分别标 有数字“1”和“2”,小明设计了一个游戏:游 戏者每次从袋中随机摸出一个球,并且自由转 动图中的转盘(转盘被分成相等的三个扇形) 如果所摸球上的数字与转盘转出的数字之 和为2,那么游戏者获胜,求游戏者获胜 的概率.
5
6
(1,5) (1,6)
(2,5) (2,6)
(3,5) (3,6) (4,5) (4,6) (5,5) (5,6) (6,5) (6,6)
解:由表可 知,可能出现的结果有36个。
(1)满足两个骰子点数相同(记为事件A)的结果有6个(表中红色部分),
即(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),所以
2 4
1 2
(2)满足两枚硬币两面一样(记为事件B)
P(B)
2 4
1 2
由于双方获胜的概率一样,所以游戏是公平的。
当一次试验涉及两个因素,并且可能出现
的结果数目比较少时,我们看到结果很容易不重不漏的 列出所有的可能结果,通常采用列表法或树形 图法。
第一次抽取
第二次抽取

人教版数学九年级上册《画树状图求概率》教案4

人教版数学九年级上册《画树状图求概率》教案4

人教版数学九年级上册《画树状图求概率》教案4一. 教材分析《画树状图求概率》是人教版数学九年级上册的一章内容,主要讲述了利用树状图来求解概率问题。

本节课通过树状图的方法,让学生更好地理解概率的计算,培养学生的逻辑思维能力和图形表达能力。

二. 学情分析九年级的学生已经掌握了概率的基本概念和计算方法,但对树状图的应用还不够熟练。

因此,在教学过程中,需要引导学生运用已学过的知识,将树状图与概率计算相结合,提高学生解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握树状图求概率的方法,能熟练运用树状图解决实际问题。

2.过程与方法:通过小组合作、讨论交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:树状图求概率的方法。

2.难点:如何将实际问题转化为树状图,并准确计算概率。

五. 教学方法1.情境教学法:通过生活实例,引发学生对概率问题的思考。

2.小组合作法:引导学生分组讨论,培养学生的团队协作能力。

3.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。

六. 教学准备1.准备相关的生活实例,用于导入新课。

2.准备树状图的模板,方便学生操作。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如抽奖活动,引导学生思考如何计算中奖的概率。

从而引出本节课的主题——利用树状图求概率。

2.呈现(10分钟)讲解树状图求概率的方法,引导学生通过树状图来解决问题。

以抽奖活动为例,展示如何将问题转化为树状图,并计算出中奖的概率。

3.操练(10分钟)学生分组讨论,尝试解决其他实际问题,如抛硬币、掷骰子等。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)出示练习题,让学生独立完成。

教师选取部分学生的作业进行点评,总结错误原因,巩固所学知识。

5.拓展(5分钟)引导学生思考:如何利用树状图解决更复杂的概率问题?引发学生对概率问题的深入思考。

用树状图法求概率

用树状图法求概率

方法技巧练
解:∵a2+b2=12a+8b-52, ∴a2-12a+b2-8b+52=0. ∴(a-6)2+(b-4)2=0. ∴a-6=0,b-4=0.∴a=6,b=4. 又 ∵ a , b , c 为 正 整 数 且 是 △ABC 的 三 边 长 , c 是 △ABC的最短边长,∴6-4<c≤4(c是正整数). ∴c=3或c=4,即c的值是3或4.
27
感悟新知
总结
在分析随机事件发生的可能性时,要
从事件发生的结果入手,从中找出所
关注的结果数,既不能遗漏任何一种
可能结果,也不能重复计算,本题易
忽略小可本身也有三种出法,而只考
虑小可出“剪子”的可能结果,从而
得到错误的树状图,如图,进而得出
错误的结果为
1. 9
知2-讲
课堂小结
用树状图法求概率
(1) 当事件涉及三个或三个以上元素时,用列表法不易列举出 所有可能结果,用树状图可以依次列出所有可能的结果, 求出n,再分别求出某个事件中包含的所有可能的结果, 求出m,从而求出概率.
故共有m·n·k…种可能情况,再分别计算各类情况的概率.
感悟新知
知1-练
例例22:一个袋中有4个珠子,其中2个红色,2个蓝色,除颜 色外其余特征均相同,若从这个袋中任取2个珠子, 求都是蓝色珠子的概率.
感悟新知
解:袋中4个珠子可以分别标记为H1,H2,L1,L2. 用画“树状图”法求概率.
知1-练
第三章 概率的进一步认识
3.1 用树状图或表格求概率
第1课时 用树状图法求概率
学习目标
1 课时讲解 两步试验的树状图
两步以上试验的树状图
2 课时流程
逐点 导讲练
课堂 小结

人教版数学九年级上册25.2画树状图求概率教案

人教版数学九年级上册25.2画树状图求概率教案
4.培养学生通过画树状图整理、分析事件的方法,提高数据处理的核心素养。
在教学过程中,重点关注学生对概率知识的理解和应用,以及通过树状图分析事件的逻辑推理过程,使学生在掌握知识的同时,提升Байду номын сангаас科核心素养。
三、教学难点与重点
1.教学重点
-理解并掌握利用树状图求概率的方法,包括单个事件和组合事件的概率计算;
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在教学过程中,教师应通过具体实例、图示演示、互动讨论等方式,反复强调和练习这些重点和难点内容,确保学生能够透彻理解和掌握。同时,应注重引导学生通过自主探索和小组合作来发现和解决问题,以提高他们的自主学习能力和解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《画树状图求概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算可能性大小的情况?”比如,抛硬币时,你想过得到正面的概率是多少吗?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是指某个事件发生的可能性大小。它在生活中有广泛的应用,比如天气预报、抽奖活动等。
2.案例分析:接下来,我们来看一个具体的案例。抛掷两枚硬币,求得到两个正面的概率。这个案例将展示如何利用树状图来分析事件和计算概率。

用树状图或表格求概率(1)

用树状图或表格求概率(1)
懂得了 当试验次数较大时,试验频率基本稳定 于理论概率.
课后作业
1、课本习题1,2题 2、预习下节课内容
只有一张电影票,通过做这样一个游戏,谁 获胜谁就去看电影。如果是你,你如何选择?
随堂练习
解:(1)搅匀后从中任意摸出 1 个球,恰好是红球 的概率为1.
4 (2)由题意列表如下:
所有等可能的情况数有 16 种,其中两次都为红球的情 况数有 1 种,则 P= 1 .
16
当堂训练
1、晓芳抛一枚质地均匀的硬币10次,有7次正面 朝上,当她抛第11次时,正面向上的概率为__1____。
试验总次数
探究活动
活动内容:
(3)由上面的数据,请你分别估计“两枚正面朝上” “两枚反面朝上”“一枚正面朝上、一枚反面朝上” 这三个事件的概率。由此,你认为这个游戏公平吗?
从上面的试验中我们发现,试验次数较大时,试验频 率基本稳定,而且在一般情况下,“一枚正面朝上、 一枚反面朝上”发生的概率大于其他两个事件发生的 概率。所以,这个游戏不公平,它对小凡比较有利。
充分混合后再随机摸出一球,两次都摸到红球的概率
为 4; (3)随9机从中一次摸出两个球,均为红球的概率是
2 5

小结
1、本节课你有哪些收获?有何感想?
2、用树状图或列表法求概率时应注意什么情况?
学会了 用树状图或列表法求涉及两步试验的随 机事件发生的理论概率
明白了 用树状图或列表法求概率时应注意各种 情况发生的可能性务必相同
4
4
P(小凡获胜)= 2 = 1 , 因此,游戏是不公平的。
42
利用树状图或表格,我们可以不重复, 不遗留地列出所有可能的结果,从而比较方 便地求出某些事件发生的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
Байду номын сангаас
A2
B1
B2
A2 B1 B2 A1 B1 B2 A1 A1 B2 A1 A2 B1
所以穿相同一双袜子的概率为
(1)取出的3个小球上恰好有1个、2个和3个 元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是 多少?
本题中元音字母: A E I 辅音字母: B C D H
B AA
D
EB C
I H
C
D
E
C
D
E
H
IH
IH
IH
IH
IH
I
A
AA
AA
A
BBB
BBB
C
CD
DE
E
CCD
DEE
H
IH
IH
I

P(恰有两个数字相同)=
18 27
=
2 3
5.小明和小丽都想去看 电影,但只有一张电影 票.小明提议:利用这三 张牌,洗匀后任意抽一 张,放回,再洗匀抽一张 牌.连续抽的两张牌结 果为一张5一张4小明 去,抽到两张5的小丽去, 两张4重新抽.小明的办 法对双方公平吗?
当一次试验中涉及3个因素或更多的因素时,用列 表法就不方便了.为了不重不漏地列出所有可能的结果, 通常采用“树形图”.
纸上谈兵: 因素1:有两种可能,分别是 △ ☆ 因素2:有两种可能,分别是 ◎ ☆ 因素3:有三种可能,分别是 △ ◎ ☆
(1)列举出所有的可能. (2)求都是☆的概率.
2.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
(3)节目单中3个歌舞中的任意两个都 不排在一起的概率是多少?
9、用数字1,2,3,4,5组成五位数, 求其中恰有4个相同的数字的概率。
10、把4个不同的球任意投入4个不同 的盒子内(每盒装球不限),计算: (1)无空盒的概率; (2)恰有一个空盒的概率。
3 .在6张卡片上分别写有1~6的 整数,随机的抽取一张后放回,再随 机的抽取一张,那么,第一次取出的 数字能够整除第2次取出的数字的 概率是多少?
则 P(3个辅音)= 2/12= 1/6
用数字1、2、3,组成三位数,求其中恰有2个相同的数
字的概率.
组数开始
百位
1
2
3
十位 1 2 3 1 2 3 1 2 3
个位 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
解由: 树形图可以看出,所有可能的结果有27种,它们出现 的可能性相等. 其中恰有2个数字相同的结果有18个.
树形图的画法: 如一个试验
一个试验
中涉及3个因素,第
一个因素中有2种 第一个因素 A
B
可能情况;第二个
因素中有3种可能 第二个 的情况;第三个因
1
2
31
2
3
素中有2种可能的
情况,
第三个 a b a b a b a b a b a b
则其树形图如图.
n=2×3×2=12
布袋中有2个球,颜 色分别为红、绿, 从中先摸出一个球, 先后摸三次,每次 摸后再放回.写出 所有可能的结果, 并求两次摸到相同 颜色的球的概率?
画树形图求概率
小丽到外婆家过 暑假,带了两件上 衣(一件红色,一 件绿色)和三条裙 子(一条绿色,一 条橙色,一条黑 色),则她拿出一 件上衣和一条裙
子是同色的概率 是多少?
例1、甲口袋中装有2个相同的小球,它们分别 写有字母A和B; 乙口袋中装有3个相同的小 球,它们分别写有字母C、D和E;丙口袋中装 有2个相同的小球,它们分别写有字母H和I。 从3个口袋中各随机地取出1个小球。
4
1 =
12 3
课堂总结: 用列表法和树形图法求概率时应注意什 么情况?
利用树形图或表格可以清晰地表示 出某个事件发生的所有可能出现的 结果;从而较方便地求出某些事件 发生的概率.当试验包含两步时,列 表法比较方便,当然,此时也可以用 树形图法,当试验在三步或三步以 上时,用树形图法方便.
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2
B1
B2
A2 B1 B2 A1 B1 B2 A1 A1 B2 A1 A2 B1
所以穿相同一双袜子的概率为 1/4
6、把3个歌舞、4个独唱和2个小品排成一 份节目单,计算:
(1)节目单中2个小品恰好排在开头和 结尾的概率是多少?
(2)节目单中4个独唱恰好排在一起的 概率是多少?
HI
H
I
HI
解:由树形图得,所有可能出现的结果有12个,它们出现的可能性 相等。
(1)满足只有一个元音字母的结果有5个,
则P(1个元音)= 5/12
满足只有两个元音字母的结果有4个,
则 P(2个元音)= 4/12= 1/3
满足三个全部为元音字母的结果有1个,
则 P(3个元音)= 1/12
(2)满足全是辅音字母的结果有2个,
点拔:
当一次试验要涉及3个或更多的因素时, 列表就不方便了,为不重不漏地列出所 有可能的结果,通常采用树形图.
用树形图可以清晰地表示出某个事件 所有可能出现的结果,从而使我们较 容易求简单事件的概率.
归纳:
画树形图求概率的步骤: ①把第一个因素所有可能的结果列举 出来. ②随着事件的发展,在第一个因素的每 一种可能上都会发生第二个因素的所 有的可能. ③随着事件的发展,在第二步列出的每 一个可能上都会发生第三个因素的所 有的可能.
相关文档
最新文档