七年级上册平面图形的认识(一)单元测试卷 (word版,含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.将一副三角板放在同一平面内,使直角顶点重合于点O
(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.
(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.
(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.
【答案】(1)解:∵
而
同理:
∴
∴
(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:
(3)解:仍然成立.
理由如下:∵
又∵
∴
【解析】【分析】(1)先计算出
再根据
(2)根据(1)中得出的度数直接写出结论即可.(3)根据
即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.
2.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒
(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;
(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;
(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)
①当t=________秒时,OM平分∠AOC?
(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.
【答案】(1)2.25;45
(2)解:∠NOC﹣∠AOM=45°,
∵∠AON=90°+10t,
∴∠NOC=90°+10t﹣45°
=45°+10t,
∵∠AOM=10t,
∴∠NOC﹣∠AOM=45°
(3)3
(4)解:②∠NOC﹣∠AOM=45°.
∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,
∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,
∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,
∴∠NOC﹣∠AOM=45°.
【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,
∴∠AOM= =22.5°,
∴t=2.25秒,
∵∠MON=90°,∠MOC=22.5°,
∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;
故答案为:2.25,45;
·(3)①∵∠AOB=5t,∠AOM=10t,
∴∠AOC=45°+5t,
∵OM平分∠AOC,
∴∠AOM= AOC,
∴10t= (45°+5t),
∴t=3秒,
故答案为:3.
【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由
于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得
到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.
3.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….
例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;
当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,
其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.
解决如下问题:
(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;
(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;
(3)若α<36°,且∠A2OA4=20°,则对应的α值是________
(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.
【答案】(1)45°
(2)解:如图所示.
∵α<30°,
∴∠A0OA3<180°,4α<180°.
∵OA4平分∠A2OA3,
∴2(180°﹣6α)+ =4α,解得:
(3),,
(4)解:对于角α=120°不能停止.理由如下:
无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.
但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止
【解析】【解答】解:(1)解:如图所示.aφ=45°,
【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.
4.如图
(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。
求∠EPF的度数。
小明想到了以下方法(不完整),请填写以下结论的依据:
如图1,过点P作PM∥AB,
∴∠1=∠AEP=40°(________)
∵AB∥CD,(已知)
∴PM∥CD,(________)
∠2+∠PFD=180°(________)
∵∠PFD=130°,∴∠2=180°-130°=50°
∴∠1+∠2=40°+50°=90°
即∠EPF=90°
(2)如图2,AB∥CD,点P在AB,CD外,问∠PEA,∠PFC,∠P之间有何数量关系?请说明理由;
(3)如图3所示,在(2)的条件下,已知∠P=α,∠PEA的平分线和ZPFC的平分线交于点G,用含有α的式子表示∠G的度数是________。
(直接写出答案,不需要写出过程)
【答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补
(2)解:
理由如下:过点作,则
∴
∵
∴
∵
∴
∴
即 .
(3)
【解析】【解答】(3)如图:
∵EG平分∠PEA,FG平分∠PFC,
∴∠1=∠PFC,∠2=∠PEA,
∴∠1-∠2=∠PFC-∠PEA=(∠PFC-∠PEA),
∵∠PFC=∠PEA+∠P,
∴∠PFC-∠PEA=∠P,
∴∠1-∠2=∠P,
∵∠3=∠P+∠2,
∴∠G=∠3-∠1=∠P+∠2-∠1=∠P=α.
【分析】(1)根据平行线的性质及平行公理,即可求解;
(2)过点P作PN∥AB,根据平行公理得PN∥CD,得出∠PFC=∠FPN,由AB∥CD得出∠PEA=∠NPE,
从而得出∠FPN=∠PEA+∠FPE,即可求出∠PFC=∠PEA+∠FPE,即可求解;
(3)根据角平分线的定义得出∠1=∠PFC,∠2=-∠PEA,由∠PFC=∠PEA+∠P,得出∠1-∠2=
∠P,由三角形的外角性质得出∠G=∠3-∠1,∠3=∠P+∠2,从而求出∠G=α.
5.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.
(1)若∠A=40°,∠B=76°,求∠DCE的度数;
(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);
(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.
【答案】(1)解:∵∠A=40°,∠B=76°,
∴∠ACB=64°.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB=32°.
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=14°,
∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;
(2)解:∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α;
(3)解:如图所示.
∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α,
由平移可得:GH∥CD,
∴∠HGE=∠DCE β α.
【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线
的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根
据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到
∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.
6.已知,,,试回答下列问题:
(1)如图1所示,求证: .
(2)如图2,若点、在上,且满足,并且平分 .求 ________度.
(3)在(2)的条件下,若平行移动,如图3,那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(2)的条件下,如果平行移动的过程中,若使,求度数.
【答案】(1)证明:∵,
∴
∵,
∴,
∴
(2)40°
(3)解:结论:的值不发生变化.理由为:
∵,
∴,
又∵,
∴,
∴,
∴
(4)解:∵
∴,
由(2)可以设:,,
∴
∵
∴
∵
∴
∴
∵由(1)可知
∴
∴
∴
【解析】【解答】(2),所以∠BOA=180°-∠B=80°
由,且平分,得到∠EOC=∠EOF+∠FOC= (∠BOF+∠FOA)= ∠BOA=40°
【分析】(1)由同旁内角互补,两直线平行证明即可;(2)由,且平
分,得到∠EOC=∠EOF+∠FOC= (∠BOF+∠FOA)= ∠BOA,算出结果;(3),得到,,又,得到
,所以,故(4)结合(2)(3)结果,设出,
,由列出等式,得到,又由(1)得到
,列出等式解出α与β,所以
7.
(1)如图,请证明∠A+∠B+∠C=180°
(2)如图的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D
(3)如图,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明
(4)如图,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.
【答案】(1)证明:如图1,延长BC到D,过点C作CE∥BA,
∵BA∥CE,
∴∠B=∠1,
∠A=∠2,
又∵∠BCD=∠BCA+∠2+∠1=180°,
∴∠A+∠B+∠ACB=180°;
(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(3)解:如图3,
∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,
∠2+∠P=(180°﹣∠3)+∠D,
∴2∠P=180°+∠D+∠B,
∴∠P=90°+ (∠B+∠D);
(4)解:②∠3+∠4﹣∠1﹣∠2不变正确.
理由如下:
作PQ∥AB,如图4,
∵AB∥CD,
∴PQ∥CD,
由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,
由PQ∥CD得∠5=∠2,
∵∠APQ+∠5+∠1=90°,
∴180°﹣∠3﹣∠4+∠2+∠1=90°,
∴∠3+∠4﹣∠1﹣∠2=90°.
【解析】【分析】(1)如图1,延长BC到D,过点C作CE∥BA,根据二直线平行,同位角相等、内错角相等得出∠B=∠1,∠A=∠2,根据平角的定义得∠BCA+∠2+∠1=180°,再等量代换即可得出结论:∠A+∠B+∠ACB=180°;
(2)根据三角形的内角和得出:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,根据对顶角相等得出∠AOB=∠COD,根据等式的性质得出∠A+∠B=∠C+∠D;
(3)∠P=90°+ (∠B+∠D),理由如下:根据角平分线的定义得出∠1=∠2,∠3=∠4,根据(2)的结论得出(∠1+∠2)+∠B=(180°﹣2∠3)+∠D ①,∠2+∠P=(180°﹣∠3)+∠D ②,由①得 180°﹣2∠3=∠1+∠2+∠B -∠D ③,②×2得:
2∠2+2∠P=2(180°﹣∠3)+2∠D ④,将③代入④即可得出结论:∠P=90°+ (∠B+∠D);
(4)②∠3+∠4﹣∠1﹣∠2不变正确. 理由如下:作PQ∥AB,如图4,根据平行于同一直线的两条直线互相平行得出PQ∥CD,根据平行线的性质得出∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,∠5=∠2,根据角的和差得出∠APQ+∠5+∠1=90°,再整体替换即可得出∠3+∠4﹣∠1﹣∠2=90°.
8.将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起(其中,,),固定三角板,另一三角板的边从边开始绕点顺时针旋转,设旋转的角度为.
(1)当时;
若,则的度数为________;
(2)若,求的度数;
(3)由(1)(2)猜想与的数量关系,并说明理由;
(4)当时,这两块三角尺是否存在一组边互相垂直?若存在,请直接写出所有可能的值,并指出哪两边互相垂直(不必说明理由);若不存在,请说明理由.【答案】(1)150°
(2)∵∠ACB=130°,∠ACD=90°,
∴∠DCB=130°−90°=40°,
∴∠DCE=90°−40°=50°;
(3)∠ACB+∠DCE=180°,理由如下:
①当时,如图1,
∵∠ACB=∠ACD+∠DCB=90°+∠DCB,
∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;
②当时,如图2,∠ACB+∠DCE=180°,显然成立;
③当时,如图3,∠ACB+∠DCE=360°-90°-90°=180°.
综上所述:∠ACB+∠DCE=180°;
(4)存在,理由如下:
①若AD⊥CE时,如图4,则 =90°-∠A=90°-60°=30°,
②若AC⊥CE时,如图5,则 =∠ACE=90°,
③若AD⊥BE时,如图6,则∠EMC=90°+30°=120°,
∵∠E=45°,
∴∠ECD=180°-45°-120°=15°,
∴ =90°-15°=75°,
④若CD⊥BE时,如图7,则AC∥BE,
∴ =∠E=45°.
综上所述:当 =30°时,AD⊥CE,当 =90°时,AC⊥CE,当 =75°时,AD⊥BE,当=45°时,CD⊥BE.
【解析】【解答】(1)①∵∠ECB=90°,∠DCE=30°,
∴∠DCB=90°−30°=60°,
∴∠ACB=∠ACD+∠DCB=90°+60°=150°,
故答案是150°;
【分析】(1)①先根据直角三角板的性质求出∠DCB的度数,进而可得出∠ACB的度数;②由∠ACB=130°,∠ACD=90°,可得出∠DCB的度数,进而得出∠DCE的度数;(2)根据(1)中的结论可提出猜想,再分3种情况:①当时,②当时,③当时,分别证明∠ACB与∠DCE的数量关系,即可;(3)分4种情况:①若AD⊥CE时,②若AC⊥CE时,③若AD⊥BE时,④若CD⊥BE 时,分别求出的值,即可.
9.如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD=∠CAE,AF平分∠BAE.
(1)∠CAF=________°;
(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;
(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD度数;若不存在,说明理由.
【答案】(1)65
(2)解:若平行移动CD,那么∠ACB与∠AEB度数的比值不发生变化.
∵AD∥BC,
∴∠DAC=∠ACB
∵∠CAD=∠CAE
∴∠ACB=∠CAE
∴∠AEB=∠CAE+∠ACB=2∠ACB
即∠ACB:∠AEB=1:2
所以,∠ACB与∠AEB度数的比值是:1:2
(3)解:存在
∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=∠D
∴∠D+∠BAD=180°
∴AB∥CD
∴∠AFB=∠DAF=∠DAC+∠CAF
∠ACD=∠CAB=∠BAF+∠CAF
∵∠AFB=∠ACD
∴∠DAC+∠CAF=∠BAF+∠CAF
∴∠DAC=∠BAF
∴∠DAC=∠BAF=∠CAE=∠EAF= ∠BAD= ×130°=32.5°
∴∠ACD= ∠CAB=∠BAF+∠CAF =3∠DAC=3×32.5°=97.5°
【解析】【解答】解:(1)∵AF平分∠BAE,
∴∠BAF=∠EAF= ∠BAE,
∵∠CAD=∠CAE
∴∠CAD=∠CAE= ∠DAE
∴∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD
∵AD∥BC,∠B=∠D=50°,
∴∠BAD=180-∠B=130°,
∴∠CAF=65°
【分析】(1)根据角平分线的性质可得∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD,再根据平行线的性质得∠BAD =180-∠B,从而得出答案;(2)根据平行线的性质得∠DAC=∠ACB,再由∠CAD=∠CAE,可知∠ACB=∠CAE,从而可得∠AEB =2∠ACB,即可得出答案;(3)根据平行线的性质得∠AFB=∠DAF=∠DAC+∠CAF,∠ACD=∠CAB=∠BAF+∠CAF,再由平行线的性质可得∠BAD=130°,即可求出答案
10.已知直线.
(1)如图1,直接写出,和之间的数量关系.
(2)如图2,,分别平分,,那么和有怎样的数量关系?请说明理由.
(3)若点E的位置如图3所示,,仍分别平分,,请直接写出和的数量关系.
【答案】(1)
(2)解:.理由如下:
∵,分别平分,,
∴,,
∴,
由(1)得,,
又∵,
∴
(3)解:,理由如下:
如图3,过点作,
∵,,
∴,
∴,,
∴,
由(1)知,,
又∵,分别平分,,
∴,,
∴,
∴.
【解析】【解答】(1),理由如下:
如图1,过点E作,
∵,
∴,
∴,,
∴,
即;
【分析】(1)过点E作,根据平行线的性质得,,
进而即可得到结论;(2)由角平分线的定义得,,
结合第(1)题的结论,即可求证;(3)过点作,由平行线的性质得
,结合第(1)题的结论与角平分线的定义得
,进而即可得到结论.
11.如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。
(1)求∠BOE的度数。
(2)如图2,若点C不落在边OA上,当∠COE=15°时,求∠BOD的度数。
【答案】(1)解:∵∠COD=60°,OE为∠COD的平分线,
∴∠COE=30°,
∴∠BOE=∠AOB+∠COE
=45°+30°
=75°;
(2)解:∵∠COE=15°,
∴∠DOE=∠DOC-∠OCE=60°-15°=45°,
∵OE平分∠AOD,
∴∠AOD=2∠DOE=2×45°=90°,
∴∠BOD=∠AOD+∠AOB=90°+45°=135°.
【解析】【分析】(1)OE为∠COD的平分线,求出∠COE的度数,则∠BOE的度数等于∠AOB和∠COE的度数之和;
(2)现知∠COE的度数,则∠DOE度数可求,结合OE平分∠AOD,则∠AOD可求,于是∠BOD的度数可得;
12.如图①,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的上方.
(1)在图①中, ________度;
(2)将图①中的三角板绕点按逆时针方向旋转,使得在的内部,如图②,若,求的度数;
(3)将图①中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,当直线恰好平分锐角时,旋转的时间是________秒.(直接写出结果)
【答案】(1)30
(2)解:设∠BON=α,
∵∠BOC=60°,
∴∠NOC=60°-α,
∵∠MON=90°,
∴∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,
∠MOA=180°-∠MON-∠BON=180°-90°-α=90°-α,
∵∠NOC= ∠MOA,
∴60°-α= (90°-α),
解得:α=54°,
即∠BON=54°;
(3)3或21
【解析】【解答】(1)∵将一直角三角板的直角顶点放在点O处,一边ON在射线OB 上,另一边OM在直线AB的上方,
∴∠MON=90°,
∴∠COM=∠MON-∠BOC=90°-60°=30°,(3)∵直线ON平分∠BOC,∠BOC=60°,
∴∠BON=30°或∠BON=210°,
∵三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,
∴直线ON平分∠BOC时,旋转的时间是3或21秒,
故答案为:3或21.
【分析】(1)由题意得出∠MON=90°,得出∠COM=∠MON-∠BOC=90°-60°=30°;(2)设∠BON=α,则∠NOC=60°-α,∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,∠MOA=180°-
∠MON-∠BON=180°-90°-α=90°-α,由题意得出60°-α= (90°-α),解得α=54°即可;(3)求出∠BON=30°或∠BON=210°,即可得出答案.。