华师大版九年级数学上册期末检测题
华师大版九年级上册数学期末测试题带答案
期末测试题得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.下列事件中,属于必然事件的是(B )A .2020年的元旦是晴天B .任意画一个三角形,其内角和为180°C .打开电视正在播放新闻联播D .在一个没有红球的盒子里,摸到红球 2.下列计算正确的是(C )A .23 +42 =65B .33 ×32 =36C .27 ÷3 =3D .(-3)2 =-3 3.(兰考县期中)当0<x <2时,化简2x 2+4-4x2x的结果是(B ) A .x -2x 2x B .2-x x 2x C .4(x -2)x 2x D .4(2-x )x 2x4.如图所示,已知AB ∥CD ,AD 与BC 相交于点P ,AB =4,CD =7,AD =10,则AP 的长为(A )A .4011B .407C .7011D .704第4题图第6题图第8题图第9题图5.关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是(A ) A .q <16 B .q >16 C .q ≤4 D .q ≥4 6.如图,下列条件能使△BPE 和△CPD 相似的有(C )①∠B =∠C ; ②AD AC =AE AB ; ③∠ADB =∠AEC ; ④AD AB =AE AC ; ⑤PE PD =BPPC .A .2个B .3个C .4个D .5个7.若α,β是一元二次方程x 2+2x -6=0的两根,则α2+β2=(C ) A .-8 B .32 C .16 D .408.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是(C )A .49B .59C .15D .149.(洛阳模拟)如图,在△ABC 中,点D ,E 分别是边AC ,AB 的中点,BD 与CE 交于点O ,连结DE .下列结论:①OE OB =OD OC ;②DE BC =12 ;③S △DOE S △BOC =12 ;④S △DOE S △DBE =13 .其中正确的个数有(B )A .1个B .2个C .3个D .4个10.如图所示,已知第一象限内的点A 在反比例函数y =2x的图象上,第二象限内的点B 在反比例函数y =kx的图象上,且OA ⊥OB ,tan A =3 ,则k 的值为(B )A .-3B .-6C .-3D .-23 二、填空题(每小题3分,共15分) 11.函数y =3-x +1x +1中自变量x 的取值范围是__x ≤3且x ≠-1__. 12.“六一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1 000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是__200__个.13.若关于x 的一元二次方程(m -2)x 2+3x +m 2-4=0有一个根为0,则另一个根为__34__.14.在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则白色棋子的个数是__15__.15.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,则海岛C 到航线AB 的距离CD等于海里.三、解答题(共75分) 16.(8分)计算:(1)sin 30°sin 60°-cos 45°-(1-tan 60°)2 ; (2)223+16 -1554 .解:(1)2 +1 解:(2)763017.(9分)解方程:(1) x 2+4x -12=0; (2)3x 2+5(2x +1)=0.解:(1)x 1=2,x 2=-6 解:(2)x 1=-5+103 ,x 2=-5-10318.(9分)已知关于x 的方程x 2-(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线l 的长. 解:(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34 (2)当k =2时,原方程为x 2-5x +5=0,设方程的两根为m ,n ,则m +n =5,mn =5.∴m 2+n 2 =(m +n )2-2mn =15 .∴该矩形的对角线l 的长为1519.(9分)为落实素质教育要求,促进学生全面发展,某中学2016年投资11万元新增一批计算机,计划以后每年以相同增长率进行投资,2018年投资18.59万元.(1)求该学校为新增计算机投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增计算机共投资多少万元?解:(1)设年平均增长率为x ,则11(1+x )2=18.59,x 1=-2.3(舍去),x 2=0.3=30% (2)11+11×(1+30%)+11×(1+30%)2=43.89(万元)20.(9分)在13×13的网格图中,已知△ABC 和点M (1,2).(1)以点M 为位似中心,相似比为2,在网格中画出△ABC 的位似图形△A ′B ′C ′; (2)写出△A ′B ′C ′的各顶点坐标.解:(1)图略(2)△A′B′C′的各顶点坐标为A′(3,6),B′(5,2),C′(11,4)21.(10分)(2019·衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°.已知坡面CD=10米,山坡的坡度i=1∶3(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1米)(参考数据:3 ≈1.73,2 ≈1.41)解:过D 作DG ⊥BC 于G ,DH ⊥AB 于H ,交AE 于F ,作FP ⊥BC 于P ,如图所示:则DG =FP =BH ,DF =GP ,∵坡面CD =10米,山坡的坡度i =1∶3 ,∴∠DCG =30°,∴FP =DG =12 CD =5,∴CG =3 DG =53 ,∵∠FEP =60°,∴FP =3 EP =5,∴EP=533 ,∴DF =GP =53 +10+533 =2033+10,∵∠AEB =60°,∴∠EAB =30°,∵∠ADH =30°,∴∠DAH =60°,∴∠DAF =30°=∠ADF ,∴AF =DF =2033 +10,∴FH =12 AF =1033 +5,∴AH =3 FH =10+53 ,∴AB =AH +BH =10+53 +5=15+53 ≈15+5×1.73≈23.7(米).答:楼房AB 高度约为23.7米22.(10分)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,√”,B组的卡片上分别画上“√,×,×”,如图①所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率;(请用“树状图法”或“列表法”求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图②所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.解:(1)根据题意,可画出如图所示的树状图:从树状图可以看出,所有可能结果共有9种,且每种结果出现的可能性相等,其中两张卡片上标记都是“√”的结果有2种,其概率为29 (2)①因为三张卡片上正面的标记有三种可能,分别为“√,×,√”,所以随机揭开其中一个盖子,看到的标记是“√”的概率为23 .②因为正面标记为“√”的卡片,其反面标记情况有两种可能,分别为“√”和“×”,所以猜对反面也是“√”的概率为1223.(11分)已知在四边形ABCD 中,E ,F 别是AB ,AD 边上的点,DE 与CF 交于点G . (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF 于点G ,求证:DE CF =ADCD;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°.∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE ∽△DCF ,∴DE CF =AD DC(2)当∠B +∠EGC =180°时,DE CF =ADDC 成立.证明如下:如图,在AD 的延长线上取点M ,使CF =CM ,则∠CMF =∠CFM .∵AB ∥CD ,∴∠A =∠CDM .∵AD ∥CB ,∴∠CFM =∠FCB .在四边形BEGC 中,∵∠B +∠BEG +∠EGC +∠BCG =360°,∠B +∠EGC =180°,∴∠BEG +∠BCG =360°-180°=180°.又∵∠BEG +∠AED =180°,∴∠AED =∠FCB ,∴∠CMF =∠AED .∴△ADE ∽△DCM ,∴DE CM =AD DC ,即DE CF =ADDC。
华师大版九年级上册数学期末考试试卷含答案
华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案,每小题3分) 1.下列等式正确的是( )A .2=3B ﹣3CD .2=﹣3 2.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <13.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-4.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,连接DE ,若S △ADE =1,则四边形DBCE 的面积为( )A .1B .2C .3D .45.如图,在Rt ABC ∆中,90C ∠=︒,4BC =,3AC =,则sin (B = )A .35B .45C .37D .346.如图,A ,B 两个转盘分别被平均分成三个,四个扇形,分别转动A 盘,B 盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在区域为止,两个转盘停止后指针所指区域内的数字之和小于6的概率是( )A .12B .13C .14D .167.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+38.如图,已知零件的外径25mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB,若OC:AC=1:3,量的CD=10mm,则零件的厚度为()A.2mm B.2.5mm C.3mm D.3.5mm9.如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B且OA=OB,则c的值为()A.0 B.1 C.2 D.310.在平面直角坐标系中,A(0,3),B(4,0),把△AOB绕点O旋转,使点A,B分别落在点A′,B′处,若A′B′∥x轴,点B′在第一象限,则点A的对应点A′的坐标为()A.(912,55-)B.(129,55-)C.(1612,55-)D.(1216,55-)二、填空题11.计算_____.12.在一个不透明的口袋里有标号1,2,3,4,5的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球,若从袋中不放回地摸两次,则两球标号数字是一奇一偶的概率是_____.13.如图,AB是一垂直于水平面的建筑物,BC是建筑物底端的一个平台,斜坡CD的坡度(或坡比)为i =1:0.75,坡长为10米,DE 为地平面(A ,B ,C ,D ,E 均在同一平面内),则平台距地面的高度为_____.14.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.15.如图,矩形ABCD 中,AD =5,AB =7,正方形MBND ′的顶点M ,N 分别在矩形的边AB ,BC 上,点E 为DC 上一个动点,当点D 与点D ′关于AE 对称时,DE 的长为_____.三、解答题 16.计算:(1 (2)-17.关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.18.如图1,点O是矩形ABCD的中心(对角线的交点),AB=4cm,AD=6cm.点M是边AB上的一动点,过点O作ON⊥OM,交BC于点N,设AM=x,ON=y,今天我们将根据学习函数的经验,研究函数值y随自变量x的变化而变化的规律.下面是某同学做的一部分研究结果,请你一起参与解答:(1)自变量x的取值范围是______;(2)通过计算,得到了x与y的几组值,如下表:请你补全表格(说明:补全表格时相关数值保留两位小数,≈6.09)(3)在如图2所示的平面直角坐标系中,画出该函数的大致图象.(4)根据图象,请写出该函数的一条性质.19.有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.《九章算术》是我国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系,其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”请你计算:出南门多少步而见木(注:1里=300步)?21.如图,某小区楼房附近有一个斜坡CD=6m,坡角到楼房的距离CB=8m,在坡顶D点处观察点A的仰角为54°,已知坡角为30°,求楼房AB的高度.(结果精确到0.1m,参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38 1.73)22.如图1,E,F分别是正方形ABCD的边AD和对角线AC的中点,(1)CFDE的值为;(2)①将△AEF绕点A旋转,(1)中的结论是否仍然成立?如果成立,请仅就图2的情况进行证明;如果不成立,请说明理由;②如果AB=2,当以点E,F,C在一条直线上时,请直接写出CF的值.23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴的另一交点为点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)M为抛物线的对称轴x=﹣1上一点,设点M到点A的距离与到点C的距离之和为t,求t的最小值;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,请直接写出使△BPC为直角三角形的点P的坐标.24.如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF折叠,点D刚好落在AG上点H处,此时S△GFH:S△AFH=2:3.(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求HF的值.参考答案1.A【详解】分析:根据二次根式的性质把各个二次根式化简,判断即可.详解:2=3,A正确;,B错误;C错误;(2=3,D错误;故选A.是解题的关键.2.D【详解】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程2x2x m0-+=有两个不相同的实数根,∴()2240=-->,m解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.A【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易. 4.C 【分析】先由中位线定理得出DE ∥BC ,DE =12BC ,从而判定△ADE ∽△ABC 并得出相似比,进而得出△ADE 与△ABC 的面积比,然后结合S △ADE =1,可得答案. 【详解】解:在△ABC 中,D ,E 分别是AB ,AC 的中点, ∴DE //BC ,DE =12BC , ∴△ADE ∽△ABC ,DE BC=12, ∴S △ADE :S △ABC =1:4, ∵S △ADE =1, ∴S △ABC =4,∴四边形DBCE 的面积为3. 故选:C . 【点睛】本题考查了三角形的中位线定理和相似三角形的判定与性质,数形结合并熟练掌握相关性质及定理是解题的关键. 5.A 【分析】先利用勾股定理求出斜边AB ,再求出sinB 即可. 【详解】∵在Rt ΔABC 中,C 90∠=︒,BC 4=,AC 3=,∴5AB =, ∴3sin 5AC B AB ==. 故答案为A. 【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.6.A【分析】先画树状图展示所有12种等可能的结果数,再找出两个转盘停止后指针所指区域内的数字之和小于6的结果数,然后根据概率公式计算即可.【详解】解:画树状图为:共有12种等可能的结果数,两个转盘停止后指针所指区域内的数字之和小于6的结果数为6,∴两个转盘停止后指针所指区域内的数字之和小于6的概率=61.=122故选:A.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.A【详解】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A.点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.8.B【分析】根据题意易证△AOB∽△COD,且相似比为1:2,再由CD=10mm,即可求出AB=20mm,最后根据图形即可求出零件厚度.【详解】解:∵两条尺长AC 和BD 相等,OC =OD , ∴OA =OB , ∵OC :AC =1:3, ∴OC :OA =1:2,∴OD :OB =OC :OA =1:2, ∵∠COD =∠AOB , ∴△AOB ∽△COD ,∴CD :AB =OC :OA =1:2, ∵CD =10mm , ∴AB =20mm ,∴零件厚度为()25202 2.5mm -÷= , 故选:B . 【点睛】本题考查相似三角形的实际应用,根据题意证明△AOB ∽△COD ,且求出其相似比是解答本题的关键. 9.D 【分析】依题知,抛物线y =﹣x 2+2x +c 与x 轴正半轴,y 轴正半轴分别交于点A ,B ;可得B 点坐标,又OB=OA ,可得A 点坐标,然后将A 的坐标代入函数解析式即可; 【详解】依题:抛物线y =﹣x 2+2x +c 与x 轴正半轴,y 轴正半轴分别交于点A ,B , ∴ B (0,c ), ∴ OB =c , ∵ OA =OB , ∴ OA =c , ∴ A (c ,0),∴﹣c 2+2c +c =0,解得c =3或c =0(舍去), 故选:D 【点睛】本题考查二次函数待定系数法,重点在理解和熟练求解过程的转化. 10.A 【分析】设A ′B ′交y 轴于T ′,利用勾股定理可求出A ′B ′的长度,再利用三角形面积公式求出OT 的长度,最后再利用勾股定理即可求出A ′T ′的长度,即可求出A ′点坐标 . 【详解】解:如图,设A ′B ′交y 轴于T ′.∵A (0,3),B (4,0), ∴OA =3,OB =4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′, ∵A OB S''=12•OA ′•OB ′=12•A ′B ′•OT ′,∴OT ′=125,∴A ′T ′95=,∴A ′(-95,125).故选:A . 【点睛】本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.11. 【详解】详解:原式故答案为点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.3 5【分析】列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,再根据概率公式即可得出答案.【详解】解:列表如下:所有等可能的情况有20种,其中两球标号数字是一奇一偶的情况有12种,则两球标号数字是一奇一偶的概率是1220=35.故答案为:35.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.8米 【分析】延长AB 交ED 的延长线于F ,过C 作CG ⊥EF 于G ,由斜坡的坡度i =1:0.75易得出43CG DG =,设CG =4x 米,则DG =3x 米,在Rt △CDG 中利用勾股定理,可求出x ,即可知CG 的长度,即得到答案. 【详解】解:如图,延长AB 交ED 的延长线于F ,过C 作CG ⊥EF 于G , 则BF =CG , 在Rt △CDG 中, i =CG DG=1:0.75=43,CD =10米,设CG =4x 米,则DG =3x 米, 由勾股定理得:222(4)(3)10x x +=, 解得:1122x x ==-,(舍), ∴CG =8(米),DG =6(米),∴BF =CG =8米,即平台距地面的高度为8米,故答案为:8米. 【点睛】本题考查勾股定理的应用,理解题干中斜坡的坡度i 的意义再结合勾股定理解三角形是解答本题的关键.14.32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【详解】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+),∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32,∴当m =2时,EM 有最大值为32,故答案为32.【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 15.52或53【分析】连接ED ′,AD ′,延长MD ′交DC 于点P .根据题意设MD ′=ND ′=BM =x ,则AM =AB -BM =7-x , AD =AD ′=5,在Rt AMD '△中,利用勾股定理可求出x=3或4,即MD ′的长,分类讨论①当MD ′=3时,设ED ′=a ,则AM =7-3=4,D ′P =5-3=2,EP =4-a ,在Rt △EPD ′中利用勾股定理可求出a 的值,即DE 的长;②当MD ′=4时,同理即可求出DE 的长. 【详解】解:如图,连接ED ′,AD ′,延长MD ′交DC 于点P ,∵正方形MBND ′的顶点M ,N 分别在矩形的边AB ,BC 上,点E 为DC 上一个动点,点D 与点D ′关于AE 对称, ∴设MD ′=ND ′=BM =x , ∴AM =AB ﹣BM =7﹣x , ∵AE 为对称轴, ∴AD =AD ′=5,在Rt AMD '△中,222AM MD AD ''+=,即22725x x +-()=,解得1234x x ==,, 即MD ′=3或4.在Rt △EPD ′中,设ED ′=a ,①当MD ′=3时,AM =7﹣3=4,D ′P =5﹣3=2,EP =4﹣a ,∴222PE PD ED ''+=,即22224a a +-=(), 解得a =52,即DE =52.②当MD ′=4时,AM =7﹣4=3,D ′P =5﹣4=1,EP =3﹣a ,同理,22213a a +=(﹣), 解得a =53,即DE =53.综上所述:DE 的长为:52或53.故答案为:52或53.【点睛】本题考查图形对称的性质,矩形的性质以及勾股定理.根据对称并利用勾股定理求出MD ′的长度是解答本题的关键.16.(1)(2)-6 【分析】(1)分别化简各项,再作加减法; (2)利用平方差公式展开,再作加减法. 【详解】解:(1==(2)-=(--=22(-- =1218-=-6 【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则. 17.(1)m >-54;(2)x 1=0,x 2=-3.【详解】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论. 试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根, ∴△=()()2221411m m +-⨯⨯-=4m+5>0, 解得:m >54-;(2)m=1,此时原方程为2x +3x=0, 即x (x+3)=0, 解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.18.0≤x≤4 2 2.03 【分析】(1)根据线段AB 的长度即可判断;(2)利用特殊位置求出x=2时,y 的值,根据对称性求出x=2.5时,y 的值; (3)利用描点法即可画出图象; (4)观察图象总结函数性质即可; 【详解】(1)∵AB=4,点M 在AB 上AM=x, ∴0≤x≤4, 故答案为:0≤x≤4.(2)当x=2时,点M 是AB 中点,点N 是BC 中点,ON=2, ∴x=2时,y=2,根据对称性可知x=2.5与x=1.5时,函数值相等,∴x=2.5时,y=2.03,故答案为2,2.03;(3)该函数的大致图象如图所示:(4)①该函数是轴对称图形;②函数最小值为2;③0<x<2时,y随x的增大而减小;④2<x<4时,y随x的增大而增大;【点睛】此题考查矩形的性质、坐标与图形等知识,灵活运用所学相关知识解决问题,掌握利用函数的对称性解决问题是解题的关键.19.(1)P(抽到数字为2)=13;(2)不公平,理由见解析.【详解】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P= 13;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=42 63 =,乙获胜的情况有2种,P=21 63 =,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.20.315步【分析】由题意易证△ACB∽△DEC,即得出结论DE DCAC AB=,即3.54.515DE=,解出DE=1.05里,即得出答案.【详解】解:如图,由题意得,AB=15里,AC=4.5里,CD=3.5里,∵DE⊥CD,AC⊥CD,∴AC∥DE,∴△ACB∽△DEC,∴DE DCAC AB=,3.54.515DE=解得,DE=1.05里=1.05×300=315步,故走出南门315步恰好能望见这棵树,【点睛】本题考查相似三角形的实际应用.根据题意证明出△ACB∽△DEC是解答本题的关键.21.楼房AB的高度约是21.2m.【分析】过D点作DF⊥AB,交AB于点F,在Rt△ECD中,根据含30°角的直角三角形的性质,解得线段DF的长,再在Rt△ADF中利用正弦定义求得AF的长,最后由线段的和差解题即可.【详解】解:过D点作DF⊥AB,交AB于点F,如图,则BF=DE,在Rt△ECD中,CD=6,∠ECD=30°,∴BF=DE=12CD=3,EC=∴DF=EC+CB=,在Rt △ADF 中,tan ∠ADF =AFDF,∴tan 548) 1.3818.20AF DF =⨯︒=⨯≈, 18.20321.2021.2AB AF FB ∴=+=+=≈,答:楼房AB 的高度约是21.2m .【点睛】本题考查解直角三角形的应用—俯角、坡角问题,涉及正切、含30°角的直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1(2)①仍然成立,理由见解析;+1. 【分析】(1)由四边形ABCD 是正方形可知AC .又因为E ,F 分别是正方形ABCD 的边AD和对角线AC 的中点,即可推出22CF DE ,即CFDE. (2)①因为△AFE 和△ACD 都是等腰直角三角形,可推出△AFE ∽△ACD ,即得出结论,AF ACAE AD=再由∠F AE =∠CAD =45°,可推出∠F AC =∠EAD ,即证明△ACF ∽△ADE ,即得出结论CF ACDE AD= ②由题意可知AD =CD =AB =2, EF =AE =12AD =1,∠ADC =90°,∠AEF =90°.因为点E ,F ,C 在一条直线上,说明∠AEC =90°.在Rt AEC 中,利用勾股定理可求出CE 的长度,即可求出CF 的长度. 【详解】解:(1)∵四边形ABCD 是正方形, ∴AD =CD ,∠D =90°,∴AC ,∵E ,F 分别是正方形ABCD 的边AD 和对角线AC 的中点, ∴=2=2AD DE AC CF ,,∴22CF DE ,即CFDE. (2)①(1)中的结论仍然成立,理由如下: ∵△AFE 和△ACD 都是等腰直角三角形, ∴△AFE ∽△ACD ,∴AF ACAE AD= ∵∠F AE =∠CAD =45°,∴∠F AE +∠CAE =∠CAD +∠CAE ,即∠F AC =∠EAD , ∴△ACF ∽△ADE ,∴CF ACDE AD= ②如图3所示:∵四边形ABCD 是正方形, ∴AD =CD =AB =2,∠ADC =90°,∴AC =同②得:EF =AE =12AD =1,∠AEF =90°, ∵点E ,F ,C 在一条直线上, ∴∠AEC =90°,在Rt AEC 中,CE ∴CF =CE +EF1.【点睛】本题为四边形综合题,掌握正方形的性质,相似三角形的判定和性质,等腰直角三角形的性质以及勾股定理是解答本题的关键.23.(1)直线BC 的解析式为y =x +3,抛物线的解析式为y =﹣x 2﹣2x +3;(2)t 的最小值为(3)点P 的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1或(﹣1. 【分析】(1)先根据对称轴x =−1,即12b a -=-,及抛物线经过A (1,0),C (0,3)两点,得出关于a ,b ,c 的方程组,解方程组,则可求得抛物线的解析式,再根据抛物线的对称性得出点B 的坐标,再由待定系数法求得直线BC 的解析式;(2)由轴对称的知识可知t 的最小值即为线段BC 的长,利用勾股定理计算即可;(3)设P (−1,t ),先用含t 的式子表示出BC 2,PB 2,PC 2,再分三种情况:①若点B 为直角顶点,则BC 2+PB 2=PC 2,②若点C 为直角顶点,则BC 2+PC 2=PB 2,③若点P 为直角顶点,则PB 2+PC 2=BC 2,分别求得t 的值,从而可得点P 的坐标.【详解】解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为y =﹣x 2﹣2x +3,∵对称轴为直线x =﹣1,且抛物线经过A (1,0)与点B .∴点B 的坐标为(﹣3,0),把B (﹣3,0),C (0,3)分别代入直线y =mx +n 得:303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩,,直线BC 的解析式为y =x +3,抛物线的解析式为y =﹣x 2﹣2x +3; ∴直线BC 的解析式为y =x +3.(2)设直线BC 与对称轴x =﹣1的交点为M ,如图所示:由轴对称可知,此时点M到点A的距离与到点C的距离之和t最小,即t=MA+MC=MB+MC=BC,∵B(﹣3,0),C(0,3),∴OB=OC=3,在Rt△BOC中,由勾股定理得:BC∴t的最小值为(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2﹣6t+10,解得t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2,即18+t2﹣6t+10=4+t2,解得t=4;③若点P为直角顶点,则PB2+PC2=BC2,即4+t2+t2﹣6t+10=18,解得t或t.综上所述,点P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1)或(﹣1.【点睛】本题属于二次函数综合题,考查了待定系数法求二次函数和一次函数的解析式、二次函数的对称性及动点问题的计算,数形结合、分类讨论并熟练掌握二次函数的性质是解题的关键.24.(1)见解析;(2)AD=12;(3)HF=6.【分析】(1)根据折叠性质得到∠AGE=∠B=90°,∠AHF=∠D=90°,结合矩形的性质证明△EGC∽△GFH;(2)由等高三角形的面积比等于边的比得到GH:AH=2:3,再根据折叠性质得到AG=AB=GH+AH=20,继而解题;(3)在R t△ADG中,理由勾股定理解得DG的长,再结合折叠的性质解题.【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH;(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12;(3)解:在R t△ADG中,DG16=,由折叠的对称性质可设DF=FH=x,则GF=16﹣x,∵HG2+HF2=FG2,∴82+x2=(16﹣x)2,解得x=6,∴HF=6.【点睛】本题考查矩形的性质、折叠的性质、相似三角形的判定、等高三角形面积比、勾股定理等知识,是重要考点,掌握相关知识是解题关键.。
华师大版九年级上册数学期末考试题(附答案)
华师大版九年级上册数学期末考试题(附答案)一、单选题(共10题;共20分)1.对于分式,当x=-1时,其值为0,当x=1时,此分式没有意义,那么( )A. a=b= -1B. a=b=1C. a=1, b= -1D. a=- 1, b=12.已知点P(m+3,2m+4)在x轴上,那么点P的坐标为()A. (-1,0)B. (1,0)C. (-2,0)D. (0,2)3.如图所示,观察下面的国旗,是轴对称图形的是()。
A. (1)(2)(3)B. (1)(2)(4)C. (2)(3)(4)D. (1)(3)(4)4.己知x=2是关于x的方程x2-(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为( )A. 6B. 8C. 10D. 8或105.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A. 3列5行B. 5列3行C. 4列3行D. 3列4行6.△ABC中,AD是∠BAC的平分线,且AB=AC+CD.若∠BCA=60°,则∠ABC的大小为()A. 30°B. 60°C. 80°D. 100°7.如图,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,则下列结论:① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正确结论的个数是()8题A. 4个B. 3个C. 2个D. 1个8.已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A. k<0B. k<﹣1C. k<1D. k>﹣19.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A,B重合),E 是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.10.求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020 , 则2S=2+22+23+24+…+22021 , 因此2S -S=22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A.B.C.D.二、填空题(共4题;共8分)11.已知命题:如果 ,那么,则该命题的逆命题...是________命题.(在横线上填“真”或“假”).12.一次函数的图象过点(0,3)且与直线y=-x 平行,那么函数解析式是________. 13.点P (2,-1)关于x 轴对称的点P′的坐标是________. 14.如图,在△ABC 中,AB=AC=, BC=2,以AB 为直径的⊙O 分别交AC 、BC 两边于点D 、E ,则△CDE的面积为________ .三、解答题(共7题;共72分)15.△ABC 在平面直角坐标系中的位置如图所示.(1)写出A 、B 、C 三点的坐标;(2)①若△ABC每个顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A'、B'、C',并依次连接这三个点,所得的△A'B'C'与原△ABC有怎样的位置关系?②在(①的基础上,纵坐标都不变,横坐标都乘以-1,请你在同一坐标系中描出对应的点A”、B”、C”,并依次连接这三个点,所得的△A”B”C”与原△ABC有怎样的位置关系?16.如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC,AO平分∠BAC吗?为什么?17.已知:一次函数的图象经过点A(4,3)和B(-2,0).(1)求这个一次函数的表达式;(2)求一次函数与y轴的交点.18.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使最大,求的最大值及点P的坐标;19.综合与实践实践操作:①如图1,是等边三角形,D为BC边上一个动点,将绕点A逆时针旋转得到,连接CE.②如图2,在中,于点D,将绕点A逆时针旋转得到,延长FE 与BC交于点G.③如图3,将图2中得到沿AE再一次折叠得到,连接MB.问题解决:(1)小明在探索图1时发现四边形ABCE是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD,CF,AC之间的数量关系为________:(2)猜想图2中四边形ADGF的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB的长为________.20.A县和B县春季分别急需化肥100吨和60吨,C县和D县分别储存化肥110吨和50吨,全部调配给A 县和B县.运费如下表所示:(1)设从C县运到A县的化肥为x吨,则从C县运往B县的化肥为________吨,从D县运往A县的化肥为________吨,从D县运往B县的化肥为________吨;(2)求总运费W(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围;(3)求最低总运费,并说明运费最低时的运送方案.21.如图,点A,B分别在x轴,y轴上,过A,B作AB垂线,交反比例函数y=(k>0,x>0)的图象于D,C,四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,CF=a,BF=b,OA=x,OB=y.(1)求证:AE=a.(2)请写出两个不同的关于a,b,x,y的关系式.(3)求证:∠OAB=45°.答案一、单选题1.A2. B3. D4. C5. C6.A7. B8. B9. C 10. C二、填空题11. 假12.y=-x+3 13.(2,1) 14.三、解答题15. (1)解:由图可知,点A(3,4),B(1,2),C(5,1)(2)解:如图,△A'B'C'与原△ABC关于x轴对称,△A”B”C”与原△ABC关于原点对称.16. 解:AO平分∠BAC∵OB⊥AB,OC⊥AC,∴∠B=∠C=90°,又∵OB=OC,AO为公共边,∴△ACO≌△ABO,∴∠BOA=∠COA,∴AO平分∠BAC.17. (1)解:∵过点A(4,3)和点B(-2,0),∴,解得:,∴一次函数表达式为(2)解:对于一次函数y= ,令x=0,得到y=1,则一次函数与y轴交点坐标为(0,1).18.(1)解:∵在反比例函数上∴∴反比例函数的解析式为把代入可求得∴.把代入为解得.∴一次函数的解析式为.(2)解:的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴, ∴的最大值为.⑶直接写出当时,的取值范围.解:根据图象的位置和图象交点的坐标可知:当时的取值范围为; 或.19. (1)CD+CF=AC (2)解:四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)20. (1)(110-x);(100-x);(x-50)(2)解:w=40x+35(110-x)+45(100-x)+50(x-50)=10x+5850,A县的化肥全从C县运进,则x=100,D县的化肥全运往A县,则x=100-50=50,所以自变量x的取值范围是50≤x≤100(3)解:w与x成一次函数,k=10>0,w随x的增大而增大,∵50≤x≤100,∴x=50时,w最小,w=10×50+5850=6350(元),从C县运到A县的化肥为50吨,从C县运往B县的化肥为110-50=60吨,从D县运往A县的化肥为100-50=50吨,D县的化肥全运往A县21. (1)证明:∵四边形ABCD为矩形,CF⊥y轴于F,DE⊥x轴于E,∴∠BFC=∠ABC=∠BAD=∠AED=90°,BC=AD,∴∠CBF+∠ABO=∠ABO+∠OAB=90°,∴∠CBF=∠OAB,∵∠BAO+∠DAE=∠DAE+∠ADE=90°,∴∠BAO=∠ADE,∴∠CBF=∠ADE,∴△BCF≌△DAE(AAS),∴AE=CF=a(2)解:由(1)知,BF=DE=b,∵OA=x,OB=y,∴C(a,b+y),D(a+x,b),∵点D,C在反比例函数y=(k>0,x>0)的图象上,∴a(b+y)=b(a+x)=k,即ay=bx①;∵∠BFC=∠AOB=90°,∠CBF=∠BAO,∴△CBF∽△BAO,∴,∴②;(3)证明:由(2)中的①÷②得,x2=y2,∵x>0,y>0,∴x=y,∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°.。
华师大版九年级上册期末测试数学试题(含答案)
华师大版九年级上册期末测试数学试题(含答案)一、选择题1.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.42.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-13.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m4.在平面直角坐标系中,点A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=42且∠ACB最大时,b的值为()A.226-+C.242+B.226+D.2425.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定6.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°7.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .48.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++9.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .210.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3411.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 12.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定13.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°14.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.17.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.18.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.19.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.20.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.21.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.22.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.24.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.25.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF、EF,则CF+EF的最小值为_____.28.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.29.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.30.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.三、解答题31.解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).32.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?33.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.34.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),35.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.四、压轴题36.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.38.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.39.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.40.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.C解析:C 【解析】试题分析:由题意可得根的判别式,即可得到关于k 的不等式,解出即可. 由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.3.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是13,∴BC AC 3, ∵BC=50,∴3,∴()2222AC +BC 503+50100==(m ).故选A4.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.8.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 9.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.10.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.13.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.17.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大, 由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=2241+=17,∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.18.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x,则BD=8-解析:3【解析】【分析】设AC=x,根据四边形的面积公式,1S sin602AC BD=⨯⨯︒,再根据3sin60︒=()1 S 822x x =-⨯,再利用二次函数最值求出答案. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.19.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.20.1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.21.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 22.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 23.54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.24.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.26.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.27.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.28.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)x=22;(2)x=52或x=12.【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x﹣2)2=2,∴x=2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0,∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.32.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.33.(1)21234y x x =-+;(2)相交,证明见解析 【解析】【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可.【详解】解:(1)设抛物线为y =a (x ﹣4)2﹣1,∵抛物线经过点()0,3A ,∴3=a (0﹣4)2﹣1,a =14; ∴抛物线的表达式为:21234y x x =-+; (2)相交. 证明:连接CE ,则CE ⊥BD ,14(x ﹣4)2﹣1=0时,x 1=2,x 2=6.()0,3A ,()2,0B ,()6,0C ,对称轴x =4,∴OB =2,AB 13BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EBC =90°,∴△AOB ∽△BEC ,∴AB OB BC CE =132CE =,解得813CE = 813>2, 故抛物线的对称轴l 与⊙C 相交.【点睛】本题考查待定系数法求二次函数解析式、相似三角形的判定与性质、直线与圆的位置关系等内容,掌握数形结合的思想是解题的关键.34.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9),∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.35.(1)A (1,0),D (4,3);(2)①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.【解析】【分析】(1)由于A 、D 是直线直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△PAD 的面积,可以过P 作PE ⊥x 轴,与AD 相交于点E ,求得PE ,再用△PAE 和△PDE 的面积和求得结果;②分两种情况解答:过D 点作DP ∥AC ,与抛物线交于点P ,求出AC 的解析式,进而得PD 的解析式,再解PD 的解析式与抛物线的解析式联立方程组,便可求得P 点坐标;当P 点在AD 上方时,延长DP 与y 轴交于F 点,过F 点作FG ∥AC 与AD 交于点G ,则∠CAD =∠FGD =∠PDA ,则FG =FD ,设F 点坐标为(0,m ),求出G 点的坐标(用m 表示),再由FG =FD ,列出m 的方程,便可求得F 点坐标,从而求出DF 的解析式,最后解DF 的解。
(必刷题)华师大版九年级上册数学期末测试卷及含答案
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在式子,,,中,x可以取2和3的是()A. B. C. D.2、如图,A、B两点分别位于一个池塘的两端,为了测量A、B之间的距离,小天想了一个办法:在地上取一点C,使它可以直接到达A﹑B两点,连接AC、BC,在AC上取一点M,使AM=3MC,作MN∥AB交BC于点N,测得MN=38m,则A、B两点间的距离为()A.76mB.95mC.114mD.152m3、某班同学毕业时将自己的照片向全班其他同学各送一张表示留念,全班共送2450张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=2450B.x(x﹣1)=2450×2C.x(x﹣1)=2450 D.2x(x+1)=24504、如图1,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家g洛尔(A. L. C'relle1780 - 1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡( Brocard1845- 1922) 重新发现,并用他的名字命名。
问题:如图2,在等腰△DEF中,DF= EF, FG是△DEF的中线,若点Q为△DEF的布洛卡点,FQ= 9, ,则DQ+ EQ= ( )A. B.10 C. D.5、如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.6、已知方程x2+mx+3=0的一个根是1,则m的值为()A.4B.﹣4C.3D.﹣37、下列各式一定是二次根式的是()A. B. C. D.8、抛掷一个均匀的正方体骰子两次,设第一次朝上的数字为x、第二次朝上的数字为y,并以此确定(x,y),那么点P落在抛物线上的概率为()A. B. C.0.5 D.0.259、如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5B.1.5C.D.110、下列事件是必然事件的是()A.瓶酒会爆B.在一段时间内汽车出现故障C.地球在自转D.下届世界杯在中国举行11、点P在四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P 的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(2,3)D.(2,﹣3)12、若二次根式在实数范围内有意义,则x的取值范围是()A.x≠5B.x<5C.x≥5D.x≤513、如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P ,若EF=2,则梯形ABCD的周长为()A.12B.10C.8D.614、如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论:;;;当时,,其中正确结论的个数是()A.1B.2C.3D.415、一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C= ,那么GE=________.17、如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.18、若一元二次方程有一根为,则________.19、如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为________.20、如图,在平面直角坐标系中,直线交坐标轴于、点,点在线段上,以为一边在第一象限作正方形.若双曲线经过点,.则的值为________.21、一元二次方程的根是________.22、若关于的一元二次方程无实数根,则一次函数的图象不经过第________象限.23、如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么BD=________24、如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,M是AC的中点,N是A'B'的中点,连接MN,若AC=4,∠ABC=30°,则线段MN的最小值为________.25、已知x=-1是一元二次方程ax2+bx-10=0的一个解,且a≠-b ,则的值为________三、解答题(共5题,共计25分)26、计算:.27、有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=,将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,当D在BA的延长线上时,设BF=x,两块三角板重迭部分的面积为y.求y与x的函数关系式,并求出对应的x取值范围.28、已知关于x的方程的两根为满足:,求实数k的值29、某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)30、为了测量悬停在空中A处的无人机的高度,小明在楼顶B处测得无人机的仰角为45°,小丽在地面C处测得A、B的仰角分别为56°、14°.楼高BD为20米,求此时无人机离地面的高度.(参考数据:tan14°≈0.25,tan56°≈1.50)参考答案一、单选题(共15题,共计45分)2、D3、C4、B5、A6、B7、C8、A9、D10、C11、D12、D13、C14、B15、C二、填空题(共10题,共计30分)17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。
华师大版初中数学九年级上册期末测试试卷-含答案01
期末测试一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3在实数范围内有意义,则x 的取值范围是( ) A .3x ≥B .3x ≤C .3x >D .3x <2.(3分)已知抛物线28y x x c =−+的顶点在x 轴上,则c 等于( ) A .4B .8C .4−D .163.(3分)下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上B .从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C .某彩票的中奖率为35%,说明买100张彩票,有35张获奖D .打开电视,中央一套一定在播放新闻联播4.(3分)在Rt ABC △中,90C ︒∠=,若斜边AB 是直角边BC 的3倍,则tan B 的值是( )A .13B .3C .4D .5.(3分)若关于x 的一元二次方程20x bx c ++=的两个实数根分别为11x =−,22x =,那么抛物线2y x bx c =++的对称轴为直线( )A .1x =B .12x =C .32x =D .12x =−6.(3分)如图,OAB △与OCD △是以点O 为位似中心的位似图形,相似比为1:2,90OCD ︒∠=,CO CD =.若()20B ,,则点C 的坐标为( )A .()22,B .()12,C .D .()21,7.(3分)抛物线2y x =向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是( ) A .()232y x =−−B .()232y x =−+C .()232y x =+−D .()232y x =++8.(3分)如图,等边ABC △的边长为6,P 为BC 上一点,2BP =,D 为AC 上一点,若60APD ︒∠=,则CD 的长为( )A .2B .43C .23D .19.(3分)如图,在ABC △中,中线BE 、CF 相交于点G ,连接EF ,下列结论:①12EF BC =;②12EGF CGB S S =△△;③AF GE AB GB =;④13EEF AEF S S =△△,其中正确的个数有( )A .1个B .2个C .3个D .4个10.(3分)已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x轴的两个交点间的距离是4;⑤若()12A x ,,()23B x ,是抛物线上两点,则12x x <,其中正确的个数是( )A .2B .3C .4D .5二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)已知3a =+3b =−22a b ab +的值是________.12.(3分)毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是________.13.(3分)如图,DAB CAE ∠=∠,请你补充一个条件,使ABC ADE △∽△,并写出推理过程.________14.(3分)如图所示是二次函数2y ax bx c =++的图象,下列结论:①二次三项式2ax bx c ++的最大值为4;②使3y ≤成立的x 的取值范围是2x −≤;③一元二次方程2ax bx c k ++=,当4k <时,方程总有两个不相等的实数根;④该抛物线的对称轴是直线1x =−;⑤420a b c −+<;其中正确的结论有________(把所有正确结论的序号都填在横线上).15.(3分)已知ABC △中,2tan 3B =,6BC =,过点A 作BC 边上的高,垂足为D ,且:2:1BD CD =,则ABC △的面积为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.(6分)计算:(1(2)()()123 3.14tan30π−−−−+−.17.(6分)用适当方法解下列方程. (1)2314x x −=(2)()()()225125x x x x +=−+18.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x .甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是________.(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.19.(9分)已知抛物线与x 轴交于点()10,和()20,且过点()34,. (1)求抛物线的解析式;(2)抛物线的顶点坐标;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.20.(10分)学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程20ax bx c ++=的两个根为1x ,2x ,由根与系数的关系有12b x x a +=−,12c x x a =,由此就能快速求出,1211x x +,2212x x +,……的值了.比如设1x ,2x 是方程2230x x ++=的两个根,则122x x +=−,123x x =,得1212121123x x x x x x ++==−, (1)小亮的说法对吗?简要说明理由;(2)写一个你最喜欢的一元二次方程,并求出两根的平方和;(3)已知2是关于x 的方程240x x c −+=的一个根,求方程的另一个根与c 的值.21.(10分)我县将对如图所示的某城市建设工程进行整改,已知斜坡AB长米,坡角(即BAC ∠)为45°,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号)(1)若修建的斜坡BE E,求休闲平台DE 的长是多少米?(2)一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30°,点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?22.(12分)将一副三角尺如图①摆放(在Rt ABC △中,90ACB ︒∠=,60B ︒∠=.Rt DEF △中,90EDF ︒∠=,45E ︒∠=).点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,且2BC =.(1)求证:ADC APD △∽△;(2)求APD △的面积;(3)如图②,将DEF △绕点D 顺时针方向旋转角α(060α︒︒<<),此时的等腰直角三角尺记为DE F ''△,DE '交AC 于点M ,DF '交BC 于点N ,试判断PMCN的值是否会随着α的变化而变化,如果不变,请求出PMCN的值;反之,请说明理由.23.(14分)如图,抛物线()21y x k =−+与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点()03C −,.P 为抛物线上一点,横坐标为m ,且0m >.答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
华师大版九年级上册数学期末考试试卷带答案解析
华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案) 1.下列二次根式是最简二次根式的是( )A B C D2.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是( ) A .16B .-4C .4D .83.在Rt △ABC 中,∠C =90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是( )A .13B .3CD .4. 为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A 、B 、C 、D 四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的大约有900人5.已知(m -3)x 2+是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠3 B .m≥3 C .m≥-2 D .m≥-2且m≠3 6.在平面直角坐标系中,将抛物线y =x 2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为( )A .y =(x -3)2-2B .y =(x -3)2+2C .y =(x +3)2-2D .y =(x +3)2+27.如图,等边△ABC 的边长为6,P 为BC 上一点,BP=2,D 为AC 上一点,若∠APD=60°,则CD 的长为( )A .2B .43C .23D .18.当1<a <2|1-a|的值是( ) A .-1B .1C .2a -3D .3-2a9.如图,在△ABC 中,中线BE 、CF 相交于点G ,连接EF ,下列结论: ①EF BC =12; ②EGF CGB S S =12; ③AF AB =GEGB; ④GEF AEFS S =13.其中正确的个数有( )A .1个B .C .3个D .4个10.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,3).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2017个正方形的面积为( )A .10×(43)2016B .10×(169)2016C .10×(169)2017D .10×(169)4032二、填空题11.已知a=3+b=3-a 2b +ab 2=_________.12.在一个不透明的布袋中装有4个白球、8个红球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是35,则n=_______.13.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .14.如图所示是二次函数y=ax 2+bx +c 的图象.下列结论:①二次三项式ax 2+bx +c 的最大值为4;②使y≤3成立的x 的取值范围是x≤-2;③一元二次方程ax 2+bx +c=1的两根之和为-1;④该抛物线的对称轴是直线x=-1;⑤4a -2b +c <0.其中正确的结论有______________.(把所有正确结论的序号都填在横线上)15.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为点D ,且满足BD :C D =2:1,则△ABC 面积的所有可能值为____________.16.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C ,并把△ABC 的边长放大到原来的2倍.设点B 的横坐标是a ,则点B 的对应点B′的横坐标是___________.三、解答题17.(1)计算:-32-(π-3.14)0+(tan30°)-1-2√12+√2−1(2)解方程:2x 2-4x -1=018.已知某二次函数图象的对称轴是直线x=2,与y轴的交点坐标为(0,1),且经过点(5,6),且若此抛物线经过点(-2,y1)、(3,y2),求抛物线的解析式并比较y1与y2的大小.19.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.20.已知关于x的一元二次方程(x-m)2+6x=2m-1有实数根.(1)求m的取值范围;(2)设方程的两实根分别为x1与x2,求代数式x12+x22-x1·x2的最小值.21.为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜⊥,现计划在斜坡中点D处挖去部分斜坡,坡AB长坡角(即BAC∠)为45︒,BC AC修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE1,求休闲平台DE的长是多少米?AG=米),小亮在D点测得建筑物顶部H的仰角(即(2)一座建筑物GH距离A点33米远(即33HDM∠)为30.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且⊥,问建筑物GH高为多少米?HG CG22.某工厂生产的某种产品按质量分为10个档次,生产第一档次(即最低档次)的产品一天生产76件,每件利润10元,每提高一个档次,利润每件增加2元.(1)每件利润为16元时,此产品质量在第几档次?(2)由于生产工序不同,此产品每提高一个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工厂生产的是第几档次的产品?23.二次函数y=ax2+bx+c图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,l).若此二次函数的图象与x轴的另一个交点为C.(1)试求a,b所满足的关系式;倍时,求a的值;(2)当△AMC的面积为△ABC面积的52(3)是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.24.如图,在Rt△ADC中,∠C=90°,B是CD的延长线上的一点,且AD=BD=5,AC=4,求cos∠BAD的值.25.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2. (1)求证:△ADC∽△APD;(2)求△APD的面积;(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断PM的值是否随着α的变化而变CN的值;反之,请说明理由.化?如果不变,请求出PMCN参考答案1.B 【解析】根据最简二次根式的概念判断即可. 【详解】,不是最简二次根式;=,不是最简二次根式;=,不是最简二次根式; 故选B 【点睛】考查最简二次根式的概念,掌握最简二次根式的定义是解题的关键. 2.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答. 【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=- 2b a = -82-=4, ∵顶点在x 轴上, ∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得: 16-32+c=0, 解得:c=16, 故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单. 3.D 【分析】先求出AC ,再根据正切的定义求解即可.【详解】设BC=x ,则AB=3x ,由勾股定理得,AC=,tanB=AC BC = 故选D .考点:1.锐角三角函数的定义;2.勾股定理. 4.B 【详解】抽取的样本容量为50÷25%=200. 所以C 等所占的百分比是20÷200×100%=10%. D 等所占的百分比是1-60%-25%-10%=5%. 因此D 等所在扇形的圆心角为360°×5%=18°. 全校学生成绩为A 等的大约有1500×60%=900(人). 故选B . 5.D 【解析】根据一元二次方程二次项系数不为0,二次根式被开方数大于等于0.列出不等式组求解即可. 【详解】(m -3)x 2+x =1是关于x 的一元二次方程,则3020,m m -≠⎧⎨+≥⎩ 解得:m ≥-2且m ≠3 故选D. 【点睛】考查一元二次方程的定义以及二次根式有意义的条件,比较基础,难度不大. 6.C 【解析】先确定抛物线y=x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为(−3,−2),然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0) 向左平移3个单位、再向下平移2个单位所得对应点的坐标为(−3,−2),所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.7.B【解析】由等边三角形的性质结合条件可证明△ABP∽△PCD,由相似三角形的性质可求得CD.【详解】∵△ABC为等边三角形,∴∠B=∠C=60∘,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60∘,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD =ABPC,∵AB=BC=6,BP=2,∴PC=4,∴2CD =64,∴CD=43.故选:B.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键. 8.B【详解】解:∵1<a<2,(a-2),|1-a|=a-1,(a-2)+(a-1)=2-1=1. 故选B . 9.C 【解析】根据三角形的中位线定理推出FE ∥BC ,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可. 【详解】∵AF =FB ,AE =EC ,∴FE ∥BC ,FE :BC =1:2,∴AF FE GEAB BC GB==,故①③正确. ∵FE ∥BC ,FE :BC =1:2,∴FG :GC =1:2,△FEG ∽△CBG .设S △FGE =S ,则S △EGC =2S ,S △BGC =4s ,∴14EGF CGBS S=,故②错误. ∵S △FGE =S ,S △EGC =2S ,∴S △EFC =3S . ∵AE =EC ,∴S △AEF =3S ,∴ GEFAEFSS=13,故④正确.故选C . 【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 10.B 【解析】先求出正方形ABCD 的边长和面积,再求出正方形A 1B 1C 1C 的面积,得出规律,根据规律即可求出第2017个正方形的面积. 【详解】∵点A 的坐标为(1,0),点D 的坐标为(0,3), ∴OA =1,OD =3, ∵∠AOD =90∘,∴AB =AD =√12+32=√10,∠ODA +∠OAD =90∘, ∵四边形ABCD 是正方形,∴∠BAD =∠ABC =90∘,S 正方形ABCD =(√10)2=10,∴∠ABA 1=90∘,∠OAD +∠BAA 1=90∘, ∴∠ODA =∠BAA 1, ∴△ABA 1∽△DOA , ∴BA 1OA=ABOD,即BA 11=√103, ∴BA 1=√103,∴CA 1=√10+√103=4√103,∴正方形A 1B 1C 1C 的面积=(4√103)2=10×(43)2, …,第n 个正方形的面积为10×(43)2n−2,∴第2017个正方形的面积为10×(43)4034−2=10×(43)4032=10×(169)2016.故选:B. 【点睛】考查正方形的性质,相似三角形的判定与性质等知识点,找出面积之间的关系是得到规律是解题的关键. 11.6 【解析】 【分析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a =3+b =3-即可. 【详解】解:待求式提取公因式,得22(),a b ab ab a b +=+ 将已知代入,得(((3(33316 6.⎡⎤+⨯-⨯++-=⨯=⎣⎦故答案为6. 【点睛】考查代数式求值,熟练掌握提取公因式法是解题的关键. 12.18 【解析】 【分析】根据黄球的概率公式3.485n n ==++列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n +4+8个球,其中黄球n 个, 根据古典型概率公式知:P (黄球)3.485n n ==++解得n =18. 故答案为18. 【点睛】考查概率的计算,掌握概率=所求情况数与总情况数之比是解题的关键. 13.解:∠D=∠B 或∠AED=∠C . 【分析】根据相似三角形的判定定理再补充一个相等的角即可. 【详解】解:∵∠DAB=∠CAE ∴∠DAE=∠BAC∴当∠D=∠B 或∠AED=∠C 或AD :AB=AE :AC 或AD•AC=AB•AE 时两三角形相似. 故答案为∠D=∠B (答案不唯一). 14.①④. 【分析】①由抛物线的顶点坐标为(-1,4),可得出①正确;②由当x=0或x=-2时,y=3,结合抛物线的开口向下,即可得出使y≤3成立的x 的取值范围是x≥0或x≤-2,②正确;③由抛物线的对称轴为直线x=-1,可得出一元二次方程ax 2+bx+c=1的两根之和为-2,③错误;④根据图象可知,该抛物线的对称轴是直线x =-1,④正确.⑤由x=-2时,0y >,可得出420a b c -+>,⑤错误,综上即可得出结论. 【详解】①∵抛物线y =ax 2+bx +c 的顶点坐标为(−1,4), ∴二次三项式ax 2+bx +c 的最大值为4,①正确; ②∵当x =0时,y =3, ∴当x =−2时,y =3.观察函数图象,可知:当x≥0或x≤-2,y≤3, ②错误;③∵抛物线的对称轴为直线x =−1,∴一元二次方程ax 2+bx +c =1的两根之和为−2,③错误; ④抛物线的对称轴为直线x =−1,④正确. ⑤∵2x =-时,0y >, ∴420a b c -+>,⑤错误. 综上所述:正确的结论为①④. 故答案为①④. 【点睛】二次函数图象与系数的关系,根与系数的关系,二次函数的最值,是中考常考题型. 15.8或24. 【详解】试题分析:如图1所示:∵BC=6,BD :CD=2:1,∴BD=4,∵AD ⊥BC ,tanB=23,∴AD BD =23,∴AD=23BD=83,∴S △ABC =12BC•AD=12×6×83=8;如图2所示:∵BC=6,BD :CD=2:1,∴BD=12,∵AD ⊥BC ,tanB=23,∴AD BD =23,∴AD=23BD=8,∴S △ABC =12BC•AD=12×6×8=24; 综上,△ABC 面积的所有可能值为8或24,故答案为8或24.考点:解直角三角形;分类讨论. 16.-2a-3 【解析】 【分析】设点B ′的横坐标为x ,然后表示出BC 、B ′C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点B ′的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣a ,B ′、C 间的横坐标的长度为x +1. ∵△ABC 放大到原来的2倍得到△A ′B ′C ,∴2(﹣1﹣a )=x +1,解得:x =-2a -3. 故答案为:-2a -3. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键. 17. (1) −9+√3;(2) x 1=1+√62, x 2=1-√62.【解析】 【分析】(1)分别根据数的开方及乘方法则、负整数指数幂的运算法则,特殊角的三角函数值以及二次根式分母有理化等计算出各数,再根据实数混合运算的法则进行计算即可; (2)利用公式法求出x 的值即可. 【详解】(1)原式=−9−1+(√33)−1−√2+√2+1=−9+√3 (2)△=16+8=24 ∴x =4±2√64,∴x 1=1+√62, x 2=1-√62【点睛】考查实数的混合运算以及公式法解一元二次方程,比较基础,难度不大. 18.y 1>y 2 【解析】 【分析】设该抛物线的解析式为y =ax 2+bx +c (a ≠0),用待定系数法即可求出二次函数解析式,把点(-2,y 1)、(3,y 2)代入抛物线,求出y 1与y 2,即可比较y 1与y 2的大小. 【详解】设该抛物线的解析式为y =ax 2+bx +c (a ≠0),由题意可得:{−b2a=2 1=c25a+5b+c=6,解得:{a=1b=−4c=1,∴该抛物线的解析式为y=x2-4x+1,当x=-2时,y1=13,当x=3时,y2=-2,∵13>-2,∴y1>y2【点睛】考查待定系数法求二次函数的解析式以及二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.19.(1)13.(2)不公平.【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可.【详解】(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:13;(2)不公平,从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:59,乙获胜的概率为:13.∵59>13,∴甲获胜的概率大,游戏不公平.20.(1)m≤2;(2) 最小值是1【解析】【分析】(1)根据判别式的意义得到△=-16m+32≥0,然后解不等式即可;(2)根据根与系数的关系得到得x1+x2=2m-6,x1·x2= m2-2m+1,再把要求的式子进行变形,即可得出答案.【详解】(1)由(x-m)2+6x=2m-1,得x2+(6-2m)x+m2-2m+1=0.∴△=b2-4ac=(6-2m)2-4×1×(m2-2m+1) =-16m+32∵方程有实数根,∴-16m+32≥0.解得m≤2.∴m的取值范围是m≤2(2)∵方程的两实根分别为x1与x2,由根与系数的关系,得∴x1+x2=2m-6,x1·x2= m2-2m+1,∴x12+x22-x1·x2=(x1+x2)2-3 x1·x2=(2m-6)2-3(m2-2m+1)=m2-18m+33=(m-9)2-48∵m≤2,且当m<9时,(m-9)2-48的值随m的增大而减小,∴当m=2时,x12+x22-x1·x2的值最小,最小值为(2-9)2-48=1.∴x12+x22-x1·x2的最小值是1【点睛】考查一元二次方程根的判别式以及一元二次方程根与系数的关系,熟记根与系数的关系是解题的关键.21.(1)(30-m (2)(30+米【详解】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中, 求得HE =50HG =米. 详解:(1)∵MF ∥BC ,∴∠AMF =∠ABC =45°,∵斜坡AB 长M 是AB 的中点,∴AM =(米),∴AF =MF =AM •cos ∠AMF =50=(米),在RT ANF 中,∵斜坡AN 1,∴AF NF =∴NF =,∴.(2)在RT △BMK 中,BM=∴BK=MK=50(米), EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴tan30HE EM =︒=,∴84HE =∴50HG HE EG HE MK =+=+=(米)答:休闲平台DE GH 高为()50米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用. 22.(1)每件利润是16元时,此产品的质量档次是在第四档次. (2)设生产产品的质量档次是在第x 档次时,一天的利润是y (元), 根据题意得:[][])1(476)1(210---+=x x y整理得:64012882++-=x x y 当利润是1080时,即108064012882=++-x x 解得:11,521==x x (不符合题意,舍去)答:当生产产品的质量档次是在第5档次时,一天的利润为1080元. 【解析】(1)依题意可得此产品质量在第4档次.(2)设生产产品的质量档次是在第x 档次时,一天的利润是y ,求出y 与x 的函数解析式,令y=1080,求出x 的实际值.23. (1)a +b =-1;(2)a =-4+√15;(3)不存在. 【解析】 【分析】(1)把点A (1,0)和点B (0,1)的坐标代入抛物线的解析式,就可以得到关于a ,b ,c 关系式.整理就得到a ,b 的关系.(2)利用公式求出抛物线的顶点的纵坐标,进而表示出△AMC 的面积,根据S △AMC =52S △ABC,就可以得到关于a 的方程,解得a 的值;(3)本题应分A 是直角顶点,B 是直角顶点,C 是直角顶点三种情况进行讨论. 【详解】(1)将A (1,0),B (0,l )代入y =ax 2+bx +c 得: {a +b +c =0c =1,可得:a +b =-1 (2)(2)∵a +b =−1,∴b =−a −1代入函数的解析式得到:y =ax 2−(a +1)x +1, 顶点M 的纵坐标为4a−(a+1)24a=−(a−1)24a,因为S △AMC =52S △ABC , 由同底可知:−(a−1)24a=52×1整理得:a 2+8a +1=0,得:a =-4±√15由图象可知:a <0,因为抛物线过点(0,1),顶点M 在第二象限,其对称轴x =a+12a <0, ∴-1<a <0,∴a =-4-√15舍去,从而a =-4+√15 (3)① 由图可知,A 为直角顶点不可能;② 若C 为直角顶点,此时与原点O 重合,不合题意; ③ 若设B 为直角顶点,则可知−15,得:令85,可得:ax 2−(a +1)x +1=0,x 1=1,x 2=1a , 得:AC =1−1a ,BC =√12+1a 2,AB =√2,∴(1−1a )2=2+(1+1a 2)解得:a =-1,由-1<a <0,不合题意.所以不存在 综上所述:不存在. 【点睛】本题是二次函数与三角形综合题,注意数形结合思想在解题中的应用.24【分析】利用勾股定理求得CD 和AB 的长,再利用三角函数的定义求得cos ∠B 的值,即可求解. 【详解】 ∵AD=BD , ∴∠BAD=∠B ,∵∠C=90°,AD=BD=5,AC=4,∴, ∴BC= CD + BD =8,∴∴cos ∠BAD=cos ∠B=BC AB =. 【点睛】本题考查了解直角三角形,涉及勾股定理的应用,锐角三角函数的定义等知识,熟练掌握锐角三角函数的定义是解题的关键.25.(1)见解析;(2) √33;(3) 不会随着α的变化而变化【解析】 【分析】(1)先判断出△BCD 是等边三角形,进而求出∠ADP=∠ACD ,即可得出结论; (2)求出PH ,最后用三角形的面积公式即可得出结论;(3)只要证明△DPM 和△DCN 相似,再根据相似三角形对应边成比例即可证明. 【详解】(1)证明:∵△ABC 是直角三角形,点D 是AB 的中点, ∴AD =BD =CD ,∵在△BCD 中,BC =BD 且∠B =60°, ∴△BCD 是等边三角形, ∴∠BCD =∠BDC =60°, ∴∠ACD =90°-∠BCD =30°, ∠ADE =180°-∠BDC -∠EDF =30°,在△ADC 与△APD 中,∠A =∠A ,∠ACD =∠ADP , ∴△ADC ∽△APD .(2)由(1)已得△BCD 是等边三角形,∴BD =BC =AD =2, 过点P 作PH ⊥AD 于点H ,∵∠ADP =30°=90°-∠B =∠A , ∴AH =DH =1, tan A =PH AH=√33,∴PH =√33.∴△APD 的面积=12AD ·PH =12×2×√33=√33(3)PMCN 的值不会随着α的变化而变化.∵∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°, 在△MPD 与△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD∽△NCD,∴PMCN =PDCD,由(1)知AD=CD,∴PMCN =PDAD,由(2)可知PD=2AH,∴PD=2√33,∴PMCN =PDCD=2√332=√33.∴PMCN的值不会随着α的变化而变化.【点睛】属于相似三角形的综合题,考查相似三角形的判定与性质,锐角三角函数,三角形的面积等,综合性比较强,对学生综合能力要求较高.21。
华师大版九年级数学上册期末考试试卷(附带答案)
华师大版九年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 一、选择题(本题共10小题,每小题4分,共40分)1.下列根式中,与20是同类二次根式的是()A.15B.45C.35 D.182.关于x的一元二次方程x2=1的根是()A.x=1 B.x1=1,x2=-1C.x=-1 D.x1=x2=13.用配方法解方程x2+4x-1=0时,配方结果正确的是()A.(x+4)2=5 B.(x+2)2=5 C.(x+4)2=3 D.(x+2)2=34.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有2个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.某班一同学在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又各自教会了同样多的同学,这样全班共有36名同学会做这个实验.若设1名同学每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=3663的整数部分为x,小数部分为y,则3x-y的值是()A.3 3-3 B.3C.1D.37.定义运算:a*b=2ab, 若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.m B.2-2m C.2m-2 D.-2m-28.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cos α=35,AB=4,则AC的长为( ) A .3B.165C.203D.163(第8题)(第9题) 9.如图,在菱形ABCD 中,∠ABC =60°,连结AC 、BD ,则ACBD =( )A.12B.22C.32D.3310.如图,正方形ABCD 的边AB =3,对角线AC 和BD 交于点O ,P 是边CD 上靠近点D 的三等分点,连结P A 、PB ,分别交BD 、AC 于点M 、N ,连结MN .有下列结论:①OM =MD ;②S △OMA S △ONB=52;③MN =35820;④S △MDP =38,其中正确的是( )(第10题)A .①②③B .①②④C .②③④D .①②③④二、填空题(本题共6小题,每小题4分,共24分) 11.计算:12+27=________.12.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出1个球是红球的概率为________.13.若关于x 的方程x 2+(k -3)x -k 2=0的两根互为相反数,则k =________.14.如图,添加一个条件:__________________________,使△ADE ∽△ABC .(写一个即可)(第14题)(第15题)15.如图,在三角形纸片ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,BF =4,CF =6.将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为________.16.如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B、D两点.若AB=2,∠BAD=30°,则k=________.(第16题)三、解答题(本题共9小题,共86分)17.(8分)计算:(-3)2-2sin 45°+||2-1.18.(8分)解方程:2x2-7x-4=0.19.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧按21放大,画出△OAB的一个位似图形△OA1B1;(2)画出将△OAB向左平移2个单位长度,再向上平移1个单位长度后得到的△O2A2B2;(3)△OA1B1与△O2A2B2是位似图形吗?若是,请在图中标出位似中心点M,并写出点M的坐标.(第19题)20.(8分)如图,将Rt△AOB绕直角顶点O按顺时针方向旋转,得到△A′OB′,使点A的对应点A′落在边AB上,过点B′作B′C∥AB,交AO的延长线于点C.(第20题)(1)求证:∠BA′O=∠C;(2)若OB=2OA,求tan∠OB′C的值.21.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在边BC上找一点E,使得△DCE∽△CBF(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若E为BC的中点,AD=8,BF=3,求AB的长.(第21题)22.(10分)定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根互为相反数,那么称这样的方程是“对称方程”.例如:一元二次方程x2-4=0的两个根是x1=2,x2=-2,2和-2互为相反数,则方程x2-4=0是“对称方程”.(1)通过计算,判断下列方程是否是“对称方程”:①x2+x-2=0;②x2-12=0.(2)已知关于x的一元二次方程x2-(k2-4)x-3k=0 (k是常数)是“对称方程”,求k的值.23.(10分)如图,在等腰三角形ADC中,AD=AC,B是DC上的一点,连结AB,且有AB=DB.(1)若∠BAC=90°,AC=3,求CD的长;(第23题)(2)若ABCD=13,求证:∠BAC=90°.24.(12分)在如今智能手机的功能中,都可以利用手势密码进行锁屏和解锁.其中最常见的就是利用3×3的正方形点阵设置密码,我们将其称为“9点码”.通常,在设置“9点码”时,只能连结相邻的两点(如图,不妨将9个点依次对应数字1到9,例如图中路线Ⅰ,Ⅱ是可行的,路线Ⅲ,Ⅳ是不可行的),不能走重复的路线,从而形成相应的密码线段,线段越多,密码越复杂.已知小明设置的“9点码”从右上角的点“3”出发,且用了3个数字.(1)已知横向和纵向的相邻两点距离为1,且以小明设置的“9点码”所经过的点为顶点的三角形恰好是等腰三角形,则该等腰三角形的面积所有可能的值为________;(2)用概率知识并结合树状图回答:若小明设置的“9点码”用了3个数字,对于一个不知道该密码的人(已知出发点和用了3个数字),通过画树状图,求其一次尝试能将小明手机解锁的概率.(第24题)25.(14分)如图,在正方形ABCD中,AB=4,P、Q分别是边AD、AC上的动点.(1)填空:AC=________;(2)若AP=3PD,且点A关于PQ的对称点A′落在边CD上,求tan∠A′QC的值;(3)设AP=a,直线PQ交直线BC于点T,求△APQ与△CTQ面积之和S的最小值.(用含a的代数式表示)(第25题)参考答案一、1.B 2.B 3.B 4.B 5.B 6.C7.D8.C9.D10.D二、11.5 312.3 813.314.∠ADE=∠B(答案不唯一) 15.5 316.6+2 3三、17.解:原式=3-2×22+2-1=2.18.解:原方程可化为(x -4)(2x +1)=0 ∴x -4=0或2x +1=0 ∴x 1=4,x 2=-12.19.解:(1)如图,△OA 1B 1为所作.(2)如图,△O 2A 2B 2为所作.(3)△OA 1B 1与△O 2A 2B 2是位似图形.如图,点M 为所求,其坐标为(-4,2).(第19题)20.(1)证明:如图,∵B ′C ∥AB ,∴∠A +∠C =180°.由旋转,得OA ′=OA ,∴∠1=∠A .∵∠1+∠BA ′O =180°,∴∠A +∠BA ′O =180° ∴∠BA ′O =∠C .(第20题)(2)解:如图,由旋转,得OB ′=OB ∠A ′OB ′=∠AOB =90°,∴∠2+∠3=90°. ∵∠3+∠4=90°,∴∠2=∠4. 由(1)得,∠BA ′O =∠C∴△A ′OB ≌△COB ′,∴∠B =∠OB ′C . 在Rt △AOB 中,OB =2OA∴tan B=OAOB=12.∴tan∠OB′C=tan B=1 2.21.解:(1)如图,点E即为所求.(第21题)(2)∵四边形ABCD是平行四边形,AD=8∴BC=AD=8,AB=CD.∵E为BC的中点,∴CE=BE=12BC=4.∵△DCE∽△CBF,∴CEBF=DCBC∴43=DC8,∴DC=323,∴AB=DC=323.22.解:(1)①x2+x-2=0,即(x+2)(x-1)=0∴x1=-2,x2=1.∵-2和1不互为相反数,∴不是“对称方程”.②由题意,得x=±12=±2 3即x1=2 3,x2=-2 3.∵2 3与-2 3互为相反数,∴是“对称方程”.(2)设x1,x2为原方程的解,∵该方程为“对称方程”∴x1+x2=k2-4=0,即k2=4,解得k=±2.当k=-2时,方程为x2+6=0,无解,不符合题意.当k=2时,方程为x2-6=0,符合题意.∴k的值为2.23.(1)解:∵AD=AC,AB=DB∴∠C=∠D,∠D=∠DAB,∴∠C=∠D=∠DAB.∵∠BAC=90°,∠C+∠D+∠DAC=∠C+∠D+∠DAB+∠BAC=180°,∴∠C+∠D+∠DAB=90°∴∠C=∠D=∠DAB=30°.在△ABC中,∠BAC=90°,∠C=30°∴AB=AC·tan 30°=3×33=1∴BC=2AB=2,BD=AB=1 ∴CD=BD+BC=1+2=3.(2)证明:∵ABCD=13,AB=DB∴BC=2AB,DC=3AB.∵∠DAB=∠C,∠D=∠D∴△DAB∽△DCA,∴ABAC=ADCD.∵AD=AC,∴AC2=3AB2.∵BC=2AB,∴BC2=4AB2.∴AB2+AC2=BC2,∴∠BAC=90°.24.解:(1)12或1(2)如图.(第24题)由树状图可得,所有等可能的结果有15种,而符合条件的结果只有1种,所以一次尝试能将小明手机解锁的概率为1 15.25.解:(1)4 2(2)∵在正方形ABCD中,AB=4,AC为对角线∴AD=AB=4,∠DAC=∠DCA=45°,∠ADC=90°.∵点A关于PQ的对称点A′落在CD边上∴△APQ和△A′PQ关于PQ对称∴AP=A′P,∠P AQ=∠P A′Q=45°.∵∠DA′Q=∠DCA+∠A′QC=∠P A′Q+∠P A′D∴∠A′QC=∠P A′D.∵AP=3PD,AD=4,∴A′P=AP=3,PD=1第 11 页 共 11 页 ∴A ′D =A ′P 2-PD 2=2 2∴tan ∠A ′QC =tan ∠P A ′D =PD A ′D =12 2=24. (3)如图,过点Q 作直线MN ⊥AD 于点M ,交BC 于点N ,则MN ⊥BC .(第25题)∵AP ∥CT ,∴△APQ ∽△CTQ ,∴AP CT =QM QN .设QM =h ,则QN =4-h ,∴a CT =h 4-h解得CT =a (4-h )h∴S =12ah +12·a (4-h )h ·(4-h )=12ah +a (4-h )22h整理得ah 2-(4a +S )h +8a =0.∵方程有实数根∴[-(4a +S )]2-4a ·8a ≥0,即(4a +S )2≥32a 2.又∵4a +S >0,a >0,∴4a +S ≥4 2a∴S ≥(4 2-4)a .当S =(4 2-4)a 时,由方程可得h 1=h 2=2 2,满足题意.故当h =2 2时,△APQ 与△CTQ 面积之和S 最小,最小值为(4 2-4)a .。
华东师大版九年级数学上册期末综合检测试题(有答案)-名师推荐
华师大版九年级数学上册期末专题:期末综合检测试题一、单选题(共10题;共30分)1.在x轴上,且到原点的距离为2的点的坐标是()A. (2,0)B. (-2,0) C. (2,0)或(-2,0) D. (0,2)2.要使式子在实数范围内有意义,字母a的取值必须满足()A. a≥B. a≤C. a≠D. a≠03.下列各式中,与是同类二次根式的是()。
A. B.C.D.4.四边形ABCD相似四边形A'B'C'D',且AB:A'B'=1:2,已知BC=8,则B'C'的长是A. 4B. 16C. 24D. 645.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为()A. 1.5米B. 2.3米 C. 3.2米 D. 7.8米6.下列命题中,假命题是()A. 三角形两边之和大于第三边B. 三角形外角和等于 0°C. 三角形的一条中线能将三角形面积分成相等的两部分D. 等边三角形既是轴对称图形,又是中心对称图形7.有两边相等的三角形的两边长为3cm,5cm,则它的周长为 ( )A. cmB. 11cmC. 1 cmD. 11cm或13cm8.如图所示,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是()A. 10<m<12B. 2<m<22C. 1<m<11D. 5<m<69.一个地图上标准比例尺是1∶ 00000,图上有一条形区域,其面积约为24 cm2,则这块区域的实际面积约为()平方千米。
A. 2160B. 216C. 72D. 10.7210.一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米.A. 0B. 3C. 0D. 以上的答案都不对二、填空题(共10题;共30分)11.若0,则 =________.12.已知关于x的一元二次方程x2-4x+1=0的两个实数根是x1、x2,那么x1+x2=________.13.某药品原价为每盒25元,经过两次连续降价后,售价为每盒16元.若该药品平均每次降价的百分数是x,则可列方程为________.14.若式子有意义,则x的取值范围是________.15.线段c是线段a,b的比例中项,其中a=4,b=5,则c=________16.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在轴上,OC在轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的1,那么点B′的坐标是________.17.计算:﹣× 0 =________.18.坐标系中,△ABC的坐标分别是A(-1,2),B(-2,0),C(-1,1),若以原点O为位似中心,将△ABC 放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________.19.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为________20.如图,梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE= °,点E在DC上,AE,BC的延长线相交于点F,若AE=10,则S△ADE+S△CEF的值是________ .三、解答题(共8题;共60分)21.张老师担任初一(2)班班主任,她决定利用假期做一些家访,第一批选中8位同学,如果他们的住处在如图所示的直角坐标系中,A(-1,-2),B(0,5),C(-4,3),D(-2,5),E(-4,0),F (1,5),G(1,0),H(0,-1),请你在图中的直角坐标系中标出这些点,设张老师家在原点O,再请你为张老师设计一条家访路线。
华师版九年级数学上册期末测试题(含答案)
华东师大版数学九年级上期期末测试题一、选择题1. 下列方程中, 是一元二次方程的是(A )221x y += (B )21121x x =+ (C )24535x x --= (D0= 2. 下列各组二次根式中, 化简后是同类二次根式的是(A)(B和3 (C)n(D3. 下列说法正确的是(A )做抛掷硬币的实验, 如果没有硬币用图钉代替硬币, 做出的实验结果是一致的 (B )抛掷一枚质地均匀的硬币, 已连续掷出5次正面, 则第6次一定掷出背面 (C )某种彩票中奖的概率是1%, 因此买100张该彩票一定会中奖(D )天气预报说明天下雨的概率是50%, 也就是说明天下雨和不下雨的机会是均等的4.若 = , 则 的值为 (A )5 (B )15 (C )3 (D )135. △ 的顶点 的坐标为 , 先将△ 沿 轴对折, 再向左平移两个单位, 此时 点的坐标为(A )(2,4)- (B )(0,4)- (C )(4,4)-- (D )(0,4)6. 用配方法解方程 , 下列配方变形正确的是(A )2(2)2x += (B )2(2)2x -= (C )2(2)4x += (D )2(2)4x -= 7. 如图(1), 小正方形的边长均为1, 则下列图中的三角形 (阴影部分)与△ABC 相似的是8. 某服装店搞促销活动, 将一种原价为56元的衬衣第一次降价后, 销量仍然不好, 又进行第二次降价, 两次降价的百分率相同, 现售价为31.5元, 设降价的百分率为 , 则列出方程正确的是 (A )256(1)31.5x -= (B )56(1)231.5x -÷= (C )256(1)31.5x += (D )231.5(1)56x -=二、填空题: (本大题共8个小题, 每小题3分, 共24分.请把答案填在题中的横线上. )(B )(C )(D )(A )CAB图(1)9. 若二次根式有意义, 则实数的取值范围是__________.10. 在比例尺为1∶4000000的地图上, 量得甲、乙两地距离为2.5cm, 则甲、乙两地的实际距离为____________km.11. 如图(4), 在菱形中, 、分别是、的中点,•如果, 那么菱形的周长__________.12. 有30张扑克牌, 牌面朝下, 随机抽出一张记下花色再放回;洗牌后再这样抽, 经历多次试验后, 得到随机抽出一张牌是红桃的概率为20%, 则红桃牌大约有张.13. 关于的一元二次方程有实数根, 则的取值范围是________.14. 如图(5), 在中, ∠是直角, , ,矩形的一边在上, 顶点、分别在、上, 若∶=1∶4, 则矩形的面积是;15. 设, 是关于的方程的两个实数根,且.则= .三、(本大题共4个小题, 每小题6分, 共24分. )16. 化简:· . 17. 解方程:.18. 解方程: . 19. 已知中, , ,, 求和.20. (2007山东青岛)一艘轮船自西向东航行, 在A处测得东偏北21.3°方向有一座小岛C, 继续向东航行60海里到达B处, 测得小岛C此时在轮船的东偏北63.5°方向上. 之后, 轮船继续向东航行多少海里, 距离小岛C最近?(参考数据:sin21.3°≈ , tan21.3°≈ , sin63.5°≈ , tan63.5°≈2)((第16题图) 四、(本大题共4个小题, 每小题7分, 共28分. )21.一个不透明的袋子中装有三个完全相同的小球, 小球上分别标有数字3, 4, 5, •从袋中随机取出一个小球, 用小球上的数字作十位, 然后放回, •搅匀后再取出一个小球, 用小球上的数字作个位, 这样组成一个两位数;试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为8的两位数的概率是多少?•用列表法或画树状图加以说明.22. 如图(7), 在△ 中, 是∠ 的平分线, 的垂直平分线 交 于 , 交 的延长线于 , 连结 .求证: · . 五、(本大题共2个小题, 每题9分, 共18分. ) 29.为适应市场需要, 某灯具商店采购了一批某种型号的节能灯, 共用去400元, 在搬运过程中, 不小心打碎了5盏, 该店把余下的灯每盏加价4元全部售出;仍然获得利润90元.求每盏灯的进价.A BC 东参考答案与评分建议一、CBDAA CBADA CC二、13. 14. 100 15. 40 16. 17. 6 18. 且 19. 100 20. ②③三、21. 解:原式 ………………………………(4分)3a = ………………………………(6分) 22. 解: ………………………………(2分)2(1)0x += ………………………………(4分)1x =- ………………………………(6分) 23. 解: ( ) ……………(4分)125,2x x ==- (125,2x x ==-) ………………………………(6分)24. 解: 在 中, ∵∴ , ……………(4分)∴ , ∴ ……………(6分)四、25.解:可以组成33, 34, 35, 43, 44, 45, 53, 54, 55 ……………(2分)……………(5分)3 4 4 5 3 3 4 5 3 45 5十位上的数字与个位上的数字之和为8的两位数的概率是:……………(7分) 26. (1)解: 设抛物线为:∵抛物线的图象与 轴交于 、 两点, 且经过点∴ , ∴ ……………(4分)∴抛物线的解析式为2(2)(1)y x x =+-(也可以是2224y x x =+-)…………(5分) (2)2224y x x =+-2211192()42()4222y x x x =++--=+- ∴抛物线的对称轴为12x =-(直接用公式求出也得分)……………(7分)27. 证明: ∵ 是 的垂直平分线, ∴ , …………(2分) 又∵ 平分 , ∴ ……………(3分)∵,ADF B BAD DAF CAD CAF ∠=∠+∠∠=∠+∠ ∴B CAF ∠=∠ ……………(4分) ∴BAF AFC ∆∆ ……………(5分) ∴ , 即 ……………(6分)∴2FD FB FC =⋅ ……………(7分)28. 解: 根据题意得: ……………(1分)∴222121212()2x x x x x x +=+- ……………(2分)2(2)(21)11k k =+-+= ……………(3分) 解得124,2k k =-= ……………(4分)当 时, ……………(5分)当 时, , 不合题意, 舍去……………(6分) ∴4k =- ……………(7分)五、解: 设每盏灯的进价为 元, ……………(1分) 根据题意列方程得: ……………(4分) 解方程得: ……………(7分)经检验 都是原方程的根, 但 不合题意, 舍去∴10x = ……………(8分) 答: 每盏灯的进价为10元.……………(9分) 30. 解:正确画出图形得5分方法一: 如图(8.1)(没有考虑人的高度不扣分)①将标杆EF 立在一个适当的位置; ……………(6分)②人 站在一个适当的位置: 通过标杆的顶部 , 刚好看到旗杆的顶部 ……(7分) ③测出人的身高CD ,标杆的高度EF ,人到标杆DF 的距离和人到旗杆DB 的距离 …(8分) ④计算旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) (方法二: 如图(8.2)①将平面镜放在 处, ……………(6分)②人 走到适当的地方: 刚好能从平面镜 中看到旗杆的顶部 …………(7分) ③测出人的高度 , 人到平面镜的距离 , 平面镜到旗杆底部的距离 …(8分) ④计算出旗杆的高度: ∵ ,∴ , 所以旗杆的高度 …………(9分) )六、31.(1)证明:∵ , ∴∴BPD BMA ∆∆…………(1分)∴,DP BP BPPD AM AM AB AB==…………(2分) 同理: …………(3分) 又∵ 是等边三角形, ∴ ∴12()BP CP BP CPh h AM AM h h AB AC BC BC+=+=+=…………(4分) (也可以用面积相等、三角函数来证明) (2)123h h h h ++=…………(5分) 过 作 ∥ , 交 于 , 交 于 , 交 于 又∵ , ∴ …………(6分)由(1)可得: …………(7分) ∴123h h h AN MN h ++=+=…………(8分) (3)123h h h h ++= …………(10分)32. 解: (1)∵直线 经过 轴上的点 和 轴上的点 ∴ , ∴, ∴ …………(1分)又∵抛物线2y x bx c =++经过A 、B 两点∴2204488b b c c c=-⎧=++⎧⇒⎨⎨=--=⎩⎩…………(2分) ∴抛物线为822--=x x y …………(3分)(2)由(1)可得 (注意: 可以由公式求出, 也可由配方得出)…………(4分) 过 作 轴的垂线, 交 轴于 ∴1OG =ABD AOB AGD AOB AOBD OBDG S S S S S S ∆∆∆∆=-=+-四边形梯形111(89)1(41)9486222=⨯+⨯+⨯-⨯-⨯⨯=…………(6分) (3)过 作 轴, 交 于 , 交抛物线于 , 设 则2(,28);(,28)H t t N t t t ---由图可知: …………(7分)①当 时, 解得: 都不合题意, 舍去…………(8分) ②当 时, 解得: (不合题意, 舍去)…………(9分) 由①和②可得: ∴22228028()28339t t --=-⨯-=- ∴280(,)39N -……………………(10分)。
华师大版九年级上册数学期末测试卷及含答案
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、sin30°=()A.0B.1C.D.2、一元二次方程的常数项是()A.-2B.0C.1D.23、关于的一元二次方程的一个根为,则另一根为().A.-6B.2C.4D.14、用配方法解方程时,可将方程变形为()A. B. C. D.5、“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件6、如图,Rt△ABC中,∠C=90°,AC=4,BC=3,则tanA的值为()A. B. C. D.7、小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B. C. D.8、如图,中,A,B两个顶点在x轴的上方,点C的坐标是以点C为位似中心,在x轴的下方作的位似图形,并把的边长放大到原来的2倍.设点B的对应点的横坐标是a,则点B的横坐标是( )A. B. C. D.9、下列说法正确的是( )A.调查市场上某种白酒的塑化剂的含量,采用普查方式;B.要反映兴化市一周内每天的最高气温的变化情况,宜采用折线统计图;C.为了解一批电视机的使用寿命,任意抽取80台电视机进行试验,样本容量为80台; D.在一个透明的口袋中装有大小、外形一模一样的5个黄球,1个红球,摸出一个球是黄球是必然事件.10、如图,O为△ABC中线的交点,则S△ABC :S△BOC的值为()A. B.2:1 C.3:1 D.4:111、如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为()米.(不计宣传栏的厚度)A.4B.5C.6D.812、与是同类二次根式的是()A. B. C. D.13、如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.714、下列说法正确的是()A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是B.国家级射击运动员射靶一次,正中靶心是必然事件C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是D.如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品15、在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是________.17、等腰三角形的三边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣8x+n﹣2=0的两根,则n的值为________.18、如图所示,D,E分别在△ABC的边AB、AC上,DE与BC不平行,当满足________条件时,有△ABC∽△AED.19、如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB 相交于点D,则BC′=________.20、如图,在Rt△ABC中,∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠ADC=30°,BD=18cm,则AC的长度是________cm.21、已知m是关于x的方程x2+4x﹣5=0的一个根,则m2+4m=________.22、已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= ________.23、若方程x2﹣4x+1=0的两根是x1, x2,则x1(1+x2)+x2的值为________.24、已知3a=4b,那么=________.25、如图,已知△ABC∽△DEF,且相似比为k,则k=________,直线y=kx+k的图象必经过________象限.三、解答题(共5题,共计25分)26、计算:.27、计算:﹣4cos30°+(π﹣)0+()﹣1.28、已知四条线段依次成比例,其中,,,.求的值.29、如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AB平行,一条与AD平行,其余部分种植草坪,若使草坪的面积为570米,问小路宽为多少米?30、如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C 以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、D5、B6、A7、A8、D9、B10、C11、C12、D13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
华师大版九年级上册数学期末测试卷及含答案(必考题)
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、点A(﹣1,2)绕坐标原点O逆时针方向旋转90°得到的点A'的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(1,﹣2)D.(2,1)2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D ,如果AC=3,AB=6,那么AD的值为()A. B. C. D.3、在△ABC中,,, 那么的值是()A. B. C. D.4、x取()时,式子在实数范围内有意义.A.x≥1且x≠2B.x≥2且x≠1C.x≥2D.都错误5、如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为()A. B. C. D.6、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=1,MC=4,动点P在AB边上,连接PC,PM,则PC+PM的最小值是()A. B.6 C. D.77、如图,ABC中,正方形DEFG的顶点D,G分别在AB,AC上,顶点E,F 在BC上.若△ADG、△BED、△CFG的面积分别是1、3、1,则正方形的边长为()A. B. C.2 D.28、如图,己知在矩形ABCD中,AB=2,BC=6,点E从点D出发,沿DA方向以每秒1个单位的速度向点A运动,点F从点B出发,沿射线AB以每秒3个单位的速度运动,当点E运动到点A时,E、F两点停止运动.连接BD,过点E作EH⊥BD,垂足为H,连接口,交BD于点G,交BC于点旭连接CF.给出下列结论:①△CDE∽△CBF;②∠DBC=∠EFC;③=;④GH的值为定值;上述结论中正确的个数为()A.1B.2C.3D.49、小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A. B. C. D.10、如图,在△ABC中,∠C=90°,AB=15,sinB=,则AC等于()A.3B.9C.4D.1211、某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A. B.C. D.12、如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=3CE,AB=8,则AD的长为()A.3B.4C.5D.613、下列事件中,属于必然事件的是 )A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心 C.任意画一个三角形,其内角和是 D.抛一枚硬币,落地后正面朝上14、下列各数中是有理数的是()A. B.4π C.sin45° D.15、已知为锐角,且,则()A. B. C. D.二、填空题(共10题,共计30分)16、若直角三角形的一锐角为30°,而斜边与较短边之和为24.那么斜边的长为________.17、已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=________.18、比较大小:________ .19、如图,AC与BC为⊙O的切线,切点分别为A,B,OA=2,∠ACB=60°,则阴影部分的面积为________.20、在一个不透明的袋中装有2个黑色小球和若干个红色小球,每个小球除颜色外都相同,每次摇匀后随机摸出一个小球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红色小球的频率稳定于0.8,则可估计这个袋中红色小球的个数约为________.21、如图,在△中,, ∥,的平分线交于, = ________.22、计算:•=________.23、如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).24、在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为________.25、如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是________,cosA的值是________.(结果保留根号)三、解答题(共5题,共计25分)26、计算:tan30°cos60°+tan45°cos30°.27、为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)28、如图,强强同学为了测量学校一棵笔直的大树OE的高度,先在操场上点A 处放一面平面镜,从点A处后退1m到点B处,恰好在平面镜中看到树的顶部E 点的像;再将平面镜向后移动4m(即AC=4m)放在C处,从点C处向后退1.5m到点D处,恰好再次在平面镜中看到大树的顶部E点的像,测得强强的眼睛距地面的高度FB、GD为1.5m,已知点O,A,B,C,D在同一水平线上,且GD⊥OD,FB⊥OD,EO⊥OD.求大树OE的高度.(平面镜的大小忽略不计)29、下图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1 m).(参考数据:tan15°≈0.27,tan30°≈0.58)30、已知x= +2,y= ﹣2,求x2+2xy+y2的值.参考答案一、单选题(共15题,共计45分)2、A3、B4、C5、B6、C7、C8、C9、A10、B11、B12、D13、C14、D15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
华师大版九年级数学上册期末测试题1(含答案)
华师大版九年级数学上册期末测试题1(含答案)(本试卷满分120分 考试时间120分钟)第Ⅰ卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列计算正确的是( A ) A.2×3= 6B.3+2=5C.(-2)2=-2D .4÷2=22.方程(x -3)2=1的根是( D ) A .x =4B .x =2C .x 1=-4,x 2=2D .x 1=4,x 2=23.(甘南州中考)在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成的概率是( B )A.13B.23C.16D.344.如图,一座公路桥离地面高度AC 为6米,引桥AB 的水平宽度BC 为24米,为降低坡度,现决定将引桥坡面改为AD ,使其坡度为1∶6,则BD 的长是( C )A .36米B .24米C .12米D .6米第4题图 第5题图 第6题图5.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为( D )A .3B .4C .2.5D .3.56.如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12 m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( A )A .6(3+1)mB .6(3-1)mC .12(3+1)mD .12(3-1)m7.如图,在等腰直角三角形ABC 中,∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA =15,则AD 的长是( B )A. 2B .2C .1D .22第7题图 第8题图8.★如图,△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的点C ′处,并且C ′D ∥BC ,则CD 的长是( A )A.409B.509C.154D.254第Ⅱ卷 (非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.(遂宁中考)在一个不透明的盒子中装有5个红球,2个黄球,3个绿球,这些球除颜色外没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为 12.10.计算(1-2)2+18的值是 .11.(烟台中考)在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin A 2= 12 .12.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连结BE ,ED ,BD .若∠BAD =58°,则∠EBD 的度数为 32 度.13.关于x 的方程x 2-6x +p =0的两个根是α,β,且2α+3β=20,则p = -16 . 14.如图,在平面直角坐标系中,以P (4,6)为位似中心,把△ABC 缩小得到△DEF ,若变换后,点A ,B 的对应点分别为点D ,E ,则点C 的对应点F 的坐标为 (4,4) .第14题图 第15题图 第16题图15.★如图,在正方形ABCD 中,F 是AD 的中点,BF 与AC 交于点G ,则△BGC 与四边形CGFD 的面积之比是 4∶5 .16.如图,某天然气公司的主输气管道从A 市的北偏东60°方向直线延伸,测绘员在A 处测得安装天然气的M 小区在A 市的北偏东30°方向,测绘员沿主输气管道步行1 000米到达点C 处,测得M 小区位于点C 的北偏西75°方向,试在主输气管道上寻找支管道连结点N ,使到该小区铺设的管道最短,此时AN 的长是三、解答题(本大题共8小题,共72分) 17.(10分)计算: (1)45+27+113-125; 解:原式=1133-25;(2)212÷328×⎝⎛⎭⎫-5227. 解:原式=1210÷67×⎝⎛⎭⎫-5×477=-51021.18.(6分)解方程: (1)x (x +8)=16;(2)(2x -1)2=x (3x +2)-7. 解:x =-4±42; 解:x 1=2,x 2=4;19.(8分)已知关于x 的一元二次方程x 2+(m +3)x +m +1=0. (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)给m 选取一个值,使方程的根是整数,并求出这两个根.(1)证明:Δ=(m+3)2-4(m+1)=m2+6m+9-4m-4=m2+2m+5=(m+1)2+4.∵(m +1)2≥0,∴(m+1)2+4>0.∴无论m取何值,原方程总有两个不相等的实数根.(2)解:取m=-1,方程为x2+2x=0,解得x1=0,x2=-2.20.(8分)已知:如图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其点B,C,D的坐标分别为(1,2),(1,1),(3,1).(1)直接写出E点和A点的坐标;(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为3∶1;(3)直接写出图形A1B1C1D1E1的面积.解:(1)由图形可得E(3,2),∵△ABE为边长为2的等边三角形,∴BE边长的高为3,∴A(2,2+3);(2)画图略;(3)∵△ABE为边长是2的等边三角形,∴S△ABE=12×2×3=3,又矩形BCDE的面积为1×2=2,∴五边形ABCDE的面积为2+ 3.∵五边形ABCDE与五边形A1B1C1D1E1相似,且相似比为1∶3,则五边形A1B1C1D1E1的面积为9(2+3)=18+9 3.21.(8分)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时:(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.解:分别用A,B,C,D,E代表大拇指,食指,中指,无名指,小拇指,画树状图如下:共有25种等可能的结果.(1)甲伸出小拇指取胜有1种可能,∴P(甲伸出小拇指取胜)=1 25;(2)乙取胜有5种可能,∴P(乙取胜)=525=15.22.(10分)(宜宾中考)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号).解:作CF⊥AB于点F,设AF=x米,tan∠ACF=AFCF,则CF=AFtan∠ACF=xtanα=xtan 30°=3x米.AB=x+BF=(4+x)米,tan∠AEB=ABBE,则BE=ABtan∠AEB=x+4tan 60°=33(x+4)米.∵CF-BE=DE,即3x-33(x+4)=3.解得x=33+42,则AB=33+42+4=33+122米.答:树高AB是33+122米.23.(10分)(眉山中考)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC =90°,点P为线段BE延长线上一点,连结CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:PCCD=CE CB;(2)连结BD,请你判断AC与BD有什么位置关系?并说明理由.(1)证明:∠ECB =∠PCD =45°,∠CEB =∠CPD =90°, ∴△BCE ∽△DCP ,∴PC DC =ECCB;(2)解:AC ∥BD ,理由:∵∠PCE +∠ECD =∠BCD +∠ECD =45°,∴∠PCE =∠BCD ,又∵PC DC =EC CB,∴△PCE ∽△DCB ,∴∠CBD =∠CEP =90°,∵∠ACB =90°,∴∠ACB =∠CBD ,∴AC ∥BD.24.(12分)已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A(-3,0),C(1,0),tan ∠BAC =34.(1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连结DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连结PQ ,设AP =DQ =m ,问是否存在这样的m 使得△APQ 与△ADB 相似,如存在,请求出m 的值;如不存在,请说明理由.解:(1)∵点A(-3,0),C(1,0),∴AC =4,BC =tan ∠BAC ×AC =34×4=3,B 点坐标为(1,3).设过点A ,B 的直线的函数表达式为y =kx +b ,由⎩⎨⎧0=k ×(-3)+b ,3=k +b ,得k=34,b =94,∴直线AB 的函数表达式为y =34x +94.(2)如图①,过点B 作BD ⊥AB ,交x 轴于点D ,在Rt △ABC 和Rt △ADB 中,∵∠BAC =∠DAB ,∴Rt △ABC ∽Rt △ADB ,∴D 点为所求.又tan ∠ADB =tan ∠ABC =43,∴CD =BC÷tan ∠ADB =3÷43=94.∴OD =OC +CD =134,∴D ⎝⎛⎭⎫134,0. (3)这样的m 存在,在Rt △ABC 中,由勾股定理得AB =5.如图①,当PQ ∥BD 时,△APQ ∽△ABD.则m 5=3+134-m3+134,解得m =259.如图②,当PQ ⊥AD 时,△APQ ∽△ADB ,则m 3+134=3+134-m5,解得m =12536.综上,m =259或12536.。
最新华师大版九年级数学上册期末综合检测试卷(有答案)
华师大版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则常数c的值为()A. ±4B. 4C. ±16D. 162.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A. (3,1)B. (3,-1)C. (1,- 3)D. (2,-1)3.点P(﹣1,4)关于x轴对称的点P′的坐标是()A. (﹣1,﹣4)B. (﹣1,4)C. (1,﹣4)D. (1,4)4.已知2b3a−b =34,则ab=()A. 6B. 119C. 215D. -275.已知三角形的两边分别为5和8,则此三角形的第三边可能是()A. 2B. 3C. 5D. 136.如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,垂足为D,若BE=6 cm,则AC 等于( )A. 6cmB. 5cmC. 4cmD. 3cm7.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A. ℎsina B. ℎtanaC. ℎcosaD. h•sinα8.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD 相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.2 33B.233C.343D.4539.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的12.则新品种花生亩产量的增长率为()A. 20%B. 30%C. 50%D. 120%10.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A. 1B. 2C. 3D. 4二、填空题(共10题;共30分)11.已知一个三角形的三边长分别是a+4,a+5和a+6,则a的取值范围是________.12.当x________时,x−3在实数范围内有意义.13.化简3=________.14.在草稿纸上计算:① 13;② 13+23;③ 13+23+33;④ 13+23+33+43,观察你计算的结果,用你发现的规律直接写出下面式子的值13+23+33+⋯+283=________.15.如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=136°,则∠ANM=________°.16.如图,已知点A(2,2)关于直线y=kx(k>0)的对称点恰好落在x轴的正半轴上,则k的值是________.17.在△ABC中,点D,E分别在边AB,AC上,如果ADAB = 23,AE=4,那么当EC的长是________时,DE∥BC.18.如图,矩形ABCD的对角线AC、BD相交于点O,AB=4,BC=8,过点O作OE⊥AC交AD 于点E,则AE的长为________.19.如图∠AOP=∠BOP=15°,PC∥OA ,PD⊥OA ,若PC=6,则PD等于________.三、解答题(共9题;共60分)20.若a=1﹣2,先化简再求a2−1a+a +a2−2a+1a−a的值.21.如图,△ABC中,∠ACB=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D.若BD=7,求AC的长.22.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?23.阅读下列材料,然后回答问题.在进行二次根式的化简运算时,我们有时会碰上形如3+1的3+1= 3−3+13−1= 23−132−12=3﹣1.以上这种化简的步骤叫做分母有理化.请用上面的方法化简:2−3.24.如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)26.如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.27.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?28.如图,小平为了测量学校教学楼的高度,她先在A处利用测角仪测得楼顶C的仰角为30°,再向楼的方向直行50米到达B处,又测得楼顶C的仰角为60度.已知测角仪的高度是1.2米,请你帮助小平计算出学校教学楼的高度CO.(3≈1.7)答案一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】D9.【答案】A10.【答案】C二、填空题11.【答案】a>−312.【答案】≥313.【答案】23314.【答案】40615.【答案】4416.【答案】2−117.【答案】618.【答案】519.【答案】3三、解答题20.【答案】解:a2−1a+a +a2−2a+1a−a=a+1a−1a a+1+2 a a−1.∵a=1﹣2<1,∴原式=a−1a +−1a=a−2a.把a=1﹣2代入得:a−2 a =2−1−2=21−2=(1+2)2=3+22.21.【答案】解:连接AD,∵AB的垂直平分线交AB于E,∴AD=BD,∴∠DAB=∠B,∵BD=7,∴AD=7,∵∠B=15°,∴∠DAB=15°,∴∠ADC=30°,∵∠C=90°,∴AC= AD=3.5.22.【答案】解:根据题意得:AC=12×2=24,BC=30,∠BAC=90°.∴AC2+AB2=BC2.∴AB2=BC2-AC2=302-242=324∴AB=18.∴乙船的航速是:18÷2=9海里/时.=2+3.23.【答案】解:原式= 32−32+324.【答案】解:∵△PCD是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP∽△PDB,∴∠APC=∠B,又∠A=∠A,∴△ACP∽△ABP,∴∠APB=∠ACP=120°25.【答案】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时) ∴此车没有超过限制速度.26.【答案】证明:∵AB=AC,∴∠B=∠C,∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∴∠B=∠ADE,∵∠DAE=∠BAD,∴△ADE∽△ABD27.【答案】现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.28.【答案】解:设CM=x米∵∠CEM=30°,∴tan30°=CM,EM∴EM=3x.∵∠CFM=60°,∴tan60°=CM,FM∴MF=,3=50.∴3x﹣3解得x=253≈42.5,∴CO=42.5+1.2=43.7.答:学校教学楼的高度CO是43.7米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 期末检测题
(本检测题满分:120分,时间:120分钟)
一、选择题(每小题2分,共24分)
1.已知25523y x x =-+--, 则2xy 的值为( ) A.15- B.15 C.152- D.152
2.一个正偶数的算术平方根是a ,那么与这个正偶数相邻的下一个正偶数的算术平方根 是( )
A.a +2 B. a 2+2 C.√a 2+2 D.±√a +2
3.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( )
A.21
B.55
C.3
3 D.23 4.(2013·山东潍坊中考)已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( )
A.当0k =时,方程无解
B.当1k =时,方程有一个实数解
C.当1k =-时,方程有两个相等的实数解
D.当0k ≠时,方程总有两个不相等的实数解
5.从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张卡片中,任意抽取一张,则所抽卡片上数字的绝对值小于2的概率是( )
A .19
B .13
C .12
D .23
6.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )
A.3
B.3
C.6
D.9
7.(2013·湖北孝感中考)如图,在△ABC 中,AB AC a ==,
BC b (a b >).在△ABC 内依次作∠CBD =∠A ,∠DCE =
∠CBD ,∠EDF
=∠DCE ,则EF 等于( ) A.32b a B.32a b C.43b a D.4
3a b
8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除
颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色
球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能
是( )
A.24
B.18
C.16
D.6
9.(2013•山东潍坊中考)一渔船在海岛A 南偏东20︒方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80︒方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10︒方向匀速航行,20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )
A.103海里/时
B.30海里/时
C.203海里/时
D.303海里/时。