1992年普通高等学校招生全国统一考试.文科数学试题及答案

合集下载

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。

1998年普通高等学校招生全国统一考试.文科数学试题及答案

1998年普通高等学校招生全国统一考试.文科数学试题及答案

1998年全国高校招生数学统考试题(文史类)一、选择题:本大题共15小题;第(1)-(10)题每小题4分,第(11)-(15)题每小题5分,共65分。

在每小题给出的四项选项中,只有一项是符合题目要求的。

(1)sin600°的值是(A)1/2 (B)-1/2 (C)/2 (D)-/2(2)函数y=a|x|(a>1)的图象是(3)已知直线x=a(a>0)和圆(x-1)2+y2=4相切,那么a的值是(A)5 (B)4 (C)3 (D)2(4)两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是(A)A1A2+B1B2=0 (B)A1A2-B1B2=0(C)A1A2/B1B2=-1 (D)B1B2/A1A2=1(5)函数f(x)=1/x(x≠0)的反函数f-1(x)=(A)x(x≠0) (B)1/x(x≠0)(C)-x(x≠0) (D)-1/x(x≠0)(6)已知点P(sinα-cosα,tgα)在第一象限,则[0,2π)内α的取值范围是(A)(π/2,3π/4)∪(π,5π/4) (B)(π/4,π/2)∪(π,5π/4)(C)(π/2,3π/4)∪(5π/2,3π/2) (D)(π/4,π/2)∪(3π/4,π)(7)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面积展开图扇形的圆心角为(A)120°(B)150°(C)180°(D)240°(8)复数-i的一个立方根是i,它的另外两个立方根是(A)/2±1/2 (B)-/2±1/2i(C)±/2+1/2i (D)±/2-1/2i(9)如果棱台的两底面积分别是S,S',中截面的面积是S0,那么(A)2=+(B)S0=(C)2S O=S+S' (D)S02=2S'S(10)2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士。

2022年普通高等学校招生全国统一考试(甲卷)数学(文科)含答案解析(原卷版)

2022年普通高等学校招生全国统一考试(甲卷)数学(文科)含答案解析(原卷版)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(甲卷)数学(文科)副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设集合A ={−2,−1,0,1,2},B ={x|0≤x <52},则A ∩B =( ) A. {0,1,2}B. {−2,−1,0}C. {0,1}D. {1,2}2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差 3. 若z =1+i ,则|iz +3z|=( ) A. 4√5B. 4√2C. 2√5D. 2√24. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 205. 将函数f(x)=sin(ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A. 16B. 14C. 13D. 126. 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A. 15B. 13C. 25D. 237. 函数y =(3x −3−x )cosx 在区间[−π2,π2]的图象大致为( )A.B.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………C.D.8. 当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f′(2)=( ) A. −1B. −12C. 12D. 19. 在长方体ABCD −A 1B 1C 1D 1中,已知B 1D 与平面ABCD 和平面AA 1B 1B 所成的角均为30∘,则( )A. AB =2ADB. AB 与平面AB 1C 1D 所成的角为30∘C. AC =CB 1D. B 1D 与平面BB 1C 1C 所成的角为45∘10. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S甲S 乙=2,则V甲V 乙=( ) A. √5B. 2√2C. √10D. 5√10411. 已知椭圆C:x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ·BA 2⃗⃗⃗⃗⃗⃗⃗⃗ =−1,则C 的方程为( )A. x 218+y 216=1B. x 29+y 28=1 C. x 23+y 22=1D. x 22+y 2=112. 已知9m =10,a =10m −11,b =8m −9,则( ) A. a >0>bB. a >b >0C. b >a >0D. b >0>a第II 卷(非选择题)二、填空题(本大题共4小题,共20.0分)13. 己知向量a ⃗ =(m,3),b ⃗ =(1,m +1).若a ⃗ ⊥b ⃗ ,则m = .14. 设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为 .15. 记双曲线C:x 2a 2−y 2b2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值 .16. 已知▵ABC 中,点D 在边BC 上,∠ADB =120∘,AD =2,CD =2BD.当ACAB取得最小值时,BD = .三、解答题(本大题共7小题,共80.0分。

2009年普通高等学校招生全国统一考试大纲——数学(文)

2009年普通高等学校招生全国统一考试大纲——数学(文)

2009年普通高等学校招生全国统一考试大纲——数学(文)(必修+选修Ⅰ)Ⅰ.考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试要求《普通高等学校招生全国统一考试大纲(文科·2009年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次.(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。

2023年普通高等学校招生全国统一考试(全国甲卷)_文科数学_解析版

2023年普通高等学校招生全国统一考试(全国甲卷)_文科数学_解析版

2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð,故选:A.2.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】()()351i 51i 1i(2i)(2i)5+-==-+-故选:C.3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.255【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得()(),,a b a b a b a b +-+⋅-,从而利用平面向量余弦的运算公式即可得解.【详解】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则a b a b +==-== ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()cos ,17a b a b a b a b a b a b+⋅-+-==+-.故选:B.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件,其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=.故选:D.5.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25 B.22 C.20D.15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选:C.6.执行下边的程序框图,则输出的B =()A .21B.34C.55D.89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.7.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==2212121221620PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.8.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e24y x =+【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x -=-,因为e 1xy x =+,所以()()()22e 1e e 11x xxx x y x x +-'==++,所以1e|4x k y ='==所以()e e124y x -=-所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+.故选:C9.已知双曲线22221(0,0)x y a b a b-=>>22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.B.C.355D.455【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由e =,则22222215c b a a==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离5d ==,所以弦长45||5AB ===.故选:D10.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===,则该棱锥的体积为()A.1B.C.2D.3【答案】A 【解析】【分析】证明AB ⊥平面PEC ,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取AB 中点E ,连接,PE CE ,如图,ABC 是边长为2的等边三角形,2PA PB ==,,PE AB CE AB ∴⊥⊥,又,PE CE ⊂平面PEC ,PE CE E = ,AB ∴⊥平面PEC ,又322PE CE ==⨯=,PC =故222PC PE CE =+,即PE CE ⊥,所以11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯⨯=△,故选:A11.已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>【答案】A 【解析】【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,因为4112222⎛⎫+---= ⎪ ⎪⎝⎭,而22491670+-=+-=->,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知63)22g g <,因为62624112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+==<,即621122-<-,所以62)22g g >,综上,263222g g g <<,又e x y =为增函数,故a c b <<,即b c a >>.故选:A.12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1 B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.【答案】12-【解析】【分析】先分析1q ≠,再由等比数列的前n 项和公式和平方差公式化简即可求出公比q .【详解】若1q =,则由6387S S =得118673a a ⋅=⋅,则10a =,不合题意.所以1q ≠.当1q ≠时,因为6387S S =,所以()()6311118711a q a q qq--⋅=⋅--,即()()638171q q ⋅-=⋅-,即()()()33381171q q q ⋅+-=⋅-,即()3817q ⋅+=,解得12q =-.故答案为:12-14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.【详解】()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭ ,且函数为偶函数,20a ∴-=,解得2a =,故答案为:215.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数322zy x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1516.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长1AC =,即2R R ''==,故max R =;分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG ,则MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为.综上,R ∈.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【解析】【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc A bc A A+-===,解得:1bc =.【小问2详解】由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C ---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC 的面积为1133sin 12224ABC S bc A ==⨯⨯=△.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.【答案】(1)证明见解析.(2)1【解析】【分析】(1)由1A C ⊥平面ABC 得1A C BC ⊥,又因为AC BC ⊥,可证BC ⊥平面11ACC A ,从而证得平面11ACC A ⊥平面11BCC B ;(2)过点1A 作11A O CC ⊥,可证四棱锥的高为1AO ,由三角形全等可证1A C AC =,从而证得O 为1CC 中点,设1A C AC x ==,由勾股定理可求出x ,再由勾股定理即可求1AO .【小问1详解】证明:因为1A C ⊥平面ABC ,BC ⊂平面ABC ,所以1A C BC ⊥,又因为90ACB ∠= ,即ACBC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,所以BC ⊥平面11ACC A ,又因为BC ⊂平面11BCC B ,所以平面11ACC A ⊥平面11BCC B .【小问2详解】如图,过点1A 作11A O CC ⊥,垂足为O .因为平面11ACC A ⊥平面11BCC B ,平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,所以1A O ⊥平面11BCC B ,所以四棱锥111A BB C C -的高为1AO .因为1A C ⊥平面ABC ,,AC BC ⊂平面ABC ,所以1A C BC ⊥,1A C AC ⊥,又因为1A B AB =,BC 为公共边,所以ABC 与1A BC 全等,所以1A C AC =.设1A C AC x ==,则11A C x =,所以O 为1CC 中点,11112OC AA ==,又因为1A C AC ⊥,所以22211A C AC AA +=,即2222x x +=,解得x =,所以11A O ==,所以四棱锥111A BB C C -的高为1.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.635【答案】(1)19.8(2)(i )23.4m =;列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得23.4m =,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m≥合计对照组61420试验组14620合计202040(ii )由(i )可得,2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.【答案】(1)()f x 在π0,2⎛⎫⎪⎝⎭上单调递减(2)0a ≤【解析】【分析】(1)代入1a =后,再对()f x 求导,同时利用三角函数的平方关系化简()f x ',再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数()()sin g x f x x =+,从而得到()0g x <,注意到()00g =,从而得到()00g '≤,进而得到0a ≤,再分类讨论0a =与a<0两种情况即可得解;法二:先化简并判断得2sin sin 0cos xx x-<恒成立,再分类讨论0a =,a<0与0a >三种情况,利用零点存在定理与隐零点的知识判断得0a >时不满足题意,从而得解.【小问1详解】因为1a =,所以()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==,令cos t x =,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 0,1t x =∈,所以()()()23233222cos cos 22221211x x t t t t t t t t t +-=+-=-+-=-++-()()2221t t t =++-,因为()2222110t t t ++=++>,10t -<,33cos 0x t =>,所以()233cos cos 20cos x x f x x +-'=<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以()f x 在π0,2⎛⎫⎪⎝⎭上单调递减.【小问2详解】法一:构建()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭,则()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭,若()()sin 0g x f x x =+<,且()()00sin 00g f =+=,则()0110g a a '=-+=≤,解得0a ≤,当0a =时,因为22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭,又π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,则211cos x>,所以()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;综上所述:若()sin 0f x x +<,等价于0a ≤,所以a 的取值范围为(],0-∞.法二:因为()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,故2sin sin 0cos x x x-<在π0,2⎛⎫⎪⎝⎭上恒成立,所以当0a =时,()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;当0a >时,因为()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-,令()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭,则()22433sin cos 2sin cos x x xg x a x +'=-,注意到()22433sin 0cos 02sin 000cos 0g a a +'=-=>,若π02x ∀<<,()0g x '>,则()g x 在π0,2⎛⎫⎪⎝⎭上单调递增,注意到()00g =,所以()()00g x g >=,即()sin 0f x x +>,不满足题意;若0π02x ∃<<,()00g x '<,则()()000g g x ''<,所以在π0,2⎛⎫⎪⎝⎭上最靠近0x =处必存在零点1π20,x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,此时()g x '在()10,x 上有()0g x '>,所以()g x 在()10,x 上单调递增,则在()10,x 上有()()00g x g >=,即()sin 0f x x +>,不满足题意;综上:0a ≤.【点睛】关键点睛:本题方法二第2小问讨论0a >这种情况的关键是,注意到()00g '>,从而分类讨论()g x '在π0,2⎛⎫⎪⎝⎭上的正负情况,得到总存在靠近0x =处的一个区间,使得()0g x '>,从而推得存在()()00g x g >=,由此得解.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅=,求MFN △面积的最小值.【答案】(1)2p =(2)12-【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出p ;(2)设直线MN :x my n =+,()()1122,,,,M x y N x y 利用0MF NF ⋅=,找到,m n 的关系,以及MNF 的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px-+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y ==-==即2260p p --=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n ⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅=,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n-+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y =-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-【点睛】本题解题关键是根据向量的数量积为零找到,m n 的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】【分析】(1)根据t 的几何意义即可解出;(2)求出直线l 的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.【小问2详解】由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫⎪⎝⎭(2)263【解析】【分析】(1)分x a ≤和x a >讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3ax a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.【小问2详解】2,()23,x a x af x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以||=AB a所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。

2024年全国高考甲卷文科数学试题及答案

2024年全国高考甲卷文科数学试题及答案

绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3 C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73 C.1 D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.2C.12D.328.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3 C.{}3,4 D.{}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:A 2.设z =,则z z ⋅=()A.-iB.1C.-1D.2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z=,故22i2zz=-=.故选:D3.若实数,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.5B.12C.2-D.7 2-【答案】D【解析】【分析】画出可行域后,利用z的几何意义计算即可得.【详解】实数,x y满足43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.4.等差数列{}n a的前n项和为n S,若91S=,37a a+=()A.2-B.73 C.1 D.29【答案】D【解析】【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==.故选:D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.【答案】C【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯=故选:A.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.32D.1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B .原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==- ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213.已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.【答案】(1)153n n a -⎛⎫= ⎪⎝⎭(2)353232n ⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=⨯-=-,故11a =,故153n n a -⎛⎫= ⎪⎝⎭.【小问2详解】由等比数列求和公式得5113353523213n n n S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解;(2)31313【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,211113323323242F ABM ABM V S FO -=⋅⋅=⋅⋅⋅⋅=△,2222222cos2FA AB FB FAB FAB FA AB +-+-∠==∠=⋅1139sin 2222FAB S FA AB FAB =⋅⋅∠=⋅⋅△,设点M 到FAB 的距离为d ,则113933322M FAB F ABM FAB V V S d d --==⋅⋅=⋅⋅=△,解得31313d =,即点M 到ABF 的距离为31313.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立.【答案】(1)见解析(2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+∞,11()ax f x a x x '-=-=当0a ≤时,1()0ax f x x -'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减.【小问2详解】2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为2222x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =20.实数,ab 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。

1994年普通高等学校招生全国统一考试.文科数学试题及答案

1994年普通高等学校招生全国统一考试.文科数学试题及答案

1994年高校招生全国数学统一考试(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第I卷(选择题共65分)一、选择题(本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}2.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)3.点(0,5)到直线y=2x的距离是A.5/2B.C.3/2D./24.设θ是第二象限的角,则必有A.tg(θ/2)>ctg(θ/2)B.tg(θ/2)<ctg(θ/2)C.sin(θ/2)>cos(θ/2)D.sin(θ/2)<cos(θ/2)5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成A.511个B.512个C.1023个D.1024个6.在下列函数中,以π/2为周期的函数是A.y=sin2x+cos4xB.y=sin2xcos4xC.y=sin2x+cos2xD.y=sin2xcos2x7.已知正六棱台的上,下底面边长分别为2和4,高为2,则其体积为A.32B.28C.24D.208.设F1和F2为双曲线x2/4-y2=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是A.1B./2C.2D.9.如果复数Z满足│Z+i│+│z-i│=2,那么│Z+i+1│最小值是A.1B.C.2D.10.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有A.1260种B.2025种C.2520种D.5040种11.对于直线m、n和平面α、β,α⊥β的一个充分条件是12.设函数f(x)=1-(-1≤x≤0),则函数y=f-1(x)的图象是13.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是A.16π/9B.8π/3C.4πD.64π/914.如果函数y=sin2x+acos2x的图象关于直线x=-π/8对称,那么a=A. B.- C.1 D.-115.定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和.如果f(x)=lg(10x+1),x∈(-∞,+∞),那么第Ⅱ卷(非选择题共85分)二、填空题(本大题共5小题,共6个空格:每空格4分,共24分.把答案填在题中横线上)(16) 在(3-x )7的展开式中,x 5的系数是______________(用数字作答)(17) 抛物线y 2=8-4x 的准线方程是___________,圆心在该抛物线的顶点且与其准线相切的圆的方程是__________(18) 已知sin θ+cos θ=51,θ∈(0,π),则ctg θ的值是________________ (19) 设圆锥底面圆周上两点A 、B 间的距离为2,圆锥项点到直线AB 的距离为3,AB 和圆锥的轴的距离为1,则该圆锥的体积为____________(20) 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…,a n ,共n 个数据.我们规定所测量的“量佳近似值”a 是这样一个量:与其他近似值比较,a 与各数据的差的平方和最小.依此规定,从a 1,a 2,…,a n 推出的a =__________三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)(21) (本小题满分11分)求函数x xxx x x y 2sin 2cos cos 3cos sin 3sin 233++=的最小值. (22) (本小题满分12分)以知函数f (x )=log a x (a >0且a ≠1,x ∈R +),若x 1,x 2∈R +,判断()()[]2121x f x f +与⎪⎭⎫ ⎝⎛+221x x f 的大小,并加以证明.(23) (本小题满分12分)如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1) 证明AB 1∥平面DBC 1;(2) 假设AB 1⊥BC 1,BC =2,求线段AB 1在侧面B 1BCC 1上的射影长.(24) (本小题满分12分)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线.(25)(本小题满分14分)设数列{a n }的前n 项和为S n ,若对于所有的自然数n ,都有()21n n a a n S +=,证明{a n }是等差数列.1994年普通高等学校招生全国统一考试数学试题(文史类)参考解答及评分标准一、选择题(本题考查基本知识和基本运算)1.C 2.D 3.B 4.A 5.B 6.D 7.B 8.A 9.A 10.C 11.C 12.B 13.D 14.D 15.C二、填空题(本题考查基本知识和基本运算.每空格4分,共24分)16.-189 17.x =3,(x -2)2+y 2=1 18.43-19.322π20.na a a n+++ 21三、解答题21.本小题考查利用有关三角公式并借助辅助角求三角函数最小值的方法及运算能力,满分11分.解:因为sin3x sin 3x +cos3x cos 3x=(sin3x sin x )sin 2x +(cos3x cos x )cos 2x=21[(cos2x -cos4x )sin 2x +(cos2x +cos4x )cos 2x ] ——4分=21[(sin 2x +cos 2x )cos2x +(cos 2x -sin 2x )cos4x ] =21(cos2x +cos2x cos4x ) ——6分=21cos2x (1+cos4x ) =cos 32x ——8分所以x xx y 2sin 2cos 2cos 23+= =cos2x +sin2x =2sin(2x +4π). 当sin(2x +4π)=-1时,y 取最小值-2. ——11分22.本小题考查对数函数性质、平均值不等式等知识及推理论证的能力.满分12分. 解:f (x 1)+(x 2)=log a x 1+ log a x 2=log a (x 1x 2) ∵ x 1,x 2∈R +,∴ x 1x 2≤2212⎪⎭⎫⎝⎛+x x (当且仅当x 1= x 2时取“=”号).——2分当a >1时,有log a (x 1x 2)≤log a 2212⎪⎭⎫⎝⎛+x x——5分∴21log a (x 1x 2)≤log a ⎪⎭⎫⎝⎛+221x x , 21( log a x 1+ log a x 2)≤log a ⎪⎭⎫ ⎝⎛+221x x , 即21[f (x 1)+f (x 2)] ≤f ⎪⎭⎫⎝⎛+221x x (当且仅当x 1= x 2时取“=”号) ——7分当0<a <1时,有log a (x 1x 2)≥log a 2212⎪⎭⎫ ⎝⎛+x x ,——10分∴21 (log a x 1+log a x 2)≥log a 2212⎪⎭⎫⎝⎛+x x , 即21[f (x 1)+f (x 2)] ≥f ⎪⎭⎫ ⎝⎛+221x x (当且仅当x 1=x 2时取“=”号).——12分23.本小题考查空间线面关系,正棱柱的性质,空间想象能力和逻辑推理能力.满分12分.(1)证明:∵ A 1B 1C 1-ABC 是正三棱柱,∴ 四边形B 1BCC 1是矩形.连结B 1C ,交BC 1于E ,则B 1E =EC .连结DE .在△AB 1C 中,∵ AD =DC , ∴ DE ∥AB 1,——3分 又AB 1⊄平面DBC 1.DE ⊂平面DBC 1 ∴ AB 1∥DBC 1.——5分(2)解:作AF ⊥BC ,垂足为F .因为面ABC ⊥面B 1BCC 1,所以AF ⊥B 1BCC 1平面B 1F .连结B 1F ,则B 1F 是AB 1在平面B 1BCC 1内的射影.——7分∵ BC 1⊥AB 1, ∴ BC 1⊥B 1F .∵ 四边形B 1BCC 1是矩形,∴ ∠B 1BF =∠BCC 1=90º; ——9分 ∠FB 1B =∠C 1BC ,∴ △B 1BF ∽△BCC 1. ∴BB BFC C BF BC B B 111== 又F 为正三角形ABC 的BC 边中点,因而B 1B 2=BF ·BC =1×2=2, 于是B 1F 2= B 1B 2+ BF 2=3,∴ B 1F =3. 即线段1AB 在平面11BCC B 内射影长为3——12分24.本小题考查曲线与方程的关系,轨迹的概念等解析几何的基本思想以及综合运用知识的能力.满分12分.解:如图,设MN 切圆于N ,则动点M 组成的集合是 P={M ||MN |=λ|MQ |},式中常数λ>0.——2分 因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1. ——4分 设点M 的坐标为(x ,y ),则()222221y x y x +-=-+λ——5分整理得(λ2-1)(x 2+y 2 )-4λ2x +(1+4λ2)=0.经检验,坐标适合这个方程的点都属于集合P .故这个方程为所求的轨迹方程. ——8分 当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直且交x 轴于点(45,0),当λ≠1时,方程化为(x -1222-λλ)2+y 2=()222131-+λλ它表示圆,该圆圆心的坐标为(1222-λλ,0),半径为13122-+λλ——12分25.本小题考查等差数列的基础知识,数学归纳法及推理论证能力.满分14分. 证法一:令d =a 2-a 1.下面用数学归纳法证明a n =a 1+(n -1)d(n ∈N ). (1)当n =1时上述等式为恒等式a 1= a 1.当n=2时,a 1+(2-1)d = a 1+( a 2-a 1)= a 2,等式成立. ——5分(2)假设当n =k (k ≥2)时命题成立,a k =a 1+(k -1)d .由题设,有 S k =()21k a a k +,S k +1=()()2111+++k a a k ,又S k +1= S k +a k +1 ∴(k +1)()()111122++++=+k k k a a a k a a ——9分把a k = a 1+(k -1)d 代入上式,得 (k +1)( a 1+ a k +1)=2ka 1+k(k -1)d +2a k +1. 整理得(k -1)a k +1=(k -1)a 1+k (k -1)d .∵ k ≥2,∴ a k +1= a 1+kd .即当n =k +1时等式成立.由(1)和(2),等式对所有的自然数n 成立,从而{a n }是等差数列 ——14分证法二:当n ≥2时,由题设,()()21111--+-=n n a a n S ,()21n n a a n S +=. 所以a n = S n -S n -1= ()21n a a n + -()()2111-+-n a a n——6分同理有 a n +1= ()()2111-++n a a n -()21n a a n +. ——8分从而 a n +1-a n =()()2111-++n a a n -n (a 1+a n )+()()2111-+-n a a n , ——12分整理得a n+1-a n= a n-a n-1=…= a2-a1从而{a n}是等差数列. ——14分窗体底部。

2000年高考.全国卷.文科数学试题及答案

2000年高考.全国卷.文科数学试题及答案

2000年普通高等学校招生全国统一考试数学(文史类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页。

第II卷3至8页。

共150分。

考试时间120分钟。

第I卷(选择题60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z且|x|≤5},则A∪B中的元素个数是(A)11 (B)10(C)16(D)15(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q(8)已知两条直线,其中a为实数。

数学文●全国甲卷丨2023年普通高等学校招生全国统一考试数学文试卷及答案

数学文●全国甲卷丨2023年普通高等学校招生全国统一考试数学文试卷及答案

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,52.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.5D.54.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.235.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25B.22C.20D.156.执行下边的程序框图,则输出的B =()A.21B.34C.55D.897.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.58.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e24y x =+9.已知双曲线22221(0,0)x y a b a b-=>>522(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.55B.255C.355D.5510.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,6PA PB PC ===为()A.1B.3C.2D.311.已知函数()2(1)e x f x --=.记236,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c >> C.c b a>> D.c a b>>12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++⎪⎝⎭为偶函数,则=a ________.15.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.16.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.63520.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅= ,求MFN △面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð,故选:A.2.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】()()351i 51i 1i(2i)(2i)5+-==-+-故选:C.3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.255【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得()(),,a b a b a b a b +-+⋅-,从而利用平面向量余弦的运算公式即可得解.【详解】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则a b a b +==-== ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()cos ,17a b a b a b a b a b a b+⋅-+-==+-.故选:B.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件,其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=.故选:D.5.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25 B.22 C.20D.15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选:C.6.执行下边的程序框图,则输出的B =()A .21B.34C.55D.89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.7.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==2212121221620PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.8.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e24y x =+【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x -=-,因为e 1xy x =+,所以()()()22e 1e e 11x xxx x y x x +-'==++,所以1e|4x k y ='==所以()e e124y x -=-所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+.故选:C9.已知双曲线22221(0,0)x y a b a b-=>>22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.B.C.355D.455【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由e =,则22222215c b a a==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离5d ==,所以弦长45||5AB ===.故选:D10.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===,则该棱锥的体积为()A.1B.C.2D.3【答案】A 【解析】【分析】证明AB ⊥平面PEC ,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取AB 中点E ,连接,PE CE ,如图,ABC 是边长为2的等边三角形,2PA PB ==,,PE AB CE AB ∴⊥⊥,又,PE CE ⊂平面PEC ,PE CE E = ,AB ∴⊥平面PEC ,又322PE CE ==⨯=,PC =故222PC PE CE =+,即PE CE ⊥,所以11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯⨯=△,故选:A11.已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>【答案】A 【解析】【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,因为4112222⎛⎫+---= ⎪ ⎪⎝⎭,而22491670+-=+-=->,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知63)22g g <,因为62624112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+==<,即621122-<-,所以62)22g g >,综上,263222g g g <<,又e x y =为增函数,故a c b <<,即b c a >>.故选:A.12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1 B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.【答案】12-【解析】【分析】先分析1q ≠,再由等比数列的前n 项和公式和平方差公式化简即可求出公比q .【详解】若1q =,则由6387S S =得118673a a ⋅=⋅,则10a =,不合题意.所以1q ≠.当1q ≠时,因为6387S S =,所以()()6311118711a q a q qq--⋅=⋅--,即()()638171q q ⋅-=⋅-,即()()()33381171q q q ⋅+-=⋅-,即()3817q ⋅+=,解得12q =-.故答案为:12-14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.【详解】()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭ ,且函数为偶函数,20a ∴-=,解得2a =,故答案为:215.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数322zy x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1516.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长1AC =,即2R R ''==,故max R =;分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG ,则MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为.综上,R ∈.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【解析】【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc A bc A A+-===,解得:1bc =.【小问2详解】由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C ---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC 的面积为1133sin 12224ABC S bc A ==⨯⨯=△.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.【答案】(1)证明见解析.(2)1【解析】【分析】(1)由1A C ⊥平面ABC 得1A C BC ⊥,又因为AC BC ⊥,可证BC ⊥平面11ACC A ,从而证得平面11ACC A ⊥平面11BCC B ;(2)过点1A 作11A O CC ⊥,可证四棱锥的高为1AO ,由三角形全等可证1A C AC =,从而证得O 为1CC 中点,设1A C AC x ==,由勾股定理可求出x ,再由勾股定理即可求1AO .【小问1详解】证明:因为1A C ⊥平面ABC ,BC ⊂平面ABC ,所以1A C BC ⊥,又因为90ACB ∠= ,即ACBC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,所以BC ⊥平面11ACC A ,又因为BC ⊂平面11BCC B ,所以平面11ACC A ⊥平面11BCC B .【小问2详解】如图,过点1A 作11A O CC ⊥,垂足为O .因为平面11ACC A ⊥平面11BCC B ,平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,所以1A O ⊥平面11BCC B ,所以四棱锥111A BB C C -的高为1AO .因为1A C ⊥平面ABC ,,AC BC ⊂平面ABC ,所以1A C BC ⊥,1A C AC ⊥,又因为1A B AB =,BC 为公共边,所以ABC 与1A BC 全等,所以1A C AC =.设1A C AC x ==,则11A C x =,所以O 为1CC 中点,11112OC AA ==,又因为1A C AC ⊥,所以22211A C AC AA +=,即2222x x +=,解得x =,所以11A O ==,所以四棱锥111A BB C C -的高为1.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.635【答案】(1)19.8(2)(i )23.4m =;列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得23.4m =,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m≥合计对照组61420试验组14620合计202040(ii )由(i )可得,2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.【答案】(1)()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递减(2)0a ≤【解析】【分析】(1)代入1a =后,再对()f x 求导,同时利用三角函数的平方关系化简()f x ',再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数()()sin g x f x x =+,从而得到()0g x <,注意到()00g =,从而得到()00g '≤,进而得到0a ≤,再分类讨论0a =与a<0两种情况即可得解;法二:先化简并判断得2sin sin 0cos x x x-<恒成立,再分类讨论0a =,a<0与0a >三种情况,利用零点存在定理与隐零点的知识判断得0a >时不满足题意,从而得解.【小问1详解】因为1a =,所以()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx x f x x x --+'=-=-()3333222cos cos 21cos cos cos 2cos cos x x xx x xx ---+-==,令cos t x =,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 0,1t x =∈,所以()()()23233222cos cos 22221211x x t t t t t t t t t +-=+-=-+-=-++-()()2221t t t =++-,因为()2222110t t t ++=++>,10t -<,33cos 0x t =>,所以()233cos cos 20cos x x f x x+-'=<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递减.【小问2详解】法一:构建()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭,则()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭,若()()sin 0g x f x x =+<,且()()00sin 00g f =+=,则()0110g a a '=-+=≤,解得0a ≤,当0a =时,因为22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭,又π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,则211cos x>,所以()2sin sin sin 0cos x f x x x x +=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x x f x x ax x x x x+=-+<-<,满足题意;综上所述:若()sin 0f x x +<,等价于0a ≤,所以a 的取值范围为(],0-∞.法二:因为()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x ---===-,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,故2sin sin 0cos x x x-<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以当0a =时,()2sin sin sin 0cos x f x x x x +=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x x f x x ax x x x x+=-+<-<,满足题意;当0a >时,因为()322sin sin sin sin cos cos x x f x x ax x ax x x+=-+=-,令()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭,则()22433sin cos 2sin cos x x x g x a x+'=-,注意到()22433sin 0cos 02sin 000cos 0g a a +'=-=>,若π02x ∀<<,()0g x '>,则()g x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,注意到()00g =,所以()()00g x g >=,即()sin 0f x x +>,不满足题意;若0π02x ∃<<,()00g x '<,则()()000g g x ''<,所以在π0,2⎛⎫ ⎪⎝⎭上最靠近0x =处必存在零点1π20,x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,此时()g x '在()10,x 上有()0g x '>,所以()g x 在()10,x 上单调递增,则在()10,x 上有()()00g x g >=,即()sin 0f x x +>,不满足题意;综上:0a ≤.【点睛】关键点睛:本题方法二第2小问讨论0a >这种情况的关键是,注意到()00g '>,从而分类讨论()g x '在π0,2⎛⎫ ⎪⎝⎭上的正负情况,得到总存在靠近0x =处的一个区间,使得()0g x '>,从而推得存在()()00g x g >=,由此得解.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅= ,求MFN △面积的最小值.【答案】(1)2p =(2)12-【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出p ;(2)设直线MN :x my n =+,()()1122,,,,M x y N x y 利用0MF NF ⋅=,找到,m n 的关系,以及MNF 的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px-+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y ==-==即2260p p --=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅= ,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n-+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y =-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-【点睛】本题解题关键是根据向量的数量积为零找到,m n 的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】【分析】(1)根据t 的几何意义即可解出;(2)求出直线l 的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.【小问2详解】由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫ ⎪⎝⎭(2)263【解析】【分析】(1)分x a ≤和x a >讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3a x a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.【小问2详解】2,()23,x a x a f x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以||=AB a 所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。

2023年普通高等学校招生全国统一考试(全国乙卷)文科数学

2023年普通高等学校招生全国统一考试(全国乙卷)文科数学

2023年普通高等学校招生全国统一考试(全国乙卷)文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−, 联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++. (1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围.答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>− ⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=.(2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立,则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减, 此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a −, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上. (1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点. 答案:(1)22194y x += (2)证明见详解 解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=. (2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=, 则()()()2222Δ64236449317280k k k k k k =+−++=−>,解得0k <, 可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫ ⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++ ()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++, 所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π). (1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞ 解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆, 又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<), 整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <,即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+−(1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+−≤⎩所确定的平面区域的面积. 答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩, 解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<, 因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x y x y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。

1988-1998年高考文科数学试题参考答案

1988-1998年高考文科数学试题参考答案

SA BCD1988年普通高等学校招生全国统一考试文科数学参考答案 满分120分,120分钟一、(本题满分45分)BCDBA BDDAC ACBAC二、(本题满分20分)本题共5小题,每1个小题满分4分只要求直接写出结果1.2;π611. 2.2x =- . 3.-3. 4.3cm 548π. 5.3. 三、(本题满分10分)证明:∵cos3cos(2)ααα=+cos cos 2sin sin 2αααα=-22cos (2cos 1)2sin cos αααα=--322cos cos 2(1cos )cos αααα=---34cos 3cos αα=-,∴结论成立. 四.(本题满分10分)解:∵SB ⊥底面ABCD ,∴斜线段SA 在底面上的射影为AB . ∵AD ⊥AB ,∴AD ⊥SA .连接BD ,则BD =2. ∵SB ⊥BD ,∴SD ==,∴sin 5AD SD α===. 五、(本题满分11分)解:由题意知,点P 的坐标(,)a b 是方程组221,(1)(2)a b ⎧-=⎪=的解,且0a >.由(1)得||a b =>, ∴a b >,∴(2)式可变形为2a b -=. (3) 由(1),(3)可得12a b +=,(4) 由(3),(4)解得53,44a b ==-, ∴所求的点P 的坐标为53(,)44-.六、(本题满分12分)解:原不等式等价于不等式组2210, 1112x xx x ⎧->⎪⎪⎨-⎪<⎪⎩(). (),即 由不等式(1)解得1x >或10x -<<.(3)由不等式(2)解得x <0x <<(4) 由(3),(4)得112x -<<或112x +<<, ∴原不等式解集为151,⎛⎛+- ⎝⎭⎝⎭. 七、(本题满分12分)解:由已知条件知2121k k a a +--[5(21)1][5(21)1]10k k =++--+=, ∴135,,a a a ,…,21m a -是以16a =为首项,10为公差的等差数列.又由已知条件知22222222222k k k ka a ++==, ∴246,,a a a ,…,2m a 是以22a =为首项,2为公比的等比数列.∴数列{}n a 的前2m 项和为2135(m S a a a =+++…21)m a -++ 246(a a a +++…2)m a +[65(21)1]2(12)212m m m +-+-=+-21522m m m +=++-.D 1C 1B 1A 1N MO D C B A 1989年普通高等学校招生全国统一考试文科数学答案 满分120分,120分钟一、选择题(本题满分36分,共12个小题,内每一个小题选对得3分) 1-12 ADCBA CDBBD DC二、填空题本题满分24分,共6个小题,每一个小题满分4分果.13.10x y +-= 14.(,1)(4,)-∞-+∞15.(1,1)- 16.必要,必要17.(3,4) 18.900三、解答题本题满分60分,共6个小题. 19.(本小题满分8分)解:5551(1)2()2=55532(cos sin )33i ππ=+252532(cos sin )33i ππ=+32(cos sin )33i ππ=+,∴复数z 的模为32,的模和辐角的主值为.3π 20.(本小题满分8分)证明:3sinsin32222cos cos 22x xx x tg tg -=- 33sin cos cos sin2222cos cos22x x x x -=sin 3cos cos22xx x =2sin cos cos 2x x x =+. 21.(本小题满分10分)解:(Ⅰ)连接1AO ,则1AO ⊥底面ABCD .作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N .连接1A M ,1A N ,则由三垂线定理得1A M ⊥AB ,1A N ⊥AD .∵∠1A AM =∠1A AN ,∴Rt △1A NA ≌Rt △1A MA , ∴1A M =1A N ,∴OM ON =.∴点O 在∠BAD 的平分线上. (Ⅱ)由条件及(Ⅰ)知AM =1AA 13cos3322π=⋅=,∴AO =AM csc4AM AO π==.又在Rt △1AOA 中,2221199922AO AA AO =-=-=.∴1A O =∴平行六面体的体积54V =⋅22.(本小题满分10分)证:令2222(1223)(3445)n S =⋅-⋅+⋅-⋅22[(21)(2)2(21)]n n n n ++--+.下面用数学归纳法证明. (1)(43)n S n n n =-++. ①当1n =时,221122314S =⋅-⋅=-,-1·2·7=-14, ∴当1n =时,(1)(43)n S n n n =-++. ②假设当(1)n k k =≥时等式成立,即 (1)(43)k S k k k =-++ 那么,当1n k =+时, 1(1)(43)k S k k k +=-+++y (0,1)内22)cα,即时,).1990年普通高等学校招生全国统一考试数学(文史类)参考答案 满分120分,120分钟一、选择题:本题考查基本知识和基本运算. 1-15 ACDBD CABAC BDACB二、填空题:本题考查基本知识和基本运算. 16.3 17.20- 18.219.7:5 20三、解答题.21.本小题考查等差数列、等比数列的概念和运用方程组.解决问题的能力.解一:设四个数依次为,,a d a a d -+,2()a d a +,则由已知条件得 2()16,12.a d a d a a a d ⎧+-+=⎪⎨⎪++=⎩消去d ,整理得213360a a -+=, 解得 124,9a a ==.代入③式得 124,6d d ==-.从而得所求四个数为0,4,8,16或15,9,3,1. 解二:设四个数依次为,,12,16x y y x --,则由已知条件得2122, (1)(16)(12).(2)x y y y x y +-=⎧⎨-=-⎩ 由1.式得312x y =-. (3) 将(3)式代入2.式得2(16312)(12)y y y -+=-, 整理得 213360y y -+=. 解得 124,9y y ==. 代入3.式得120,15x x == .从而得所求四个数为0,4,8,16或15,9,3,1. 22.本小题考查三角公式以及三角函数式的恒等变形和运算能力. 解:由已知得sin sin 3cos cos 4αβαβ+=+,即2sincos32242cos cos22αβαβαβαβ+-=+-, ∴3tan 24αβ+=, ∴22tan2tan()1tan 2αβαβαβ++=+- 2322447314⨯==⎛⎫- ⎪⎝⎭. 23.本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.解一: ∵SB =BC ,且E 是SC 的中点,∴BE 是等腰三角形SBC 的边SC 的中线, ∴SC ⊥BE .又已知SC ⊥DE ,BE ∩DE =E , ∴SC ⊥面BDE , ∴SC ⊥BD .又∵SA ⊥底面ABC ,BD 在底面ABC 内, ∴SA ⊥BD .而SC ∩SA =S ,∴BD ⊥面SAC . ∵DE =面SAC ∩面BDE , DC =面SAC ∩面BDC , ∴BD ⊥DE ,BD ⊥DC .∴∠EDC 是所求的二面角的平面角. ∵SA ⊥底面ABC ,∴SA ⊥AB ,SA ⊥AC . 设SA =a ,则AB = a ,BC =SB. 又∵AB ⊥BC,∴AC =. 在R t SAC ∆中SA tg ACS AC ∠==, ∴∠ACS =30°.又已知DE ⊥SC ,所以∠EDC =60°, 即所求的二面角等于60°.解二: ∵SB =BC,且E 是SC 的中点,∴BE 是等腰三角形SBC 的边SC 的中线, ∴SC ⊥BE .又已知SC ⊥DE ,BE ∩DE =E , ∴SC ⊥面BDE , ∴SC ⊥BD .∵SA ⊥底面ABC ,且A 是垂足, ∴AC 是SC 在平面ABC 上的射影. 由三垂线定理的逆定理得BD ⊥AC ;又∵E ∈SC ,AC 是SC 在平面ABC 上的射影, ∴E 在平面ABC 上的射影在AC 上, ∵D ∈AC ,∴DE 在平面 ABC 上的射影也在AC 上, 根据三垂线定理又得BD ⊥DE. ∵DE ⊂面BDE ,DC ⊂面BDC ,∴∠EDC 是所求的二面角的平面角. 以下同解法一.24. 本小题考查对数,不等式的基本知识及运算能力.解:原不等式可化为2log (43)log (42)a a x x x +->-. ① 当01a <<时,①式等价于22420,430,4342x x x x x x ->⎧⎪+->⎨⎪+-<-⎩,即1,214,32x x x x ⎧>⎪⎪-<<⎨⎪<->⎪⎩或, ∴24x <<,即当01a <<时,原不等式的解集是()2,4.当1a >时,①式等价于22420,430,4342x x x x x x ->⎧⎪+->⎨⎪+->-⎩,即1,214,32x x x ⎧>⎪⎪-<<⎨⎪-<⎪⎩<, ∴142x <<,即 当1a >时,原不等式的解集是1,22⎛⎫⎪⎝⎭.综上可得,当01a <<时,原不等式的解集是()2,4;当1a >时,原不等式的解集是1,22⎛⎫ ⎪⎝⎭. 25.本小题考查复数与解方程等基本知识以及综合分析能力.解:设(,R)z x yi x y =+∈,代入原方程得222x y xyi a -+=,即22,(1)0. (2)x y a xy ⎧-+=⎪⎨=⎪⎩ 由(2)式得0x =或0y =. ① 若0x =,则方程(1)为2y a -+=,即220(0)y y a y ++=<, (3)或220(0)y y a y -+=≥.(4).由(3)得2(1)1(0)y a y +=-<,当01a ≤≤时,1y =-1y =-,当1a >时无解.由(4)得2(1)1(0)y a y -=-≥,当01a ≤≤时,1y =,或1y = 当1a >时无解.综上可得,当01a ≤≤时,(1z i =±+,或(1z i =±-当1a >时无解.②若0y =,则方程(1)为2x a +=,即2(1)1(0)x a x +=+≥, (5)或2(1)1(0)x a x -=+<. (6) ∵0a ≥,∴解(5)得1x =-; 解(6)得1x =综上可得,1z =±.③若0x =且0y =,则方程(1)为0a =,当0a =时,0x =,0y =是其解;当0a ≠时无解.当0a =时,0z =是其解;当0a ≠时无解.显然,当0a =时,0z =包含在上述两种情况之中.综上可得,实数解为(1z =±; 当01a ≤≤时,(1z i =±,或(1z i =±,当1a >时无纯虚数解.26.本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力.解:设所求椭圆的直角坐标方程是22221(0)x y a b a b +=>>,则 222222314c a b b e a a a -⎛⎫⎛⎫===-= ⎪ ⎪⎝⎭⎝⎭,即 2a b =,∴椭圆的方程可变形为222214x y b b+=.设椭圆上的点(,)x y 到点P 的距离为d ,则22232d x y ⎛⎫=+- ⎪⎝⎭22234()2b y y ⎛⎫=-+- ⎪⎝⎭2213432y b ⎛⎫=-+++ ⎪⎝⎭,其中b y b -≤≤.若102b <<,则当y b =-时,2d 有最大值,且2372b ⎛⎫--= ⎪⎝⎭,解之得3122b =>,与102b <<相矛盾,舍去. 若12b ≥,则当12y =-时,2d 有最大值,且2437b +=,解之得1b =, ∴2,1a b ==,∴所求椭圆的直角坐标方程是2214x y +=. 当12y =-时,x =∴所求的点的坐标是12⎛⎫- ⎪⎝⎭.B 1C 1A B C DA 11991年普通高等学校招生全国统一考试数学(文史类)参考解答试卷共三道大题26个小题..满分120分,考试时间120分钟.一、选择题.本题考查基本知识和基本运算.每小题3分,满分45分.1-15 ADBCB ADABC ACCBC二.填空题.本题考查基本知识基本运算.每小题3分,满分15分. 16.(2,2)- 17.2-5 18.(4,2)- 19.1+51020.2 三.解答题 21.(满分8分)解:22sin 2sin cos 3cos y x x x x =++212sin cos 2cos x x x =++ sin 2cos 22x x =++224x π⎛⎫=++ ⎪⎝⎭.当sin 2=14x π⎛⎫+ ⎪⎝⎭时,函数y 有最大值,且最大值为2+2.说明:①没有说明“当sin 2=14x π⎛⎫+ ⎪⎝⎭时,函数y 有最大值”而得出正确答案,不扣分.②本小题考查三角函数式的恒等变形及三角函数的性质 22.(满分8分) 解:∵ 1z i =+,∴ 2236(1)3(1)6111z z i i z i -++-++=+++312i i i-==-+, ∴1i -的模为22)1(1-+=2,辐角的主值74π,∴所给复数的模为2,辐角的主值74π.说明:本小题考查复数基本概念和运算能力了.23.(满分10分)解:∵ A 1A ⊥底面ABC ,∴ A 1A ⊥BC . 又∵BC ⊥BB 1,且棱AA 1和BB 1的延长线交于一点,∴ BC ⊥侧面A 1ABB 1,∴ BC ⊥AB .∴ △ABC 是直角三角形,∠ABC =90º.并且∠ABB 1就是BB 1和底面ABC 所成的角,且 ∠ABB 1=45º.作B 1D ⊥AB 交AB 于D ,则B 1D ∥A 1A , ∴B 1D ⊥底面ABC .∵在Rt △B 1DB 中,∠DBB 1=45º, ∴DB =DB 1=AA 1=a ,∴AB =2a . ∵由于棱台的两个底面相似, ∴Rt △ABC ∽Rt △A 1B 1C 1.∵B 1C 1=A 1B 1=a ,AB =2a ,∴ BC =2a .∴12S =上A 1B 1×B 1C 1=22a ,12S =下AB ×BC =2a 2.13V =·A 1A ·()下下上上S S S S +⋅+=31·a ·.67222232222a a a a a =⎪⎪⎭⎫ ⎝⎛+⨯+ 说明:本小题考查直线与直线,直线与平面的位置关系,以及逻辑推理和空间想象能力.24.(满分10分)解:设等差数列{}n a 的公差为d ,则1(1)n a a n d =+-,∴ ()1112a n dn b +-⎛⎫= ⎪⎝⎭.∴()111222132111==222aa da db b b ++⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭·由12318b b b =,得3218b =,即212b =. 代入已知条件得12312318218b b b b b b ⎧=⎪⎪⎨⎪++=⎪⎩,,即⎪⎪⎩⎪⎪⎨⎧=+=.817413131b b b b , 解得1312,8b b ==或131,28b b ==,∴11,2a d =-=或13,2a d ==-.当11,2a d =-=时,23n a n =-; 当13,2a d ==-时,52n a n =-. 说明:本小题考查等差数列,等比数列的概念及运用方程组.解决问题的能力. 25.(满分12分)解: 原不等式可变形为4222xx a a a -->. ①(1).当01a <<时,由①式得42220x x a -+<,即()22211x a -<- .∵ 01a <<,∴2011x <<<x <<x <<. ∴当01a <<时,原不等式的解集为⎛ ⎝. (2) 当1a >时,由①式得42220x x a -+>, 即()22211x a ->-.∵1a >,∴210a -<,∴不等式()22211x a ->-对任意实数x恒成立,即得原不等式的解集为R .综上可得:当01a <<时,原不等式的解集为⎛ ⎝; 当1a >时,原不等式的解集为R .说明:本小题考查指数函数性质、解不等式及综合分析能力. 26.(满分12分)解:设所求椭圆方程为22221x y a b+=.由方程组22221,1x y a b y x ⎧+=⎪⎨⎪=+⎩消去y 得2222(1)1x x a b++=,即 2222222()20a b x a x a a b +++-=. ① 设1122(,),(,)P x y Q x y ,则12,x x 方程①的两个根,且2122222212222,.a x x a b a a b x x a b ⎧+=-⎪⎪+⎨-⎪=⎪+⎩∵OP OQ ⊥,∴1212OP OQ y yk k x x ⋅=⋅1212(1)(1)1x x x x ++=⋅=-,即12122()10x x x x +++=,∴222222222()210a a b a a b a b --+=++,即 22222a b a b =+.∴12221221,1.2x x b b x x b ⎧+=-⎪⎪⎨-⎪=⎪⎩∵PQ =,∴252PQ =,∴221212()()x x y y -+-222121212()()2()x x x x x x =-+-=-212122()4x x x x ⎡⎤=+-⎣⎦222222222224a a a b a b a b ⎡⎤⎛⎫-=--⋅⎢⎥⎪++⎢⎥⎝⎭⎣⎦421252(2)2b b =-+=, 解得22b =或223b =,从而223a =或22a =.∴223a =,22b =或22a =,223b =,∴所求椭圆的方程为132222=+y x ,或.123222=+y x 说明:本小题考查椭圆的性质、两点的距离公式、两条直线垂直条件、二次方程根与系数的关系及分析问题的能力.KH G B 1D 1C 1F A B C ED A 11992年普通高等学校招生全国统一考试数学(文史类)参考答案这份试卷共三道大题28个小题..满分120 分.考试时间120分钟一、选择题:本题考查基本知识和基本运算.1-18 ADDCD BBDDD BACDD CAC 二、填空题.本题考查基本知识和基本运算.每小题3分,满分15分.19.41 20.55- 21..x =-1 22.12815 23.1124)2(22=--y x . 三、解答题24.本小题主要考查三角函数恒等变形知识和运算能力(满分9分).解:sin 220º+cos 280º+3sin20ºcos80º=1cos 401cos16022-++sin 60)︒-︒13=1(cos160cos40)224+︒-︒+︒-=41-21·2sin100ºsin60º+23sin100º =41-23sin100º+23sin100º14=. 25.本小题主要考查复数相等的条件及解方程的知识(满分9分).解:设 (,R)z x yi x y =+∈,则由已知条件得74x yi i +-=-+,由复数相等的定义,得7,4,x y ⎧-=-⎪⎨=⎪⎩ 解得1254,3,3y x x ===,∴34z i =+或543z i =+.26.本小题主要考查直线与直线,直线与平面,平面与平面的位置关系,以及空间想象能力和逻辑推理能力(满分10分). 解一:∵ EB =BF =FD 1=D 1E=22)2(a a +=25a , ∴四棱锥11A EBFD -的底面是菱形.连接A 1C 1,EF ,BD 1, 则A 1C 1∥EF ,∴A 1C 1∥平面1EBFD ,∴A 1C 1到底面EBFD 1的距离就是11A EBFD -的高.设G ,H 分别是A 1C 1,EF 的中点,连接D 1G ,GH ,则FH ⊥HG , FH ⊥HD 1, ∴FH ⊥平面HGD 1. ∵FH ⊂平面1EBFD , ∴面1EBFD ⊥平面1HGD .作GK ⊥HD 1于K ,则GK ⊥面1EBFD . ∵正方体的对角面AA 1CC 1垂直于底面A 1B 1C 1D 1,∴∠HGD 1=90º. 在Rt △HGD 1内,GD 1=22a ,HG =21a ,HD 1=21BD =23a , ∴23a ·GK =21a ·22a ,从而GK =66a .∴11EBFD A V -=311EBFD S 菱形·GK=31·21·EF ·BD 1·GK =61·2a ·3a ·66a 31=6a . 解二 ∵ EB =BF =FD 1=D 1EB 1D 1C 1F AB C E DA1=22)2(a a +=25a ,∴ 四菱锥A 1-EBFD 1的底面是菱形.连接EF ,则△EFB ≌△EFD 1.∵三棱锥A 1-EFB 与三棱锥A 1-EFD 1等底同高,∴111EFD A EFB A V V --=,. ∴EFB A EBFD A V V --=1112.又11EBA F EFB A V V --=, ∴1112EBA F EBFD A V V --=.∵CC 1∥平面ABB 1A 1,∴三棱锥F -EBA 1的高就是CC 1到平面ABB 1A 1的距离,即棱长a . 又△EBA 1边EA 1上的高为a , ∴11EBFD A V -=2·31·1EBA S ∆·a =61a 3. 27.本小题主要考查有关直线方程的知识及综合运用知识的能力(满分10分). 解:由已知条件知顶点A 为直线 210x y -+=与直线0y =的交点,∴由210,0x y y -+=⎧⎨=⎩解得顶点(1,0)A -.∴AB 的斜率2011(1)AB k -==--,∵x 轴是A ∠的平分线,∴1AC k =-,且直线AC 所在直线的方程为(1)y x =-+. ① ∵边BC 上的高所在直线的方程为 210x y -+=,∴2BC k =-,且BC 所在的直线方程为 22(1)y x -=--,即 24y x =-+. ② 由①,②联立解得顶点C 的坐标为(5,6)-. ∴点A 和点C 的坐标分别为(1,0)A -,(5,6)C -,28.本小题考查数列、不等式及综合运用有关知识解决问题的能力(满分12分). 解:(Ⅰ)由已知条件得()()31121131212,12121120,213131130,2a a d S a d S a d ⎧=+=⎪⎪⨯-⎪=+⋅>⎨⎪⎪⨯-=+⋅<⎪⎩即 111122,2110,60,a d a d a d =-⎧⎪+>⎨⎪+<⎩ ∴ 2470,30,d d +>⎧⎨+<⎩解得 2437d -<<-. (Ⅱ)解一:由(Ⅰ)知0d <, ∴{}n a 单调递减.由已知条件得11313713()1302a a S a +==<,即70a <;112126712()6()02a a S a a +==+>,即670a a +>,∴60a >. ∴在1212,,,S S S 中6S 的值最大.(Ⅱ)解二:()d n n na S n 211-+=()()d n n d n 121212-+-=22124124=552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. ∵0d <,∴ 224521⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--d n 最小时,n S 最大.当2437d -<<-时, 124136522d ⎛⎫<-< ⎪⎝⎭,∵正整数6n =时224521⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--d n 最小,∴6S 最大.(Ⅱ).解三:由(Ⅰ).知0d <, ∴{}n a 单调递减.∵ 12130,0,S S >⎧⎨<⎩∴111211120,21312130.2a d a d ⨯⎧+>⎪⎪⎨⨯⎪+<⎪⎩∴1150,260,d a d a d ⎧+>->⎪⎨⎪+<⎩即670,0.a a >⎧⎨<⎩ ∴在12,S S ,…,12S 中6S 的值最大.1993年普通高等学校招生全国统一考试数学试题(文史类)参考解答本试卷分第Ⅰ卷(选择题.和第Ⅱ卷(非选择题.共150分.考试时间120分钟.第Ⅰ卷(选择题共68分.一、选择题:本题考查基本知识和基本运算.每小题4分,满分68分.1-17 ACBBA DCABD CADDA CB第Ⅱ卷(非选择题共82分).二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 18.-a 2 19.{k ||k |>31} 20.100 21..1 22.1760 23.30 三、解答题24.本小题考查三角函数式的恒等变形及运算能力(满分10分) 解. tg20º+4sin20º︒︒︒+︒=20cos 20cos 20sin 420sin ︒︒+︒=20cos 40sin 220sin()︒︒+︒+︒=20cos 40sin 40sin 20sin ︒︒+︒︒=20cos 40sin 10cos 30sin 2︒︒+︒=20cos 40sin 80sin ︒︒︒=20cos 20cos 60sin 2︒=60sin 23=. 25.本小题考查函数的奇偶性、对数函数的性质、不等式的性质和解法等基本知识及运算能力(满分12分) 解:(Ⅰ)由已知函数知011>-+xx, 解得-1<x <1;∴()f x 的定义域为(1,1)-. (Ⅱ) ∵ ()1log 1axf x x--=+ ()1log 1axf x x+=-=--, ∴ f (x .为奇函数.(Ⅲ.由(Ⅰ.知,()f x 的定义域为(1,1)-,∴当1a >时,由1log 01axx+>-得 111>-+xx,解得01x <<; 当01a <<时,由1log 01axx+>-得 1011x x+<<-,解得10x -<<.综上所述,当1a >时,()0f x >的x 取值范围(0,1);当01a <<时,()0f x >的x 取值范围(1,0)-.26.本小题考查观察、分析、归纳的能力和数学归纳法(满分12分) 解:由12382448,92549S S S ===,, 48081S =… ,猜想 ()()()N n n n S n ∈+-+=2212112.下面用数学归纳法证明如下:①当1n =时,98313221=-=S ,等式成立.②设当n k =时等式成立,即()().1211222+-+=k k S k 则()()()221321218++++=+k k k S S k k ()()()()()222232121812112+++++-+=k k k k k ()()()()()222232121832]112[+++++-+=k k k k k ()()()()()()22222321218323212+++++-++=k k k k k k ()()()()()222223212123212+++-++=k k k k k ()()2232132+-+=k k ()()22]112[1]112[++-++=k k ,a /d c b a P βαy N a 2a 1Q b a A BCP βMαy由此可知,当1n k =+时等式也成立. 根据①②可知,等式对任何n N ∈都成立. 27.本小题考查直线与平面的平行、垂直和两平面垂直的基础知识,及空间想象能力和逻辑思维能力(满分12分) 证法一:(Ⅰ)设α∩γ=AB ,β∩γ=AC .在γ内任取一点P ,并在γ内作直线PM ⊥AB ,PN ⊥AC 交AB ,AC 于点,M N .∵γ⊥α,∴PM ⊥α. 而 a ⊂α,∴PM ⊥a . 同理PN ⊥a .又PM ⊂γ,PN ⊂γ,∴ a ⊥γ.(Ⅱ)在直线a 上任取点Q ,过b 与Q 作一平面交α于直线1a ,交β于直线2a . ∵b ∥α,∴b ∥1a . 同理b ∥2a . ∴ 1a ∥2a . ∵12a a Q =,∴1a 与2a 重合. 又1a ⊂α,2a ⊂β,∴1a ,2a 都是α,β的交线,即都重合于a .∵b ∥1a ,∴ b ∥a . 而a ⊥γ,∴b ⊥γ.证法二:(Ⅰ.在a 上任取一点P ,过P 作直线a '⊥γ.∵α⊥γ,P ∈α,∴a '⊂α. 同理a '⊂β.∴ a '是α,β的交线,即a '重合于a .又a '⊥γ,∴ a ⊥γ.(Ⅱ.于α内任取不在a 上的一点,过b 和该点作平面与α交于直线c .同理过b 作平面与β交于直线d .∵b ∥α,b ∥β.∴b ∥c ,b ∥d . 又c ⊄β,d ⊂β,∴c 与d 不重合,且c ∥d . ∴c ∥β.∵c ∥β,c ⊂α,α∩β=a , ∴c ∥a .∵b ∥c ,a ∥c ,b 与a 不重合(b ⊄α,a ⊂α., ∴b ∥a .而a ⊥γ,∴b ⊥γ.28.本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用能力(满分12分)解法一:如图,以MN 所在直线为x 轴,MN 的垂直平分线为y 轴建立直角坐标系,设以,M N 为焦点且过点P 的椭圆方程为12222=+by a x ,且焦点为(,0),(,0)(0)M c N c c ->.由tan ,tan 22PMN MNP ∠=∠=-知,直线PM 和直线PN 的斜率分别为1,22,直线方程分别为1(),2()2y x c y x c =+=-.由1(),22()y x c y x c ⎧=+⎪⎨⎪=-⎩解得54,33x c y c ==,即54,33P c c ⎛⎫⎪⎝⎭. 在PMN ∆中,|MN |=2c ,MN 上的高为点P 的纵坐标,∴214421233MNP S c c c ∆=⋅⋅==,∴c =P 点坐标为⎪⎪⎭⎫ ⎝⎛332635,. 由椭圆过点P 得2a PM PN =+=,∴a =. ∴222153344b a c =-=-=, ∴所求椭圆方程为1315422=+y x . 解法二:同解法一得23=c ,P 点的坐标为⎪⎪⎭⎫⎝⎛332635,.∵ 点P 在椭圆上,且222a b c =+,∴ 13322363522222=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛b b ,即 423830b b --=,解得23b =,或213b =- (舍去..∴222154a b c =+=,∴所求椭圆方程为1315422=+y x . 说明:本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用能力.本题也可用正弦定理求解.1994年普通高等学校招生全国统一考试数学试题(文史类)参考解答本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题(本题考查基本知识和基本运算第1—10题每小题4分,第11—15题每小题5分,共65分)1-15 CDBAB DBAAC CBDDC第Ⅱ卷(非选择题共85分)二、填空题(本题考查基本知识和基本运算.每空格4分,共24分)16.-189 17.223,(2)1x x y =-+= 18.43- 19.322π 20.121(a a n++…)n a + 三、解答题21.本小题考查利用有关三角公式并借助辅助角求三角函数最小值的方法及运算能力,满分11分.解:332sin3sin cos3cos sin 2cos 2x x x xy x x+=+ 222sin3sin sin cos3cos cos sin 2cos 2x x x x x x x x+=+ 222(cos2cos4)sin (cos2cos4)cos 2cos 2x x x x x x x-++=sin 2x +2cos 2(1cos 4)sin 22cos 2x x x x +=+ 222cos 2cos 2sin 22cos 2x x x x=+cos 2sin 2x x =+)4x π=+.当sin(2)14x π+=-,即3()8x k k Z ππ=-∈时,函数y 取得最小值22.本小题考查对数函数性质、平均值不等式等知识及推理论证的能力.满分12分.解:∵+12,R x x ∈,∴212122x x x x +⎛⎫≤ ⎪⎝⎭(当且仅当12x x =时取“=”号) .当1a >时,21212log ()log 2a a x x x x +⎛⎫≤ ⎪⎝⎭,∴12121log ()log 22a a x x x x +⎛⎫≤ ⎪⎝⎭,即 []12121()()()22x x f x f x f ++≤ (当且仅当12x x =时取“=”号) . 当01a <<时,21212log ()log 2a a x x x x +⎛⎫≥ ⎪⎝⎭,∴12121(log log )log 22a a a x x x x ++>, 即[]12121()()()22x x f x f x f ++≥ (当且仅当12x x =时取“=”号) .23.本小题考查空间线面关系,正棱柱的性质,空间想象能力和逻辑推理能力.满分12分.(1)证明:∵A 1B 1C 1-ABC 是正三棱柱, ∴四边形B 1BCC 1是矩形.连接B 1C ,交BC 1于E ,则B 1E =EC . 连结DE .在△AB 1C 中,∵AD =DC , ∴DE ∥AB 1.又AB 1⊄平面DBC 1,DE ⊂平面DBC 1 ∴AB 1∥DBC 1.(2)解:作AF ⊥BC ,垂足为F . ∵面ABC ⊥面B 1BCC 1, ∴AF ⊥B 1BCC 1平面.连接B 1F ,则B 1F 是AB 1在平面B 1BCC 1内的射影.∵BC 1⊥AB 1, ∴BC 1⊥B 1F . ∵四边形B 1BCC 1是矩形, ∴∠B 1BF =∠BCC 1=90º;∠FB 1B =∠C 1BC ,∴△B 1BF ∽△BCC 1, ∴BB BFC C BF BC B B 111==. 又F 为正三角形ABC 的BC 边中点, ∴B 1B 2=BF ·BC =1×2=2, ∴B 1F 2= B 1B 2+ BF 2=3,∴B 1F =3,即线段1AB 在平面11BCC B 内射影长为3.24.本小题考查曲线与方程的关系,轨迹的概念等解析几何的基本思想以及综合运用知识的能力.满分12分.解:如图,设MN 切圆于N ,动点M 的坐标为(,)x y ,则由已知条件得22222(1)()4(14)0x y x λλλ-+-++=. ∴动点M 的轨迹方程是22222(1)()4(14)0x y x λλλ-+-++=.当1λ=时,动点M 的轨迹方程是54x =,它表示一条直线;当1λ≠时,动点M 的轨迹方程是()222222221311x y λλλλ⎛⎫+-+= ⎪-⎝⎭-,它表示以点222,01λλ⎛⎫⎪-⎝⎭为圆心,13122-+λλ为半径的圆.25.本小题考查等差数列的基础知识,数学归纳法及推理论证能力.满分14分. 证法一:令21d a a =-.下面用数学归纳法证明.1(1)()n a a n d n N =+-∈.(1)当1n =时,上述等式为恒等式11a a =; 当2n =时,1121(21)()a d a a a +-=+-2a =,等式成立.(2)假设当(2)n k k =≥时命题成立,即1(1)k a a k d =+-.由已知条件有()12k k k a a S +=, ()()11112k k k a a S ++++=, ∴11k k k a S S ++=-()()111(1)22k k k a a k a a ++++=-,整理得11(1)(1)(1)k k a k a k k d +-=-+-. ∵2k ≥,∴11k a a kd +=+,即 当1n k =+时等式成立. 由(1)和(2),等式对所有的自然数n 成立,从而{}n a 是等差数列.证法二:当n ≥2时,由已知条件()()21111--+-=n n a a n S ,()21n n a a n S +=, ∴1n n n a S S -=- ()()111(1)22n n n a a n a a -+-+=-;同理可得11n n n a S S ++=-()()111(1)22n n n a a n a a ++++=-,∴()()11111()2n n n nn a a a a n a a ++++-=-+()()1112n n a a --++,整理得 11n n n n a a a a +--=-, ∴{}n a 是等差数列.1995年普通高等学校招生全国统一考试数学试题(文史类)参考解答本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题(本题考查基本知识和基本运算第1—10题每小题4分,第11—15题每小题5分,共65分)1-15 BDCBD CACAA BDDCA第Ⅱ卷(非选择题共85分)二、填空题(本题考查基本知识和基本运算,本大题共5小题,每小题4分,共20分) 16.3 17.3237 18.3 19.4 20.144三、解答题(本大题共6小题,共65分) 21.本小题主要考查指数方程的解法及运算能力,本小题满分7分.解:设30x y =>,则原方程可化为098092=--y y ,解得:91=y ,912-=y (舍去)由93=x得2=x , ∴原方程的解为2=x .22.本小题主要考查复数的有关概念,三角公式及运算能力,本小题满分12分. 解:由已知条件得)sin (cos )sin (cos 22θθθθi i z z +++=+θθθθs i n c o s 2s i n 2c o s i i +++= )2c o s 23(s i n 2c o s 23c o s 2θθθθi +=)23s i n 23(c o s 2c o s 2θθθi +=)23sin()23[cos(2cos 2θπθπθ+-++--=i ∵)2,(ππθ∈,∴(,)22θππ∈,∴0)2cos(2>-θ.∵复数z z +2的模为2cos 2θ-,辐角)(23)12(z k k ∈+-θπ. 23.本小题主要考查等比数列、对数、不等式等基础知识以及逻辑推理能力,本小题满分10分.证:设}{n a 的公比为q ,由题设知01>a ,0>q ,(1)当1=q 时,1na S n =,从而22111(2)n n n S S S na n a ++⋅-=+22211(1)0n a a -+=-<.(2) )当1≠q 时,()qq a S nn --=111,从而221n n n S S S ++⋅-()()()()()22221112211111n n n a q q a q q q ++---=---021<-=n q a .由(1)和(2)得212++<⋅n n n S S S .根据对数函数的单调性,得215.025.0log )(log ++>⋅n n n S S S ,即 15.025.05.0log 2log log ++>+n n n S S S .24.本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力,本小题满分12分.解:(1)根据圆柱性质,DA ⊥平面ABE . ∵EB ⊂平面ABE ,∴DA ⊥EB .∵AB 是圆柱底面的直径,点E 在圆周上, ∴AE ⊥EB . 又AE ∩AD =A , ∴EB ⊥平面DAE . ∵AF ⊂平面DAE , ∴EB ⊥AF . 又AF ⊥DE ,且 EB ∩DE =E ,∴AF ⊥平面DEB .∵DB ⊂平面DEB ,∴AF ⊥DB .(2)设点E 到平面ABCD 的距离为d ,记AD =h .∵圆柱轴截面ABCD 是矩形,∴AD ⊥AB .∴221ahAD AB S ABD =⋅=∆,∴dah S d V V ABD ABD E ABE D 613===∆--.又h a AD AB V 2242ππ=⋅⎪⎪⎭⎫ ⎝⎛=圆柱, 由题设知ππ36142=dah ha ,即2a d =. 25.本小题主要考查运用所学数学知识和方法解决实际问题的能力,以及函数的概念、方程和不等式的解法等基础知识和方法,本小题满分12分. 解:解:(1)由 Q P =有()2840500)8(1000--=-+x t x ,即0)280644)808(522=+-+-+t t x t x (.当判别式0168002≥-=∆t,即 0t ≤≤25052548t t x -±-=.由0≥∆,0≥t ,148≤≤x ,得不等式组:①0488145t t ⎧≤≤⎪⎨≤-+⎪⎩或 ②048814.5t t ⎧≤≤⎪⎨≤-≤⎪⎩解不等式组①,得100≤≤t ,不等式组②无解.∴所求的函数关系式为25052548t t x -+-=.函数的定义域为]10,0[. (2)为使10≤x ,应有8105052542≤-+-t t ,即 0542≥-+t t .解得1≥t 或5-≤t ,由0≥t 知1≥t . 从而政府补贴至少为每千克1元.26.本小题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法,利用方程判定曲线的性质等解析几何的基本思想和综合运用知识的能力,本小题满分12分.解:设点P 、Q 、R 的坐标分别为),12(P y ,),(y x ,),(R R y x ,由题设知0>R x ,0>x ,由点R 在椭圆上及点O 、Q 、R 共线,得方程组221,2416,R RR R x y y y x x⎧+=⎪⎪⎨⎪=⎪⎩解得2222222248, (1)2348. (2)23R R x x x y y y x y ⎧=⎪+⎪⎨⎪=⎪+⎩由点O ,Q ,P 共线,得xyy P =12,即xy y P 12=.(3)由题设|OQ |·|OP |=|OR |2得()222222212RRpyxy y x +=+⋅+将(1),(2),(3)式代入上式,整理得点Q 的轨迹方程132)1(22=+-y x )0(>x . 所以点Q 的轨迹是以(1,0)为中心,长、短半轴长分别为1和36,且长轴在x 轴上的椭圆,去掉坐标圆点.1996年普通高等学校招生全国统一考试数学试题(文史类)参考解答 第Ⅰ卷(选择题共65分)一.选择题:本题考查基本知识和基本运算.第1-10题每小题4分,第11-15题每小题5分.满分65分.1-15 CADBC DADAC BDCAB第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上. 16.4 17.32 18.3 19.42 三、解答题20.本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力. 解:(Ⅰ)当1>a 时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.1,01a a x a x 解得12->a x . (Ⅱ)当10<<a 时,原不等式等价于不等式组10,1.x a x a a +->⎧⎨+-<⎩ 解得 121-<<-a x a .综上,当1>a 时,不等式的解集为 }12|{->a x x ;当10<<a 时,不等式的解集为 }121|{-<<-a x a x .21.本小题主要考查等比数列的基础知识,逻辑推理能力和运算能力.解:若1=q ,则有133a S =,166a S =,199a S =.由9632S S S =+得1113618a a a +=,解得 10a =,与01≠a 相矛盾, ∴1≠q .由9632S S S =+得qq a q q a q q a --=--+--1)1(21)1(1)1(916131 整理得 0)12(363=--q q q .由0≠q 得方程 01236=--q q .0)1)(12(33=-+q q ,∵1≠q ,013≠-q , ∴0123=+q ,∴243-=q . 22.本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算能力.满分12分.解:由题设条件知B =60°,A +C =120°.∴11cos cos cos60A C +==-,即 C A C A cos cos 22cos cos -=+,2coscos 22A C A C +-)cos()]A C A C =++-,2cos 60cos 2A C-︒cos()]A C =︒+-,1cos cos()]22A C A C -=-+-,023)2cos(2)2(cos 242=--+-CA C A ,,0)32cos 22)(22cos 2(=+---C A C A∵,032cos 22≠+-CA ∴.022cos 2=--CA 从而得.222cos =-C A 23.本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力运算能力.满分12分. (Ⅰ)②∵BE :CF =1:2, ∴ DC =2BD , ∴ DB =BC ,③∵△ABD 是等腰三角形, 且∠ABD =120º,∴∠BAD =30º,∴∠CAD =90º, ④∵FC ⊥面ACD ,∴CA 是F A 在面ACD 上射影, 且DA ⊥AC ,GB 1C 1F AB C E DA 1⑤∵F A ∩AC =A ,DA ⊥面ACF , DA ⊂面ADF .(Ⅱ)解:∵ F AA E AEF A V V 11--=. 在面A 1B 1C 1内作B 1G ⊥A 1C 1,垂足为G ,则231aG B =.∵面A 1B 1C 1⊥面A 1 C ,B 1G ⊥A 1C 1, ∴B 1G ⊥面A 1 C .∵ E ∈B B 1,而B B 1∥面A 1 C , ∴ 三棱柱E -AA 1F 的高为23a , ∴ 1211322AA F a S AA AC ∆=⋅=,∴43311a V V F AA E AEF A ==--.24.本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式4410(10.22)(1010)10(10.1)(10.01)M x Mp p+-≥++,化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ∵]22.1)01.01(1.11[10103+⨯-⨯ 3122101011010[1(10.010.01122C C =-+⋅+⋅+…)]]1045.122.11.11[103⨯-⨯≈ 1.4≈,∴4≤x (公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.25.本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:(I )依题设,直线12,l l 的斜率都存在,且设直线12,l l 的斜率分别为12,k k ,,则121k k =-,且直线12,l l 的方程分别为11(0)y k x k =≠, ①22(0)y k x k =≠. ②将①代入双曲线方程得221(1k x x ⎡⎤-=⎣⎦,即 01222)1(2121221=-++-k x k x k .③由题设条件知0121≠-k ,且22221111)4(1)(21)k k ∆=--- 214(31)0k =->.将②代入双曲线方程得222(1k x x ⎡⎤-=⎣⎦,即 01222)1(2222222=-++-k x k x k .④由题设条件知2210k -≠,且2224(31)0k ∆=->,即21110k -≠,且22134(1)0k ∆=->. ∴1l ,2l 与双曲线各有两个交点,等价于21211310,310,1.k k k ⎧->⎪⎪->⎨⎪⎪≠⎩解得⎪⎩⎪⎨⎧≠<<.1,33311k k ∴)3,1()1,33()33,1()1,3(1 ----∈k . (Ⅱ)双曲线122=-x y 的顶点(0,1),(0,1)-.取1(0,1)A 时,有1)20(1=+k ,解得221=k . 从而2112-=-=k k . 将22-=k 代入方程④得03242=++x x . ⑤令2l 与双曲线的两交点为),(112y x A ,),(222y x B ,则12,x x 是方程⑤的两个根,且12123x x x x +=-=, ∴222221212||()()A B x x y y =-+-221212123()3[()4]x x x x x x =-=+-,∴ 60||222=B A , 152||22=B A . 当取1(0,1)A -时,由双曲线221y x -=关于x 轴的对称性,知152||22=B A , ∴1l 过双曲线的一个顶点时,152||22=B A .1997年普通高等学校招生全国统一考试数学试题(文史类)参考解答 第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1)—(10)题每小题4分,第(11)—(15)题每小题5分,共65分.1-12 BBACB CDCAB ADCCB第Ⅱ卷(非选择题 共85分)二、填空题:本大题共4小题;每小题4分,共16分.16.4 17.(4,2) 18.32- 19.①,④ 三、解答题:本大题共6小题;共69分. 20.(本小题满分10分)本小题主要考查复数的基本概念、复数的运算等基础知识,考查利用三角公式进行变形的技能和运算能力. 解一:∵3sin 3cos 2321ππi i z +=+=,i 2222+=ω4sin 4cos ππi +=.由题意得377(cossin )1212zw zw i ππ+=+ 1313(cos sin )1212i ππ++)1213sin 127(sin )1213cos 127(cosππππ+++=i55sin )66i ππ=+,∴复数3zw zw +的模为2,辐角主值为65π. 解二:3zw zw +)1(2w zw += )1)(2222)(2321(i i i +++= )2123(2i i +-=55sin )66i ππ=+,, ∴复数3zw zw +的模为2,辐角主值为65π. 21.(本小题满分11分)本小题主要考查等差数列、等比数列、方程组等基础知识,考查运算能力.解:设等差数列}{n a 的公差为d ,则3133S a d =+,4146S a d =+, 51510S a d =+.由已知条件得234534111,345112,34S S S S S ⎧⎛⎫⋅=⎪ ⎪⎪⎝⎭⎨⎪+=⎪⎩其中05≠S ,即 2111113()()(2),23()()2,2a d a d a d a d a d ⎧++=+⎪⎪⎨⎪+++=⎪⎩ 整理得211350,52 2.2a d d a d ⎧+=⎪⎨+=⎪⎩ 解得11,0a d ==,或1124,5a d ==-,∴1n a =,或1232124(1)555n a n n =--=-.当1n a =时,55=S ;当321255n a n =-时,54S =-. ∴等差数列}{n a 的通项为1=n a ,或n a n 512532-=.22.(本小题满分12分)本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力. 解:(Ⅰ)由题意知汽车从甲地匀速行驶到乙地所用时间为vS , 全程运输成本为)(2bv vaS v S bv v S a y +=⋅+⋅=, ∴所求函数及其定义域为],0(),(c v bv vaS y ∈+=.(Ⅱ)由题意知S ,a ,b ,v 都为正数,∴ab S bv vaS 2)(≥+,当且仅当a bv v =.即bav =时上式中等号成立. 若c b a≤,则当bav =时,全程运输成本y 最小;若c b a>,则当],0(c v ∈时,有 )()(bc c aS bv v a S +-+ )]()[(bc bv c av a S -+-==))((bcv a v c vcS-- ∵0≥-v c ,且2a bc >,∵02>-≥-bc a bcv a ,∴)()(bc caS bv v a S +≥+,且仅当cv =时等号成立,也即当c v =时,全程运输成本y 最小. 综上知,为使全程运输成本y 最小,当c b ab ≤时行驶速度应为b abv =;当c bab>时行驶速度应为c v =. 说明:当c ba>时,可用函数单调性、导数方法求最小值.23.(本小题满分12分)本小题主要考查直线与直线,直线与平面,平面与平面的位置关系,考查逻辑推理和空间想象能力. 解:(Ⅰ)∵AC 1是正方体, ∴AD ⊥面DC 1.又D 1F ⊂面DC 1,∴F D AD 1⊥.(Ⅱ)取AB 中点G ,连接A 1G ,FG . ∵F 是CD 的中点,∴GF ,AD 平行且相等. 又∵A 1D 1,AD 平行且相等, ∴GF ,A 1D 1平行且相等,∴GFD 1A 1是平行四边形,A 1G ∥D 1F . 设A 1G 与AE 相交于点H ,则∠AHA 1是AE 与D 1F 所成的角,∵E 是BB 1的中点,∴Rt △A 1AG ≌Rt △ABE ,∠GA 1A =∠GAH , ∴∠AHA 1=90°,即直线AE 与D 1F 所成角为直角.(Ⅲ)由(Ⅰ)知AD ⊥D 1F ,由(Ⅱ)知AE ⊥D 1F ,又AD ∩AE =A ,∴D 1F ⊥面AED .又因为D 1F ⊂面A 1FD 1, ∴面AED ⊥面A 1FD 1. (Ⅳ)∵体积E AA F F AA E V V 11--=,又FG ⊥面ABB 1A 1,三棱锥F -AA 1E 的高21==AA FG , 面积2221212111=⨯==∆A ABB E AA S S 矩形. ∴ 3422313111=⨯⨯=⨯⨯=∆-FG S V E AA FAA E . 24.(本小题满分12分)本小题主要考查对数函数图像、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力. 解:(Ⅰ)设点A ,B 的横坐标分别为1x ,2x ,。

全国高考文科全国卷数学试题及答案

全国高考文科全国卷数学试题及答案

年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。

(详细解析)1989年普通高等学校招生全国统一考试文科数学试题及答案

(详细解析)1989年普通高等学校招生全国统一考试文科数学试题及答案

1989年普通高等学校招生全国统一考试文科数学试题及答案考生注意:这份试题共三道大题(24个小题),满分120分.一.选择题(本题满分36分,共12个小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的,把你认为正确结论的代号写在题后的圆括号内每一个小题选对得3分,不选或选错一律得0分)1.如果{}{}{},,,,,,,,,,I a b c d e M a c d N b d e ===,其中I 是全集,那么M N 等于A .∅B .{}dC .{},a cD .{},b e 【答案】A 【解析】{}{},,MN b e a c ==∅.2.与函数y x =有相同图象的一个函数是A .y =B .2x y x=C .log a xy a =,其中0,1a a >≠ D .log x a y a =,其中0,1a a >≠【答案】D【解析】表示相同图象函数满足定义域和值域相同.A 中0y ≥;B 中0x ≠;C 中0x ≥,其中0,1a a >≠只有D 正确.3.如果圆锥的底面半径为2,高为2,那么它的侧面积是A .B .C .D . 【答案】C【解析】母线长l =S rl ππ===侧.4.已知{}n a 是等比数列,如果122312,6a a a a +=+=-且12n n S a a a =+++,那么lim n n S →∞的值等于A .8B .16C .32D .48 【答案】B【解析】两式相除得12q =-,则124a =,所以124[1()]2lim lim 1611()2nn n n S →∞→∞--==--.5.已知7270127(12)x a a x a x a x -=++++,那么127a a a +++的值等于A .2-B .1-C .0D .2 【答案】A【解析】令1x =得70127(121)a a a a -⨯=++++,即01271a a a a ++++=-,又令0x =得70(120)a -⨯=,即01a =,所以1272a a a +++=-.6.如果15|cos |,352πθθπ=<<,那么sin 2θ的值等于 A .510- B .510 C .515- D .515 【答案】C【解析】由题设531,cos 4225πθπθ<<=-,∴sin 2θ===7.直线2360x y +-=关于点(1,1)-对称的直线是 A .3220x y -+= B .2370x y ++= C .32120x y --= D .2380x y ++= 【答案】D【解析】设所求直线方程为230(6)x y m m ++=≠-=,解得8m =,所以所求直线方程为2380x y ++=.8.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是A .4B .3C .2D .5 【答案】B【解析】设求的半径为r 1=,解得3r =.9.由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有 A .60个 B .48个 C .36个 D .24个 【答案】B【解析】个位数为2,4时五位数为偶数,共有142448C A =个.10.如果双曲线2216436x y -=上一点P 到它的右焦点的距离是8,那么点P 到它的右准线的距离是A .10B .7732 C .72 D .532【答案】D【解析】由已知得8,6,10a b c ===,离心率54e =,点P 到它的右准线的距离d ,则854d =,得325d =.11.如果||4x π≤,那么函数2()cos sin f x x x =+最小值是 A .212- B .221+- C .1- D .221- 【答案】D【解析】2215()1sin sin (sin )24f x x x x =-+=--+,又sin 22x -≤≤,所以当sin 2x =-时函数有最小值221-.12.已知2()82f x x x =+-,如果2()(2)g x f x =-,那么()g x A .在区间(2,0)-上是增函数 B .在区间(0,2)上是增函数C .在区间(1,0)-上是减函数D .在区间(0,1)上是减函数 【答案】A【解析】22()82(1)9f x x x x =+-=--+,其单调增区间为(,1)-∞,单调减区间为(1,)+∞;而222()(2)(1)9g x f x x =-=--+,令221,t x u t =-=,所以2()9g x t =-+,两函数单调性相同,故A 正确.二.填空题(本题满分24分,共6个小题,每一个小题满分4分.)13.给定三点(1,0),(1,0),(1,2)A B C -,那么通过点A 并且与直线BC 垂直的直线方程 . 【答案】10x y +-=【解析】2011(1)BC k -==--,所求垂线斜率为1-,所求直线方程为10x y +-=.14.不等式2|3|4x x ->的解集是 . 【答案】{|1x x <-或4}x >【解析】22|3|434x x x x ->⇒->或234x x -<-,解得{|1x x <-或4}x >,而234x x -<-无解.15.函数11x x e y e -=+的反函数的定义域是 .【答案】(1,1)-【解析11x x e y e -=+的反函数为1ln 1x y x +=-,所以101x x +>-,解得(1,1)x ∈-.16.已知A 和B 是两个命题,如果A 是B 的充分条件,那么B 是A 的 条 件;A 是B 的 条件. 【答案】2-【解析】令1x =得70127(121)a a a a -⨯=++++,即01271a a a a ++++=-,又令0x =得70(120)a -⨯=,即01a =,所以1272a a a +++=-.17.已知01,01a b <<<<,如果log (3)1b x a -<,那么x 的取值范围是 .【答案】(3,4)【解析】由已知得log (3)0b x ->,又01b <<,所以0(3)1x <-<,得(3,4)x ∈.18.如图,P 是二面角AB αβ--棱AB 上的一点,分别在,αβ上引射线,PM PN ,如果45,60BPM BPN MPN ∠=∠=︒∠=︒,那么二面角AB αβ--的大小是 . 【答案】900 【解析】略.三.解答题(本题满分60分,共6个小题.) 19.(本小题满分8分)设复数5(1)z =,求z 的模和辐角的主值.【解】55551552525(13)2()32(cos sin )32(cos sin )23333i i i ππππ-==+=+32(cossin )33i ππ=+∴复数z 的模为32,的模和辐角的主值为3π.20.(本小题满分8分)证明:32sin tantan 22cos cos 2x x x x x-=+.α M P B A β N【证明】方法一:333sinsin sin cos cos sin3222222tan tan 22cos cos cos cos2222x x x x x xx x --=-= 3sin()sin 2sin 2233cos cos 2cos cos cos cos2222x x x x x x x x x x -===+. 方法二:333sin()sin cos cos sin2sin sin 222222333cos cos 2cos cos cos cos cos cos222222x x x x x x x x x x x x x x x x --===+ 3sin sin322tan tan 322cos cos 22x x x x x x =-=-.21.(本小题满分10分)如图,在平行六面体1111ABCD A BC D -中,已知15,4,3,AB AD AA AB AD ===⊥,113A AB A AD π∠=∠=.(Ⅰ)求证:顶点1A 在底面ABCD 的射影O 在BAD ∠的平分线上;(Ⅱ)求这个平行六面体的体积.(Ⅰ)证明:连结1AO ,则1AO ⊥底面ABCD .作OM AB ⊥交AB 于M ,作O N A D ⊥交AD 于N ,连结11,A M A N .由三垂线定理得11,A M AB A N AD ⊥⊥. ∵11AAM AA N ∠=∠,∴11RtA NA RtAMA ≅. ∴11A M A N =.∴OM ON =. ∴点O 在BAD ∠的平分线上.(Ⅱ)∵113cos3322AM AA π==⋅=,∴csc 4AO AM π==又在职1Rt AOA ∆中,2221199922AO AA AO =-=-=,∴1A O =∴平行六面体的体积54V =⋅22.(本小题满分10分)用数学归纳法证明222222(1223)(3445)[(21)(2)2(21)]n n n n ⋅-⋅+⋅-⋅++--+(1)(43)n n n =-++.证:当n=1时,左边=-14,右边=-1·2·7=-14,等式成立 假设当n=k 时等式成立,即有).3k 4)(1k (k ])1k 2(k 2)k 2)(1k 2[()5443()3221(222222++-=+--++⋅-⋅+⋅-⋅那么 当n=k+1时,].3)1k (4][1)1k )[(1k ()7k 4)(2k )(1k (]14k 15k 4)[1k ()]7k 6(2k 3k 4)[1k (]2k 6k 49k 12k 4)[1k (2)3k 4)(1k (k ])3k 2)(2k 2()2k 2)(1k 2[(])1k 2(k 2)k 2)(1k 2[()5443()3221(222222222222+++++-=+++-=+++-=++++-=---+++-++-=++-++++--++⋅-⋅+⋅-⋅这就是说,当n=k+1时等式也成立根据以上论证可知等式对任何N n ∈都成立 23.(本小题满分12分)已知0,1a a >≠,试求使方程222log ()log ()a a x ak x a -=-有解的k 的取值范围.【解】由对数函数的性质可知,原方程的解x 应满足22222(),0,0.x ak x a x ak x a ⎧-=-⎪->⎨⎪->⎩当①,②同时成立时,③显然成立,因此只需解222(),0,x ak x a x ak ⎧-=-⎨->⎩由①得22(1)kx a k =+. ④ 当0k =时,由0a >知④无解,因而原方程无解.当0k ≠时,④的解是2(1)2a k x k+=. ⑤把⑤代入②,得212k k k+>.当0k <时得21k <,解得1k -∞<<-.当0k >时得21k <,解得01k <<.综合得,当k 在集合(,1)(0,1)-∞-内取值时,原方程有解.24.(本小题满分12分)给定椭圆方程22221(0)x y a b b a+=>>,求与这个椭圆有公共焦点的双曲线,使得以它们的交点为顶点的四边形面积最大,并求相应的四边形的顶点坐标解:设所求双曲线的方程是22221x y αβ-=-由题设知22222c a b αβ=+=-由方程组⎪⎪⎩⎪⎪⎨⎧-=α--α=+1,1222222222c y x a y b x 解得交点的坐标满足22222222,(1)b x y a c c αα==-,即||,||b x y c α==. 由椭圆和双曲线关于坐标轴的对称性知,以它们的交点为顶点的四边形是长方形,其面积4||4S xy ab ==因为S 与2222(1)c cαα-同时达到最大值,所以当21(2a c =时达到最大值2ab . 这时222222221111(),()2222c a b c a b αβ==-==-, 因此,满足题设的双曲线方程是222222111()()22x y a b a b -=---.相应的四边形顶点坐标是(,),(,),(,,)22222222b a a ---.。

2000年高考.全国卷.文科数学试题及答案

2000年高考.全国卷.文科数学试题及答案

2000年普通高等学校招生全国统一考试数学(文史类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页。

第II卷3至8页。

共150分。

考试时间120分钟。

第I卷(选择题60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z且|x|≤5},则A∪B中的元素个数是(A)11 (B)10 (C)16 (D)15(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q(8)已知两条直线,其中a为实数。

2022年全国甲卷数学(文科)高考真题文档版(原卷)含答案

2022年全国甲卷数学(文科)高考真题文档版(原卷)含答案

2022年普通高等学校招生全国统一考试(全国甲卷)数学(文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差 3.若1i z =+.则|i 3|z z +=( )A .5B .2C .25D .224.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A .8B .12C .16D .20 5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16 B .14 C .13 D .126,从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15 B .13 C .25 D .237.函数()()33cos x x f x x -=-在区间,22ππ⎡⎤-⎢⎥⎣⎦的图像大致为( )A .B .C .D .8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12- C .12D .19.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则( )A .2AB AD = B .AB 与平面11ABCD 所成的角为30︒ C .1AC CB = D .1B D 与平面11BB C C 所成的角为45︒10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5 B .22 C 10 D 51011.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,12,A A 分别为C 的左、右顶点,B为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y += B .22198x y += C .22132x y += D .2212x y += 12.已知910,1011,89mmma b ==-=-,则( )A .0a b >>B .0a b >>C .0b a >>D .0b a >>二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1992年普通高等学校招生全国统一考试数学(文史类)考生注意:这份试卷共三道大题(28个小题).满分120分.考试时间120分钟.用钢笔直接答在试卷中,答卷前将密封线内的项目填写清楚.一.选择题:本大题共18小题;每小题3分,共54分.在每小题给的4个选项中,只有一项是符合题目要求的,把所选项前的字母填在题中括号内.(1)3log 9log 28的值是 ( )(A)32 (B) 1 (C) 23(D) 2 (2)已知椭圆1162522=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一焦点的距离是 ( ) (A) 2 (B) 3 (C) 5 (D) 7(3)如果函数y =sin(ωx )cos(ωx )的最小正周期是4π,那么常数ω为( )(A) 4 (B) 2 (C)21 (D) 41 (4)在(312xx -)8的展开式中常数项是 ( ) (A) -28 (B) -7 (C) 7 (D) 28(5)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是 ( ) (A) 6∶5 (B) 5∶4 (C) 4∶3 (D) 3∶2(6)图中曲线是幂函数y =x n 在第一象限的图像.已知n 取±2,±21四 个值,则相应于曲线c 1、c 2、c 3、c 4的n 依次为 ( )(A) -2,,21-21,2 (B) 2,21,,21--2 (C) ,21--2,2,21 (D) 2,,21-2,-21(7)若log a 2< log b 2<0,则( )(A) 0<a<b<1 (B) 0<b<a<1 (C) a>b>1 (D) b>a>1(8)原点关于直线8x +6y =25的对称点坐标为 ( )(A) (23,2) (B) (625,825) (C) (3,4) (D) (4,3)(9)在四棱锥的四个侧面中,直角三角形最多可有 ( )(A) 1个 (B) 2个 (C) 3个 (D) 4个(10)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )(A) x 2+y 2-x -2y -41=0 (B) x 2+y 2+x -2y +1=0 (C) x 2+y 2-x -2y +1=0 (D) x 2+y 2-x -2y +41=0(11)在[0,2π]上满足sin x ≥21的x 的取值范围是( )(A) ]60[π, (B) ]656[ππ, (C) ]326[ππ, (D) ]65[ππ,(12)已知直线l 1和l 2夹角的平分线为y =x ,如果l 1的方程是ax +by +c =0(ab >0),那么l 2的方程是( )(A) bx +ay +c =0 (B) ax -by +c =0 (C) bx +ay -c =0 (D) bx -ay +c =0 (13)如果α,β∈(2π,π)且tg α<ctg β,那么必有 ( )(A) α<β (B)β<α (C) α+β<π23 (D) α+β>π23(14)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别 为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )(A)23 (B) 1010 (C) 53 (D) 52(15)已知复数z 的模为2,则|z -i |的最大值为 ( )( )(A) 1 (B) 2 (C)5 (D) 3(16)函数y =2xx e e --的反函数 ( )(A) 是奇函数,它在(0,+∞)上是减函数 (B) 是偶函数,它在(0,+∞)上是减函数 (C) 是奇函数,它在(0,+∞)上是增函数 (D) 是偶函数,它在(0,+∞)上是增函数 (17)如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),那么( )(A) f(2)<f(1)<f(4) (B) f(1)<f(2)<f(4) (C) f(2)<f(4)<f(1) (D) f(4)<f(2)<f(1)(18)已知长方体的全面积为11,十二条棱长度之和为24,则这个长方体的一条对角线长为 ( )(A) 32 (B)14 (C) 5 (D) 6二.填空题:本大题共5小题;每小题3分,共15分,把答案填在题中横线上.(19)]31)1(2719131[lim 1n n n -∞→-+++-Λ的值为_______ (20)已知α在第三象限且tg α=2,则cos α的值是_________(21)方程xx3131++-=3的解是________(22) 设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则ST的值为_______(23)焦点为F 1(-2,0)和F 2(6,0),离心率为2的双曲线的方程是___________三.解答题:本大题共5小题;共51分.解答应写出文字说明、演算步骤(24)(本小题满分9分)求sin 220º+ cos 280º+3sin20ºcos80º的值. (25)(本小题满分10分) 设z ∈C ,解方程z -2|z |=-7+4i . (26)(本小题满分10分)如图,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E 、F 分别为棱AA 1与CC 1的中点,求四棱锥的A 1-EBFD 1的体积.(27)(本小题满分10分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求点A 和点C 的坐标.(28)(本小题满分12分)设等差数列{a n }的前n 项和为S n .已知a 3=12,S 12>0,S 13<0. (Ⅰ)求公差d 的取值范围;(Ⅱ)指出S 1,S 2,…S 12中哪一个值最大,并说明理由.1992年普通高等学校招生全国统一考试数学试题(文史类)参考答案及评分标准说明:一.本解答指出了每题所要考查的主要知识和能力,并给出了一种或几种较为常见的解法,如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准制定相应评分细则.二.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度时,可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.三.为了阅卷方便,本试题解答中的推导步骤写得较为详细,允许考生在解题过程中合理省略非关键性的推导步骤.四.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 五.只给整数分数.一、选择题.本题考查基本知识和基本运算.每小题3分,满分54分.(1)A (2)D (3)D (4)C (5)D (6)B (7)B (8)D (9)D (10)D (11)B (12)A (13)C (14)D (15)D (16)C (17)A (18)C二、填空题.本题考查基本知识和基本运算.每小题3分,满分15分.(19)41(20)55- (21)x =-1 (22)12815 (23)1124)2(22=--y x三、解答题(24)本小题主要考查三角函数恒等变形知识和运算能力.满分9分. 解 sin 220º+cos 280º+3sin 220ºcos80º=232160cos 1240cos 1+++-οο(sin100º-sin60º) ——3分=1+21(cos160º-cos40º)+23sin100º-43——5分=41-21·2sin100ºsin60º+23sin100º ——7分=41-23sin100º+23sin100º=41. ——9分 (25)本小题主要考查复数相等的条件及解方程的知识.满分10分. 解 设 z =x +yi (x ,y ∈R ). 依题意有x +yi -222y x +=-7+4i ——2分 由复数相等的定义,得⎪⎩⎪⎨⎧=-=+-.47222y y x x ——5分 将②代入①式,得 x -2162+x =-7. 解此方程并经检验得x 1=3, x 2=35. ——8分 ∴ z 1 =3+4i , z 2=35+4i . ——10分(26)本小题主要考查直线与直线,直线与平面,平面与平面的位置关系,以及空间想象能力和逻辑推理能力.满分10分.解法一 ∵ EB =BF =FD 1=D 1E =22)2(a a +=25a , ∴ 四棱锥A 1-EBFD 1的底面是菱形. ——2分 连结A 1C 1、EF 、BD 1,则A 1C 1∥EF .根据直线和平面平行的判定定理,A 1C 1平行于A 1-EBFD 1的底面,从而A 1C 1到底面EBFD 1的距离就是A 1-EBFD 1的高 ——4分①②设G 、H 分别是A 1C 1、EF 的中点,连结D 1G 、GH ,则FH ⊥HG , FH ⊥HD 1根据直线和平面垂直的判定定理,有 FH ⊥平面HGD 1,又,四棱锥A 1-EBFD 1的底面过FH ,根据两平面垂直的判定定理,有A 1-EBFD 1的底面⊥平面HGD 1.作GK ⊥HD 1于K ,根据两平面垂直的性质定理,有GK 垂直于A 1-EBFD 1的底面. ——6分 ∵ 正方体的对角面AA 1CC 1垂直于底面A 1B 1C 1D 1,∴ ∠HGD 1=90º. 在Rt △HGD 1内,GD 1=22a ,HG =21a ,HD 1=21BD =23a .∴23a ·GK =21a ·22a ,从而GK =66a . ——8分 ∴ 11EBFD A V -=311EBFD S菱形·GK =31·21·EF ·BD 1·GK =61·2a ·3a ·66a =61a 3 ——10分解法二 ∵ EB =BF =FD 1=D 1E =22)2(aa +=25a , ∴ 四菱锥A 1-EBFD 1的底面是菱形. ——2分 连结EF ,则△EFB ≌△EFD 1.∵ 三棱锥A 1-EFB 与三棱锥A 1-EFD 1等底同高, ∴ 111EFD A EFB A V V --=.∴ EFB A EBFD A V V --=1112. ——4分 又 11EBA F EFB A V V --=,∴ 1112EBA F EBFD A V V --=, ——6分 ∵ CC 1∥平面ABB 1A 1,∴ 三棱锥F -EBA 1的高就是CC 1到平面ABB 1A 1的距离,即棱长a . ——8分 又 △EBA 1边EA 1上的高为a .∴ 11EBFD A V -=2·31·1EBA S ∆·a =61a 3. ——10分 (27)本小题主要考查有关直线方程的知识及综合运用知识的能力.满分10分.解 由 ⎩⎨⎧==+-.0,012y y x得 顶点A (-1,0). ——2分 又,AB 的斜率 k AB =)1(102---=1.∵ x 轴是∠A 的平分线,故AC 的斜率为-1,AC 所在直线的方程为y =-(x +1) ① ——5分 已知BC 上的高所在直线的方程为x -2y +1=0,故BC 的斜率为-2,BC 所在的直线方程为 y -2=-2(x -1) ② ——8分 解①,②得顶点C 的坐标为(5,-6). ——10分 (28)本小题考查数列、不等式及综合运用有关知识解决问题的能力.满分12分. 解(Ⅰ)依题意,有2)112(1212112-⨯+=a S ·d >0,2)113(1313113-⨯+=a S ·d <0. 即⎩⎨⎧<+>+.06,011211d a d a ——4分 由a 3=12,得a 1+2d =12. ③ 将③式分别代入①、②式,得⎩⎨⎧<+>+.03,0724d d 解此不等式组得①②-.3724-<<d ——6分 (Ⅱ)解法一 由d <0可知 a 1> a 2> a 3>…> a 12> a 13.因此,若1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0,则S n 就是S 1,S 2,…,S 12中的最大值. ——9分 由于 S 12=6(a 6+a 7)>0, S 13=13a 7<0, 即 a 6+a 7>0, a 7<0,由此得 a 6>-a 7>0. 因 a 6>0,a 7<0.故在S 1,S 2,…,S 12中S 6的值最大.(Ⅱ)解法二 S n =na 1+d n n 2)1(- =n (12-2d )+21n (n -1)d=2d [n -21(5-d 24)]2-2)]245(21[2d d -,∵ d <0,∴ [n -21(5-d 24)]2最小时,S n 最大. ——9分当 -3724-<<d 时6<21(5-d 24)<6.5,∴ 正整数n =6时[n -21(5-d 24)]2最小,∴ S 6最大. ——12分 (Ⅱ)解法三 由d <0可知a 1> a 2> a 3>…> a 12> a 13.因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0,则S n 就是S 1,S 2,…,S 12中的最大值. ——9分⎪⎪⎩⎪⎪⎨⎧<⨯+>⨯+⇒⎩⎨⎧<>021213130211121200111312d a d a S S ⎪⎩⎪⎨⎧<+>->+⇒0602511d a d d a ⎩⎨⎧<>⇒.0076a a故在S 1,S 2,…,S 12中S 6的值最大. ——12分 注:如果只答出S 6的值最大,而未说明理由者,在(Ⅱ)中只给3分.。

相关文档
最新文档