高一上数学期末测试二(必修一和必修四)

合集下载

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

高一上数学期末必修一二考试卷(含答案)

高一上数学期末必修一二考试卷(含答案)

人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面α内可记为( )A 、P ∈a ,a ⊂αB 、P ⊂a ,a ⊂αC 、P ⊂a ,a ∈αD 、P ∈a ,a ∈α 2、直线l 是平面α外的一条直线,下列条件中可推出l ∥α的是( ) A 、l 与α内的一条直线不相交 B 、l 与α内的两条直线不相交C 、l 与α内的多数条直线不相交D 、l 与α内的随意一条直线不相交 3x+y+1=0的倾斜角为 ( )A .50ºB .120ºC .60ºD . -60º4、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l ,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥nC 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α 5、函数y=log 2(x 2-2x-3)的递增区间是( )(A )(-∞,-1) (B )(-∞,1) (C )(1,+∞) (D )(3,+∞)6.设函数11232221,,log ,333a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系是( ) A. a b c << B. a c b << C. c a b << D. c b a << 7、假如0<ac 且0<bc ,则直线0=++c by ax 不通过( )A 第一象限B 其次象限C 第三象限D 第四象限 8,A. 体重随年龄的增长而增加B. 25岁之后体重不变C. 体重增加最快的是15岁至25岁D.体重增加最快的是15岁之前9,计算2)2lg 20(lg 2021lg 356lg 700lg -+--A. 20B. 22C. 2D. 1810、经过点A (1,2),且在两坐标轴上的截距相等的直线共有( ) A 1条 B 2条 C 3条 D 4条 11、已知A (2,)3-,B (2,3--),直线l 过定点P (1, 1),且与线段AB 交,年龄/岁5015044565则直线l 的斜率k 的取值范围是( )A 434≤≤-k B 443≤≤k C 21≠k D 4-≤k 或43≥k 12、A,B,C,D 四点不共面,且A,B,C,D 到平面α的距离相等,则这样的平面( ) A 、1个 B 、4个 C 、7个 D 、多数个 二、填空题(每小题5分,共20分)13、在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 为CB ,CD 上的点,且CF ∶CB=CG ∶CD=2∶3,若BD=6cm ,梯形EFGH 的面积 28cm 2,则EH 与FG 间的距离为 。

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷一、单选题 1.函数()g x =) A .(2,0)(0,1)- B .[2,0)(0,1]- C .(1,0)(0,1]-⋃ D .[1,0)(0,2]-⋃2.已知(),()f x g x 都是定义在R 上的函数,下列两个命题: ①若()f x 、()g x 都不是单调函数,则(())f g x 不是增函数. ①若()f x 、()g x 都是非奇非偶函数,则(())f g x 不是偶函数. 则( ) A .①①都正确B .①正确①错误C .①错误①正确D .①①都错误3.设()f x 为定义在R 上的奇函数,且满足()(4)f x f x =+,(1)1f =,则(1)(8)f f -+=( ) A .2-B .1-C .0D .14.设函数17,0()20xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥,若()1f a <,则实数a 的取值范围是( )A .(,3)-∞-B .(1,)+∞C .(3,1)-D .(,3)(1,)-∞-⋃+∞5.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f =-,则满足()111f x -≤-≤的x 的取值范围为( )A .[]22-,B .[]1,3-C .[]1,3D .[]1,1-6.函数y =331x x -的图象大致是( )A .B .C .D .7.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大整数,如[]1,81=,[]1,82-=-.下面说法错误的是( )A .当[)0,1x ∈时,()f x x =;B .函数()y f x =的值域是[)0,1;C .函数()y f x =与函数14y x =的图象有4个交点;D .方程()40f x x -=根的个数为7个.8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当qx p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则( )注:p ,q 为互质的正整数()p q >,即qp为已约分的最简真分数. A .()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B .()()()R a b R a R b ⋅≥⋅C .()()()R a b R a R b +≥+D .以上选项都不对二、多选题9.函数()y f x =的图象如图所示,则( )A .函数()f x 的定义域为[-4,4)B .函数()f x 的值域为[)0,+∞C .此函数在定义域内是增函数D .对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应10.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图8-3-1所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映建议(1)B .①反映建议(1)C .①反映建议(2)D .①反映建议(2)11.有下列几个命题,其中正确的是( ) A .函数y =2x 2+x +1在(0,+∞)上是增函数 B .函数y =11x +在(-∞,-1)①(-1,+∞)上是减函数C .函数y [-2,+∞)D .已知函数g (x )=23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则f (x )=2x +312.对于定义在 R 上的函数()f x ,下列判断错误的有( ). A .若()()22f f ->,则函数()f x 是 R 的单调增函数 B .若()()22f f -≠,则函数()f x 不是偶函数 C .若()00f =,则函数()f x 是奇函数D .函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数三、填空题 13.若函数()2743kx f x kx kx +=++的定义域为R ,则实数k 的取值范围是__________ .14.已知函数()()3,01,0x x f x f x x ≤⎧=⎨->⎩,则56f ⎛⎫= ⎪⎝⎭_______ 15.已知函数()f x x=()2g x x ,则()()f x g x +=_________. 16.已知偶函数()y f x =定义在(1,1)-上,且在(1,0]-上是单调增加的.若不等式(1)(31)f a f a -<-成立,则实数a 的取值范围是___________.四、解答题17.已知幂函数22()(22)m f x m m x +=+-,且在(0,)+∞上是减函数. (1)求()f x 的解析式;(2)若(3)(1)m m a a ->-,求a 的取值范围.18.已知函数11()1(0)2f x x x =-+>.(1)若0m n >>时,()()f m f n =,求11m n+的值; (2)若0m n >>时,函数()f x 的定义域与值域均为[],n m ,求所有,m n 值.19.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =+.(1)求出函数()f x 在R 上的解析式,并补出函数()f x 在y 轴右侧的图像; (2)①根据图像写出函数()f x 的单调递减区间;①若[]1,x m ∈-时函数()f x 的值域是[]1,1-,求m 的取值范围.20.已知函数f (x )=221x x +.(1)求f (2)+f 12⎛⎫ ⎪⎝⎭,f (3)+f 13⎛⎫⎪⎝⎭的值;(2)由(1)中求得的结果,你发现f (x )与f 1x ⎛⎫⎪⎝⎭有什么关系?并证明你的发现.(3)求2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭的值.21.已知函数2(1)(f x ax bx a b =++,均为实数),x ∈R , (),0()(),0f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0f -=,且函数()f x 的值域为[0)+∞,,求()F x 的解析式; (2)在(1)的条件下,当2][2x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围; (3)设000mn m n a <+>>,,,且()f x 为偶函数,判断()()F m F n +是否大于零,并说明理由.22.已知函数()y x ϕ=的图象关于点(),P a b 成中心对称图形的充要条件是()()2a x a x b ϕϕ++-=.给定函数()61f x x x =-+. (1)求函数()f x 图象的对称中心;(2)判断()f x 在区间()0,∞+上的单调性(只写出结论即可);(3)已知函数()g x 的图象关于点()1,1对称,且当[]0,1x ∈时,()2g x x mx m =-+.若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围.参考答案1.B 【分析】首先根据题中所给的函数解析式,结合偶次根式和分式的要求列出不等式组求得结果.【解析】由题意得2200x x x ⎧--+≥⎨≠⎩,即2200x x x ⎧+-≤⎨≠⎩,解得21x -≤≤且0x ≠,所以函数()g x =[2,0)(0,1]-, 故选:B. 2.D【解析】解::当1,0()()0,0x f x g x x x ⎧≠⎪==⎨⎪=⎩,则(())f g x x =,故①不正确;当2()(1)f x x =+,()1g x x =-,则2(())f g x x =,故①不正确. ①①①都错误. 故选:D . 3.B 【解析】解:()f x 是定义在R 上的奇函数,(0)0f =,满足()(4)f x f x =+,(8)(4)(0)0f f f ∴===,又(1)(1)1f f -=-=-,(1)(8)1f f ∴-+=-.故选:B. 【点睛】本题考查了利用奇偶性和周期性求函数值,属于基础题. 4.C 【分析】0a <时,()1f a <即1()712a-<,0a1<,分别求解即可.【解析】0a <时,()1f a <即1()712a-<,解得3a >-,所以30a -<<;0a1,解得01a <综上可得:31a -<< 故选:C . 【点睛】本题考查分段函数解不等式问题,考查了分类讨论思想的应用,属基本题,难度不大. 5.B【分析】根据函数的奇偶性以及函数的单调性求出x 的范围即可. 【解析】解:因为()f x 为奇函数, 所以()()221f f -=-=,于是()111f x -≤-≤等价于()()()212f f x f ≤-≤-, 又()f x 在(,)-∞+∞单调递减,212x ∴-≤-≤,13x ∴-≤≤.故选:B . 【点睛】本题考查了函数的单调性和奇偶性问题,考查转化思想,属于中档题. 6.C【解析】由函数解析式可得,该函数定义域为(-∞,0)①(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x→+∞时,3x-1远远大于x 3的值且都为正,故331xx -→0且大于0,故排除D ,选C. 7.C 【分析】作出函数()[]f x x x =-的图像,结合图像可判断A ,B 均正确,再作出14y x =,14y x =的图像,结合方程的根与函数零点的关系,可判断C ,D 是否正确.【解析】解:作出函数()[]f x x x =-的图像如图所示,显然A ,B 均正确; 在同一坐标系内作函数14y x =的图像(坐标系内第一象限的射线部分), 作出14y x =的图像(图像中的折线部分),可以得到C 错误,D 正确. 故选:C.【点睛】本题考查了函数图像的应用,考查了函数值域的求解,考查了函数的零点与方程的根.本题的关键是由题目条件,作出()[]f x x x =-的图像.本题的难点是作图时,临界点空心圆、实心圆的标定. 8.B 【分析】设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数) ,B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C选项:分①a A ∈,b A ∈;①a B ∈,b B ∈;①a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【解析】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数, 故选项A 错误; 对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅; ①当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;①当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误, 故选:B. 【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析. 9.BD 【分析】结合函数图象一一分析即可;【解析】解:由题图可知,函数()f x 的定义域为[][)4,01,4-⋃,故A 错误; 函数()f x 的值域为[)0,+∞,故B 正确; 函数()f x 在定义域内不单调,故C 错误;对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应,故D 正确. 故选:BD .【分析】由于图象表示收支差额y 与乘客量x 的函数关系,因此需要正确理解图中直线的倾斜角及纵截距的含义.同时对于建议(1)(2)前后图象的变化,也可以理解为对原图象做平移或旋转得到新的图象【解析】对于建议(1)因为不改变车票价格,故建议后的图象(虚线)与目前的图象(实线)倾斜方向相同(即平行),由于减少支出费用,收支差变大,则纵截距变大,相当于将原图象向上平移即可得到,故①反映建议(1);对于建议(2)因为不改变支出费用,则乘客量为0时前后的收支差是相等的,即前后图象纵截距相等,由于提高车票价格,故建议后的图象(虚线)比目前的图象(实线)的倾斜角大.相当于将原图象绕与y 轴的交点按逆时针旋转一定的角度得到的图象,故①反映建议(2). 故选:AC. 11.AD 【分析】根据简单函数的单调性,复合函数的单调性,以及由函数奇偶性求函数解析式,即可容易判断和选择.【解析】由y =2x 2+x +1=2217()48x ++在1[,)4-+∞上递增知,函数y =2x 2+x +1在(0,+∞)上是增函数,故A 正确; y =11x +在(-∞,-1),(-1,+∞)上均是减函数, 但在(-∞,-1)①(-1,+∞)上不是减函数, 如-2<0,但112101<-++故B 错误;y [),(5,)2,1--+∞上无意义, 从而在[-2,+∞)上不是单调函数,故C 错误; 设x <0,则-x >0,g (-x )=-2x -3,因为g (x )为奇函数,所以f (x )=g (x )=-g (-x )=2x +3,故D 正确. 故选:AD . 【点睛】本题考查函数单调区间的求解,复合函数的单调性判断以及利用函数奇偶性求函数解析式,属中档题. 12.ACD利用单调性的定义及性质,奇偶函数定义进行判断即可.【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在x =0 处,有可能会出现右侧比左侧低的情况,故错误. 故选:ACD 【点睛】本题考查了函数的单调性的定义和性质,考查了函数奇偶性的性质,属于基础题. 13.30,4⎡⎫⎪⎢⎣⎭【分析】分析可知,对任意的x ∈R ,2430kx kx ++≠恒成立,分0k =、0k ≠两种情况讨论,结合已知条件可求得实数k 的取值范围. 【解析】因为函数()2743kx f x kx kx +=++的定义域为R ,所以,对任意的x ∈R ,2430kx kx ++≠恒成立. ①当0k =时,则有30≠,合乎题意;①当0k ≠时,由题意可得216120k k ∆=-<,解得304k <<. 综上所述,实数k 的取值范围是30,4⎡⎫⎪⎢⎣⎭.故答案为:30,4⎡⎫⎪⎢⎣⎭.14.12-【分析】利用函数()f x 的解析式可求得56f ⎛⎫⎪⎝⎭的值.【解析】因为()()3,01,0x x f x f x x ≤⎧=⎨->⎩,所以,511136662f f ⎛⎫⎛⎫⎛⎫=-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:12-.15.()0x x -> 【分析】求出函数()f x 、()g x 的定义域,将函数()f x 、()g x 解析式相加即可得解.【解析】函数()f x x =()2g x x =的定义域均为()0,∞+, 因此,()()()0f x g x x x +=->.故答案为:()0x x ->.16.1(0,)2【分析】由()y f x =在(1,0]-上为单调增,结合函数的奇偶性,可得()y f x =在[)0,1上为单调减,将(1)(31)f a f a -<-转化为131a a ->-,结合定义域,解不等式可得a 的取值范围. 【解析】偶函数()y f x =在(1,0]-上为单调增,∴()y f x =在[)0,1上为单调减,∴(1)(31)f a f a -<-等价于1311111311a a a a ⎧->-⎪-<-<⎨⎪-<-<⎩,解得:10202203a a a ⎧<<⎪⎪<<⎨⎪⎪<<⎩∴实数a 的取值范围是1(0,)2. 故答案为:1(0,)2. 【点睛】本题主要考查利用函数的奇偶性和单调性求解不等式问题,考查计算能力,属于中档题. 17.(1)()1f x x=;(2){|23a a <<或1}a <. 【分析】(1)根据幂函数的定义和单调性建立条件关系即可得到结论,(2)令3()g x x -=,根据其单调性即可求解结论.【解析】解:(1)函数是幂函数,2221m m ∴+-=, 即2230m m +-=,解得1m =或3m =-,幂函数()f x 在(0,)+∞上是减函数,20m ∴+<,即2m <-,3m ∴=-,(2)令3()g x x -=,因为()g x 的定义域为(-∞,0)(0⋃,)+∞,且在(,0)-∞和(0,)+∞上均为减函数,33(3)(1)a a --->-,310a a ∴-<-<或031a a <-<-或301a a ->>-,解得23a <<或1a <,故a 的取值范围为:{|23a a <<或1}a <.18.(1)2;(2)32m =,12n =. 【分析】(1)根据绝对值定义去掉绝对值,由()()f m f n =化简即可得出结果;(2)根据01n m <<≤,1m n >≥,01n m <<<三种情况去掉绝对值,根据函数的单调性,列出方程,计算求解即可得出结果.【解析】(1)因为()()f m f n =,所以11111122m n -+=-+ 所以1111m n -=-, 所以1111m n -=-或1111m n -=-,因为0m n >>,所以112m n+=. (2)1 当01n m <<≤时,11()2f x x =-在[],n m 上单调递减,因为函数()f x 的定义域与值域均为[],n m ,所以()()f n m f m n=⎧⎨=⎩,两式相减得1mn =不合,舍去. 2 当1m n >≥时,31()2f x x =-在[],n m 上单调递增,因为函数()f x 的定义域与值域均为[],n m ,所以()()f m m f n n =⎧⎨=⎩,无实数解. 3 当01n m <<<时,11,[,1],2()31,(1,],2x n x f x x m x⎧-∈⎪⎪=⎨⎪-∈⎪⎩ 所以函数()f x 在[,1]n 上单调递减,在(]1,m 上单调递增.因为函数()f x 的定义域与值域均为[],n m ,所以1(1)2n f ==,13()22m f ==.综合所述,32m =,12n =. 【点睛】本题考查分段函数的单调性及值域问题,考查分类讨论的思想,属于中档题.19.(1)()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩,图象答案见解析;(2)①减区间为:(),1-∞-和()1,+∞;①1m ⎡⎤∈⎣⎦.【分析】(1)由奇函数的定义求得解析式,根据对称性作出图象.(2)由图象的上升与下降得增减区间,解出方程221x x -+=-的正数解,可得结论.【解析】(1)当0x >,0x -<,则()()2222f x x x x x -=--=-因为()f x 为奇函数,则()()f x f x -=-,即0x >时,()22f x x x =-+ 所以()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩, 图象如下:(2)如图可知,减区间为:(),1-∞-和()1,+∞()11f -=-,()11f =令22212101x x x x x -+=-⇒--=⇒==①1x >①1x =故由图可知1m ⎡⎤∈⎣⎦. 【点睛】本题考查函数的奇偶性,考查图象的应用,由图象得单调区间,得函数值域.是我们学好数学的基本技能.20.(1)f (2)+f 12⎛⎫ ⎪⎝⎭=1,f (3)+f 13⎛⎫ ⎪⎝⎭=1;(2)f (x )+f 1x ⎛⎫ ⎪⎝⎭=1;证明见解析;(3)2018. 【分析】(1)根据函数解析式,代值计算即可;(2)观察(1)中所求()11f x f x ⎛⎫+= ⎪⎝⎭,结合函数解析式,即可证明; (3)根据(2)中所求,两两配对,即可容易求得结果.【解析】(1)因为f (x )=221x x +, 所以f (2)+f 12⎛⎫ ⎪⎝⎭=22212++2212112⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1 f (3)+f 13⎛⎫ ⎪⎝⎭=22313++2213113⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1. (2)由(1)可发现f (x )+f 1x ⎛⎫ ⎪⎝⎭=1.证明如下: f (x )+f 1x ⎛⎫ ⎪⎝⎭=221x x ++22111x x ⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭ =221x x ++211x +=2211x x ++=1,是定值. (3)由(2)知,f (x )+f 1x ⎛⎫ ⎪⎝⎭=1, 因为f (1)+f (1)=1,f (2)+f 12⎛⎫ ⎪⎝⎭=1, f (3)+f 13⎛⎫ ⎪⎝⎭=1, f (4)+f 14⎛⎫ ⎪⎝⎭=1, …f (2018)+f 12018⎛⎫ ⎪⎝⎭=1,所以2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫ ⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭=2018.【点睛】本题考查函数值的求解,注意观察,属基础题.21.(1)22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩;(2)(][)26∞∞-,-,+;(3)大于零,理由见解析. 【分析】(1)由(1)0f -=,得10a b -+=及函数()f x 的值域为[0)+∞,,得240a b -=, 联立求解可得;(2)由222(2)()124()k k g x x --=++-,当2][2x ∈-,时,()()g x f x kx =-是单调函数,则222k -≤-或222k -≥得解; (3)()f x 为偶函数,则2()1f x ax =+,不妨设m n >,则0n <,由0m n +>,得0m n >->,则22m n >所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=得解【解析】(1)因为(1)0f -=,所以10a b -+= ①.又函数()f x 的值域为[0)+∞,,所以0a ≠. 由224()24b a b y a x a a-=++知2404a b a -=, 即240a b -=①.解①①,得12a b ==,. 所以22()21(1)f x x x x =++=+.所以22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩; (2)由(1)得2222(2()())()21()124k k g x f x kx x k x x --=-=-=++-++ 因为当2][2x ∈-,时,()()g x f x kx =-是单调函数, 所以222k -≤-或222k -≥, 即2k ≤-或6k ≥,故实数k 的取值范围为(][)26∞∞-,-,+(3)大于零.理由如下:因为()f x 为偶函数,所以2()1f x ax =+,所以221,0()1,0ax x F x ax x ⎧+>=⎨--<⎩不妨设m n >,则0n <由0m n +>,得0m n >->所以22m n >又0a >,所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=,所以()()F m F n +大于零.【点睛】本题考查函数性质的应用,涉及分段函数解析式、函数的值域,单调性,奇偶性,属于基础题.22.(1)()1,1--;(2)()f x 在区间()0,∞+上为增函数;(3)[]2,4-.【分析】(1)根据题意可知,若函数()f x 关于点(),a b 中心对称,则()()2f a x f a x b ++-=, 然后利用()61f x x x =-+得出()f a x +与()f a x -,代入上式求解; (2)因为函数y x =及函数61y x =-+在()0,∞+上递增,所以函数()61f x x x =-+在()0,∞+上递增; (3)根据题意可知,若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,则只需使函数()g x 在[]10,2x ∈上的值域为()f x 在[]21,5x ∈上的值域的子集,然后分类讨论求解函数()g x 的值域与函数()f x 的值域,根据集合间的包含关求解参数m 的取值范围.【解析】解:(1)设函数()f x 图象的对称中心为(),a b ,则()()20f a x f a x b ++--=. 即()()662011x a x a b x a x a +-+-+--=++-++, 整理得()()()()22161a b x a b a a -=-+-+,于是()()()()21610a b a b a a -=-+-+=,解得1a b ==-.所以()f x 的对称中心为()1,1--;(2)函数()f x 在()0,∞+上为增函数;(3)由已知,()g x 值域为()f x 值域的子集.由(2)知()f x 在[]1,5上单增,所以()f x 的值域为[]2,4-.于是原问题转化为()g x 在[]0,2上的值域[]2.4A ⊆-.①当02m ≤,即0m ≤时,()g x 在[]0,1单增,注意到()2g x x mx m =-+的图象恒过对称中心()1,1,可知()g x 在(]1,2上亦单增,所以()g x 在[]0,2上单增,又()0g m =,()()2202g g m =-=-,所以[],2A m m =-.因为[][],22,4m m -⊆-,所以224m m ≥-⎧⎨-≤⎩,解得20m -≤≤. ①当012m <<,即02m <<时,()g x 在0,2m ⎛⎫ ⎪⎝⎭单减,,12m ⎛⎫ ⎪⎝⎭单增, 又()g x 过对称中心()1,1,所以()g x 在1,22m ⎛⎫- ⎪⎝⎭单增,2,22m ⎛⎤- ⎥⎝⎦单减; 此时()()min 2,,max 0,222m m A g g g g ⎛⎫⎧⎫⎧⎫⎛⎫⎛⎫=-⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭⎝⎭. 欲使[]2,4A ⊆-,只需()()222022224g g m m m g m ⎧=-=-≥-⎪⎨⎛⎫=-+≥- ⎪⎪⎝⎭⎩且()2042224224g m m m m g g m ⎧=≤⎪⎨⎛⎫⎛⎫-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩解不等式得24m -≤,又02m <<,此时02m <<.①当12m ≥,即2m ≥时,()g x 在[]0,1单减,在(]1,2上亦单减, 由对称性,知()g x 在[]0,2上单减,于是[]2,A m m =-.因为[][]2,2,4m m -⊆-,所以224m m -≥-⎧⎨≤⎩,解得24m ≤≤. 综上,实数m 的取值范围为[]2,4-。

高一数学必修一和四期末测试模拟题

高一数学必修一和四期末测试模拟题

高一数学必修一和必修四期末测试模拟题(满分150分,时间120分钟)班级______________姓名______________得分_______________一、选择题(共12小题,每题只有一个正确结果,每题5分,满分60分)1、已知全集为实数R ,M={x|x+3>0},则M C R 为( ) A. {x|x>-3} B. {x|x≥-3} C. {x|x<-3} D. {x|x ≤-3}2、a (a>0)可以化简为( )(A )23a (B )81a (C )43a (D )83a3、若点P 在32π的终边上,且OP=2,则点P 的坐标( )A .)3,1(B .)1,3(-C .)3,1(--D .)3,1(-4、已知点A (2,m )、B (m+1,3),若向量OA// OB 则实数m 的值为( )A.2B.-3C.2或-3D.52-5、已知sin α>sin β,那么下列命题成立的是( )A 若α、β是第一象限角,则cos α>cos βB 若α、β是第二象限角,则tan α>tan βC 若α、β是第三象限角,则cos α>cos βD 若α、β是第四象限角,则tan α>tan β6、若α、β为锐角,且满足54cos =α,53)cos(=+βα,则βsin 的值是( )A .2517B .53C .257D .517、若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππC .)3,4(ππD .)2,3(ππ8、已知)0,3(=a ,)5,5(-=b ,则a 与b的夹角为( )A.4π B. 43π C. 3πD. 32π9、在平行四边形ABCD 中,若AB AD AB AD +=-,则必有()A .0AD =B .0AB =或0AD =C .ABCD 是矩形 D .ABCD 是正方形10、若10<<<<a y x ,则有( )A .0)(log <xy a B.1)(log 0<<xy a C.2)(log 1<<xy a D.2)(log >xy a11、已知奇函数)(x f 当0>x 时x x f ln )(=,则函数x x f y sin )(-=的零点个数为( )。

高一数学期末复习资料(1-5)总复习题(共5套)

高一数学期末复习资料(1-5)总复习题(共5套)

期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。

期末复习综合测试题(2)-【新教材】人教A版(2019)高中数学必修第一册

期末复习综合测试题(2)-【新教材】人教A版(2019)高中数学必修第一册

模块一复习测试题二一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是46.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=7.已知cos()3παα+=为锐角),则sin (α= )A B C D8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为()A .43π B .2π C .83π D .73π 二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+-三.填空题(共4小题)13.化简32a b-= (其中0a >,0)b >.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 . 15.若1lgx lgy +=,则25x y+的最小值为 . 16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 .四.参考解答题(共8小题) 17.已知0x >,0y >,且440x y +=. (Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x=>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围; (Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围. 19.解方程 (1)231981xx-=(2)444log (3)log (21)log (3)x x x -=+++20.设函数33()sin cos 2323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示.(Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.22.已知函数2()3sin 2cos 12xf x x =-+. (Ⅰ)若()23()6f παα=+,求tan α的值;(Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围.模块一复习测试题二参考正确答案与试题详细解析一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉【详细分析】利用元素与集合的关系直接求解.【参考解答】解:集合{|15}{0A x N x =∈=,1,2,3},a =a A ∴∉.故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【详细分析】根据充分必要条件的定义以及基本不等式的性质判断即可. 【参考解答】解:1a >,1b >, 2log 0a ∴>,2log 0b >,2a b ab +,4a b +,故4ab ,222222222log log log ()log 4log log ()[]()1222a b ab a b +⋅==,反之,取16a =,152b =,则1522224log log log 16log 215a b ⋅=⋅=<, 但4a b +>,故4a b +是22log log 1a b ⋅的充分不必要条件, 故选:A .【点评】本题考查了充分必要条件,考查基本不等式的性质,是一道基础题.3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞【详细分析】直接利用命题的否定和一元二次方程的解的应用求出结果.【参考解答】解:命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则命题“[0x ∃∈,3],使得220x x m --= “成立是真命题, 故222(1)1m x x x =-=--. 由于[0x ∈,3],所以[1m ∈-,3]. 故选:C .【点评】本题考查的知识要点:命题的否定的应用,一元二次方程的根的存在性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]【详细分析】判断出在区间[3,5)上单调递增,(3)0(5)0f f ⎧⎨>⎩得出即1090m m -⎧⎨->⎩即可.【参考解答】解:函数2()44f x x x m =--+,对称轴2x =,在区间[3,5)上单调递增 在区间[3,5)上有零点,∴(3)0(5)0f f ⎧⎨>⎩即1090m m -⎧⎨->⎩ 解得:19m <, 故选:C .【点评】本题考查了二次函数的单调性,零点的求解方法,属于中档题. 5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是4【详细分析】直接利用不等式的基本性质和关系式的恒等变换的应用求出结果. 【参考解答】解:已知2x >,所以20x ->,故11222(2)2422y x x x x x =+=-++-=--(当3x =时,等号成立). 故选:B .【点评】本题考查的知识要点:不等式的基本性质,关系式的恒等变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=【详细分析】设(,)P x y 为()y f x =的反函数图象上的任意一点,则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,(,)P y x '关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,代入详细解析式变形可得.【参考解答】解:设(,)P x y 为()y f x =的反函数图象上的任意一点, 则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,又函数()y f x =的图象与函数12x y +=的图象关于直线0x y +=对称,(,)P y x ∴'关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,∴必有12x y -+-=,即12x y -+=-,()y f x ∴=的反函数为:12x y -+=-;故选:C .【点评】本题考查反函数的性质和对称性,属中档题7.已知cos()3παα+=为锐角),则sin (α= )A B C D 【详细分析】由11sin sin[()]33ααππ=+-,结合已知及两角差的正弦公式即可求解.【参考解答】解:cos()3παα+=为锐角),∴1sin()3απ+=,则11111sin sin[()]sin())33233ααππαπαπ=+-=++,1(2=-,=故选:C .【点评】本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为( )A .43π B .2π C .83π D .73π 【详细分析】把已知函数详细解析式利用辅助角公式化积,求得函数值域,再由a 的范围可知方程()f x a =有两根1x ,2x ,然后利用对称性得正确答案.【参考解答】解:1()sin 2(sin )2sin()23f x x x x x x π=+=+=+,[0x ∈,2]π,()[2f x ∴∈-,2],又01a <<,∴方程()f x a =有两根1x ,2x ,由对称性得12()()33322x x πππ+++=,解得1273x x π+=.故选:D .【点评】本题考查两角和与差的三角函数,考查函数零点的判定及应用,正确理解题意是关键,是基础题.二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆【详细分析】利用子集、并集、交集的定义直接求解. 【参考解答】解:集合M N ⊆,∴在A 中,M N M =,故A 错误;在B 中,M N N =,故B 正确;在C 中,()M M N ⊆,故C 错误;在D 中,M N N N =⊆,故D 正确.故选:BD .【点评】本题考查了子集、并集、交集定义等基础知识,考查运算求解能力,属于基础题. 10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 【详细分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断.【参考解答】解:不等式2a b ab +恒成立的条件是0a ,0b ,故A 不正确;当a 为负数时,不等式12a a+成立.故B 正确; 由基本不等式可知C 正确;对于212144()(2)4428y x y x x y x y x y x y x y+=++=+++=, 当且仅当4y x x y =,即12x =,14y =时取等号,故D 正确. 故选:BCD .【点评】本题考查基本不等式的应用,要注意应用条件的检验.11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根【详细分析】根据函数的奇偶性判断A ,根据函数的单调性判断B ,结合图象判断C ,D 即可.【参考解答】解:对于||:()()1x A f x f x x --=≠--+,()f x 不是奇函数,故A 错误; 对于:0B x 时,1()111x f x x x ==-++在[0,)+∞递增,故B 正确; 对于C ,D ,画出函数()f x 和21y x =-的图象,如图示:,显然函数()f x 的值域是(,1)[0-∞-,)+∞,故C 正确,()f x 和21y x =-的图象有3个交点,故D 错误;故选:BC .【点评】本题考查了函数的单调性,奇偶性问题,考查数形结合思想,转化思想,是一道中档题.12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+- 【详细分析】求出11sin()6π-的值.利用二倍角的余弦求值判断A ;利用两角和的余弦求值判断B ;利用二倍角的正弦求值判断C ;利用两角和的正切求值判断D .【参考解答】解:111sin()sin(2)sin 6662ππππ-=-+==. 对于A ,22cos 1531cos30o -=︒=对于B ,1cos18cos42sin18sin 42cos(1842)cos602︒︒-︒︒=︒+︒=︒=; 对于C ,12sin15sin 752sin15cos15sin302︒︒=︒︒=︒=; 对于D ,tan30tan15tan(3015)tan 4511tan30tan15o oo o+=︒+︒=︒=-.∴与11sin()6π-的值相等的是BC . 故选:BC .【点评】本题考查三角函数的化简求值,考查诱导公式、倍角公式及两角和的三角函数,是基础题.三.填空题(共4小题)13.化简32a b -= a (其中0a >,0)b >.【详细分析】根据指数幂的运算法则即可求出.【参考解答】解1311132322()b b bb ⨯=== 原式2111()3322a b a ---==,故正确答案为:a .【点评】本题考查了指数幂的运算,属于基础题.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 {1-,0,1} .【详细分析】先利用分离常数法将函数化为92()51x f x e =-+,进而求出()f x 的值域,再根据[]x 的定义可以求出[()]f x 的所有可能的值,进而得到函数的值域.【参考解答】解:212(1)212192()215151551x x x x x x e e f x e e e e+-=-=-=--=-++++, 0x e >,11x e ∴+>,∴2021x e <<+,∴19295515x e -<-<+, 即19()55f x -<<,①当1()05f x -<<时,[()]1f x =-, ②当0()1f x <时,[()]0f x =,③当91()5f x <<时,[()]1f x =, ∴函数[()]y f x =的值域是:{1-,0,1},故正确答案为:{1-,0,1}.【点评】本题主要考查了新定义运算的求解,关键是能通过分离常数的方式求得已知函数的值域,是中档题.15.若1lgx lgy +=,则25x y+的最小值为 2 . 【详细分析】根据对数的基本运算,结合不等式的解法即可得到结论.【参考解答】解:1lgx lgy +=,1lgxy ∴=,且0x >,0y >,即10xy =, ∴25251022210x y x y +=, 当且仅当25x y =,即2x =,5y =时取等号, 故正确答案为:2【点评】本题主要考查不等式的应用,利用对数的基本运算求出10xy =是解决本题的关键,比较基础.16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 16- .【详细分析】直接利用三角函数的性质和关系式的恒等变换的应用及二次函数的性质的应用求出结果.【参考解答】解:若42x ππ<<,则tan (1,)x ∈+∞, 另22tan tan 21tan x x x=-, 设tan x t =,(1)t >, 则422222244416111111()()24t y t t t t ===-----,当且仅当t =时,等号成立.故正确答案为:16-.【点评】本题考查的知识要点:三角函数关系式的变换,关系式的变换和二次函数的性质,主要考查学生的运算能力和转换能力及思维能力,属于中档题.四.参考解答题(共8小题)17.已知0x >,0y >,且440x y +=.(Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 【详细分析】(1)由已知得,40424x y xy =+=解不等式可求,(2)由题意得,11111()(4)40x y x y x y +=++,展开后结合基本不等式可求. 【参考解答】解:(1)0x >,0y >,40424x y xy ∴=+=当且仅当4x y =且440x y +=即20x =,5y =时取等号,解得,100xy ,故xy 的最大值100.(2)因为0x >,0y >,且440x y +=.所以111111419()(4)(5)(540404040y x x y x y x y x y +=++=+++=, 当且仅当2x y =且440x y +=即403x =,203y =时取等号, 所以11x y +的最小值940. 【点评】本题考查了基本不等式在求最值中的应用,属于中档题18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x =>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围;(Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围.【详细分析】(Ⅰ)对式子变形后,利用基本不等式即可求得结果;(Ⅱ)先由题设把问题转化为:2210x ax --对于任意的[0x ∈,2]恒成立,构造函数2()21g x x ax =--,[0x ∈,2],利用其最大值求得a 的取值范围;(Ⅲ)由题设把问题转化为:方程21a x =-在[0a ∈,2]有解,解出x 的范围.【参考解答】解:(Ⅰ)当2a =时,2()41111()22212222f x x x y x x x x -+===+-⨯-=-(当且仅当1x =时取“= “),1min y ∴=-;(Ⅱ)由题意知:221x ax a a --+对于任意的[0x ∈,2]恒成立,即2210x ax --对于任意的[0x ∈,2]恒成立,令2()21g x x ax =--,[0x ∈,2],则(0)10(2)340g g a =-⎧⎨=-⎩,解得:34a , a ∴的取值范围为3[4,)+∞; (Ⅲ)由()2f x ax =-可得:210x a -+=,即21a x =-, [0a ∈,2],2012x ∴-,解得:11x -,即x 的取值范围为[1-,1].【点评】本题主要考查基本不等式的应用、函数的性质及不等式的解法,属于中档题.19.解方程 (1)231981x x -= (2)444log (3)log (21)log (3)x x x -=+++【详细分析】(1)直接利用有理指数幂的运算法则求解方程的解即可.(2)利用对数运算法则,化简求解方程的解即可.【参考解答】解:(1)231981x x -=,可得232x x -=-,(2分) 解得2x =或1x =;(4分)(2)444log (3)log (21)log (3)x x x -=+++,可得44log (3)log (21)(3)x x x -=++,3(21)(3)x x x ∴-=++,(2分)得4x =-或0x =,经检验0x =为所求.(4分)【点评】本题考查函数的零点与方程根的关系,对数方程的解法,考查计算能力.20.设函数3()cos 323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值. 【详细分析】(1)利用辅助角公式化积,再由周期公式求周期;(2)由对称性求得()g x 的详细解析式,再由x 的范围求得函数最值.【参考解答】解:(1)3()cos sin()32333x x f x x ππππ=-=-. ()f x ∴的最小正周期为263T ππ==;(2)函数()y g x =与()y f x =的图象关于x 轴对称,()()3sin()33x g x f x ππ∴=-=-. [0x ∈,3]2,∴[333x πππ-∈-,]6π, sin()[33xππ∴-∈,1]2,()[g x ∈,3]2. ∴当[0x ∈,3]2时,()y g x =的最大值为32. 【点评】本题考查sin()y A x ωϕ=+型函数的图象和性质,考查三角函数最值的求法,是中档题.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示. (Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.【详细分析】(Ⅰ)由函数的图象的顶点坐标求出A ,B ,由周期求出ω,由特殊点的坐标求出ϕ的值,可得函数的详细解析式,再根据余弦函数的图象的对称性,得出结论. (Ⅱ)由题意利用函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,得出结论.【参考解答】解:(Ⅰ)由函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象知: 1(3)22A --==,1(3)12B +-==-,72212T πππωω-==⇒=, ()2cos(2)1f x x ϕ∴=+-,把点(,1)12π代入得:cos()16πϕ+=, 即26k πϕπ+=,k Z ∈. 又||2πϕ<,∴6πϕ=-,∴()2cos(2)16f x x π=--. 由图可知(,1)3π-是其中一个对称中心, 故所求对称中心坐标为:(,1)32k ππ+-,k Z ∈. (Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,可得1cos(2)62y x π=--的图象,再向右平移6π个单位,可得11cos(2)sin 2222y x x π=--=- 的图象, 最后将图象向上平移1个单位后得到1()sin 22g x x =+的图象. 由22222k x k ππππ-++,k Z ∈,可得增区间是[4k ππ-,]4k ππ+,当3[,]124x ππ∈时,函数的增区间为[,]124ππ. 则32[,]62x ππ∈,当22x π=即,4x π=时,()g x 有最大值为32, 当322x π=,即34x π=时,()g x 有最小值为11122-+=-. 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求详细解析式,由函数的图象的顶点坐标求出A 、B ,由周期求出ω,由特殊点的坐标求出ϕ的值,余弦函数的图象的对称性.函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,属于中档题.22.已知函数2()2cos 12x f x x =-+.(Ⅰ)若()()6f παα=+,求tan α的值; (Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围. 【详细分析】(Ⅰ)利用三角恒等变换,化简()f x 的详细解析式,根据条件,求得tan α的值. (Ⅱ)根据函数sin()y A x ωϕ=+的图象变换规律,求得()g x 的详细解析式,再利用正弦函数的定义域和值域,求得()g x 的范围,可得m 的范围.【参考解答】解:(Ⅰ)2()2cos 1cos 2sin()26x f x x x x x π-+-=-,()()6f παα=+,∴sin()6παα-=,∴1cos 2ααα-=,即cos αα-=,∴tan α=(Ⅱ)把()f x 图象上所有点横坐标变为原来的12倍得到函数()g x 的图象, 所以函数()g x 的详细解析式为()(2)2sin(2)6g x f x x π==-, 关于x 的方程()0g x m -=在[0,]2π上有解, 等价于求()g x 在[0,]2π上的值域, 因为02x π,所以52666x πππ--, 所以1()2g x -,故m 的取值范围为[1-,2].【点评】本题主要考查三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的定义域和值域,属于中档题.。

高一数学必修1-4上学期期末测试题(带答案)

高一数学必修1-4上学期期末测试题(带答案)

高一数学试题期末综合复习(二)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知0,a m n >、为有理数,下列各式中正确的是A .nm nma a a =÷ B .n m n m a a a ⋅=⋅ C .m n mn a a +=)( D .n n a a -=÷012.sin 75= A .14B .3 C .62- D .62+ 3.下列函数中,在R 上单调递增的是A .y x =B .2log y x =C .13y x = D .tan y x = 4.如图所示,U 是全集,A 、B 是U 的子集,则阴影部分所表示的集合是A .AB B .()U BC A C .AB D .()U AC B5.若tan 3α=,tan()αβ-43=,则等于tan β A .3-B .13-C .13D .36.下列说法中不正确的是A .正弦函数、余弦函数的定义域是R ,值域是[,]-11B .余弦函数当且仅当2(Z)x k k π=∈时,取得最大值1C .正弦函数在3[2,2](Z)22k k k ππππ++∈上都是减函数D .余弦函数在[2,2](Z)k k k πππ-∈上都是减函数7.已知集合1{|ln ,1},{|(),1},2x A y y x x B y y x A B ==>==>则=A .{|01}y y <<B .1{|0}2y y <<C .1{|1}2y y << D .∅8.若sin 46,cos 46,cos36a b c ===,则,,a b c 的大小关系是A . c a b >>B .a b c >>C .a c b >>D .b c a >>9. 函数sin(2)(0)y x ϕϕπ=+≤≤的图象关于直线8x π=对称,则ϕ的值是A .0B .4π C .2πD .π 10.已知从甲地到乙地通话m 分钟的电话费由)1][5.0(06.1)(+=m m f 元给出,其中0>m ,[m ]表示不超过m 的最大整数,(如[3]=3,[3.2]=3),则从甲地到乙地通话时间为分钟的话费为A .3.71B .3.97C .4.24D . 11.函数2()ln f x x x=-的零点所在的大致区间是 A .(,2)1 B .(2,3) C .1(1,)e和(3,4) D .(),e +∞ 12.已知()y f x =是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是第4题图A .5|02x x ⎧⎫<<⎨⎬⎭⎩ B . 3|02x x ⎧⎫-<<⎨⎬⎭⎩C . 35|0,022x x x ⎧⎫-<<<<⎨⎬⎭⎩或D . 35|,022x x x ⎧⎫<-≤<⎨⎬⎭⎩或第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知0.622,0.6a b ==,2log 0.6c =,则实数a b c 、、的大小关为 ; 14.已知函数)cos(ϕπω+=x y 的最小正周期为1,则正数ω的值为 ;15.已知函数)cos()sin()(βπαπ+++=x b x a x f ,其中βα,,,b a 都是非零实数.若(2008)1f =-,则(2009)f = ;16.教材中有这样一道题目:已知()3x f x =,求证:(1)()()()f x f y f x y ⋅=+; (2)()()()f x f y f x y ÷=-.类似地,对于函数3log y x =,有: (1)()()(f x f y f += );(2)()()(f x f y f -= ).三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)(Ⅰ)化简:︒--︒︒︒+20sin 1160sin 160cos 20sin 212;(Ⅱ)已知:3tan =α,求)2sin()cos(4)23sin(3)2cos(2απααπαπ-+-+---的值. 18.(本小题满分12分)一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的75%,估计约经过多少年,该物质的剩留量是原来的13(结果保留1个有效数字)?(lg 20.3010≈,lg30.4771≈)19.(本小题满分12分)已知函数2()(0)x f x t t-=>+111.(Ⅰ)求证:()()f x f x +-1为定值; (Ⅱ)求(2)()(0)()(2)(3)f f f f f f -+-++++11的值.20.(本小题满分12分)已知函数()22()sin cos 2cos (R)f x x x x x =++∈.(Ⅰ)求函数)(x f 的最大值及相应的x 取值;(Ⅱ)该函数的图象可以由sin (R)y x x =∈的图象经过怎样的平移和伸缩变换得到.21.(本小题满分12分)已知函数23,[1,2]()3,(2,5]ax x f x bx x ⎧+∈-=⎨-∈⎩,且()2,(3)f f ==10.(Ⅰ)求,a b 的值,并在给定的直角坐标系内画出()f x 的图象;(Ⅱ)写出()f x 的单调递增区间; (Ⅲ)当()f x <1时, 求x 的取值范围.22.(本小题满分14分)已知函数2()cos 2sin ,f x x a x a =--+在区间[0,]π上有最小值2-,求a 的值.高一数学试题期末综合复习(二)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.DDCBC,DBABA,BD二、填空题:本大题共4小题,每小题4分,共16分.13.a b c >>;14.2;15.1; 16.(1)()()()f x f y f xy +=;(2)()()()xf x f y f y-=. 三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分) (Ⅰ)解:原式=︒-︒︒︒-20cos 20sin 20cos 20sin 21……………………………3分=︒-︒︒-︒20cos 20sin 20sin 20cos =1-………………6分(Ⅱ)解:原式=ααααsin cos 4cos 3sin 2-+……………………………9分ααtan 43tan 2-+=9 (12)分18.(本小题满分12分)解:设这种放射性物质最初的质量是1,经过x 年后,剩留量是y , 则有0.75xy =. ……………………………4分依题意,得10.753x =,…………………6分 0.75log 3x =1. …………………………8分1lglg3lg30.47713 3.8lg 0.75lg3lg 42lg 2lg320.3010.4771-====≈--⨯- ……………10分∴ 估计约经过4年,该物质的剩留量是原来的13.……………………12分19.(本小题满分12分)解: (Ⅰ)22()222()x x x x xt f x t t t t t ------====++++1111111111111……3分所以,222()()x x x t f x f x t t ---+-=+=++11111111为定值;…………6分 (Ⅱ)由(Ⅰ)知: (2)(3)()(2)(0)()f f f f f f -+=-+=+=111所以,(2)()(0)()(2)(3)3f f f f f f -+-++++=11.…………………12分20. (本小题满分12分)解:(Ⅰ)()242sin 222cos 2sin cos 2cos sin )(22+⎪⎭⎫ ⎝⎛+=++=++=πx x x x x x x f ……4分所以 22)(max +=x f 此时()Z k k x x x ∈⎭⎬⎫⎩⎨⎧+=∈8ππ…………………6分(Ⅱ) sin sin()4y x y x ππ=−−−−−→=+−−−−−−−→1左移个单位横坐标缩小到原来的42sin(2)4y x π=+→)4y x π=+2)24y x π−−−−−−−→=++图像向上平移个单位………………………12分21.(本小题满分12分)解: (Ⅰ)由()2,(3)f f ==10得:32330a a b b +==-⎧⎧⇒⎨⎨-==⎩⎩11 23,[,2]()3,(2,5]x x f x x x ⎧-∈-∴=⎨-∈⎩1……2分函数()f x 的图像如右图所示;……5分 (Ⅱ)函数()f x 的单调递增区间为[-1,0]和[2,5] ………8分(Ⅲ)由()f x <1知:222533x x x x -≤≤<≤⎧⎧⎨⎨-<-<⎩⎩1或11224x x <≤<<或………………………11分所以,x的取值范围是:4)………………………………………………12分22.(本小题满分14分)解:22()cos 2sin sin 2sin ,f x x a x a x a x a =--+=-+-1……2分 令sin [0,]x t =∈1,则2()()21f x g t t at a ==-+-,函数()g t 的对称轴为t a =………………4分(1)当0<a 时,函数()g t 在]1,0[上为单调增函数,则min ()(0)1g t g a ==-即21-=-a ,则1-=a ;………………7分(2)当10≤≤a 时,函数()g t 在]1,0[上的最小值为2()12g a a a =-+-=-所以 012=--a a 则251±=a ,均不合题意,舍去;…………10分 (3)当1>a 时,函数()g t 在]1,0[上为单调减函数,则min ()(1)g t g a ==-即2-=-a ,则2=a ………………13分综上,2,1=-=a a …………………………………………14分。

高一数学必修一必修二综合测试卷(有答案)

高一数学必修一必修二综合测试卷(有答案)

高一数学试题四(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列说法正确的是( )A . 经过三点确定一个平面B . 经过一条直线和一个点确定一个平面C . 四边形确定一个平面D . 两两相交且不共点的三条直线确定一个平面2. 下列哪个函数的定义域与函数()15xf x ⎛⎫= ⎪⎝⎭的值域相同( )A . 2y x x =+B . ln 2y x x =-C . 1y x =D . 1y x x=+3. 已知集合12|log 1A x x ⎧⎫=>-⎨⎬⎩⎭,{}|22xB x =>,则A B =( )A . 1,22⎛⎫ ⎪⎝⎭B . 1,2⎛⎫+∞⎪⎝⎭C . ()0,+∞D . ()0,24. 已知圆锥的侧面展开图是一个半圆,则其母线与底面半径之比为( ) A . 1B .2C .3D . 25. 已知函数()2f x x x a =++在区间()0,1上有零点,则实数a 的取值范围是( ) A . 1,4⎛⎤-∞ ⎥⎝⎦B . 1,4⎛⎫-∞ ⎪⎝⎭C . ()2,0-D . []2,0-6. 函数()()10,1x f x a a a -=>≠的图象恒过点A ,则下列函数中图象不经过点A 的是( )A . 1y x =-B . 2y x =-C . 21xy =-D . ()2log 2y x =7. 正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( ) A .6π B .4π C . 3π D . 2π8. 已知函数()212log 3y x ax a =-+在[)2,+∞上为减函数,则实数a 的取值范围是( )A . 4a ≤B . 4a ≥C . 4a <-或4a ≥D . 44a -<≤9. 某几何体的三视图如图所示,该几何体表面上的点P 与点Q 在正视图与侧视图上的对应点分别为A ,B ,则在该几何体表面上,从点P 到点Q 的路径中,最短路径的长度为( ) A .5B .6 C . 22D .1010. 已知函数()ln 1f x x =-,()223g x x x =-++,用{}min ,m n 表示m ,n 中最小值,设()()(){}min ,h x f x g x =,则函数()h x 的零点个数为( )A . 1B . 2C . 3D . 411. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2x g x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( )A .315-B . 35-C . 1D . -1 12. 无论x ,y ,z 同为三条不同的直线还是同为三个不同的平面,给出下列说法:①若//x y ,//x z ,则//y z ;②若x y ⊥,x z ⊥,则y z ⊥;③若x y ⊥,//y z ,则x z ⊥;④若x 与y 无公共点,y 与z 无公共点,则x 与z 无公共点; ⑤若x ,y ,z 两两相交,则交点可以有一个,三个或无数个.其中说法正确的序号为( ) A . ①③B . ①③⑤C . ①③④⑤D . ①④⑤二、填空题(本大题共4小题,每小题5分,共20分) 13. 设函数()()xxf x e aea R -=+∈,若()f x 为奇函数,则a =______.14. 一个正四棱锥的侧棱长与底面边长相等,体积为423,则它的侧面积为______. 15. 已知函数()f x 为定义在[]2,3a -上的偶函数,在[]0,3上单调递减,并且()22522a f m m f m ⎛⎫-- ⎪⎝⎭>-+-,则m 的取值范围是______.16. 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 如图所示,在正方体1111ABCD A B C D -中,E 、F 分别是AB 和1AA 的中点.求证:CE ,1D F ,DA 交于一点.18. 已知函数()21x ax b f x x +=++是定义域为R 的奇函数. (1)求实数a 和b 的值,判断并证明函数()f x 在()1,+∞上的单调性;(2)已知0k <,且不等式()()22310f t t f k -++-<对任意的t R ∈恒成立,求实数k 的取值范围.19. 食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足8042P a =+,11204Q a =+.设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为()f x (单位:万元). (1)求()50f 的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益()f x 最大?20. 已知幂函数()()3*p N x x f p -=∈的图象关于y 轴对称,且在()0,+∞上为增函数. (1)求不等式()()22132pp x x +<-的解集;(2)设()()()log 0,1a f x ax g x a a =->≠⎡⎤⎣⎦,是否存在实数a ,使()g x 在区间[]2,3上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.21. 已知函数()11439x xm f x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.(1)当2m =-时,求函数()f x 在(),0-∞上的值域;(2)若对任意[)0,x ∈+∞,总有()6f x ≤成立,求实数m 的取值范围.22. 在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1-5:DBCDC6-10:ABDCC11-12:AB1.【解析】A 选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B 选项如果点在直线上,则该直线和这个点不能确定一个平面;C 选项中的四边形有可能是空间四边形,故选D .2.【解析】函数()15xf x ⎛⎫= ⎪⎝⎭的值域为()0,+∞,函数2y x x =+的定义域为R ,函数ln 2y x x =-的定义域为()0,+∞;函数1y x x=+的定义域为()(),00,-∞+∞,函数1y x=的定义域为()(),00,-∞+∞,故选B .3.【解析】由{}12|log 1|02A x x x x ⎧⎫=>-=<<⎨⎬⎩⎭,{}1|22|2xx x x B =⎧⎫>=>⎨⎬⎩⎭,则()0,A B =+∞,故选C .4.【解析】由已知可得2r l ππ=,所以2l r =,故2lr=.故选D . 5.【解析】函数()2f x x x a =++的图象的对称轴为12x =-,故函数在区间()0,1上单调递增,再根据函数()f x 在()0,1上有零点,可得()()00120f a f a =<⎧⎪⎨=+>⎪⎩,解20a -<<,故选C .6.【解析】函数()()10,1x f y ax a a -=>≠=的图象恒过点A ,即10x -=,可得1x =,那么1y =.∴恒过点()1,1A .把1x =,1y =带入各选项,只有A 没有经过A 点.故选A . 7.【解析】略8.【解析】()23g x x ax a =-+,则()230x a a g x x =-+>在[)2,+∞恒成立,且()23g x x ax a =-+在[)2,+∞上为增函数,所以22a≤且()240g a =+>,所以44a -<≤.故选D .9.【解析】由题,几何体如图所示(1)前面和右面组成一面此时222222PQ =+=.(2)前面和上面在一个平面此时223110PQ =+=,2210<,故选C . 10.【解析】作出函数()f x 和()g x 的图象如图,两个图象的下面部分图象,由()2230g x x x =-++=,得1x =-,或3x =,由()ln 10f x x =-=,得x e =或1x e=,∵()0g e >,∴当0x >时,函数()h x 的零点个数为3个,故选C .11.【解析】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()222x xg x -+=,()222x x h x --=.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ----≤==-+++,∵2141x y =-+为增函数,∴max 231415x ⎛⎫+= ⎪+⎝⎭,故选A . 12.【解析】由平行于同一直线的两直线平行,平行于同一平面的两平面平行,可得①正确;由垂直于同一直线的两直线平行、相交或异面;垂直于同一平面的两平面相交或平行,可得②错误;由垂直于两平行直线中的一条,也垂直于另一条;垂直于两平行平面中的一个,也垂直于另一个,可得③正确;若一条直线与另两条直线无公共点,可得另两条直线可以相交;若一个平面与另两个平面无公共点,可得另两个平面无公共点;可得④错误.若三条直线两两相交,则交点可以有一个或三个,若三个平面两两相交,则交点有无数个.故选B . 二、填空题(本大题共4小题,每小题5分,共20分)13. -1 14. 43 15. 1122m -≤< 16. 4π13.【解析】若函数()x x f x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-. 14.【解析】设正四棱锥的侧棱长与底面边长相等为2a ,则24ABCD S a =,2222422h PB BO a a a =-=-=,则31442233V a =⨯=,则1a =,则 22142242BC PF a a a S ⎛⎫=⨯⨯⨯=⨯⨯- ⎪⎝⎭侧24343a ==.15.【解析】由题设可得230a -+=,即5a =,故()()22122f m f m m -->-+-可化()()22122f m f m m +>-+,又2113m ≤+≤,21223m m ≤-+≤,故2211222m m m m +<-+⇒<,且12m ≥-.故应填答案1122m -≤<.16.【解析】将四面体ABCD 放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD 的外接球,∵正四面体ABCD 的棱长为4,∴正方体的棱长为22, 可得外接球半径R 满足()22322R =⨯,解得6R =.E 为棱BC 的中点,过E 作其外接球的截面,当截面到球心O 的距离最大时,截面圆的面积达最小值,此时球心O 到截面的距离等于正方体棱长的一半,可得截面圆的半径为222r R =-=,得到截面圆的面积最小值为24S r ππ==.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】证明:如图所示,连接1CD 、EF 、1A B ,因为E 、F 分别是AB 和1AA 的中点, 所以1//EF A B 且112EF A B =.即:1//EF CD ,且112EF CD =, 所以四边形1CD FE 是梯形,所以CE 与1D F 必相交,设交点为P ,则P CE ∈,且1P D F ∈,又CE ⊂平面ABCD , 且1D F ⊂平面11A ADD ,所以P ∈平面ABCD ,且P ∈平面11A ADD , 又平面ABCD平面11A ADD AD =,所以P AD ∈,所以CE 、1D F 、DA 三线交于一点.18.【解析】(1)因为()()f x f x -=-,所以2211x a x ax bx x bx -+--=-+++, ∴0a b ==,()21xf x x =+, 任取()12,1,x x ∈+∞,且12x x <,()()1212221211x xf x f x x x -=-++()()()()21122212111x x x x x x --=++, ∵210x x ->,1210x x ->,()()2212110x x ++>,∴()f x 在()1,+∞单调递减.(2)()()2231f t t f k -+<--,()()2231f t t f k -+<-, ∵2232t t -+≥,11k ->,∴2231t t k -+>-, 即()211k t >---, ∵t R ∈≤,∴()1,0k ∈-. 19.【解析】(1)由题可知:甲大棚投入50万元,则乙大棚投入150万元, 所以()1804250150120277.5450f =+⨯+⨯+=. (2)依题意得202018020020x x x ≥⎧⇒≤≤⎨-≥⎩.故()()142250201804x x f x x =-++≤≤. 令25,65t x ⎡⎤=∈⎣⎦,则()()2211422508228244f x t t t =-++=--+,当82t =,即128x =时,()max 282f x =,所以投入甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元. 20.【解析】(1)由已知得30p ->且*p N ∈,所以1p =或2p =, 当2p =时,()3p f x x -=为奇函数,不合题意, 当1p =时,()2f x x =.所以不等式()()22132pp x x +<-变为()()1122132x x +<-, 则0132x x ≤+<-,解得213x -≤<. 所以不等式()()22132p p x x +<-的解集为21,3⎡⎫-⎪⎢⎣⎭.(2)()()2log a a g x x x =-,令()2h x x ax =-,由()0h x >得()(),0,x a ∈-∞+∞,因为()g x 在[]2,3上有定义,所以02a <<且1a ≠, 所以()2h x x ax =-在[]2,3上为增函数,当12a <<时,()()()max 3log 932a g x g a ==-=, 即2390a a +-=,∴3352a -±=,又12a <<, ∴3352a -+=. 当01a <<时,()()()max 2log 422a g x g a ==-=,即2240a a +-=,∴15a =-±,此时解不成立.综上:3352a -+=. 21.【解析】(1)当2m =-时,设13xt ⎛⎫= ⎪⎝⎭,∵(),0x ∈-∞,∴()1,t ∈+∞,∴()()222413t t t y g t -+=-=+=,对称轴1t =,图像开口向上,∴()g t 在()1,t ∈+∞为增函数, ∴()3g t >,∴()f x 的值域为()3,+∞.(2)由题意知,()6f x ≤在[)0,+∞上恒成立,即11239xxm ⎛⎫⎛⎫⋅≤- ⎪ ⎪⎝⎭⎝⎭,∴1233xx m ≤⋅-在[)0,x ∈+∞恒成立,则只需当[)0,x ∈+∞时,min 1233x x m ⎛⎫≤⋅- ⎪⎝⎭,设3xt =,()12h t t t=-,由[)0,x ∈+∞得1t ≥,设121t t ≤<,则()()()()12121212210t t t t h t h t t t -+-=<,所以()h t 在[)1,+∞上递增,()h t 在[)1,+∞上的最小值为()11h =,所以实数m 的取值范围为(],1-∞. 22.【解析】(1)取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, ∴//PR EF ,//QR BD ,又∵//EF AC ,∴//PR 平面ABCD ,//QR 平面ABCD ,又∵PR QR R =,∴平面//PQR 平面ABCD ,又∵PQ ⊂平面PQR , ∴//PQ 平面ABCD .(2)连接AC ,设AC ,BD 交于点O , ∴BD AC ⊥,又∵平面AFEC ⊥平面ABCD , 平面AFEC平面ABCD AC =,∴BD ⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -, 菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,23BD =,12ACEF ==, 设梯形EFAC 的面积为()133244EFAC BD EF AC S =+⋅=, 1332ABCDFE EFAC V S BD =⋅⋅=.。

2023-2024学年高一上数学必修一第4章综合测试卷(附答案解析)

2023-2024学年高一上数学必修一第4章综合测试卷(附答案解析)

,则 f(f(log32))的值为( A )
A. 3 B.- 3 C.-1 D.-2
3
3
2
1 解析:∵f(log32)=- 3
log32
=-12,∴f(f(log32))=f
-1 2
-1
=3 2

3. 3
1 4.方程 2 x-x-2=0 的根所在的区间为( A )
第 1 页 共 16 页
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点
C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点
第 5 页 共 16 页
D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 解析:由题知 f(0)·f(1)<0,所以根据函数零点存在定理可得 f(x) 在区间(0,1)上一定有零点,又 f(1)·f(2)>0,因此无法判断 f(x)在区间(1,2) 上是否有零点. 12.函数 f(x)=2x-2-x( AD ) A.是奇函数 B.在区间(0,+∞)上单调递减 C.是偶函数 D.在区间(0,+∞)上单调递增 解析:∵f(-x)=2-x-2x=-(2x-2-x)=-f(x),∴f(x)为奇函数. 又∵y=2x 在(0,+∞)上单调递增,y=2-x 在(0,+∞)上单调递 减,∴由单调性的性质可知,f(x)=2x-2-x 在(0,+∞)上单调递增. 三、填空题(本题共 4 小题,每小题 5 分,共 20 分) 13.化简 log2.56.25+lg0.001+2ln e-2log43=- 3. 解析:原式=2-3+1- 3=- 3. 14.用二分法求方程 lnx=1在[1,2]上的近似解,取中点 x=1.5,

高一数学必修1,2,3,4,5试题及答案

高一数学必修1,2,3,4,5试题及答案

高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。

A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。

17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。

21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。

高一上期数学(必修1+必修4)期末复习培优专题卷附详解

高一上期数学(必修1+必修4)期末复习培优专题卷附详解

高一上期数学(必修1+必修4)期末复习培优专题卷附详解高一上学期数学(必修1+必修4)期末复培优专题卷一.选择题1.已知定义域为实数集的函数f(x)的图像经过点(1,1),且对任意实数x1<x2,都有f(x1)≤f(x2),则不等式的解集为()。

A。

(-∞,1)∪(1,+∞) B。

(-∞,+∞)C。

(1,+∞) D。

(-∞,1)2.对任意x∈[0,2π],任意y∈(-∞,+∞),不等式-2cosx≥asinx-x恒成立,则实数a的取值范围是()。

A。

[-3,3] B。

[-2,3] C。

[-2,2] D。

[-3,2]3.定义在实数集上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()。

A。

(-∞,-1/2) B。

(-∞,0)C。

(-1,+∞) D。

(0,+∞)4.定义在实数集上的函数y=f(x)为减函数,且函数y=f (x-1)的图像关于点(1,0)对称,若f(x-2x)+f(2b-b)≤0,且-2≤x≤2,则x-b的取值范围是()。

A。

[-2,0] B。

[-2,2] C。

[0,2] D。

[0,4]5.设函数f(x)=x^2-2x+1,当x∈[-1,1]时,恒有f(x+a)<f(x),则实数a的取值范围是()。

A。

(-∞,-1) B。

(-1,+∞)C。

(-∞,1) D。

(-∞,-2)6.定义域为实数集的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=x^2-x,若当x∈[-4,-2)时,不等式f(x)≥-t+2恒成立,则实数t的取值范围是()。

A。

[2,3] B。

[1,3] C。

[1,4] D。

[2,4]7.已知函数f(x)的定义域为D,若对于∀a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f (x)为“三角形函数”.给出下列四个函数:①f(x)=lg(x+1)(x>0);②f(x)=4-cosx;③f(x)=|sinx|;④f(x)=|x|+1.其中为“三角形函数”的个数是()。

高一上数学期末试卷及答案(必修1和4)

高一上数学期末试卷及答案(必修1和4)

高一上数学期末试卷及答案(必修1和4)高一数学周末作业20班级_______姓名_______学号_______得分_________一、填空题(5′某14=70′)1.全集UR,A某|某N,1某10,B某某某60,则AB=__222.2in75oco75o3.函数f(某)log2某的定义域为0,24.已知向量a(2,1),b(3,4),则ab(1,5)5.已知向量a(co某,in某),则|a|16.函数f(某)tan(2某的定义域为某|某3k5,kZ2127.定义在R上的偶函数yf(某),当某≥0时,yf(某)是单调递增的,f(1)f(2)<0,则函数yf(某)的图像与某轴交点个数是28.已知函数f(某)m某(m4)某m是偶函数,g(某)ln(m某1)在4,1内单调递减,22则实数m-29.设函数f(某)对任意某,y满足f某yf某fy,且f24,则f1的值为。

10.已知函数f(某)e某a(a为常数),若f(某)在区间1,上是单调增函数,则a的取值范围是a111.计算:in77co47in13co137212.已知tan()213,tan(),则tan()的值为_________。

225444213.函数f(某)某co某co某3的最大值为7214.如图,在ABC中,AB2,AC3,D是边BC的中点,则ADBC_____5_______。

2ABDC【解析】∵D是边BC的中点,∴AD(ACAB),又BCACAB,∴ADBC2二、解答题(15′某6=90′)15.已知集合A某2某4,B某a某4a(1)若AB某3某4,求a的值;(2)若ABA,求a的取值范围.【答案】(1)a3;(2)1a2。

【解析】试题分析:(1)因为集合A某2某4,B某a某4a,AB某3某4,所以a3a3。

,解得:4a4(2)若ABA,则AB,所以1a2,解得:44aa2tan,.2225(1)求co2,in()的值;(2)求的值.616.已知co【答案】(1)45(2)74【解析】试题分析:解:(1)∵co2,∴in2分∴co22co212(910)145.4分∴in(56)inco5516coin6((27分(2)由条件得,tan13,9分11而tan1()2,∴tan()1,111(13)(1分2)又∵2,2,∴2,∴7414分17.已知向量|a|1,|b|(Ⅰ)若向量a,b的夹角为60,求ab的值;(Ⅱ)若|ab|ab的值;(Ⅲ)若a(ab)0,求a,b的夹角。

高一数学必修二期末测试题及答案

高一数学必修二期末测试题及答案

高一数学必修二期末测试题一、选择题1.如图1所示,空心圆柱体的主视图是()2.已知直线m、n与平面α、β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中正确命题的个数是( )A.0B.1C.2D.33点P(2,5)关于直线x+y+1=0的对称点的坐标为( )A.(6,-3)B.(3,-6)C.(-6,-3)D.(-6,3)3.直线1y x=+与圆的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离4.过原点且倾斜角为的直线被圆所截得的弦长为A. B.2 C. D.25.一束光线从点出发,经轴反射到圆上的最短路径长度是()(A)4 (B)5 (C)(D)6.下列命题中错误..的是()A.如果平面⊥平面,那么平面内一定存在直线平行于平面B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C.如果平面⊥平面,平面⊥平面,,那么⊥平面D.如果平面⊥平面,那么平面内所有直线都垂直于平面7.设直线过点其斜率为1,且与圆相切,则的值为()(A)(B)(C)(D)8.已知实数x、y满足2x+y+5=0,那么的最小值为( )A. B. C. D.二、填空题9.在空间直角坐标系中,已知、两点之间的距离为7,则=_______.10.过A(-3,0)、B(3,0)两点的所有圆中面积最小的圆的方程是___________________.11设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______12.已知两圆和相交于两点,则公共弦所在直线的直线方程是.13.在平面直角坐标系中,直线的倾斜角是.14若圆与圆的公共弦长为,则a=________.三、解答题15.(本题10分)已知直线经过点,且斜率为.(Ⅰ)求直线的方程;(Ⅱ)求与直线切于点(2,2),圆心在直线上的圆的方程.16.(本题10分)如图所示,在直三棱柱中,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:.17已知定点,点在圆上运动,是线段上的一点,且,问点的轨迹是什么?18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是、边长为的菱形,又,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN//平面PMB ;(2)证明:平面PMB 平面PAD ;答案15.(本题10分)已知直线经过点,且斜率为.(Ⅰ)求直线的方程;(Ⅱ)求与直线切于点(2,2),圆心在直线上的圆的方程.解析:(Ⅰ)由直线方程的点斜式,得整理,得所求直线方程为……………4分 (Ⅱ)过点(2,2)与垂直的直线方程为,……………5分 由得圆心为(5,6),……………7分 ∴半径,……………9分故所求圆的方程为. ………10分16.(本题10分) 如图所示,在直三棱柱中,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:.P CAM B D C A 解析:(Ⅰ)在直三棱柱中,侧面⊥底面,且侧面∩底面=,∵∠=90°,即,∴平面∵平面,∴. ……2分∵,,∴是正方形,∴,∴. …………… 4分(Ⅱ)取的中点,连、. ………………5分在△中,、是中点,∴,,又∵,,∴,,………6分故四边形是平行四边形,∴,而 面,平面,∴面4、已知定点,点在圆上运动,是线段上的一点,且,问点的轨迹是什么? 解:设.∵,∴,∴,∴.∵点在圆上运动,∴,∴,即,∴点的轨迹方程是.18.已知四棱锥P-ABCD ,底面ABCD 是、边长为的菱形,又,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN//平面PMB ;(2)证明:平面PMB 平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ . .(2)又因为底面ABCD 是,边长为的菱形,且M 为中点,所以.又所以.。

高一数学必修1、2综合试卷及答案

高一数学必修1、2综合试卷及答案

高一数学周测卷--期末模拟 (必修1+必修2)一、选择题:(本大题共10题,每小题5分,共50分)1.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( ) A .B A U ⋃= B .B A C U U ⋃=)( C )(B C A U U ⋃= D .)()(B C A C U U U ⋃= 2.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( )A 、3a ≤- B 、3a ≥- C 、a ≤5 D 、a ≥5 3.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x4. 设()f x 是(,)-∞+∞上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =, 则(7.5)f 等于( )A. 0.5B. 0.5-C. 1.5D. 1.5-5.下列图像表示函数图像的是( )yxyx yx yxA B C D6.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ). A .3 B .362 C .2 D .22 7.7.221:46120O x y x y +--+=与222:86160O x y x y +--+=的位置关系是( ) A .相交B .外离C .内含D .内切8.圆:02y 2x 2y x 22=---+上的点到直线2y x =-的距离最小值是( ). A .0 B .21+ C .222- D .22-9.如果函数1ax ax )x (f 2++=的定义域为全体实数集R ,那么实数a 的取值范围是( ).A .[0,4]B .)4,0[C .),4[+∞D .(0,4) 10. 已知不同直线m 、n 和不同平面α、β,给出下列命题:A BCD①////m m αββα⎫⇒⎬⊂⎭②//////m n n m ββ⎫⇒⎬⎭③,m m n n αβ⊂⎫⇒⎬⊂⎭异面④//m m αββα⊥⎫⇒⊥⎬⎭其中错误的命题有( )个 A .0 B .1C .2D .311点(7,4)P -关于直线:6510l x y --=的对称点Q 的坐标是( ) A .(5,6) B .(2,3) C .(5,6)- D .(2,3)-12已知22:42150C x y x y +---=上有四个不同的点到直线:(7)6l y k x =-+的距离等于5,则k 的取值范围是( )A .(,2)-∞B .(2,)-+∞C .1(,2)2D .1(,)(2,)2-∞+∞二、填空题:(本大题共有5小题,每小题4分,满分20分)。

高中数学高一上(人教版A版必修一、四) 期末测试02-答案

高中数学高一上(人教版A版必修一、四) 期末测试02-答案

期末测试答案解析一、1.【答案】D【解析】{}|34A x x x =∵<或>,{}{|06}0,1,2,3,4,5B x x =∈=N ,∴{0,1,2,5,6}A B = . 故选:D .2.【答案】A 【解析】4sin tan 3cos ααα==∵,且α为第三象限角,4sin 5α=-∴,3cos 5α=-,则π4cos()sin 25αα+=-=,故选:A .3.【答案】B【解析】∵角α的终边经过点(1,,∴sin α=,故选:B . 4.【答案】C【解析】x y >.A .取1x =,2y =-,可知:22x y <,因此不正确.B .取1x =,2y =-,可知:11x y,因此不正确. C .根据函数19x y ⎛⎫= ⎪⎝⎭在R 上单调递减,可得:1199x y⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,因此正确. D .取1x =-,2y =-,可知:ln x ,ln y 不存在,因此不正确.故选:C .5.【答案】B【解析】22()21(1)f x x x x =-+=-,所以(1)0f =,当1x <时,()0f x >;当1x >时,()0f x >,在零点两侧函数值同号,不能用二分法求零点,其余的零点两侧函数值异号.故选:B .6.【答案】B【解析】扇形中,弧长为30l =,直径为16d =,面积为30164120S =⨯÷=;扇形的圆心角弧度数是301584l r α===. 故选:B .7.【答案】C 【解析】非零向量a ,b 互相垂直,则0a b = ;∴22222()2a b a a b b a b +=+⋅+=+ ,22222()2a b a a b b a b -=-⋅+=+ ;∴||||a b a b +=- ,C 正确.故选:C .8.【答案】A【解析】1ln 02a =,lg3(0,1)b =∈,12115c -⎛⎫== ⎪⎝⎭,∴a b c <<.故选:A .9.【答案】D 【解析】由2670x x +->,解得7x -<或1x >,20.6()log (67)f x x x =+-∴的定义域为(,7)(1,)-∞-⋃+∞.令267t x x =+-,此内层函数在(,7)-∞-上单调递减,在(1,)+∞上单调递增,而0.6log y t =是定义域内的减函数,20.6()log (67)f x x x =+-∴的单调递减区间是(1,)+∞.故选:D .10.【答案】C【解析】由图象知2A =,5πππ41264T =-=, 则πT =,即2ππω=,得2ω=,即()2sin(2)f x x ϕ=+, 由五点对应法得5ππ2122ϕ⨯+=得π5ππ263ϕ=-=-, 即π()2sin(2)3f x x =-. 则函数的周期2ππ2T ==,故A 错误, ()f x 为非奇非偶函数,故B 错误,ππππ(2sin[2()2sin()2121232f -=⨯--=-=-为最小值,则π12x =-是函数的一条对称轴,故C 正确, πππ5π()2sin[2()]2sin()04436f -=⨯--=-≠,则π,04⎛⎫- ⎪⎝⎭不是函数的对称中心,故D 错误, 故选:C .11.【答案】D【解析】对于任意的1x ,2(0,)x ∈+∞,且12x x ≠,有1212()[()()]0x x f x f x -->,即()f x 在(0,)+∞上单调递增,且(2)0f =,∵函数()f x 是定义在R 上的奇函数,∴(2)0f -=,(0)0f =,且在(,0)-∞上单调递增,则(2)()0x f x ->等价于2()0x f x ⎧⎨⎩>>或2()0x f x ⎧⎨⎩<<, 解可得,2x >或2x -<或02x <<,故不等式的解集为{}|2202x x x x ->或<或<<.故选:D .12.【答案】B【解析】记2()|5|g x x x =-,()(4)h x a x =+,函数()f x 恰有4个零点,等价于函数()g x 与函数()h x 的图象恰有4个不同的交点,作出两个函数的图象,易知0a >,因为()y h x =的图象过点(4,0)-,由2(5)(4)y x x y a x ⎧=--⎨=+⎩得,2(5)40x a x a +-+=, 由2(5)160a a ∆=-->,解得1a <或25a >(舍去),故01a <<,故选:B .二、13.【答案】[0,)x ∃∈+∞,10ax +<【解析】命题为全称命题,则命题p 为[0,)x ∀∈+∞,10ax + 的否定为[0,)x ∃∈+∞,10ax +<,故答案为:[0,)x ∃∈+∞,10ax +<.14.【答案】(5,6]【解析】函数()f x = 令19log (5)0x - ,所以051x -< ,解得56x < ;所以函数()f x 的定义域为(5,6].故答案为:(5,6].15.【答案】32-【解析】向量(1,)a λ= ,(2,3)b =- , 则(3,3)a b λ-=- ,又a b - 与b 共线,则2(3)330λ---⨯=, 解得32λ=-. 故答案为:32-. 16.【答案】(,2)-∞ 【解析】函数2()24f x mx mx =--,即2244mx mx m ---<,[2,3]x ∈恒成立,[2,3]x ∈,()4max f x m -<;当0m =时,()44f x =-<,不等式恒成立,当0m ≠时,22()24(1)4f x mx mx m x m =--=---∵二次函数的对称轴为1x =.∴若0m >,()max ()334f x f m ==-由344m m --<,得02m <<;若0m <,()max ()24f x f ==-;由44m --<,得8m <,0m ∴<;综上,可得实数m 的取值范围为(,2)-∞.故答案为:(,2)-∞.三、17.【答案】(Ⅰ)∵()log (0,1)a f x x a a =≠>的图象过点1,24⎛⎫ ⎪⎝⎭, 1log 24a=∴, 214a =∴,且0a >, 12a =∴, ∴12()log f x x =,则12(2)log 21f ==-; (Ⅱ)12a =∵,∴112211lg lg5lg lg5lg2lg5122a a --⎛⎫-+=-+=+=+ ⎪⎝⎭. 18.【答案】(Ⅰ)因为在平行四边形ABCD 中,M 为DC 的中点,13BN BC = , 又AB a = ,AD b = , 故1122AM AD DM AD AB a b =+=+=+ , 1133AN AB BN AB AD a b =+=+=+ , 11123223MN AN AM a b a b a b ⎛⎫⎛⎫=-=+-+=- ⎪ ⎪⎝⎭⎝⎭ . (Ⅱ)2211212192234362AM MN a b a b a b a b ⎛⎫⎛⎫⋅=+⋅-=-+⋅=- ⎪ ⎪⎝⎭⎝⎭ , 故答案为:92-.19.【答案】(Ⅰ)设[1,0)x ∈-,则(0,1]x -∈, [1,0)x ∈-时,()21x f x =-.()21()x f x f x --=-=-,1()12xf x ⎛⎫=-+ ⎪⎝⎭∴, (Ⅱ)函数()f x 在[1,0)-上单调递增,设1210x x -<< ,2111022x x⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭∴<, 则211211()()022x xf x f x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭<, ()f x 在(1,1)-上单调递增.20.【答案】(Ⅰ)把函数2π()2sin 23f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6单位长度, 可得π2ππ2sin 22sin 2333y x x ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭的图象; 再向下平移1个单位长度得到函数π()sin 213g x x ⎛⎫=+- ⎪⎝⎭的图象. 令πππ2π22π232k x k -++ ,求得5ππππ1212k x k -+ , 可得函数()g x 的递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z . (Ⅱ)当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2,336x ⎡⎤+∈⎢⎥⎣⎦, 当π5π236x +=时,函数()g x 取得最小值为0,此时,x 的取值集合为π{|}4x x =. 21.【答案】(Ⅰ)因为生产A 芯片的毛收入与投入的资金成正比,所以设为0y k x =,且1x =时,14y =,代入解得014k =,则生产A 芯片的毛收入(0)4x y x =>; 将(1,1),(4,2)代入a y kx =,得142a k k =⎧⎨⨯=⎩,解得112k a =⎧⎪⎨=⎪⎩,所以,生产B芯片的毛收入为0)y x =>. (Ⅱ)由(1)知,当4x 时,解得16x >,可知 当投入资金大于16千万元时,生产A 芯片的毛收入大;当投入资金等于16千万元时,生产A 、B 两种芯片的毛收入相等;当投入资金小于16千万元时,生产B 芯片的毛收入大.(Ⅲ)公司投入4亿元资金同时生产A 、B 两种芯片,设投入x 千万元生产B 芯片,则投入(40)x -千万元资金生产A芯片,公司所获利润)2401()22944x f x -=+=--+2=,即4x =千万元时,公司所获利润最大,最大利润为9千万元.22.【答案】(Ⅰ)()x x f x m n a a -=⋅=- ,2280(2)9f a a -=-=, ∴4298090a a --=,解得29a =,即3a =;(Ⅱ)当3a =时,222()332(33)(33)2(33)2x x x x x x x x g x λλ----=+--=---+, 当[0,1]x ∈时,假设存在实数λ,使()g x 的最小值2-,令33x x t -=-, ∵[0,1]x ∈,33x x t -=-在[0,1]是增函数,8[0,]3t ∈∴, 函数()g x 可化为222()22()2h t t t t λλλ=-+=-+-,8[0,]3t ∈, 若8[0,]3λ∈,当t λ=时,2()22min g x λ=-=-,解得2λ=; 若0λ<,当0t =时,()(0)22min g x h ==≠-,舍去; 若83λ>,当83t =时,8648()222393min g x h λ⎛⎫==-⨯+=- ⎪⎝⎭,解得258123λ=,舍去; 故当[0,1]x ∈时,存在实数2λ=时()g x 的最小值为2-.。

(2021年整理)人教版高一上数学期末测试题(必修一必修二)

(2021年整理)人教版高一上数学期末测试题(必修一必修二)

人教版高一上数学期末测试题(必修一必修二)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版高一上数学期末测试题(必修一必修二))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版高一上数学期末测试题(必修一必修二)的全部内容。

高一上学期期末数学考试复习卷(必修一+必修二) 一、选择题:本大题共12小题,每小题5分,满分60分.1.直线310x ++=的倾斜角是( )A 、30︒B 、60︒C 、120︒D 、135︒ 2.两条平行线1:4320l x y -+=与2:4310l x y --=之间的距离是( ) A .3 B .35C .15D .13.已知函数()2030x x x f x x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( )A .9B .19C .9-D .19- 4.函数lg(1)()1x f x x +=-的定义域是( ) A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞5.下列函数在其定义域内既是奇函数,又是增函数的是( )A .x y =B 。

x y 3=C 。

2log y x = D.31x y =6 .在圆224x y +=上,与直线43120x y +-=的距离最小的点的坐标为( )86.(,)55A - 86.(,)55B - 86(,)55C 86.(,)55D -- 7.221:46120O x y x y +--+=与222:86160O x y x y +--+=的位置关系是( )A .相交B .外离C .内含D .内切 8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上数学期末测试二(必修一和必修四)
一.选择题:(每小题5分,共60分)
1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m =( )
A .1
B .1-
C .1或1-
D .1或1-或0
2.o o o o sin71cos26-sin19sin26=( )
A .12
B .1
C .22-
D .2
2 3.若a =2lg ,b =3lg ,则3log 2=( )
A .b a +
B .a b -
C .b a
D .a
b 4.若幂函数1)(-=m x x f 在),0(+∞上是增函数,则 ( )
A .1>m B.1<m C. 1=m D.不能确定
5.已知函数⎩⎨
⎧≤>=0 30log )(2x x f x x x f ),+(,,则)10(-f =( ) A .2-
B .1-
C .0
D .1 6.若函数13-+=x a y (0>a 且1≠a )的图象必过定点P ,则P 点坐标是( )
A. )1,3(
B. )2,3(a +
C. )2,4(
D. )4,1(
7.若函数2
()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A.3-≤a B.3-≥a C.5≤a D.5≥a
8.方程05log 2=-+x x 在下列哪个区间必有实数解( )
A. )2,1(
B. )3,2(
C. )4,3(
D. )5,4(
9.若函数()b ax x x f --=2的两个零点是2和3,则函数()12
--=ax bx x g 的零点是( ) A .1- 和2- B .1 和2 C .
21和31 D .2
1-和31- 10.若α、β为锐角,且满足54cos =α,5
3)cos(=+βα,则βsin =( ) A .2517 B .53 C .257 D .51 11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则( )
A .4,2πϕπω==
B .6,3πϕπω==
C .4,4πϕπω==
D .45,4πϕπω==
12.已知)(x f 是偶函数,它在[)+∞,0上是减函数,若)1()(lg f x f >,则x 的取值范围是( )
A .⎪⎭
⎫ ⎝⎛1,101 B .()+∞⎪⎭⎫ ⎝⎛,1101,0 C .⎪⎭⎫ ⎝⎛10,101 D .()()+∞,101,0
二.填空题:请把答案填在题中横线上(每小题5分,共20分).
13.函数2()sin()sin 2f x x x x π=++在2[0,]3
π上的值域是 14.函数sin(2)6y x π=-+的单调递减区间是
15.已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f
16.已知定义在R 上的奇函数)(x f 满足0)3(=f ,且周期4=T ,则方程0)(=x f 在[]10,0∈x 的根有_ _
三.解答题:解答应写出文字说明、证明过程或演算步骤(共70分)
17.(10分)已知集合{|12},{|8}.A x x B x m x m =-<<=<<+
(1).若,A B B = 求实数m 的取值范围. (2).若,A B φ≠ 求实数m 的取值范围.
18.(12分) (1).求函数223y x x =+-,[]0,3-∈x 的值域.
(2).已知扇形OAB 面积为21cm ,它的周长为4cm ,求它的中心角的弧度以及弦AB 的长.
19.(12分)已知函数)3lg()3lg()(x x x f -++=.
(1).求函数)(x f 的定义域. (2).判断函数)(x f 的奇偶性,并说明理由.
20.(12分)已知函数12log )(-=x a x f , ,0(>a 且)1≠a ,
(1).求)(x f 函数的定义域. (2).求使0)(>x f 的x 的取值范围.
21.(12分)已知函数2||,0,0)(sin()(1πϕωϕω<
>>+=A x A x f 一段的图象过点(0,1),如图所示.
(1).求函数)(1x f 的解析式. (2).将函数)(1x f y =的图象向右平移4π个单位,得到)(2x f y =的图象,求)(2x f y =的单调减区间.
22.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租 金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆 每月需要维护费50元.
(1).当每辆车的月租金定为3600元时,能租出多少辆车?
(2).当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?。

相关文档
最新文档