山东省济南市2015届高三下学期第一次模拟考试数学(理)试题

合集下载

济南市2015届高三第二次模拟考试数学理

济南市2015届高三第二次模拟考试数学理

高三针对性训练数学(理科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A ,B 独立,那么P(AB)=P(A)·P(B);事件A 发生的前提下事件B 发生的概率为()()()P A B P A B P A ⋂=.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,,1,3,5P m Q ==,则“5m =”是“P Q ⊆”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.复数231iz i-=+的虚部是 A.52B. 52-C. 52iD. 52i -3.某射击手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是 A.710B.67C.47D.254. 如图所示,点P 是函数()()2sin ,0y x x R ωϕω=+∈>的图象的一个最高点,M,N 是图象与x 轴的交点.若0PM PN ⋅=u u u r u u u r,则ω的值为 A.8B.4C.8π D.4π5.已知()f x 是定义在R 上的周期为2的奇函数,当()0,1x ∈时,()2015312x f x f ⎛⎫=-= ⎪⎝⎭,则A. 1B. 1C.1D. 16.阅读如图所示的程序框图,运行相应的程序,若输入x 的值为5-,则输出y 的值为 A.0.5 B.1 C.2 D.47.在不等式组00x y x y y a -≤⎧⎪+≥⎨⎪≤⎩确定的平面区域中,若2z x y =+的最大值为9,则a 的值为 A.0B.3C.6D.98. 已知正实数,m n 满足1m n +=,且使116m m+取得最小值.若曲线a y x =过点,54m n P α⎛⎫⎪⎝⎭,则的值为 A. 1-B.12C.2D.39.若双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,线段12F F 被抛物线24y bx=的焦点分成5:3两段,则此双曲线的离心率为A.15B.3C.D.10.函数()f x 的定义域为D ,对给定的正数k ,若存在闭区间[],a b D ⊆,使得函数()f x 满足:①()[],f x a b 在内是单调函数;②()[],f x a b 在上的值域为[],ka kb ,则称区间[],a b 为()y f x =的k 级“理想区间”.下列结论错误的是A.函数()()2f x x x R =-∈存在1级“理想区间”B.函数()()x f x e x R =∈不存在2级“理想区间”C.函数()()2401xf x x x =≥+存在3级“理想区间” D. 函数()()1log 0,14xa f x a a a ⎛⎫=->≠ ⎪⎝⎭不存在4级“理想区间”第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是________.12.二项式4x ⎛+ ⎝的展开式中常数项为________. 13.已知圆C 过点()1,0-,且圆心在x 轴的负半轴上,直线:1l y x =+被该圆所截得的弦长为C 的标准方程为___________.14.已知正方形ABCD,M 是DC 的中点,由AM mAB nAC =+uuu r uu u r uu u r确定,m n 的值,计算定积分sin n mxdx ππ=⎰__________.15.如图,三个半径都是5cm 的小球放在一个半球面的碗中,三个小球的顶端恰好与碗的上沿处于同一水平面,则这个碗的半径R 是_________cm. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)已知向量()cos 2cos sin ,1,cos sin 3a x x b x x π⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭r r ,,函数()f x a b =⋅r r .(I )求函数()f x 的单调递增区间;(II )在ABC ∆中,内角A,B,C 的对边分别为,,a b c 已知()2,3f A a B π===,求ABC ∆的面积S.17. (本小题满分12分)已知等差数列{}n a 的前n 项的和为n S ,非常数等比数列{}n b 的公比是q ,且满足:12a =,122231,3,b S b a b ===.(I )求n n a b 与;(II )设223n a n n c b λ=-⋅,若数列{}n c 是递减数列,求实数λ的取值范围.18. (本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB//CD ,602=2ABC AB CB ∠==o ,.在梯形ACEF 中,EF//AC ,且AC=2EF ,EC⊥平面ABCD.(I )求证:BC AF ⊥;(II )若二面角D AF C --为45°,求CE 的长.19. (本小题满分12分)已知正棱锥S ABC -侧棱棱SA,SB,SC 两两互相垂直,D,E,F 分别是它们的中点,SA=SB=SC=2,现从A,B,C,D,E,F 六个点中任取三个点,加上点S ,把这四个点两两相连后得到一个“空间体”,记这个“空间体”的体积为X (若点S 与所取三点在同一平面内,则规定X=0). (I )求事件“X=0”的概率;(II )求随机变量X 的分布列及数学期望.20. (本小题满分13分)中学联盟网已知椭圆()222210x y a b a b+=>>的离心率为e ,半焦距为c ,()0,1B 为其上顶点,且2a ,22,c b 依次成等差数列.(I )求椭圆的标准方程和离心率e ;(II )P ,Q 为椭圆上的两个不同的动点,且2BP BQ k k e ⋅=. (i )试证直线PQ 过定点M ,并求出M 点坐标;(ii )PBQ ∆是否可以为直角三角形?若是,请求出直线PQ 的斜率;否则请说明理由.21. (本小题满分14分)已知函数()()20,1xf x a x a a =->≠且.(I )当2a =时,求曲线()f x 在点()()2,2P f 处的切线方程; (II )若()f x 的值恒非负,试求a 的取值范围; (III )若函数()f x 存在极小值()g a ,求()g a 的最大值.2015届高三教学质量调研考试理科数学参考答案一、选择题ABCDD DBBAD二、填空题(11)甲 (12)4 (13)()4322=++y x (14)1(15)32155+ 三、解答题(16)解:(Ⅰ)x x x x f 22sin cos )32cos()(-+-=⋅=πcos(2)cos 2cos 2cos sin 2sin cos 2333x x x x xπππ=-+=++312cos 23(sin 22))223x x x x x π=+=+=+…………3分 令222232k x k πππππ-+≤+≤+()Z k ∈,得51212k x k ππππ-+≤≤+()Z k ∈, 所以,函数)(x f 的单调递增区间为5,()1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. …………6分(Ⅱ)由23)(=A f ,得21)32sin(=+πA ,因为A 为ABC ∆的内角,由题意知π320<<A ,所以πππ35323<+<A , 因此ππ6532=+A ,解得4π=A , …………………………… 8分又2=a ,3B π=,由正弦定理B bA a sin sin =, 得6=b ,……………… 10分由4π=A ,3π=B ,可得)sin())(sin(sin B A B A C +=+-=π1=sin cos cos sin 222A B A B +=+426+=,…………………11分 所以,ABC ∆的面积C ab S sin 21=4266221+⨯⨯⨯==233+ .…12分(17)解:(1)由已知可得⎩⎨⎧==+22232qa qa 所以q 2-3q +2=0,…………………………3分 解得q =2或q =1(舍),从而a 2=4,所以a n =2n ,12-=n nb .…………5分(2)由(1)知,λλn n a n n n b c 32322-=⋅-=.…………………………………7分由题意,n n c c <+1对任意的*N n ∈恒成立,即λλn n n n 323211-<-++恒成立,亦即n n 232>λ恒成立,即n⎪⎭⎫⎝⎛⋅>3221λ恒成立.…………9分由于函数xy ⎪⎭⎫⎝⎛⋅=3221是减函数,所以3132213221max =⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅n ,……11分故31>λ,即λ的取值范围为),31(+∞.……………………………………12分(18)解证:(Ⅰ)证明:在ABC ∆中,2222cos603AC AB BC AB BC =+-⋅= 所以222AB AC BC =+,由勾股定理知90ACB ∠=所以 BC AC ⊥. ……2分 又因为 EC ⊥平面ABCD ,BC ⊂平面ABCD所以 BC EC ⊥. ………………………4分 又因为ACEC C = 所以 BC ⊥平面ACEF ,又AF ⊂平面ACEF所以 BC AF ⊥. ………………………6分 (Ⅱ)因为EC ⊥平面ABCD ,又由(Ⅰ)知BC AC ⊥,以C 为原点,建立如图所示的空间直角坐标系 C xyz -.设=CE h,则()0,0,0C,)A,F h ⎫⎪⎪⎝⎭,1,02D ⎫-⎪⎪⎝⎭,1,02AD ⎛⎫=-- ⎪ ⎪⎝⎭,AF h ⎛⎫=- ⎪ ⎪⎝⎭. …………………………8分设平面DAF 的法向量为1(,,)x y z =n ,则110,0.AD AF ⎧⋅=⎪⎨⋅=⎪⎩nn所以10,20.2x y x hz ⎧-=⎪⎪⎨⎪-+=⎪⎩令x =所以133)2h=-,n . …………………………9分又平面AFC 的法向量2(0,1,0)=n ……………………………10分山东中学联盟网所以1212cos452⋅==⋅nn n n , 解得h = .……………………11分 所以CE的长为4…………………………………12分(20)解:(I )由题意1=b ,2222c b a =+,又222c b a +=,解得2,322==c a ,椭圆的标准方程为1322=+y x . 离心率3632==e ………………3分 (II)(i )设直线PQ 的方程为n my x +=,设),(),,(2211y x Q y x P 联立⎩⎨⎧=++=3322y x n my x ,得032)3(222=-+++n mny y m ………………4分0)(12)3()3(4)2(22222>-=-⨯+-=∆n m n m mn (*)⎪⎩⎪⎨⎧+-=+-=+22212213332m m y y m mn y y ………………6分321122211==-⋅-=⋅e x y x y k k MN BM ))((22)1)(1(3212121n my n my x x y y ++==--∴032))(32(3)-2(221212=-++++∴n y y mn y y m03232)32(333)-2(22222=-++-+++-∴n mmn mn m m m 整理得03222=--m mn n0))(3(=+-∴m n m nm n -=∴或m n 3= ………………9分所以直线PQ 的方程为)1(-=-=y m m my x (舍)或)3(3+=+=y m m my x 所以直线PQ 过定点)3,0(-.………………10分(ii ) 由题意, ︒≠∠90PBQ ,若︒=∠90BPM ,或︒=∠90BQM ,则P 或Q 在以BM 为直径的圆T 上,即在圆4)1(22=++y x 上联立⎩⎨⎧=+=++334)1(2222y x y x ,得0=y 或1 (舍) 即P 或Q 只可以是椭圆的左右顶点,故3±=PQ k . ………………13分 (21)解:(I )当2=a 时, x x f x22)(-=,22ln 2)(-='∴xx f ,22ln 4)2(-='∴f ,又0)2(=f , ∴所求切线方程为x y )22ln 4(-=;…………………………………………3分 (II )0)(='x g ,则2e x =, 0≤x 时, 0)(≤x f 恒成立;0≥x 时, 若10<<a ,则1>x 时021)(<-<x f ,与题意矛盾,故1≥a ;……5分由0)(≥x f 知x a x2≥,所以)2ln(ln x a x ≥,∴xx a )2ln(ln ≥,……………………………………………6分 令x x x g )2ln()(=,则22)2ln(1)2ln(221)(x x x x x x x g -=-⨯⨯=',…7分 令0)(='x g ,则2ex =,且20e x <<时, 2,0)(ex x g >>'时0)(<'x g ,∴e e e e g x g 22ln )2()(max ===,∴e e a ea 2,2ln ≥≥,即a 的取值范围为),[2+∞ee ……………………………………………9分 (III ) ,2ln )(-='a a xf x①当10<<a 时, )(,0)(,0ln ,0x f x f a a x ∴<'∴<>在R 上为减函数, )(x f 无极小值.…10分②当1>a 时,设方程0)(='x f 的根为t ,得a a tln 2=,即a t a ln 2log ==aa ln ln 2ln,∴)(x f 在),(t -∞上为减函数,在),(-∞t 上为增函数,∴)(x f 的极小值为aa a t a t f t ln ln 2ln 2ln 22)(-=-=,………………12分即a a a a g ln ln 2ln 2ln 2)(-=,∵0ln 2,1>∴>aa . 设0,ln )(>-=x x x x x h ,则x xx x x h ln 1ln 1)(-=--=',令0)(='x h ,得1=x ,∴)(x h 在)1,0(上为增函数,在),1(+∞上为减函数, ∴)(x h 的最大值为1)1(=h ,即)(a g 的最大值为1,此时2e a =………………14分。

2015济南一模 山东省济南市2015届高三下学期第一次模拟考试理综物理试题 Word版含答案

2015济南一模 山东省济南市2015届高三下学期第一次模拟考试理综物理试题 Word版含答案

山东省济南市2015届高三下学期第一次模拟考试理科综合试题注意事项:1.第I卷共20小题。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净以后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上不得分。

以下数据可供答题时参考:相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 Si 28 S 32 Cl 35.5K 39 Ca 40 Mn 55 Fe 56 Cu 64 Zn 65 Br 80 Ag 108 I 127 Ba 137 Pb 207二、选择题(共7小题,每小题6分,共42分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分) 14.一质点作直线运动的v—t图像如图所示,下列选项正确的是A.在2 s~4 s内,质点所受合外力为零B.质点在0~2 s内加速度比4 s~6 s内的加速度大C.在第4 s末,质点离出发点最远D.在0~6 s内,质点的平均速度为5 m/s15.一串小灯笼(五只)彼此用轻绳连接,并悬挂在空中。

在稳定水平风力作用下发生倾斜,悬绳与竖直方向的夹角为30°,如图所示。

设每个灯笼的质量均为m。

则自上往下第一只灯笼对第二只灯笼的拉力大小为A.B C D.8mg16.静电喷涂时,喷枪带负电,被喷工件带正电,喷枪喷出的涂料微粒带负电。

假设微粒被喷出后只受静电力作用,最后吸附在工件表面。

微粒在向工件靠近的过程中A.一定沿着电场线运动B.所受电场力先减小后增大C.克服电场力做功D.电势能逐渐增大17.如图为发电厂向远处用户的输电电路示意图,升压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变。

若输送功率增大,下列说法中正确的有A.升压变压器的输出电压增大B.降压变压器的输出电压增大C.输电线上损耗的功率增大D.输电线上损耗的功率占总功率的比例增大18.“行星冲日”是指当地球恰好运行到某地外行星和太阳之间且三者排成一条直线的天文现象。

2015年山东省高考一模数学试卷(理科)【解析版】

2015年山东省高考一模数学试卷(理科)【解析版】

2015年山东省高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣i B.2+i C.4﹣i D.4+i2.(5分)若[﹣1,1]⊆{x||x2﹣tx+t|≤1},则实数t的取值范围是()A.[﹣1,0]B.[2﹣2,0]C.(﹣∞,﹣2]D.[2﹣2,2+2]3.(5分)已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条4.(5分)若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或5.(5分)在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B.2C.2D.46.(5分)某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为()A.3πB.4πC.2πD.7.(5分)定义max{a,b}=,设实数x,y满足约束条件,则z=max{4x+y,3x﹣y}的取值范围是()A.[﹣8,10]B.[﹣7,10]C.[﹣6,8]D.[﹣7,8] 8.(5分)函数y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为()A.2B.4C.8D.169.(5分)已知△ABC中,内角A、B、C所对的边分别为a,b,且a cos C+c =b,若a=1,c﹣2b=1,则角B为()A.B.C.D.10.(5分)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2﹣6x+4lnx的“类对称点”的横坐标是()A.1B.C.e D.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=|2x﹣a|+a,若不等式f(x)≤6的解集为{x|﹣2≤x ≤3},则实数a的值为.12.(5分)已知点A(2,0)抛物线C:x2=4y的焦点为F,射线F A与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=.13.(5分)已知函数则=.14.(5分)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为.(用数字作答)15.(5分)已知函数f(x)=xe x,记f0(x)=f′(x),f1(x)=f′(x0),…,f n(x)=f′n﹣1(x)且x2>x1,对于下列命题:①函数f(x)存在平行于x轴的切线;②>0;③f′2012(x)=xe x+2014e x;④f(x1)+x2<f(x2)+x1.其中正确的命题序号是(写出所有满足题目条件的序号).三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=2sin x+2sin(x﹣).(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c.已知f(A)=,a=b,证明:C=3B.17.(12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.18.(12分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:F A=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF 的位置,使二面角A1﹣EF﹣B成直二面角,连接A1B、A1P(如图2)(1)求证:A1E⊥平面BEP(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B﹣A1P﹣F的余弦值.19.(12分)数列{a n}中,a1=1,当n≥2时,其前n项和为S n,满足S n2=a n(S n ﹣).(1)求S n的表达式;(2)设b n=,数列{b n}的前n项和为T n,不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,求正整数m的最大值.20.(13分)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),P为椭圆G的上顶点,且∠PF1O=45°.(Ⅰ)求椭圆G的标准方程;(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.21.(14分)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.2015年山东省高考数学一模试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣i B.2+i C.4﹣i D.4+i【解答】解:由z=|(﹣i)i|+i5=,得:.故选:A.2.(5分)若[﹣1,1]⊆{x||x2﹣tx+t|≤1},则实数t的取值范围是()A.[﹣1,0]B.[2﹣2,0]C.(﹣∞,﹣2]D.[2﹣2,2+2]【解答】解:令y=x2﹣tx+t,①若t=0,则{x||x2≤1}=[﹣1,1],成立,②若t>0,则y max=(﹣1)2﹣t(﹣1)+t=2t+1≤1,即t≤0,不成立;③若t<0,则y max=(1)2﹣t+t=1≤1,成立,y min=()2﹣t•+t≥﹣1,即t2﹣4t﹣4≤0,解得,2﹣2≤t≤2+2,则2﹣2≤t<0,综上所述,2﹣2≤t≤0.故选:B.3.(5分)已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条【解答】解:抛物线的交点坐标为F(,0),准线方程为x=﹣,则点M到抛物线焦点的距离PF=2﹣(﹣)=2+,若p≥1,则PF=2+≥,此时点M到抛物线焦点的距离不少于3不成立,即充分性不成立,若点M到抛物线焦点的距离不少于3,即PF=2+≥3,即p≥2,则p≥1,成立,即必要性成立,故“p≥1”是“点M到抛物线焦点的距离不少于3”的必要不充分条件,故选:B.4.(5分)若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或【解答】解:依题意可知m=±=±4当m=4时,曲线为椭圆,a=2,b=1,则c=,e==当m=﹣4时,曲线为双曲线,a=1,b=2,c=则,e=故选:D.5.(5分)在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B.2C.2D.4【解答】解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sin A =c•,∴c=2=b,故B=(180°﹣A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2,故选:B.6.(5分)某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为()A.3πB.4πC.2πD.【解答】解:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,其表面积S=4πR2=3π.故选:A.7.(5分)定义max{a,b}=,设实数x,y满足约束条件,则z=max{4x+y,3x﹣y}的取值范围是()A.[﹣8,10]B.[﹣7,10]C.[﹣6,8]D.[﹣7,8]【解答】解:由约束条件作出可行域如图,由定义max{a,b}=,得z=max{4x+y,3x﹣y}=,当x+2y≥0时,化z=4x+y为y=﹣4x+z,当直线y=﹣4x+z过B(﹣2,1)时z 有最小值为4×(﹣2)+1=﹣7;当直线y=﹣4x+z过A(2,2)时z有最大值为4×2+1×2=10;当x+2y<0时,化z=3x﹣y为y=3x﹣z,当直线y=3x﹣z过B(﹣2,1)时z 有最小值为3×(﹣2)﹣1=﹣7;当直线y=﹣4x+z过C(2,﹣2)时z有最大值为4×2﹣1×(﹣2)=10.综上,z=max{4x+y,3x﹣y}的取值范围是[﹣7,10].故选:B.8.(5分)函数y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A 在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为()A.2B.4C.8D.16【解答】解:∵y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,当x+3=1时,即x=﹣2时,y=﹣1,∴A点的坐标为(﹣2,﹣1),∵点A在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵m,n均大于0,∴=+=2+++2≥4+2=8,当且仅当m=,n=时取等号,故的最小值为8,故选:C.9.(5分)已知△ABC中,内角A、B、C所对的边分别为a,b,且a cos C+c =b,若a=1,c﹣2b=1,则角B为()A.B.C.D.【解答】解:已知等式利用正弦定理化简得:sin A cos C+sin C=sin B=sin(A+C)=sin A cos C+cos A sin C,由sin C≠0,整理得:cos A=,即A=,由余弦定理得:a2=b2+c2﹣2bc cos A,即1=b2+c2﹣bc①,与c﹣2b=1联立,解得:c=,b=1,由正弦定理=,得:sin B===,∵b<c,∴B<C,则B=.故选:B.10.(5分)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2﹣6x+4lnx的“类对称点”的横坐标是()A.1B.C.e D.【解答】解:函数y=f(x)在其图象上一点P(x0,f(x0))处的切线方程为:y=g(x)=(2x0+﹣6)(x﹣x0)+x02﹣6x0+4lnx0,设m(x)=f(x)﹣g(x)=x2﹣6x+4lnx﹣(2x0+﹣6)(x﹣x0)﹣x02+6x0﹣4lnx0,则m(x0)=0.m′(x)=2x+﹣6﹣(2x0+﹣6)=2(x﹣x0)(1﹣)=(x﹣x0)(x ﹣)若x0<,m(x)在(x0,)上单调递减,∴当x∈(x0,)时,m(x)<m(x0)=0,此时<0;若x0,φ(x)在(,x0)上单调递减,∴当x∈(,x0)时,m(x)>m(x0)=0,此时<0;∴y=f(x)在(0,)∪(,+∞)上不存在“类对称点”.若x0=,(x﹣)2>0,∴m(x)在(0,+∞)上是增函数,当x>x0时,m(x)>m(x0)=0,当x<x0时,m(x)<m(x0)=0,故>0.即此时点P是y=f(x)的“类对称点”综上,y=f(x)存在“类对称点”,是一个“类对称点”的横坐标.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知函数f(x)=|2x﹣a|+a,若不等式f(x)≤6的解集为{x|﹣2≤x ≤3},则实数a的值为a=1.【解答】解:由题意可得,不等式即|2x﹣a|≤6﹣a,∴a﹣6≤2x﹣a≤6﹣a,解得a﹣3≤x≤3.再由不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,故a=1,故答案为a=1.12.(5分)已知点A(2,0)抛物线C:x2=4y的焦点为F,射线F A与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=1:.【解答】解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0),∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此可得|FM|:|MN|=|PM|:|MN|=1:.故答案为:1:.13.(5分)已知函数则=.【解答】解:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,∴=.又dx==e2﹣e.∴==好.故答案为:.14.(5分)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为96.(用数字作答)【解答】解:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人一张,1人2张,且分得的票必须是连号,相当于将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C43=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.故答案为96.15.(5分)已知函数f(x)=xe x,记f0(x)=f′(x),f1(x)=f′(x0),…,f n(x)=f′n﹣1(x)且x2>x1,对于下列命题:①函数f(x)存在平行于x轴的切线;②>0;③f′2012(x)=xe x+2014e x;④f(x1)+x2<f(x2)+x1.其中正确的命题序号是①③(写出所有满足题目条件的序号).【解答】解:对于①,因为f′(x)=(x+1)e x,易知f′(﹣1)=0,函数f (x)存在平行于x轴的切线,故①正确;对于②,因为f′(x)=(x+1)e x,所以x∈(﹣∞,﹣1)时,函数f(x)单调递减,x∈(﹣1,+∞)时,函数f(x)单调递增,故>0不能确定,故②错;对于③,因为f1(x)=f′(x0)=xe x+2e x,f2(x)=f1′(x)=xe x+3e x,…,f n(x)=f′n﹣1(x)=xe x+(n+1)e x,所以f′2012(x)=f2013(x)=xe x+2014e x;故③正确;对于④,f(x1)+x2<f(x2)+x1等价于f(x1)﹣x1<f(x2)﹣x2,构建函数h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1=(x+1)e x﹣1,易知函数h(x)在R上不单调,故④错;故答案为:①③三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=2sin x+2sin(x﹣).(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c.已知f(A)=,a=b,证明:C=3B.【解答】(1)解:函数f(x)=2sin x+2sin(x﹣)=2(sin x+sin x﹣cos x)=2(sin x﹣cos x)=2sin(x﹣),令2kπ﹣≤x﹣≤2k,k∈Z,则2kπ﹣≤x≤2kπ,则f(x)的单调递增区间是[2kπ﹣,2kπ],k∈Z.(2)证明:由f(A)=,则sin(A﹣)=,由0<A<π,则﹣<A﹣<,则A=,由=,a=b,则sin B=,由a>b,A=,B=,C=,故C=3B.17.(12分)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.【解答】解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率P===,(Ⅱ)ξ的取值为:10,8,6,4.P(ξ=10)==,P(ξ=8)=,P(ξ=6)==,P(ξ=4)==ξ的分布列为:﹣Eξ==7.5.18.(12分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:F A=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF 的位置,使二面角A1﹣EF﹣B成直二面角,连接A1B、A1P(如图2)(1)求证:A1E⊥平面BEP(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B﹣A1P﹣F的余弦值.【解答】(1)证明:不妨设正三角形ABC的边长为3.在图1中,取BE的中点D,连接DF.∵AE:EB=CF:F A=1:2,∴AF=AD=2,而∠A=60度,∴△ADF是正三角形,又AE=DE=1,∴EF⊥AD.在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1﹣EF﹣B的平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,则E(0,0,0),A(0,0,1),B(2,0,0),F(0,,0),P(1,,0),则,.设平面ABP的法向量为,由平面ABP知,,即令,得,.,,∴直线A1E与平面A1BP所成的角为60度.(3),设平面A1FP的法向量为.由平面A1FP知,令y 2=1,得,.,所以二面角B﹣A1P﹣F的余弦值是.19.(12分)数列{a n}中,a1=1,当n≥2时,其前n项和为S n,满足S n2=a n(S n ﹣).(1)求S n的表达式;(2)设b n=,数列{b n}的前n项和为T n,不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,求正整数m的最大值.【解答】解:(1)∵S n2=a n(S n﹣)=.化为,∴数列是首项为==1,公差为2的等差数列.故=1+2(n﹣1)=2n﹣1,∴S n=.(2)b n===,故T n=+…+=.又∵不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,∴≥(m2﹣5m),化简得:m2﹣5m﹣6≤0,解得:﹣1≤m≤6.∴正整数m的最大值为6.20.(13分)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),P为椭圆G的上顶点,且∠PF1O=45°.(Ⅰ)求椭圆G的标准方程;(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.【解答】(Ⅰ)解:设椭圆G的标准方程为.因为F1(﹣1,0),∠PF1O=45°,所以b=c=1.所以,a2=b2+c2=2.…(2分)所以,椭圆G的标准方程为.…(3分)(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)证明:由消去y得:.则,…(5分)所以===.同理.…(7分)因为|AB|=|CD|,所以.因为m1≠m2,所以m1+m2=0.…(9分)(ⅱ)解:由题意得四边形ABCD是平行四边形,设两平行线AB,CD间的距离为d,则.因为m1+m2=0,所以.…(10分)所以=.(或)所以当时,四边形ABCD的面积S取得最大值为.…(12分)21.(14分)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【解答】解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln (x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.。

【济南一模 文理全6科】2015年3月济南市高三模拟考试理4科语文、数学、英语、理综、文综试题及答案

【济南一模 文理全6科】2015年3月济南市高三模拟考试理4科语文、数学、英语、理综、文综试题及答案

语文 (2)数学(理科) (10)英语 (15)理科综合 (27)数学(文科) (43)文科综合 (48)语文第I卷(36分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、(每小题3分,共15分)1.下列加点词语的读音全都正确的一项是A.打烊.(yàng) 给.予(jǐ) 芝麻糊.(hù) 混.水摸鱼(hún)B.卡.壳(qiǎ) 处.暑(chù) 入场券.(quàn) 虚与委.蛇(wēi)C.坊.间(fāng) 眩晕.(yùn) 扎.小辫(zā) 萎靡.不振(mí)D.棕榈.(lǘ) 名媛.(yuàn) 一场.雨(chǎng) 一哄.而散(hòng)2.下列各组词语书写正确的一项是A.蛰伏装帧涸泽而渔筚路蓝缕,以起山林B.帽檐搏弈渡过难关二人同心,其利断金C.熟稔荣膺要言不烦桃李不言,下自成蹊D.松弛坐镇克尽职守机不可失,时不再来3.依次填入下面横线上的词语最恰当的一项是(1)陈凯歌在主题产肃的历史片中,______赵本山、潘长江等喜剧演员出演片中角色,收到了理想的喜剧效果。

(2)我们必须学会如何在纷繁复杂的干扰中剥离出“演绎”的成分,去伪存真,_____真相,呈现出万事万物的真实状态。

(3)李克强在廉政工作会议上强调,对不敢抓、不敢管、尸位素餐的干部,_____坚决采取措施,为官不为的典型要曝光。

A.启用厘清一概B.启用理清一律C.起用理清一概D.起用厘清一律4.下列句子中加点成语使用正确的一项是A.放寒假了,他终于踏上了海南的土地。

海水清澈,风平浪静;沙白如絮,清洁柔软。

于是,他乐不思蜀,久假不归....。

B.有的揶揄是有伤害性的,如起绰号、叫诨名、说不三不四....的话,这时候揶揄就会被当作是骚扰、欺凌、精神虐待。

2015年山东师范大学附属中学高三第一次模拟考试理科数学试卷

2015年山东师范大学附属中学高三第一次模拟考试理科数学试卷

2015年某某师X 大学附属中学高三第一次模拟考试理科数学试卷1.设全集{}1,2,3,4,0U =----,集合{}{}1,2,0,3,4,0A B =--=--,则()UA B ⋂=( )A. {}0B. {}3,4--C. {}1,2--D. φ 答案:B分析:先利用集合的补集的定义求出集合A 的补集,即UA={-3,-4};再利用集合的交集的定义求出(){3,4}UA B ⋂=--,故应选B2.已知()2,f x x i =是虚数单位,则在复平面中复数()13f i i++对应的点在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案:A分析:因为函数2()f x x =,所以2(1)(1)f i i +=+,化简得(1)2f i i +=,所以()13f i i++22(3)2613133(3)(3)10555i i i i i i i i i -++=====+++-,根据复数的几何意义知,()13f i i ++所对应的点的坐标为13(,)55,所以其对应的点在第一象限,故应选A3.设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=( ) A.12p + B. 1p - C. 12p - D. 12p - 答案:D分析:因为随机变量ξ服从正态分布()0,1N ,所以正态分布曲线关于直线0x =对称,所以1(0)(0)2P P ξξ>=<=,(1)(1)P P p ξξ>=<-=, 所以()10P ξ-<<=1(0)(1)2P P p ξξ<-<-=-,故应选D4.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 答案:C分析:若“2sin 1x x <”,则由02x π<<知,0sin 1x <<,所以1sin sin x x x <,而11sin x>, 此时不能推出sin 1x x <,即“2sin 1x x <”不是“sin 1x x <”的充分条件;反过来,若“sin 1x x <”,则2sin sin x x x <,又02x π<<,所以0sin 1x <<,所以2sin sin 1x x x <<,即“sin 1x x <”是“2sin 1x x <”的充分条件,即“2sin 1x x <”是“sin 1x x <”的必要条件.综上可知,“2sin 1x x <”是“sin 1x x <.B5.已知两个不同的平面,αβ和两条不重合的直线,m n ,则下列四种说法正确的为( ) A. 若m ∥,n n α⊂,则m ∥α B. 若,m n m α⊥⊥,则n ∥αC. 若,,m n αβα⊂⊂∥β,则,m n 为异面直线D. 若,,m n αβαβ⊥⊥⊥,则m n ⊥ 答案:D分析:A 中直线m 也可能在平面内,所以不正确;B 中n 有可能在平面内,所以不正确;C 中分别在两个平面内的两条直线也可能平行或相交,不一定异面,所以不正确;根据线面垂直、面面垂直的性质可知D 正确.6.要得到函数()cos(2)3f x x π=+的图象,只需将函数()sin(2)3g x x π=+的图象( ) A. 向左平移2π个单位长度B. 向右平移2π个单位长度C. 向左平移4π个单位长度D. 向右平移4π个单位长度答案:C分析:因为函数()cos(2)3f x x π=+5sin[(2)]sin[2()]3212x x πππ=++=+, 所以将函数()cos(2)3f x x π=+的图象向左平移4π个单位长度,即可得到函数5sin[2()]sin(2)436y x x πππ=++=+的图像,故应选C5.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值X 围是( )A. [B. [C. (D. ( 答案:A分析:双曲线221124x y -=的渐近线方程是y x =,过右焦点(4,0)F 分别作两条渐近线的平行线1l 和2l ,由下图图像可知,符合条件的直线的斜率的X 围是[,故应选A6.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为( ) A. 360B. 520C. 600D. 720 答案:C分析:根据题意,可分2种情况讨论:①只有甲乙其中一人参加,有134254480C C A ⋅⋅=种情况;②甲乙两人都参加,有224254240C C A ⋅⋅=种情况,其中甲乙相邻的有22322532120C C A A ⋅⋅⋅=种情况;则不同的发言顺序种数为22322532120C C A A ⋅⋅⋅=种,故应选C 。

山东省实验中学2015届高三第一次诊断性考试数学理试题含解析

山东省实验中学2015届高三第一次诊断性考试数学理试题含解析

山东师大附中2015届高三第一次模拟考试试题数学(理工农医类)2014.9【试卷综析】试题在重视基础,突出能力,体现课改,着眼稳定,实现了新课标高考数学试题与老高考试题的尝试性对接.纵观新课标高考数学试题,体现数学本质,凸显数学思想,强化思维量,控制运算量,突出综合性,破除了试卷的八股模式,以全新的面貌来诠释新课改的理念,试题图文并茂,文字阐述清晰,图形设计简明,无论是在试卷的结构安排方面,还是试题背景的设计方面,都进行了大胆的改革和有益的探索,应当说是一份很有特色的试题.一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设全集{}1,2,3,4,0U =----,集合{}{}1,2,0,3,4,0A B =--=--,则()U C A B ⋂=A.{}0B.{}3,4--C.{}1,2--D. φ【知识点】集合.A1【答案解析】B 解析:解:因为{}(){}3,43,4U U C A C A B =--∴⋂=--所以B 为正确选项.【思路点拨】根据交集的概念可以直接求出交集.【题文】2.已知()2,f x x i =是虚数单位,则在复平面中复数()13f i i++对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限【知识点】复数的基本概念与运算.L4 【答案解析】A 解析:解:由题可知()()()222211231222613333331055f i i i i i i ii i i i i i i ++-+++======+++++-,所以复数表示的点为13,55⎛⎫⎪⎝⎭,在第一象限,所以A 正确. 【思路点拨】根据复数的概念进行运算,分母实数化,然后找到对应点.【题文】3.设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<= A.12p + B.1p - C.12p - D.12p - 【知识点】正态分布.I3【答案解析】D 解析:解:由正太分布的概念可知,当()1P p ξ>=时,()1012P p ξ<<=-,而正太分布的图像关于y 轴对称,所以()()110012P P p ξξ-<<=<<=-,所以D 为正确选项.【思路点拨】根据正态分布的对称关系可直接求解. 【题文】4.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【知识点】充分条件;必要条件.A2【题文】5.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题: ①若//,m n m n αα⊥⊥,则;②若,,//m m αβαβ⊥⊥则;③若,//,,m m n n αβαβ⊥⊂⊥则; ④若//,//m n m n ααβ⋂=,则. 其中正确命题的个数是 A.0 B.1 C.2D.3【知识点】直线与平面的位置关系.G4,G5【答案解析】D 解析:解:由直线与直线,直线与平面,平面与平面位置关系可知,①②③ 正确,④不正确.【思路点拨】由空间中的位置关系及判定定理,性质定理可直接得到. 【题文】6.要得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象 A.向左平移2π个单位长度 B.向右平移2π个单位长度C.向左平移4π个单位长度D.向右平移4π个单位长度【知识点】三角函数的图像与性质.C3【答案解析】C 解析:解:因为()sin 23g x x π⎛⎫=+⎪⎝⎭向左平移4π个单位可得,sin 2sin 2cos 2443323g x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++=++=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以C 选项正确.【思路点拨】由三角函数的图像与性质可对三角函数进行移动.【题文】7.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是A.⎡⎢⎣B.⎢⎣ C .⎛ ⎝D.(【知识点】直线与双曲线.H8【答案解析】A 解析:解: 由题可知满足条件的直线即过右焦点且斜率在两条渐近线之间的直线,由条件可知渐近线为b y x x a =±=,再分析可得,与右支只有一个交点的直线斜率应该在⎡⎢⎣范围内,所以A 正确.【思路点拨】由双曲线的渐近线及图像可知只有一个交点的情况.【题文】8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为 A.360 B.520 C.600 D.720 【知识点】排列组合.J2【答案解析】C 解析:解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C 21•C 53•A 44=480种情况;若甲乙两人都参加,有C 22•C 52•A 44=240种情况,其中甲乙相邻的有C 22•C 52•A 33•A 22=120种情况; 则不同的发言顺序种数480+240-120=600种, 故选C .【思路点拨】根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.【题文】9.设函数()2,0,2,0.x bx c x f x x ⎧++≤=⎨>⎩若()()()40,22f f f -=-=-,则关于x 的方程()f x x =的解的个数为A.4B.3C.2D.1【知识点】分段函数;方程根的个数.B1,B9【答案解析】B 解析:解:因为 ()()()40,22f f f -=-=-所以2y x bx c =++的对称轴为242bx b a=-=-∴=,()22f -=-2c ∴=,()()242,01,2,22,0x x x f x f x x x x x x ⎧++≤∴=∴=⇒=-=-=⎨>⎩所以方程有3个根,所以B 正确.【思路点拨】根据条件求出函数,然后求方程的根.【题文】10.已知向量OA OB uu r uu u r与的夹角为()2,1,,1,OA OB OP tOA OQ t OB PQ θ====-uu r uu u r uu u r uu r uuu r uu u r uu u r , 0t 在时取得最小值,当0105t <<时,夹角θ的取值范围为 A.0,3π⎛⎫⎪⎝⎭B.,32ππ⎛⎫⎪⎝⎭ C.2,23ππ⎛⎫⎪⎝⎭ D.20,3π⎛⎫⎪⎝⎭【知识点】向量.F2,F3【答案解析】C 解析:解:由题意得()21cos 2cos ,1OA OB PQ OQ OP t OB tOAθθ⋅=⨯⨯==-=--()()222222121PQ PQ t OB t OA t t OA OB ∴==----⋅ =(1-t )2+4t 2-4t(1-t )cos θ=(5+4cos θ)t 2+(-2-4cos θ)t+1 由二次函数知当上式取最小值时,012cos 54cos t θθ+=+,由题意可得12cos 1054cos 5θθ+<<+解得1cos 02θ-<<223ππθ∴<<,所以C 正确.【思路点拨】根据向量的概念及运算可转化为二次函数问题,再根据三角函数值求角.第II 卷(非选择题 共100分)二、填空题:本大题共5个小题,每小题5分,共25分..【题文】11.若13x x k ++->对任意的x R ∈恒成立,则实数k 的取值范围为_________. 【知识点】绝对值不等式.E2【答案解析】(),4-∞ 解析:解: 由绝对值不等式可知131344x x x x k ++-=++-≥∴<时,不等式对于任意实数恒成立.【思路点拨】绝对值不等式的解法. 【题文】12.如图给出的是计算11112462014+++⋅⋅⋅+的值的程序框图,其中判断框内应填入的是_______.【知识点】程序框图.L112014++;111462014++++比较即【题文】13.已知圆C过点()1,0-,且圆心在x轴的负半轴上,直线:1l y x=+被该圆所截得的弦长为C的标准方程为________________.]【知识点】圆的标准方程.H3【答案解析】()2234x y++=解析:解:设圆心(),0C x,则圆的半径1r BC x==+,所以圆心到直线的距离CD=AB=,则1r x==+整理得:x=2(不合题意,舍去)或x=-3,∴圆心C(-3,0),半径为2,则圆C方程为()2234x y++=.故答案为:()2234x y++=【思路点拨】根据题意设圆心C坐标为(x,0),根据圆C过(-1,0),利用两点间的距离公式表示出圆的半径,利用点到直线的距离公式表示出圆心到切线l的距离d,根据已知的弦长,利用垂径定理及勾股定理列出关于x的方程,求出方程的解得到圆心坐标及半径,写出圆C的标准方程即可.【题文】14.定义:{},min,,a a ba bb a b≤⎧=⎨>⎩,在区域026xy≤≤⎧⎨≤≤⎩内任取一点(){}22,min2,42p x y x y x x y x y x x y++++=++,则、满足的概率为__________. 【知识点】概率.E1的事件A={(x ,y )|0≤x ≤2,0≤y ≤6,x 2+x+2y ≤x+y+4},即A={(x ,y )|0≤x ≤2,0≤y ≤6,y ≤4-x 2},()232211644|0033A S x dx x x ⎛⎫∴=-=-= ⎪⎝⎭⎰,所以由几何概型公式得到1643269P ==⨯【思路点拨】由题意可作图计算出概率的值. 【题文】15.已知2280,02y x x y m m x y>>+>+,若恒成立,则实数m 的取值范围是_______.【知识点】基本不等式.E1【答案解析】-4<m <280,0xy>>,288y x x y +≥=即2y x +282xm m y+>+恒成立,必有m 2+2m <8恒成立,m 2+2m <8⇔m 2+2m-8<0, 解可得,-4<m <2,故答案为-4<m <2. 三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤.【题文】16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,且22212a cb ac +-=..(I )求2sin cos 22A CB ++的值; (II )若2b =∆,求ABC 面积的最大值. 【知识点】解三角形.C8 【答案解析】(I) 21sincos 224A C B +∴+=-(II) 315解析:解:(I)在ABC 中,由余弦定理可知,2222cos a c b ac B +-=,由题意知22212a c b ac +-=1cos 4B ∴=,又在 ABC 中A B C π++=2222cos 1sin cos 2sin cos 2cos cos 22cos 22222A CB B B B B B B π+-+=+=+=+-又1cos 4B =21sin cos 224A CB +∴+=- (Ⅱ)∵b =2 ,∴由ac b c a 21222=-+可知,ac c a 21422=-+, 即4221-≥ac ac ,∴38≤ac ,……………………8分 ∵41cos =B ,∴415sin =B ………………10分∴3154153821sin 21=⋅⋅≤⋅=∆B ac S ABC . ∴△ABC 面积的最大值为315.…………………………12 【思路点拨】由余弦定理可求出角B 的值,再计算所求的值,再由公式求出面积. 【题文】17.(本小题满分12分)如图,在七面体ABCDMN 中,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且21.MD NB MB ND P ==,,与交于点 (I )在棱AB 上找一点Q ,使QP//平面AMD ,并给出证明; (II )求平面BNC 与平面MNC 所成锐二面角的余弦值. 【知识点】直线与平面的位置关系;二面角.G3,G10 【答案解析】(I)略(II) 121242cos 323n n n n θ⋅===⨯⋅解析:解:证明:∵MD ⊥平面ABCD ,NB ⊥平面ABCD ,∴MD//NB ,…………2分 ∴12BP NB PM MD ==,又12QB QA =,∴QB NB QA MD=,…………4分 ∴在MAB 中,OP//AM ,又OP ⊄面AMD ,AM ⊂面AMD ,∴OP // 面AMD.…………6分(Ⅱ)解:以DA 、DC 、DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则D (0,0,0),B (2,2,0),C (0,2,0),M (0,0,2)N (2,2,1),∴CM =(0,-2,2),CN =(2,0,1),DC =(0,2,0),………………7分设平面CMN 的法向量为1n =(x,y,z )则1100n CM n CN ⎧⋅=⎪⎨⋅=⎪⎩,∴22020y x x z -+=⎧⎨+=⎩,∴1n =(1,-2,-2).………………9分又NB ⊥平面ABCD ,∴NB ⊥DC ,BC ⊥DC ,∴DC ⊥平面BNC ,∴平面BNC 的法向量为2n =DC =(0,2,0),………………11分 设所求锐二面角为θ,则121242cos 323n n n n θ⋅===⨯⋅.………………12分 【思路点拨】由已知条件可证明直线与平面的位置关系;再利用向量法求出二面角的余弦值. 【题文】18.(本小题满分12分) 某高校自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某同学能正确回答第一、二、三轮的问题的概率分别为432555、、,且各轮问题能否正确回答互不影响。

2015年山东省高考数学一模试卷(理科)含解析答案

2015年山东省高考数学一模试卷(理科)含解析答案

2015年山东省高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2015•山东一模)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣i B.2+i C.4﹣i D.4+i【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:直接利用复数模的公式求复数的模,再利用虚数单位i的运算性质化简后得z,则复数z的共轭复数可求.【解析】:解:由z=|(﹣i)i|+i5=,得:.故选:A.【点评】:本题考查复数模的求法,考查了虚数单位i的运算性质,是基础题.2.(5分)(2015•山东一模)若[﹣1,1]⊆{x||x2﹣tx+t|≤1},则实数t的取值范围是()A.[﹣1,0] B.[2﹣2,0] C.(﹣∞,﹣2] D.[2﹣2,2+2]【考点】:集合的包含关系判断及应用.【专题】:计算题;函数的性质及应用;集合.【分析】:令y=x2﹣tx+t,由题意,将集合的包含关系可化为求函数的最值的范围.【解析】:解:令y=x2﹣tx+t,①若t=0,则{x||x2≤1}=[﹣1,1],成立,②若t>0,则y max=(﹣1)2﹣t(﹣1)+t=2t+1≤1,即t≤0,不成立;③若t<0,则y max=(1)2﹣t+t=1≤1,成立,y min=()2﹣t•+t≥﹣1,即t2﹣4t﹣4≤0,解得,2﹣2≤t≤2+2,则2﹣2≤t<0,综上所述,2﹣2≤t≤0.故选B.【点评】:本题考查了集合的包含关系的应用,属于基础题.3.(5分)(2015•山东一模)已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条【考点】:必要条件、充分条件与充要条件的判断.【专题】:简易逻辑.【分析】:根据抛物线的定义和性质,利用充分条件和必要条件的定义即可得到结论.【解析】:解:抛物线的交点坐标为F(,0),准线方程为x=﹣,则点M到抛物线焦点的距离PF=2﹣(﹣)=2+,若p≥1,则PF=2+≥,此时点M到抛物线焦点的距离不少于3不成立,即充分性不成立,若点M到抛物线焦点的距离不少于3,即PF=2+≥3,即p≥2,则p≥1,成立,即必要性成立,故“p≥1”是“点M到抛物线焦点的距离不少于3”的必要不充分条件,故选:B【点评】:本题主要考查充分条件和必要条件的判断,利用抛物线的定义和性质是解决本题的关键.4.(5分)(2015•山东一模)若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或【考点】:圆锥曲线的共同特征;等比数列的性质.【专题】:计算题.【分析】:先根据等比中项的性质求得m的值,分别看当m大于0时,曲线为椭圆,进而根据标准方程求得a和b,则c可求得,继而求得离心率.当m<0,曲线为双曲线,求得a,b和c,则离心率可得.最后综合答案即可.【解析】:解:依题意可知m=±=±4当m=4时,曲线为椭圆,a=2,b=1,则c=,e==当m=﹣4时,曲线为双曲线,a=1,b=2,c=则,e=故选D【点评】:本题主要考查了圆锥曲线的问题,考查了学生对圆锥曲线基础知识的综合运用,对基础的把握程度.5.(5分)(2015•山东一模)在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B. 2 C.2D. 4【考点】:正弦定理.【专题】:解三角形.【分析】:由条件求得c=2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【解析】:解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sinA=c•,∴c=2=b,故B=(180°﹣A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2,故选:B.【点评】:本题主要考查正弦定理的应用,属于基础题.6.(5分)(2015•山东一模)某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为()A.3π B.4π C.2π D.【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,利用球的表面积计算公式即可得出.【解析】:解:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,其表面积S=4πR2=3π.故选:A.【点评】:本题考查了正方体的内接正四棱锥、球的表面积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)(2015•山东一模)定义max{a,b}=,设实数x,y满足约束条件,则z=max{4x+y,3x﹣y}的取值范围是()A.[﹣8,10] B.[﹣7,10] C.[﹣6,8] D.[﹣7,8]【考点】:简单线性规划.【专题】:分类讨论;转化思想;不等式的解法及应用.【分析】:由约束条件作出可行域,结合新定义得到目标函数的分段函数,然后化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解析】:解:由约束条件作出可行域如图,由定义max{a,b}=,得z=max{4x+y,3x﹣y}=,当x+2y≥0时,化z=4x+y为y=﹣4x+z,当直线y=﹣4x+z过B(﹣2,1)时z有最小值为4×(﹣2)+1=﹣7;当直线y=﹣4x+z过A(2,2)时z有最大值为4×2+1×2=10;当x+2y<0时,化z=3x﹣y为y=3x﹣z,当直线y=3x﹣z过B(﹣2,1)时z有最小值为3×(﹣2)﹣1=﹣7;当直线y=﹣4x+z过A(2,﹣2)时z有最大值为4×2﹣1×(﹣2)=10.综上,z=max{4x+y,3x﹣y}的取值范围是[﹣7,10].故选:B.【点评】:本题是新定义题,考查了简单的线性规划,考查了数形结合及数学转化思想方法,是中档题.8.(5分)(2015•山东一模)函数y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为()A.2 B. 4 C.8 D.16【考点】:基本不等式;对数函数的图像与性质.【专题】:函数的性质及应用;不等式的解法及应用.【分析】:现根据对数函数图象和性质求出点A的坐标,再根据点在直线上,代入化简得到2m+n=1,再根据基本不等式,即可求出结果【解析】:解:∵y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,当x+3=1时,即x=﹣2时,y=﹣1,∴A点的坐标为(﹣2,﹣1),∵点A在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵m,n均大于0,∴=+=2+++2≥4+2=8,当且仅当m=,n=时取等号,故的最小值为8,故选:C【点评】:本题考查了对数函数图象和性质以及基本不等式,属于中档题9.(5分)(2015•山东一模)已知△ABC中,内角A、B、C所对的边分别为a,b,且acosC+c=b,若a=1,c﹣2b=1,则角B为()A.B.C.D.【考点】:余弦定理;正弦定理.【专题】:解三角形.【分析】:已知等式利用正弦定理化简,整理求出cosA的值,求出A的度数,利用余弦定理列出关系式,把a与sinA的值代入得到关于b与c的方程,与已知等式联立求出b与c 的值,再利用正弦定理求出sinB的值,即可确定出B的度数.【解析】:解:已知等式利用正弦定理化简得:sinAcosC+sinC=sinB=sin(A+C)=sinAcosC+cosAsinC,由sinC≠0,整理得:cosA=,即A=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=b2+c2﹣bc①,与c﹣2b=1联立,解得:c=,b=1,由正弦定理=,得:sinB===,∵b<c,∴B<C,则B=.故选:B.【点评】:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.10.(5分)(2015•山东一模)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2﹣6x+4lnx的“类对称点”的横坐标是()A.1 B.C.e D.【考点】:利用导数研究曲线上某点切线方程.【专题】:计算题;新定义;导数的概念及应用;导数的综合应用.【分析】:当a=4时,函数y=H(x)在其图象上一点P(x0,f(x0))处的切线方程为y=g (x)=(2x0+﹣6)(x﹣x0)++x02﹣6x0+4lnx0.由此能推导出y=h(x)存在“类对称点”,是一个“类对称点”的横坐标.【解析】:解:当a=4时,函数y=h(x)在其图象上一点P(x0,h(x0))处的切线方程为:y=g(x)=(2x0+﹣6)(x﹣x0)+x02﹣6x0+4lnx0,设m(x)=h(x)﹣g(x)=x2﹣6x+4lnx﹣(2x0+﹣6)(x﹣x0)﹣x02+6x0﹣4lnx0,则m(x0)=0.m′(x)=2x+﹣6﹣(2x0+﹣6)=2(x﹣x0)(1﹣)=(x﹣x0)(x﹣)若x0<,φ(x)在(x0,)上单调递减,∴当x∈(x0,)时,m(x)<m(x0)=0,此时<0;若x0,φ(x)在(,x0)上单调递减,∴当x∈(,x0)时,m(x)>m(x0)=0,此时<0;∴y=h(x)在(0,)∪(,+∞)上不存在“类对称点”.若x0=,(x﹣)2>0,∴m(x)在(0,+∞)上是增函数,当x>x0时,m(x)>m(x0)=0,当x<x0时,m(x)<m(x0)=0,故>0.即此时点P是y=f(x)的“类对称点”综上,y=h(x)存在“类对称点”,是一个“类对称点”的横坐标.故选B.【点评】:本题考查函数的单调增区间的求法,探索满足函数在一定零点下的参数的求法,探索函数是否存在“类对称点”.解题时要认真审题,注意分类讨论思想和等价转化思想的合理运用,此题是难题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•山东一模)已知函数f(x)=|2x﹣a|+a,若不等式f(x)≤6的解集为{x|﹣2≤x≤3},则实数a的值为a=1.【考点】:其他不等式的解法.【专题】:不等式的解法及应用.【分析】:不等式即|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再由已知不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,由此求得实数a的值.【解析】:解:由题意可得,不等式即|2x﹣a|≤6﹣a,∴a﹣6≤2x﹣a≤6﹣a,解得a﹣3≤x≤3.再由不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,故a=1,故答案为a=1.【点评】:本题主要考查绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.12.(5分)(2015•山东一模)已知点A(2,0)抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=1:.【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:求出抛物线C的焦点F的坐标,从而得到AF的斜率k=﹣.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据tan∠MNP=,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,由此即可得到|FM|:|MN|的值.【解析】:解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0),∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此可得|FM|:|MN|=|PM|:|MN|=1:.故答案为:1:.【点评】:本题给出抛物线方程和射线FA,求线段的比值.着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于中档题.13.(5分)(2015•山东一模)已知函数则=.【考点】:定积分.【专题】:导数的综合应用.【分析】:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,即可得出.利用微积分基本定理即可得出dx=.【解析】:解:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,∴=.又dx==e2﹣e.∴==好.故答案为:.【点评】:本题考查了定积分的几何意义、微积分基本定理,属于中档题.14.(5分)(2015•山东一模)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为96.(用数字作答)【考点】:排列、组合及简单计数问题.【专题】:概率与统计.【分析】:根据题意,先将票分为符合题意要求的4份,可以转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号的问题,用插空法易得其情况数目,再将分好的4份对应到4个人,由排列知识可得其情况数目,由分步计数原理,计算可得答案.【解析】:解:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人一张,1人2张,且分得的票必须是连号,相当于将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C43=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.故答案为96.【点评】:本题考查排列、组合的应用,注意将分票的问题转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分的问题,用插空法进行解决.15.(5分)(2015•山东一模)已知函数f(x)=xe x,记f0(x)=f′(x),f1(x)=f′(x0),…,f n(x)=f′n﹣1(x)且x2>x1,对于下列命题:①函数f(x)存在平行于x轴的切线;②>0;③f′2012(x)=xe x+2014e x;④f(x1)+x2<f(x2)+x1.其中正确的命题序号是①③(写出所有满足题目条件的序号).【考点】:导数的运算.【专题】:导数的概念及应用.【分析】:根据导数的几何意义判断①正确,根据导数和函数的单调性判断②错;根据导数的运算,得到③正确,根据导数与函数的单调性的关系判断④错【解析】:解:对于①,因为f′(x)=(x+1)e x,易知f′(﹣1)=0,函数f(x)存在平行于x轴的切线,故①正确;对于②,因为f′(x)=(x+1)e x,所以x∈(﹣∞,﹣1)时,函数f(x)单调递减,x∈(﹣1,+∞)时,函数f(x)单调递增,故>0的正负不能定,故②错;对于③,因为f1(x)=f′(x0)=xe x+2e x,f2(x)=f′(x1)=xe x+3e x,…,f n(x)=f′n﹣1(x)=xe x+(n+1)e x,所以f′2012(x)=f2013(x)=xe x+2014e x;故③正确;对于④,f(x1)+x2<f(x2)+x1等价于f(x1)﹣x1<f(x2)﹣x2,构建函数h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1=(x+1)e x﹣1,易知函数h(x)在R上不单调,故④错;故答案为:①③【点评】:本题考查了导数的几何意义以及导数和函数的单调性的关系,以及导数的运算法则,属于中档题三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)(2015•山东一模)已知函数f(x)=2sinx+2sin(x﹣).(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c.已知f(A)=,a=b,证明:C=3B.【考点】:两角和与差的正弦函数;正弦定理.【专题】:计算题;三角函数的图像与性质;解三角形.【分析】:(1)运用两角差的正弦公式,即可化简,再由正弦函数的单调增区间,即可得到;(2)由f(A)=,及0<A<π,即可得到A=,再由正弦定理,及边角关系,即可得证.【解析】:(1)解:函数f(x)=2sinx+2sin(x﹣)=2(sinx+sinx﹣cosx)=2(sinx﹣cosx)=2sin(x﹣),令2kπ﹣≤x﹣≤2k,k∈Z,则2kπ﹣≤x≤2kπ,则f(x)的单调递增区间是[2kπ﹣,2kπ],k∈Z.(2)证明:由f(A)=,则sin(A﹣)=,由0<A<π,则﹣<A﹣<,则A=,由=,a=b,则sinB=,由a>b,A=,B=,C=,故C=3B.【点评】:本题考查三角函数的化简,正弦函数的单调区间,考查正弦定理及边角关系,注意角的范围,属于中档题.17.(12分)(2015•山东一模)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:福娃名称贝贝晶晶欢欢迎迎妮妮数量1 1 1 2 3从中随机地选取5只.(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.【考点】:离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】:概率与统计.【分析】:(Ⅰ)根据排列组合知识得出P=运算求解即可.(Ⅱ)确定ξ的取值为:10,8,6,4.分别求解P(ξ=10),P(ξ=8),P(ξ=6),P(ξ=4),列出分布列即可.【解析】:解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率P===,(Ⅱ)ξ的取值为:10,8,6,4.P(ξ=10)==,P(ξ=8)=,P(ξ=6)==,P(ξ=4)==ξ的分布列为:ξ 10 8 6 4P﹣Eξ==7.5.【点评】:本题综合考查了运用排列组合知识,解决古典概率分布的求解问题,关键是确定随机变量的数值,概率的求解,难度较大,仔细分类确定个数求解概率,属于难题.18.(12分)(2015•山东一模)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图2)(1)求证:A1E⊥平面BEP(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B﹣A1P﹣F的余弦值.【考点】:与二面角有关的立体几何综合题;直线与平面垂直的判定;直线与平面所成的角.【专题】:空间角.【分析】:(1)设正三角形ABC的边长为3.在图1中,取BE的中点D,连结DF.由已知条件推导出△ADF是正三角形,从而得到EF⊥AD.在图2中,推导出∠A1EB为二面角A1﹣EF﹣B的平面角,且A1E⊥BE.由此能证明A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,利用向量法能求出直线A1E与平面A1BP所成的角的大小.(3)分别求出平面A1FP的法向量和平面BA1F的法向量,利用向量法能求出二面角B﹣A1P﹣F的余弦值.【解析】:(1)证明:不妨设正三角形ABC 的边长为3.在图1中,取BE的中点D,连结DF.∵AE:EB=CF:FA=1:2,∴AF=AD=2,而∠A=60度,∴△ADF是正三角形,又AE=DE=1,∴EF⊥AD.在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1﹣EF﹣B的平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,则E(0,0,0),A(0,0,1),B(2,0,0),F(0,,0),P (1,,0),则,.设平面ABP的法向量为,由平面ABP知,,即令,得,.,,∴直线A1E与平面A1BP所成的角为60度.(3),设平面A1FP的法向量为.由平面A1FP知,令y 2=1,得,.,所以二面角B﹣A1P﹣F的余弦值是.【点评】:本题考查直线与平面垂直的证明,考查直线与平面所成的角的求法,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.19.(12分)(2015•山东一模)数列{a n}中,a1=1,当n≥2时,其前n项和为S n,满足S n2=a n (S n﹣).(1)求S n的表达式;(2)设b n=,数列{b n}的前n项和为T n,不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,求正整数m的最大值.【考点】:数列的求和;数列递推式.【专题】:等差数列与等比数列.【分析】:(1)当n≥2时,a n=S n﹣S n﹣1,代入利用等差数列的通项公式即可得出;(2)利用“裂项求和”、一元二次不等式的解法即可得出.【解析】:解:(1)∵S n2=a n(S n﹣)=.化为,∴数列是首项为==1,公差为2的等差数列.故=1+2(n﹣1)=2n﹣1,∴S n=.(2)b n===,故T n=+…+=.又∵不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,∴≥(m2﹣5m),化简得:m2﹣5m﹣6≤0,解得:﹣1≤m≤6.∴正整数m的最大值为6.【点评】:本题考查了递推式的应用、“裂项求和”、等差数列的通项公式、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.20.(13分)(2015•山东一模)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),P为椭圆G的上顶点,且∠PF1O=45°.(Ⅰ)求椭圆G的标准方程;(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.【考点】:直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】:综合题.【分析】:(Ⅰ)根据F1(﹣1,0),∠PF1O=45°,可得b=c=1,从而a2=b2+c2=2,故可得椭圆G的标准方程;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)直线l1:y=kx+m1与椭圆G联立,利用韦达定理,可求AB,CD的长,利用|AB|=|CD|,可得结论;(ⅱ)求出两平行线AB,CD间的距离为d,则,表示出四边形ABCD的面积S,利用基本不等式,即可求得四边形ABCD的面积S取得最大值.【解析】:(Ⅰ)解:设椭圆G的标准方程为.因为F1(﹣1,0),∠PF1O=45°,所以b=c=1.所以,a2=b2+c2=2.…(2分)所以,椭圆G的标准方程为.…(3分)(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)证明:由消去y得:.则,…(5分)所以===.同理.…(7分)因为|AB|=|CD|,所以.因为m1≠m2,所以m1+m2=0.…(9分)(ⅱ)解:由题意得四边形ABCD是平行四边形,设两平行线AB,CD间的距离为d,则.因为m1+m2=0,所以.…(10分)所以=.(或)所以当时,四边形ABCD的面积S取得最大值为.…(12分)【点评】:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查弦长的计算,考查三角形的面积,同时考查利用基本不等式求最值,正确求弦长,表示出四边形的面积是解题的关键.21.(14分)(2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【考点】:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.【专题】:导数的综合应用.【分析】:(I)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.【解析】:解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.【点评】:本题考查函数极值的意义及利用导数研究函数的单调性,证明:对任意的正整数n.解题时要认真审题,注意导数的合理运用,恰当地利用裂项求和法进行解题.。

济南市2015届高三下学期3月一模考试(数学理)

济南市2015届高三下学期3月一模考试(数学理)

2015年高考模拟考试(山东卷)数学(理科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么()()()P A B P A P B +=+;如果事件A ,B 独立,那么()()()P AB P A P B =⋅.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2230,,M x x x N x x a M N =--<=>⊆若,则实数a 的取值范围是A.(],1-∞-B.(),1-∞-C.[)3,+∞D.()3,+∞2.若12iz i-=(i 为虚数单位),则z 的共轭复数是 A.2i -- B.2i - C.2i +D.2i -+3.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论: ①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行; A.①② B.②③ C.③④ D.①④ 4.“1cos 2α=”是“3πα=”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.执行如图所示的程序框图,输出的k 值为 A.7 B.9C.11D.136.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为8.57.5y x =+$,则表中的m 的值为A.50B.55C.60D.657.已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是C.2D.58.在椭圆221169x y +=内,通过点()1,1M 且被这点平分的弦所在的直线方程为 A.91670x y -+=B.169250x y +-=C.916250x y +-=D.16970x y --=9.将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有4种颜色可供使用,则不同的染色方法总数有 A.48种 B.72种 C.96种 D.108种 10.若至少存在一个()0x x ≥,使得关于x 的不等式242x x m ≤--成立,则实数m 的取值范围为 A.[]4,5- B.[]5,5- C.[]4,5D.[]5,4-第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则测试成绩落在[)60,80中的学生人数是_________. 12.函数()f x =的定义域是_________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________.14.设,,a b c r r r是单位向量,且()()0a b a c b c ⋅=+⋅+r r r r r r ,则的最大值为________.15.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的序号是________(写出符合条件的全部序号).三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ABC ∆中,边a,b,c 的对角分别为A,B,C ;且4,3b A π==,面积S =.(I )求a 的值; (II )设()()2co s s i n c o s c o s f xC x A x=-,将()f x 图象上所有点的横坐标变为原来的12(纵坐标不变)得到()g x 的图象,求()g x 的单调增区间.17. (本小题满分12分)某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为34,乙队中3人答对的概率分别为45,34,23,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分. (I )求ξ的分布列和数学期望;(II )求甲、乙两队总得分之和等于30分且甲队获胜的概率.18. (本小题满分12分) 直三棱柱111A B C A B C-中,10,8,6A B A C B C ===,18AA =,点D 在线段AB 上.(I )若1//AC 平面1B CD ,确定D 点的位置并证明; (II )当13BD AB =时,求二面角1B CD B --的余弦值.19. (本小题满分12分)已知数列{}n a 满足()12111,3,32,2n n n a a a a a n N n *+-===-∈≥,(I )证明:数列{}1n n a a +-是等比数列,并求出{}n a 的通项公式; (II )设数列{}n b 满足()242l o g 1n n b a =+,证明:对一切正整数222121111,1112n n b b b ++⋅⋅⋅+<---有.20. (本小题满分13分)已知抛物C 的标准方程为()220y px p =>,M 为抛物线C 上一动点,()(),00A a a ≠为其对称轴上一点,直线MA 与抛物线C 的另一个交点为N.当A 为抛物线C 的焦点且直线MA 与其对称轴垂直时,MON ∆的面积为92. (I )求抛物线C 的标准方程; (II )记11t AM AN=+,若t 值与M 点位置无关,则称此时的点A 为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.21. (本小题满分14分) 已知关于x 函数()()()()22ln ,g x a x a R f x x g x x=-∈=+, (I )试求函数()g x 的单调区间;(II )若()f x 在区间()0,1内有极值,试求a 的取值范围; (III )0a >时,若()f x 有唯一的零点0x ,试求[]0x .(注:[]x 为取整函数,表示不超过x 的最大整数,如[][][]0.30,2.62, 1.42==-=-;以下数据供参考:ln 20.6931,ln3 1.099,ln5 1.609,ln 7 1.946====)2015届高三教学质量调研考试理科数学参考答案一、选择题ADDBC CDCBA 二、填空题(11)50 (12){}10010|<<x x (13)π2 (14)1+(15)①③④三、解答题(16)解:(Ⅰ)在ABC ∆中A bc S sin 21=2342132⨯⨯⨯=∴c 2=∴c …………2分∴a === …………4分(Ⅱ)∵4,sin 1,sin sin sin a b B A B B==∴= 又∵0B π<<∴2B π=6C π=……6分∴(()2cos sin cos cos )2sin()6f x C x A x x π=-=-,………… 8分将()f x 图象上所有点的横坐标变为原来的12,得到()2sin(2)6g x x π=-,…………9分 所以()g x 的单调增区间为222,262k x k πππππ-≤-≤+…………10分即,()63k x k k Z ππππ-≤≤+∈…………11分()g x 的单调区间为,,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦…………12分(17)解:(Ⅰ)由题意知,ξ的所有可能取值为0,10,20,30.…………1分1111(=0)5436041113111293(=10)=54354354360204314121322613(=20)=5435435436030432242(=30)==.5543605P P P P ξξξξ=⨯⨯==⨯⨯+⨯⨯+⨯⨯==⨯⨯+⨯⨯+⨯⨯==⨯⨯⋯⋯⋯⋯,,,分ξ的分布列为:…………6分1313213301020+30.60203056E ξ∴=⨯+⨯+⨯⨯=()…………7分 ()()()()()3223.319==9460128031381=C =1144201280909+=+==.121280128P P P P P ⎛⎫⨯⋯⋯⋯⋯ ⎪⎝⎭⎛⎫⨯⨯⋯⋯⋯⋯ ⎪⎝⎭⋯⋯⋯⋯(Ⅱ)用A 表示“甲得30分乙得0分”,用B 表示“甲得20分乙得10分”,且A,B 互斥又A , 分B 分甲、乙两人得分总和为30分且甲获胜的概率为A B A B 分(18)(Ⅰ)证明:当D 是AB 中点时,1AC ∥平面1B CD . 连接BC 1,交B 1C 于E ,连接DE . 因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以侧面BB 1C 1C 为矩形,DE 为△ABC 1的中位线,所以 DE // AC 1. …………………………………2分 因为 DE ⊂平面B 1CD , AC 1⊄平面B 1C D , 所以 AC 1∥平面B 1CD . ………………………………………4分 (Ⅱ) 由6,8,10===BC AC AB ,得AC ⊥BC ,以C 为原点建立如图所示的空间直角坐标系C -xyz . 则B (6, 0, 0),A (0, 8, 0),A 1(0, 8,8),B 1(6, 0, 8).设D (a , b , 0)(0a >,0b >),…………………5分 因为 点D 在线段AB 上,且13BD AB =, 即13BD BA =. 所以84,3a b ==.…………………7分所以1(6,0,8)BC =--,8(4,,0)3CD =. 平面BCD 的法向量为1(0,0,1)n =. 设平面B 1CD 的法向量为2(,,1)n x y =,由 120BC n ⋅=,20CD n ⋅=, 得 6808403x x y --=⎧⎪⎨+=⎪⎩,所以4,23x y =-=,24(,2,1)3n =-. …………………10分 设二面角1B CD B --的大小为θ, 361cos a b a bθ⋅==所以二面角1B CD B --.……………………………12分 (19)解:()Ⅰ由1132n n n a a a +-=- ,可得112(),n n n n a a a a +--=-…………2分212,a a -={}1n n a a +∴- 是首项为2,公比为2的等比数列,即1=2.n n n a a +- …………3分()()()-1-1-221112=-+-+-12=22211221,6n n n n n nn n n a a a a a a a a --∴+-++++=-=-⋯⋯⋯⋯+分()()()24222221222122log (2)2.7111111=.9141212122121111111111+=1111233521211111.2212111,+11n n n n b n b n n n n n b b b n n n n b b ==⋯⋯⋯⋯⎛⎫==-⋯⋯⋯⋯ ⎪---+-+⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫∴++-+-++- ⎪ ⎪ ⎪⎢⎥----+⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫=-< ⎪+⎝⎭∴++--Ⅱ由题意得分分对一切正整数有21.1212n b <⋯⋯⋯⋯-分(20)(I)由题意,2922221||||212==⋅⋅=⋅⋅=∆p p p MN OA S MON3=∴p抛物线C 的方程为x y 62=---------------------------------------------------------------------3分 (II) 设),(),(2211y x N y x M ,,直线MN 的方程为a my x += 联立⎩⎨⎧=+=xy a my x 62得0662=--a my y024362>+=∆a mm y y 621=+,a y y 621-=,-----------------------------------------------------------------6分 由对称性,不妨设0>m ,(i )0<a 时,0621>-=a y y , 21y y ,∴同号,又||11||11||1||12212y m y m AN AM t +++=+=)111(1363611)()(112222222122122m a a m m y y y y m t +-=+=++=∴不论a 取何值,t 均与m 有关,即0<a 时A 不是“稳定点”; -------------------------9分 (ii ) 0>a 时, 0621<-=a y y , 21y y ,∴异号,又||11||11||1||12212y m y m AN AM t +++=+= 22121221222122122)(4)(11)()-(11y y y y y y m y y y y m t -+⋅+=⋅+=∴ )11321(13624361122222ma a a a m m +-+=+⋅+= 所以,仅当0132=-a ,即23=a 时,t 与m 无关,此时A 即抛物线C 的焦点,即抛物线C 对称轴上仅有焦点这一个“稳定点”. ------------------------------------------------------------13分(21)解:(I )由题意)(x g 的定义域为),0(+∞2222-)(x ax x a x x g +-=-=' (i )若0≥a ,则0)('<x g 在),0(+∞上恒成立,),0(+∞为其单调递减区间; (ii )若0<a ,则由0)('=x g 得ax 2-=, )2,0(a x -∈时,0)('<x g ,),2(+∞-∈ax 时,0)('>x g ,所以)2,0(a -为其单调递减区间;),2(+∞-a为其单调递增区间;-----------------------4分(II ))()(2x g x x f +=所以)(x f 的定义域也为),0(+∞,且232''2'2222)()()(x ax x x ax x x g x x f --=+-=+=令),0[,22)(3+∞∈--=x ax x x h (*)则a x x h -6)(2'= (**)----------------------------------------------------------------------------6分0<a 时, 0)('≥x h 恒成立,所以)(x h 为),0[+∞上的单调递增函数,又0-)1(,02)0(>=<-=a h h ,所以在区间)1,0(内)(x h 至少存在一个变号零点0x ,且0x 也是)('x f 的变号零点,此时)(x f 在区间)1,0(内有极值. ----------------------------------------8分0≥a 时)1,0(,0)1(2)(3∈<--=x ax x x h ,即在区间(0,1)上0)('<x f 恒成立,此时,)(x f 无极值.综上所述,若)(x f 在区间)1,0(内有极值,则a 的取值范围为)0,(-∞. --------------9分 (III) 0>a ,由(II )且3)1(=f 知]1,0(∈x 时0)(>x f ,10>∴x .又由(*)及(**)式知)(x f '在区间),1(+∞上只有一个极小值点,记为1x , 且),1(1x x ∈时)(x f 单调递减, ),(1+∞∈x x 时)(x f 单调递增,由题意1x 即为0x ,⎩⎨⎧='=∴0)(0)(00x f x f -----------------------------------------------------------------------------------------11分 ⎪⎩⎪⎨⎧=--=-+∴0220ln 20200020ax x x a x x消去a ,得131ln 2300-+=x x -------------------------------------------------------------------12分 0>a 时令)0(131)(),1(ln 2)(321>-+=>=x x x t x x x t , 则在区间),1(+∞上为)(1x t 单调递增函数, )(2x t 为单调递减函数, 且)2(710577.022ln 2)2(21t t =<=⨯<= )3(263123ln 2)3(21t t =+>>= 320<<∴x2][0=∴x ------------------------------------------------------------------------------------------14分。

济南市2015届高三期末考试数学试题(理)及答案(Word版)

济南市2015届高三期末考试数学试题(理)及答案(Word版)

2015年2月高三教学质量调研考试数学(理科)本试卷分第I 卷和第II 卷两部分,共5页.满分150分.考试用时120分钟,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B ⋃=+;如果事件A ,B 独立,那么()()()P A B P A P B ⋂=⋅.锥体侧面积公式12S cl =,球的表面积公式24S R π=. 一、选择题:本大题共10个小题,每小题5分,共50分.每小题给出的四个选项中只有一项符合题目要求的.1.已知i 是虚数单位,m 是实数,若2m ii+-是纯虚数,则m = A. 2-B. 12-C.2D. 122.已知集合{}{}240,5M x x x N x m x =-<=<<,若{}3M N x x n ⋂=<<,则m n +等于A.9B.8C.7D.63.“1m =”是“函数()266f x x mx =-+在区间(],3-∞上为减函数”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为 A. 37π B. 35π C. 33π D. 31π5.在某项测量中,测量结果X 服从正态分布()()24,0N σσ>,若X 在(0,8)内取值的概率为0.6,则X 在(0,4)内取值的概率为 A.0.2 B.0.3 C.0.4 D.0.66.某程序框图如图所示,则该程序运行后输出的值等于A.23 B.34 C. 45D. 567.将函数cos 2y x =的图象向左平移4π个单位,得到函数()cos y f x x =⋅的图象,则()f x 的表达式可以是 A. ()2sin f x x =- B. ()2sin f x x =C. ()22f x x =D. ())sin 2cos 22f x x x =+ 8.点A 是抛物线()21:20C y px p =>与双曲线22222:1x y C a b-=()0,0a b >>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p ,则双曲线2C 的离心率等于A.B.C.D.9.下列图象中,可能是函数x xx xe e y e e---=+图象的是10.在ABC ∆中,0P 是AB 中点,且对于边AB 上任一点P ,恒有00PB PC P B P C ≥,则有A. AB BC =B. AC BC =C. 90ABC ∠=D. 90BAC ∠=第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.已知21nx x ⎛⎫+ ⎪⎝⎭的二项展开式的各项系数和为32,则二项展开式中含x 项的系数为________.12.曲线2y x =和曲线2y x =围成的图形的面积是________.13.若,x y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,若目标函数3z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围为_________.14.已知圆C 过点()1,0-,且圆心在x 轴的负半轴上,直线:1l y x =+被该圆所截得的弦长为l 平行的直线方程为________.15.已知命题:①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆中,若sin sin A B A B ><,则;④在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<的概率是78; ⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭. 以上命题中正确的是__________(填写所有正确命题的序号).三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且,,4BA C 成等差数列.(I )若3b a c ==,求的值;(II )设sin sin t A C =,求t 的最大值.17. (本小题满分12分)为了参加市中学生运动会,某校从四支较强的班级篮球队A ,B ,C ,D 中选出12人组成校男子篮球队,队员来源如下表:(I )从这12名队员中随机选出两名,求两人来自同一个队的概率;(II )比赛结束后,学校要评选出3名优秀队员(每一个队员等可能被评为优秀队员),设其中来自A 队的人数为ξ,求随机变量ξ的分布列和数学期望.18. (本小题满分12分)在四棱锥//,,2,P ABCD AB CD AB AD AB AD -⊥==中,,1,CD PA =⊥平面ABCD ,PA=2.(I )设平面PAB ⋂平面PCD m =,求证://CD m ;(II )设点Q 为线段PB 上一点,且直线QC 与平面PAC 所成角的正切值为2,求PQ PB 的值.19. (本小题满分12分)已知等比数列{}n a 的前n 项和为n S ,且满足()122n n S p n N +*=+∈.(I )求p 的值及数列{}n a 的通项公式; (II )若数列{}n b 满足()132n n a bn a p +=+,求数列{}n b 的前n 项和n T .20. (本小题满分13分)已知椭圆()222210x y a b a b +=>>的离心率为2,且过点12⎫⎪⎭.(I )求椭圆的标准方程;(II )四边形ABCD 的顶点在椭圆上,且对角线AC ,BD 过原点O ,设()()1122,,,Ax y Bx y ,满足12124y y x x =.(i )试证AB BC k k +的值为定值,并求出此定值; (ii )试求四边形ABCD 面积的最大值.21. (本小题满分14分)已知关于x 的函数()()()2ln 1f x x a x a R =+-∈.(I )求函数()f x 在点()1,0P 处的切线方程; (II )求函数()f x 有极小值,试求a 的取值范围;(III )若在区间[)1,+∞上,函数()f x 不出现在直线1y x =-的上方,试求a 的最大值.2015届高三教学质量调研考试理科数学参考答案一、选择题DCACB CACAD 二、填空题(11)10 (12)31(13))3,6(- (14)03=+-y x(15)③④⑤ 三、解答题(16)解:(Ⅰ)因为A ,4B ,C 成等差数列,C A B +=∴2因为A B C ++=π,所以32π=B . ………………………………………2分∵B ac c a b a b cos 2,3,13222-+===2340,5c c ∴+-=-------------分14(6c c ∴==-----------或舍去)分(Ⅱ)∵3π=+C A41)62sin(21)22cos 1(212sin 43)sin 21cos 23(sin )3sin(sin sin sin -+=--=-=-==∴ππA A A A A A A A C A t ------------------------10分∵30π<<A ,65626πππ<+<∴A .所以当,262ππ=+A 即6A π=时,t 有最大值41.………………………12分(17)解:(Ⅰ)从这12名队员中随机选出两名, 两人来自同一个队记作事件A ,则2222432321213()66C C C C P A C +++== ……………………4分 (Ⅱ)ξ的所有可能取值为0,1,2,3. 因为3122138484843333121212121428121(=0)(=1)(=2)(=3)55555555C C C C C C P P P P C C C C ξξξξ========,,,.…………8分所以ξ的分布列为:1428121012+3155555555E ξ=⨯+⨯+⨯⨯= ……………………12分 (18)解:(Ⅰ)证明:∵⊄CD CD AB ,//平面⊂AB PAB ,平面PAB ,.//PCD CD 平面∴因为⊂CD 平面PCD ,平面PAB ⋂平面PCD=mm CD //∴………………4分 (Ⅱ)设,λ=PBPQ因为ABCD PD AD AB 平面⊥⊥,,所以建立如图所示的空间直角坐标系 设 Q (x ,y ,z ),直线QC 与平面P AC 所成角为θ.所以错误!未找到引用源。

山东省济南第一中学2015届高三6月模拟测试数学(理)试题 含答案

山东省济南第一中学2015届高三6月模拟测试数学(理)试题 含答案

普通高等学校招生全国统一考试(山东卷)理科数学模拟测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

满分150分,考试时间120分钟。

考试结束后,将本试卷以及答题卡和答题纸一并交回。

答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在试卷和答题纸规定的地方。

第Ⅰ卷(共50分) 注意事项:每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选择其他答案标号。

不能直接写在本试卷上一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若复数满足(34)|43|i z i -⋅=+,i 是虚数单位,则z 的虚部为( )A 。

4- B. 45C 。

4D 。

45- 2。

设集合{||1|3}P x x =+≤,1{|(),(2,1)}3xQ y y x ==∈-,则PQ =( )A 。

1(4,)9- B.1(,2]9C 。

1(,2]3D.1(,2)33.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学共有女生( )A .1030人B .97人C .950人D .970人 4。

函数31log ()x f x +=的定义域为( )A 。

1(,)3+∞B 。

1(,2)(2,)3+∞C 。

1[,2)(2,)3+∞D. 1[,)3+∞5。

“1a =”是“对任意的正数x ,x a x+≥1恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6. 已知变量,x y 满足: 220230,2x yx y x y z x +-≤⎧⎪⎪-+≥=⎨⎪≥⎪⎩则的最大值为( )A.2B 。

2 C 。

2 D.47. 已知()cos(),(0)3f x x πωω=+>的图象与1y =的图象的两相邻交点间的距离为π,要得到()y f x =的图象,只须把sin y x ω=的图象( )A 。

2015年山东省实验中学高考一模数学试卷(理科)【解析版】

2015年山东省实验中学高考一模数学试卷(理科)【解析版】

2015年山东省实验中学高考数学一模试卷(理科)一、选择题《本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)i为虚数单位,若,则|z|=()A.1B.C.D.22.(5分)f(x)=则f[f()]=()A.﹣2B.﹣3C.9D.3.(5分)已知条件p:|x+1|>2,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 5.(5分)由函数f(x)=e x﹣e的图象,直线x=2及x轴所围成的图象面积等于()A.e2﹣2e﹣1B.e2﹣2e C.D.e2﹣2e+1 6.(5分)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8B.﹣4C.4D.87.(5分)已知x,y满足条件,则z=的最小值()A.﹣B.C.D.48.(5分)一个几何体的三视图如图所示,则该几何体的表面积和体积分别是()A.24+和40B.24+和72C.64+和40D.50+和72 9.(5分)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=.设线段AB的中点M在l上的投影为N,则的最大值是()A.B.C.D.10.(5分)定义在(0,)上的函数f(x),f′(x)是它的导函数,且恒有f (x)<f′(x)tan x成立,则()A.f()>f()B.f(1)<2f()sin1C.f()>f()D.f()<f()二、填空题(本题包括5小题,每小题5分,共25分)11.(5分)已知等差数列{a n}中,a5=1,a3=a2+2,则S11=.12.(5分)一只昆虫在边长分别为5,12,13的三角形区域内随机爬行,则其到三角形顶点的距离小于2的地方的概率为.13.(5分)双曲线=1(m>0)的一条渐近线方程为y=2x,则m=.14.(5分)若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=.15.(5分)已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数y=f(x)﹣﹣a以在区间[﹣10,10]上有10个零点(互不相同),则实数口的取值范围是.三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤).16.(12分)设△ABC的内角A,B,C所对的边分别为a,b,c且a cos C﹣c =b.(I)求角A的大小;(Ⅱ)若a=3,求△ABC的周长l的取值范围.17.(12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.(Ⅰ)求恰有两个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X,求X的分布列和数学期望E(X).18.(12分)如图,在四棱锥P﹣ABCD.中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证;平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线P A与平面EAC所成角的正弦值.19.(12分)已知S n为数列{a n}的前n项和,且S n=2a n+n2﹣3n﹣1,n=l,2,3…(1)求证:数列{a n﹣2n}为等比数列:(2)设b n=a n•cos nπ,求数列{b n}的前n项和T n.20.(13分)已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.21.(14分)已知函数f(x)=e x﹣mx k(m,k∈R)定义域为(0,+∞)(Ⅰ)若k=1时,f(x)在(1,+∞)上有最小值,求m的取值范围;(Ⅱ)若k=2时,f(x)的值域为[0,+∞),试求m的值;(Ⅲ)试证:对任意实数m,k,总存在x0,使得当x∈(x0,+∞)时,恒有f(x)>0.2015年山东省实验中学高考数学一模试卷(理科)参考答案与试题解析一、选择题《本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.(5分)i为虚数单位,若,则|z|=()A.1B.C.D.2【解答】解:∵,∴|||z|=||,即2|z|=2,∴|z|=1,故选:A.2.(5分)f(x)=则f[f()]=()A.﹣2B.﹣3C.9D.【解答】解:∵f(x)=,∴==﹣2.∴f[f()]=f(﹣2)==9.故选:C.3.(5分)已知条件p:|x+1|>2,条件q:5x﹣6>x2,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵p:|x+1|>2,∴x>1或x<﹣3∵q:5x﹣6>x2,∴2<x<3,∴q⇒p,∴﹣p⇒﹣q∴﹣p是﹣q的充分不必要条件,故选:A.4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 【解答】解:∵A:f(x)=x2、C:f(x)=e x,不是奇函数,故不满足条件①又∵B:f(x)=的函数图象与x轴没有交点,故不满足条件②而D:f(x)=sin x既是奇函数,而且函数图象与x也有交点,故D:f(x)=sin x符合输出的条件故选:D.5.(5分)由函数f(x)=e x﹣e的图象,直线x=2及x轴所围成的图象面积等于()A.e2﹣2e﹣1B.e2﹣2e C.D.e2﹣2e+1【解答】解:由题意,令f(x)=0,可得x=1∴函数f(x)=e x﹣e的图象,直线x=2及x轴所围成的图象面积等于=(e x﹣ex)=e2﹣2e故选:B.6.(5分)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8B.﹣4C.4D.8【解答】解:由题意可知B、C两点的中点为点A(2,0),设B(x1,y1),C (x2,y2),则x1+x2=4,y1+y2=0∴(+)•=((x1,y1)+(x2,y2))•(2,0)=(x1+x2,y1+y2)•(2,0)=(4,0)•(2,0)=8故选:D.7.(5分)已知x,y满足条件,则z=的最小值()A.﹣B.C.D.4【解答】解:因为z===1+,即为求的最大值问题,等价于求可行域中的点与定点B(﹣3,1)的斜率的最小值根据可行域可知,点C与点(﹣3,1)的斜率最小,由,解得,即C(3,﹣3),此时k==﹣,则z的最小值为1﹣=,故选:B.8.(5分)一个几何体的三视图如图所示,则该几何体的表面积和体积分别是()A.24+和40B.24+和72C.64+和40D.50+和72【解答】解:根据三视图判断:几何体下部分为长方体,上部分为四棱锥.几何体如下;∴体积:3×4×2+=24+16=40,该几何体的表面积:3×4+2(3+4)×2+4×4=64,故选:C.9.(5分)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=.设线段AB的中点M在l上的投影为N,则的最大值是()A.B.C.D.【解答】解:设|AF|=a,|BF|=b,A、B在准线上的射影点分别为Q、P,连接AQ、BQ由抛物线定义,得|AF|=|AQ|且|BF|=|BP|,在梯形ABPQ中根据中位线定理,得2|MN|=|AQ|+|BP|=a+b.由余弦定理得|AB|2=a2+b2﹣2ab cos=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,又∵ab≤()2,∴(a+b)2﹣ab≥(a+b)2﹣()2=(a+b)2得到|AB|≥(a+b).所以≤=,即的最大值为.故选:C.10.(5分)定义在(0,)上的函数f(x),f′(x)是它的导函数,且恒有f (x)<f′(x)tan x成立,则()A.f()>f()B.f(1)<2f()sin1C.f()>f()D.f()<f()【解答】解:因为x∈(0,),所以sin x>0,cos x>0.由f(x)<f′(x)tan x,得f(x)cos x<f′(x)sin x.即f′(x)sin x﹣f(x)cos x>0.令g(x)=x∈(0,),则.所以函数g(x)=在x∈(0,)上为增函数,则,即,所以,即.故选:D.二、填空题(本题包括5小题,每小题5分,共25分)11.(5分)已知等差数列{a n}中,a5=1,a3=a2+2,则S11=33.【解答】解:等差数列{a n}中,∵a5=1,a3=a2+2,∴,∴a1=﹣7,d=2,∴=11×(﹣7)+=33.故答案为:33.12.(5分)一只昆虫在边长分别为5,12,13的三角形区域内随机爬行,则其到三角形顶点的距离小于2的地方的概率为.【解答】解:昆虫活动的范围是在三角形的内部,三角形的边长为5,12,13,是直角三角形,∴面积为30,而“恰在离三个顶点距离都小于2”正好是一个半径为2的半圆,面积为π×22=4π×,∴根据几何概型的概率公式可知其到三角形顶点的距离小于2的地方的概率为=.故答案为:;13.(5分)双曲线=1(m>0)的一条渐近线方程为y=2x,则m=.【解答】解:由双曲线=1(m>0)可得渐近线方程为y=±x,∵双曲线=1(m>0)的一条渐近线方程为y=2x,∴,∴m=.故答案为:;14.(5分)若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=﹣10.【解答】解:x10的系数为a10,∴a10=1,x9的系数为a9+C109•a10,∴a9+10=0,∴a9=﹣10,故答案为:﹣10.15.(5分)已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数y=f(x)﹣﹣a以在区间[﹣10,10]上有10个零点(互不相同),则实数口的取值范围是.【解答】因为f(x)是R上的奇函数,所以f(x+1)=﹣f(x﹣1).所以f(x+2)=﹣f(x),f(x+4)=﹣f(x+2)=f(x).则f(x)是周期为4的函数,由f(x)=x(0<x≤1)画出f(x)和y=的图象(第一象限部分):.因为函数y=f(x)﹣﹣a在区间[﹣10,10]上有10个零点,所以y=f(x)与y=+a在区间[﹣10,10]上有10个不同的交点,因为y=f(x)与y=是奇函数,所研究第一象限的部分交点问题即可,而y=+a的图象是由y=的图象上下平移得到,由图得,向上平移时保证图象第三象限的部分在x轴的下方,则第一象限的部分有4个交点,第三象限的部分有6个交点,同理向下平移时保证图象第一象限的部分在x轴的上方,则第一象限的部分有6个交点,第三象限的部分有4个交点,即,解得a∈.故答案为:.三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤).16.(12分)设△ABC的内角A,B,C所对的边分别为a,b,c且a cos C﹣c =b.(I)求角A的大小;(Ⅱ)若a=3,求△ABC的周长l的取值范围.【解答】解:(I)由a cos C﹣c=b得:sin A cos C﹣sin C=sin B,又sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin C=﹣cos A sin C,∵sin C≠0,∴cos A=﹣,又0<A<π,∴A=;(II)由正弦定理得:b==2sin B,c=2sin C,a+b+c=3+2(sin B+sin C)=3+2[sin B+sin(A+B)]=3+2(sin B+cos B)=3+2sin(B+),∵A=,∴B∈(0,),∴B+∈(,),∴sin(B+)∈(,1],则△ABC的周长l的取值范围为(6,3+2].17.(12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.(Ⅰ)求恰有两个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X,求X的分布列和数学期望E(X).【解答】解:(I)记“恰有两个黑球”为事件A,则由已知得P(A)==.…(4分)(II)由已知得随机变量X的可能取值为0,1,2,,(2分),(2分)(2分)∴随机变量X的分布列为:∴X的数学期望E(X)==1.(2分)18.(12分)如图,在四棱锥P﹣ABCD.中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证;平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线P A与平面EAC所成角的正弦值.【解答】解:(I)证明:∵PC⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PC,∵AB=2,AD=CD=2,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,∵AC⊂平面EAC,∴平面EAC⊥平面PBC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)解:如图,以C为原点,、、分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).设P(0,0,a)(a>0),则E(,﹣,),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)=(1,1,0),=(0,0,a),=(,﹣,),取=(1,﹣1,0),则•=•=0,为面P AC的法向量.设=(x,y,z)为面EAC的法向量,则•=•=0,即取x=a,y=﹣a,z=﹣2,则=(a,﹣a,﹣2),依题意,|cos<,>|===,则a=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)于是=(1,﹣1,﹣2),=(1,1,﹣1).设直线P A与平面EAC所成角为θ,则sinθ=|cos<,>|===,即直线P A与平面EAC所成角的正弦值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)19.(12分)已知S n为数列{a n}的前n项和,且S n=2a n+n2﹣3n﹣1,n=l,2,3…(1)求证:数列{a n﹣2n}为等比数列:(2)设b n=a n•cos nπ,求数列{b n}的前n项和T n.=2a n+n2﹣3n﹣1﹣【解答】(I)证明:当n≥2时,a n=S n﹣S n﹣1,﹣2n+4,整理得a n=2a n﹣1﹣2(n﹣1)],∴a n﹣2n=2[a n﹣1∴,∵S1=2a1+1﹣3×1﹣1,∴a1=3,∴{a n﹣2n}是以1为首项,以2为公比的等比数列.(II)解:由(I)得,∴.当n为偶数时,T n=b1+b2+b3+…+b n=(b1+b3+…+b n﹣1)+(b2+b4+…+b n)=;当n为奇数时,可得.综上,T n=,(n为奇数),(n为偶数).20.(13分)已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【解答】解:(I)离心率为,即有e==,F(c,0),直线l:y=x﹣c,由坐标原点到l的距离为1,则,解得.所以,则椭圆C的标准方程为;(II)椭圆C的方程为x2+2y2=4,设A(x1,y1),B(x2,y2),由题意知l的斜率为一定不为0,故不妨设,代入椭圆的方程中整理得,显然△>0.由韦达定理有:,….①假设存在点P,使=+成立,则点P的坐标为(x1+x2,y1+y2),因为点P在椭圆上,即.整理得.又A,B在椭圆上,即.故x1x2+2y1y2+2=0…②,将及①代入②解得m2=2,所以y1+y2=±1,x1+x2==,即P(,±1).则当时,;当时,.21.(14分)已知函数f(x)=e x﹣mx k(m,k∈R)定义域为(0,+∞)(Ⅰ)若k=1时,f(x)在(1,+∞)上有最小值,求m的取值范围;(Ⅱ)若k=2时,f(x)的值域为[0,+∞),试求m的值;(Ⅲ)试证:对任意实数m,k,总存在x0,使得当x∈(x0,+∞)时,恒有f(x)>0.【解答】解:(I)k=1时,令f′(x)=e x﹣m=0,得x=lnm.m≤e时,不符合题意,舍去.∴m>e.当1<x<lnm时,f′(x)<0;当x>lnm时,f′(x)>0.∴x=lnm是f(x)的极小值点.又f(x)在(1,+∞)上有最小值,∴ln m>1,即m>e.(II)解法1:k=2时,f(x)=e x﹣mx2(x>0),(i)m≤0时,f(x)=e x﹣mx2>e x>1,与题意矛盾,故m>0;又f′(x)=e x﹣2mx(x>0),令g(x)=e x﹣2mx(x>0),则g′(x)=e x﹣2m(x>0),(ii)时,g′(x)≥0(x>0),∴g(x)>g(0)>1>0,即有f′(x)>0(x>0),此时f(x)>e x>1,与题意矛盾,故;(iii)令g′(x)=0,得x0=ln(2m)>0,∴x∈(0,x0)时,g′(x)<0,x∈(x0,+∞)时,g′(x)>0,故g(x)在区间(0,x0)上单调递减,在区间(x0,+∞)上单调递增,∴g(x)min=g(x0)=2m(1﹣ln(2m)),1<2m≤e时,g(x)min≥0,同(ii),此时f′(x)>0(x>0),f(x)>e x >1,与题意矛盾,故;(iv)时,g(x)min=g(x0)=2m(1﹣ln(2m))<0,且g(0)=1>0,又记t(x)=e x﹣ex(x>0),则t'(x)=e x﹣e,则x∈(0,1)时,t'(x)<0,x∈(1,+∞)时t'(x)>0,易知t(x)min=t(1)=0,故e x≥ex(x>0),∴,若存在x1使g(x1)>0,则需,x1显然存在,如可取x1=2ln(2m)+1;故存在x2∈(0,x0),x3∈(x0,x1)使f'(x)=g(x)=0,且x∈(0,x2)时,f'(x)>0,x∈(x2,x3)时,f'(x)<0;x∈(x3,+∞)时,f'(x)>0;∴f(x3)=f(x)min=0,∴.得x3=2,故.解法2:由f(x)=e x﹣mx2≥0(x>0)得且等号成立.令,则m<g(x)(x>0),∵;∴x∈(0,2)时g'(x)<0,x∈(2,+∞)时g'(x)>0,故g(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,∴,即有,m只可取.又时,,以下做法同方法1(iv)注:方法1中(i)可不出现,有(ii)即可.(III)f(x)=e x﹣mx k>0⇔e x>mx k(x>0).(i)m≤0时由e x>1>mx k(x>0)知命题成立;(ii)m>0时,若k≤0,则x>1时e x>mx k⇔e x>m,命题成立;(iii)m>0且k>0时,由(II)的证明知e x≥ex(x>0)所以只需,取,则x∈(x0,+∞)时,恒有f(x)>0.综上,命题成立.。

济南市2015届高三第二次模拟考试各科 数学(理科)

济南市2015届高三第二次模拟考试各科 数学(理科)

高三针对性训练数学(理科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A ,B 独立,那么P(AB)=P(A)·P(B);事件A 发生的前提下事件B 发生的概率为()()()P A B P A B P A ⋂=.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,,1,3,5P m Q ==,则“5m =”是“P Q ⊆”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.复数231iz i-=+的虚部是 A.52B. 52-C. 52iD. 52i -3.某射击手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是 A.710B.67C.47D.254. 如图所示,点P 是函数()()2sin ,0y x x R ωϕω=+∈>的图象的一个最高点,M,N 是图象与x 轴的交点.若0PM PN ⋅=u u u r u u u r,则ω的值为 A.8B.4C.8π D.4π5.已知()f x 是定义在R 上的周期为2的奇函数,当()0,1x ∈时,()2015312x f x f ⎛⎫=-= ⎪⎝⎭,则A. 1B. 1C.1D. 16.阅读如图所示的程序框图,运行相应的程序,若输入x 的值为5-,则输出y 的值为 A.0.5 B.1 C.2 D.47.在不等式组00x y x y y a -≤⎧⎪+≥⎨⎪≤⎩确定的平面区域中,若2z x y =+的最大值为9,则a 的值为 A.0B.3C.6D.98. 已知正实数,m n 满足1m n +=,且使116m m+取得最小值.若曲线a y x =过点,54m n P α⎛⎫⎪⎝⎭,则的值为 A. 1-B.12C.2D.39.若双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,线段12F F 被抛物线24y bx=的焦点分成5:3两段,则此双曲线的离心率为A.15B.3C.D.10.函数()f x 的定义域为D ,对给定的正数k ,若存在闭区间[],a b D ⊆,使得函数()f x 满足:①()[],f x a b 在内是单调函数;②()[],f x a b 在上的值域为[],ka kb ,则称区间[],a b 为()y f x =的k 级“理想区间”.下列结论错误的是A.函数()()2f x x x R =-∈存在1级“理想区间”B.函数()()x f x e x R =∈不存在2级“理想区间”C.函数()()2401xf x x x =≥+存在3级“理想区间” D. 函数()()1log 0,14xa f x a a a ⎛⎫=->≠ ⎪⎝⎭不存在4级“理想区间”第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是________.12.二项式4x ⎛+ ⎝的展开式中常数项为________.13.已知圆C 过点()1,0-,且圆心在x 轴的负半轴上,直线:1l y x =+被该圆所截得的弦长为C 的标准方程为___________.14.已知正方形ABCD,M 是DC 的中点,由AM mAB nAC =+uuu r uu u r uu u r确定,m n 的值,计算定积分sin n mxdx ππ=⎰__________.15.如图,三个半径都是5cm 的小球放在一个半球面的碗中,三个小球的顶端恰好与碗的上沿处于同一水平面,则这个碗的半径R 是_________cm. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)已知向量()cos 2cos sin ,1,cos sin 3a x x b x x π⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭r r ,,函数()f x a b =⋅r r .(I )求函数()f x 的单调递增区间;(II )在ABC ∆中,内角A,B,C 的对边分别为,,a b c 已知()2,3f A a B π===,求ABC ∆的面积S.17. (本小题满分12分)已知等差数列{}n a 的前n 项的和为n S ,非常数等比数列{}n b 的公比是q ,且满足:12a =,122231,3,b S b a b ===.(I )求n n a b 与;(II )设223n a n n c b λ=-⋅,若数列{}n c 是递减数列,求实数λ的取值范围.18. (本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB//CD ,602=2ABC AB CB ∠==o ,.在梯形ACEF 中,EF//AC ,且AC=2EF ,EC⊥平面ABCD.(I )求证:BC AF ⊥;(II )若二面角D AF C --为45°,求CE 的长.19. (本小题满分12分)已知正棱锥S ABC -侧棱棱SA,SB,SC 两两互相垂直,D,E,F 分别是它们的中点,SA=SB=SC=2,现从A,B,C,D,E,F 六个点中任取三个点,加上点S ,把这四个点两两相连后得到一个“空间体”,记这个“空间体”的体积为X (若点S 与所取三点在同一平面内,则规定X=0). (I )求事件“X=0”的概率;(II )求随机变量X 的分布列及数学期望.20. (本小题满分13分)中学联盟网已知椭圆()222210x y a b a b+=>>的离心率为e ,半焦距为c ,()0,1B 为其上顶点,且2a ,22,c b 依次成等差数列.(I )求椭圆的标准方程和离心率e ;(II )P ,Q 为椭圆上的两个不同的动点,且2BP BQ k k e ⋅=. (i )试证直线PQ 过定点M ,并求出M 点坐标;(ii )PBQ ∆是否可以为直角三角形?若是,请求出直线PQ 的斜率;否则请说明理由.21. (本小题满分14分)已知函数()()20,1xf x a x a a =->≠且.(I )当2a =时,求曲线()f x 在点()()2,2P f 处的切线方程; (II )若()f x 的值恒非负,试求a 的取值范围; (III )若函数()f x 存在极小值()g a ,求()g a 的最大值.2015届高三教学质量调研考试理科数学参考答案一、选择题ABCDD DBBAD二、填空题(11)甲 (12)4 (13)()4322=++y x (14)1(15)32155+ 三、解答题(16)解:(Ⅰ)x x x x f 22sin cos )32cos()(-+-=⋅=πcos(2)cos 2cos 2cos sin 2sin cos 2333x x x x xπππ=-+=++312cos 23(sin 22))223x x x x x π=+=+=+…………3分 令222232k x k πππππ-+≤+≤+()Z k ∈,得51212k x k ππππ-+≤≤+()Z k ∈, 所以,函数)(x f 的单调递增区间为5,()1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. …………6分(Ⅱ)由23)(=A f ,得21)32sin(=+πA ,因为A 为ABC ∆的内角,由题意知π320<<A ,所以πππ35323<+<A , 因此ππ6532=+A ,解得4π=A , …………………………… 8分又2=a ,3B π=,由正弦定理BbA a sin sin =, 得6=b ,……………… 10分由4π=A ,3π=B ,可得)sin())(sin(sin B A B AC +=+-=π1=sin cos cos sin 222A B A B +=+426+=,…………………11分 所以,ABC ∆的面积C ab S sin 21=4266221+⨯⨯⨯==233+ .…12分(17)解:(1)由已知可得⎩⎨⎧==+22232qa qa 所以q 2-3q +2=0,…………………………3分 解得q =2或q =1(舍),从而a 2=4,所以a n =2n ,12-=n nb .…………5分(2)由(1)知,λλn n a n n n b c 32322-=⋅-=.…………………………………7分由题意,n n c c <+1对任意的*N n ∈恒成立,即λλn n n n 323211-<-++恒成立,亦即n n 232>λ恒成立,即n⎪⎭⎫⎝⎛⋅>3221λ恒成立.…………9分由于函数xy ⎪⎭⎫⎝⎛⋅=3221是减函数,所以3132213221max =⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅n ,……11分故31>λ,即λ的取值范围为),31(+∞.……………………………………12分(18)解证:(Ⅰ)证明:在ABC ∆中,2222cos603AC AB BC AB BC =+-⋅= 所以222AB AC BC =+,由勾股定理知90ACB ∠=所以 BC AC ⊥. ……2分 又因为 EC ⊥平面ABCD ,BC ⊂平面ABCD所以 BC EC ⊥. ………………………4分 又因为ACEC C = 所以 BC ⊥平面ACEF ,又AF ⊂平面ACEF所以 BC AF ⊥. ………………………6分 (Ⅱ)因为EC ⊥平面ABCD ,又由(Ⅰ)知BC AC ⊥,以C 为原点,建立如图所示的空间直角坐标系 C xyz -.设=CE h,则()0,0,0C,)A,F h ⎫⎪⎪⎝⎭,1,02D ⎫-⎪⎪⎝⎭,1,02AD ⎛⎫=-- ⎪ ⎪⎝⎭,AF h ⎛⎫=- ⎪ ⎪⎝⎭. …………………………8分设平面DAF 的法向量为1(,,)x y z =n ,则110,0.AD AF ⎧⋅=⎪⎨⋅=⎪⎩nn所以10,20.2x y x hz ⎧-=⎪⎪⎨⎪-+=⎪⎩令x =所以133)2h=-,n . …………………………9分又平面AFC 的法向量2(0,1,0)=n ……………………………10分山东中学联盟网所以1212cos452⋅==⋅nn n n , 解得h = .……………………11分 所以CE的长为4…………………………………12分(20)解:(I )由题意1=b ,2222c b a =+,又222c b a +=,解得2,322==c a ,椭圆的标准方程为1322=+y x . 离心率3632==e ………………3分 (II)(i )设直线PQ 的方程为n my x +=,设),(),,(2211y x Q y x P 联立⎩⎨⎧=++=3322y x n my x ,得032)3(222=-+++n mny y m ………………4分0)(12)3()3(4)2(22222>-=-⨯+-=∆n m n m mn (*)⎪⎩⎪⎨⎧+-=+-=+22212213332m m y y m mn y y ………………6分321122211==-⋅-=⋅e x y x y k k MN BM ))((22)1)(1(3212121n my n my x x y y ++==--∴032))(32(3)-2(221212=-++++∴n y y mn y y m03232)32(333)-2(22222=-++-+++-∴n mmn mn m m m 整理得03222=--m mn n0))(3(=+-∴m n m nm n -=∴或m n 3= ………………9分所以直线PQ 的方程为)1(-=-=y m m my x (舍)或)3(3+=+=y m m my x 所以直线PQ 过定点)3,0(-.………………10分(ii ) 由题意, ︒≠∠90PBQ ,若︒=∠90BPM ,或︒=∠90BQM ,则P 或Q 在以BM 为直径的圆T 上,即在圆4)1(22=++y x 上联立⎩⎨⎧=+=++334)1(2222y x y x ,得0=y 或1 (舍) 即P 或Q 只可以是椭圆的左右顶点,故3±=PQ k . ………………13分 (21)解:(I )当2=a 时, x x f x22)(-=,22ln 2)(-='∴xx f ,22ln 4)2(-='∴f ,又0)2(=f , ∴所求切线方程为x y )22ln 4(-=;…………………………………………3分 (II )0)(='x g ,则2e x =, 0≤x 时, 0)(≤x f 恒成立;0≥x 时, 若10<<a ,则1>x 时021)(<-<x f ,与题意矛盾,故1≥a ;……5分由0)(≥x f 知x a x2≥,所以)2ln(ln x a x ≥,∴xx a )2ln(ln ≥,……………………………………………6分 令x x x g )2ln()(=,则22)2ln(1)2ln(221)(x x x x x x x g -=-⨯⨯=',…7分 令0)(='x g ,则2ex =,且20e x <<时, 2,0)(ex x g >>'时0)(<'x g ,∴e e e e g x g 22ln )2()(max ===,∴e e a ea 2,2ln ≥≥,即a 的取值范围为),[2+∞ee ……………………………………………9分 (III ) ,2ln )(-='a a xf x①当10<<a 时, )(,0)(,0ln ,0x f x f a a x ∴<'∴<>在R 上为减函数, )(x f 无极小值.…10分②当1>a 时,设方程0)(='x f 的根为t ,得a a tln 2=,即a t a ln 2log ==aa ln ln 2ln,∴)(x f 在),(t -∞上为减函数,在),(-∞t 上为增函数,∴)(x f 的极小值为aa a t a t f t ln ln 2ln 2ln 22)(-=-=,………………12分即a a a a g ln ln 2ln 2ln 2)(-=,∵0ln 2,1>∴>aa . 设0,ln )(>-=x x x x x h ,则x xx x x h ln 1ln 1)(-=--=',令0)(='x h ,得1=x ,∴)(x h 在)1,0(上为增函数,在),1(+∞上为减函数, ∴)(x h 的最大值为1)1(=h ,即)(a g 的最大值为1,此时2e a =………………14分。

山东省济南市2015届高三下学期第一次模拟考试数学(文)试题(有答案)

山东省济南市2015届高三下学期第一次模拟考试数学(文)试题(有答案)

参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则 A.{}1,3-B.{}1,1,3-C.{}1,1,3,3--D.{}1,1,3--2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为 A.第一象限 B.第二象限C.第三象限D.第四象限3.函数()3log 21y x =-的定义域为A.[)1,+∞B.()1,+∞C.1,2⎛⎫+∞⎪⎝⎭D.1,12⎛⎫⎪⎝⎭4.“1cos 2α=”是“3πα=”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 5.已知,,a b c R ∈,那么下列命题中正确的是 A.若a b <,则22ac bc <B.若0,0a b c >><,则c c a b< C.若a b >,则()()22a cbc +>+D.若0ab >,则2a bb a+≥ 6.执行如图所示的程序框图,输出的S 值为 A.9 B.16 C.25 D.367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=A.7B.6C.5D.48.已知函数()y f x =是R 上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln,ln ,ln a b c πππ===,则A.()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D. ()()()f c f b f a >>9. 已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是A.2B.3C.2D.510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有A.1个B.2个C.3个D.4个第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________.12.已知ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若sin :sin :sin 1:2:3A B C =,则角C=__________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________.14.设,,a b c 是单位向量,且()()0a b a c b c ⋅=-⋅-,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PA ,PB 是圆222440x y x y +-++=的两条切线,A,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________. 三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)设函数()223cos 2sin 3f x x x ωω=+-(其中0ω>),且()f x 的最小正周期为2π. (I )求ω的值;(II )将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17. (本小题满分12分)某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14. (I )求n 的值;(II )从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b.记“4a b +≥”为事件A ,求事件A 的概率.18. (本小题满分12分)如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥,点E 在线段AD 上移动.(I )当点E 为AD 的中点时,求证:EF//平面PBD ;(II )求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19. (本小题满分12分)数列{}n a 满足()111,2n n a a a n N *+==∈,nS为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==.(I )求数列{}{},n n a b 的通项公式; (II )设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20. (本小题满分13分)已知函数()()0xf x e ax a a R a =+-∈≠且.(I )若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值;(II )若函数()f x 不存在零点,求实数a 的取值范围.21. (本小题满分14分)在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(I )求椭圆C 的标准方程;(II )椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x =交于T 点. (i )求证:线段PQ 的中点在直线OT 上;(ii )求TFPQ的取值范围.17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分(2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为:(1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3,1a ),(2a ,3),(3, 2a )共12个基本事件. ……………………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a )……………………10分8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥,所以F 是PA 的中点,连接EF , ………………………………2分 在PDA ∆中,点,E F 分别是边,AD PA 的中点, 所以//EF PD …………………………………4分又EF PBD ⊄平面,PD PBD ⊂平面 所以EF //平面PBD .……………………………6分(Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA 平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA …………………… 8分又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PA DA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分 又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21n n S =-, …………………3分设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+,∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分∴11111111(1...)(1)2335212122121n nT n n n n =-+-++-=-=-+++ . …………………9分①当0>a 时,)(,0)('x f x f >是增函数,…………………7分 且当1>x 时,0)1()(>-+=x a e x f x.…………………8分 当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分 ②当0<a 时,)ln(,0)('a x a e x f x-==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增,所以)ln(a x -=时)(x f 取最小值.………………11分函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a ,解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分解得3,1,2===b c a ,………………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+,221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434mG m m -++,……………7分 4344343322mm m m k OG -=+⋅+-=,设)1(:--=x m y l FT ,得T 点坐标(m 3,4-),43mk OT -= ,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分(ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ -+= =-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m4311222++⋅=m m .……………11分)1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF3:(1)PQ l y x m-=- ⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=. 027)12(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分 12322210+=+=m my y y ,121231200+=-=m my x , 即)123,1212(22++m mm G ,……………7分 4121212322m m m m k OG =+⋅+=,又4mk OT = .所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时,9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ-+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……………11分)939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t t t PQ TF .令)3)(3(41)(>+⋅=t tt t g 则函数()g t 在()3,+∞上为增函数,……………13分 所以1)3()(=>g t g .所以当||||PQ TF 的取值范围是[1,)+∞.……………14分解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+> 设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124k k x x +-=,……………6分222104342k k x x x +=+=,200433)1(k k x k y +-=-=, 即)433,434(222k kk k G +-+,……………7分 kk k k k k OG 43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),kk OT 43-=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分(ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分 当直线PQ l 斜率存在时,222213)3()14(||k k k TF +=-+-=,||1||122x x k PQ -+=. =-+⋅+=2122124)(1x x x x k 222222431244)438(1kk k k k +-⋅-+⋅+ 2243112k k ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅ 令211kt +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g . 所以||||PQ TF 的取值范围是),1[+∞.……………14分。

山东省济南市2015届高三下学期第一次模拟考试数学(文)试题.doc

山东省济南市2015届高三下学期第一次模拟考试数学(文)试题.doc

参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则 A.{}1,3- B.{}1,1,3- C.{}1,1,3,3-- D.{}1,1,3--2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为A.第一象限B.第二象限C.第三象限D.第四象限 3.函数()3log 21y x =-的定义域为 A.[)1,+∞B.()1,+∞C.1,2⎛⎫+∞ ⎪⎝⎭D.1,12⎛⎫ ⎪⎝⎭ 4.“1cos 2α=”是“3πα=”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知,,a b c R ∈,那么下列命题中正确的是A.若a b <,则22ac bc <B.若0,0a b c >><,则c c a b <C.若a b >,则()()22a c b c +>+D.若0ab >,则2a b b a+≥ 6.执行如图所示的程序框图,输出的S 值为A.9B.16C.25D.367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=A.7B.6C.5D.48.已知函数()y f x =是R 上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln,ln ,ln a b c πππ===,则 A.()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D. ()()()f c f b f a >>9. 已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是A.2B.3C.2D.510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225x f x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有A.1个B.2个C.3个D.4个第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________.12.已知ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若sin :sin :sin 1:2:3A B C =,则角C=__________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________. 14.设,,a b c 是单位向量,且()()0a b a c b c ⋅=-⋅-,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PA ,PB 是圆222440x y x y +-++=的两条切线,A,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)设函数()223cos 2sin 3f x x x ωω=+-(其中0ω>),且()f x 的最小正周期为2π.(I )求ω的值;(II )将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17. (本小题满分12分)某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14. (I )求n 的值;(II )从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b.记“4a b +≥”为事件A ,求事件A 的概率.18. (本小题满分12分)如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥,点E 在线段AD 上移动. (I )当点E 为AD 的中点时,求证:EF//平面PBD ;(II )求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19. (本小题满分12分)数列{}n a 满足()111,2n n a a a n N *+==∈,n S 为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==.(I )求数列{}{},n n a b 的通项公式;(II )设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20. (本小题满分13分)已知函数()()0xf x e ax a a R a =+-∈≠且. (I )若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值;(II )若函数()f x 不存在零点,求实数a 的取值范围.21. (本小题满分14分)在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(I )求椭圆C 的标准方程;(II )椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x =交于T 点.(i )求证:线段PQ 的中点在直线OT 上;(ii )求TFPQ 的取值范围.17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分 (2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为: (1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3, 1a ),(2a ,3),(3, 2a )共12个基本事件. ……………………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a )……………………10分8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥,所以F 是PA 的中点,连接EF , ………………………………2分在PDA ∆中,点,E F 分别是边,AD PA 的中点,所以//EF PD …………………………………4分又EF PBD ⊄平面,PD PBD ⊂平面所以EF //平面PBD .……………………………6分(Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA 平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA …………………… 8分又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PADA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21nn S =-, …………………3分 设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+, ∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分 ∴11111111(1...)(1)2335212122121n n T n n n n =-+-++-=-=-+++ . …………………9分①当0>a 时,)(,0)('x f x f >是增函数,…………………7分且当1>x 时,0)1()(>-+=x a e x f x .…………………8分当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分②当0<a 时,)ln(,0)('a x a e x f x -==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增,所以)ln(a x -=时)(x f 取最小值.………………11分函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a , 解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分 21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分 解得3,1,2===b c a ,………………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+,221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434m G m m -++,……………7分 4344343322m m m m k OG -=+⋅+-=,设)1(:--=x m y l FT ,得T 点坐标(m 3,4-), 43m k OT -= ,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分 当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ -+==-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m 4311222++⋅=m m .……………11分 )1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF3:(1)PQ l y x m-=- ⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=. 027)12(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分 12322210+=+=m m y y y ,121231200+=-=m my x , 即)123,1212(22++m m m G ,……………7分 4121212322m m m m k OG =+⋅+=,又4m k OT = . 所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时, 9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ -+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……………11分 )939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t tt PQ TF .令)3)(3(41)(>+⋅=t t t t g 则函数()g t 在()3,+∞上为增函数,……………13分所以1)3()(=>g t g . 所以当||||PQ TF 的取值范围是[1,)+∞.……………14分 解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+>设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124k k x x +-=,……………6分 222104342k k x x x +=+=,200433)1(k k x k y +-=-=, 即)433,434(222k k k k G +-+,……………7分 kk k k k k OG 43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),k k OT 43-=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分 当直线PQ l 斜率存在时,222213)3()14(||k k k TF +=-+-=,||1||122x x k PQ -+=. =-+⋅+=2122124)(1x x x x k 222222431244)438(1k k k k k +-⋅-+⋅+ 2243112k k ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅ 令211kt +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g . 所以||||PQ TF 的取值范围是),1[+∞.……………14分。

山东省师大附中2015届高三第一次模拟考试数学(理)试题

山东省师大附中2015届高三第一次模拟考试数学(理)试题

山师附中2012级高三第一次模拟考试试题数学(理工农医类) 2014.9本试卷共4页,分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共150分考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中只有一项是符合题目要求的.1、设全集,集合,,则()A. B. C. D.2、已知,是虚数单位,则在复平面中复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、设随机变量服从正态分布N(0,1),若P(>1)= p,则P(-1<<0)=()A. B. C. D.4、设0<x<,则“x sin2x<1”是“x sin x<1”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5、已知两个不同的平面、和两条不重合的直线、,有下列四个命题:①若则;②若则;③若则;④若则.其中正确命题的个数是()A.0 B.1 C.2 D.36、要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7、已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是()A. B. C. D.8、某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加.当甲乙同时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为() A.360 B.520 C.600 D.7209、设函数若,,则关于x的方程的解的个数为()A.4 B.3 C.2 D.110、已知向量与的夹角为,=2,=1,,,在时取得最小值.当时,夹角的取值范围为()A. B. C. D.结束开始i =2, S=0i =i +2S=S+1/i输出S否是第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11、若对任意的恒成立,则实数k的取值范围为___________.12、如图给出的是计算的值的程序框图,其中判断框内应填入的是_ _.13. 已知圆C过点,且圆心在x轴的负半轴上,直线l:被该圆所截得的弦长为,则圆C的标准方程为 .14、定义:,在区域内任取一点,则x、y满足的概率为___________.15、已知,若恒成立,则实数的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16、(本小题满分12分)在△ABC中,角A、B、C所对的边分别是a,b,c,且.(Ⅰ)求的值;(Ⅱ)若b = 2,求△ABC面积的最大值.17、(本小题满分12分)如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,平面ABCD,平面ABCD,且MD =2,NB=1,MB与ND交于P点.(Ⅰ)在棱AB上找一点Q,使QP // 平面AMD ,并给出证明;(Ⅱ)求平面BNC与平面MNC所成锐二面角的余弦值.18、(本小题满分12分)某高校自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某同学能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该同学被淘汰的概率;(Ⅱ)该同学在选拔中回答问题的个数记为,求随机变量的分布列与数学期望.19、(本小题满分12分)设数列的各项都是正数,且对任意,都有,其中为数列的前n项和.(Ⅰ)求数列的通项公式;(Ⅱ)设(为非零整数,),试确定的值,使得对任意,都有成立.20、(本小题满分13分)已知椭圆过点,且长轴长等于4.(I)求椭圆C的方程;(II)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线与⊙O相切,并与椭圆C交于不同的两点A,B,若的值.21、(本小题满分14分)已知函数在点的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)设,求证:在上恒成立;(Ⅲ)已知,求证:.2012级高三一模数学(理)参考答案及评分标准1、 选择题(每小题5分,共50分)1、B2、A3、D4、B5、D6、C7、A8、C9、B 10、C2、 填空题(每小题5分,共25分)11、 12、 13、 14、 15、三、解答题:本大题共六小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2230,,M x x x N x x a M N =--<=>⊆若,则实数a 的取值范围是A.(],1-∞-B.(),1-∞-C.[)3,+∞D.()3,+∞2.若12iz i-=(i 为虚数单位),则z 的共轭复数是 A.2i -- B.2i - C.2i +D.2i -+3.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行; A.①② B.②③C.③④D.①④4.“1cos 2α=”是“3πα=”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.执行如图所示的程序框图,输出的k 值为 A.7 B.9 C.11 D.136.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为8.57.5y x =+$,则表中的m 的值为A.50B.55C.60D.657.已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是C.2D.58.在椭圆221169x y +=内,通过点()1,1M 且被这点平分的弦所在的直线方程为 A.91670x y -+=B.169250x y +-=C.916250x y +-=D.16970x y --=9.将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有4种颜色可供使用,则不同的染色方法总数有 A.48种 B.72种 C.96种 D.108种 10.若至少存在一个()0x x ≥,使得关于x 的不等式242x x m ≤--成立,则实数m 的取值范围为A.[]4,5-B.[]5,5-C.[]4,5D.[]5,4-第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则测试成绩落在[)60,80中的学生人数是_________. 12.函数()2f x =的定义域是_________.视图是中心角为3π的扇13.某圆柱切割获得的几何体的三视图如图所示,其中俯形,则该几何体的体积为__________.14.设,,a b c r r r是单位向量,且()()0a b a c b c⋅=+⋅+rrr rr r ,则的最大值为________.15.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的序号是________(写出符合条件的全部序号).三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ABC ∆中,边a,b,c 的对角分别为A,B,C ;且4,3b A π==,面积S =(I )求a 的值;(II )设()()2cos sin cos cos f x C x A x =-,将()f x 图象上所有点的横坐标变为原来的12(纵坐标不变)得到()g x 的图象,求()g x 的单调增区间.17. (本小题满分12分)某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为34,乙队中3人答对的概率分别为45,34,23,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分.(I )求ξ的分布列和数学期望;(II )求甲、乙两队总得分之和等于30分且甲队获胜的概率.18. (本小题满分12分) 直三棱柱111A B C A B C -中,10,8,6A B A C B C ===,18AA =,点D 在线段AB 上.(I )若1//AC 平面1B CD ,确定D 点的位置并证明; (II )当13BD AB =时,求二面角1B CD B --的余弦值.19. (本小题满分12分)已知数列{}n a 满足()12111,3,32,2n n n a a a a a n N n *+-===-∈≥,(I )证明:数列{}1n n a a +-是等比数列,并求出{}n a 的通项公式; (II )设数列{}n b 满足()242log 1n n b a =+,证明:对一切正整数222121111,1112n n b b b ++⋅⋅⋅+<---有.20. (本小题满分13分)已知抛物C 的标准方程为()220y px p =>,M 为抛物线C 上一动点,()(),00A a a ≠为其对称轴上一点,直线MA 与抛物线C 的另一个交点为N.当A 为抛物线C 的焦点且直线MA 与其对称轴垂直时,MON ∆的面积为92. (I )求抛物线C 的标准方程; (II )记11t AM AN=+,若t 值与M 点位置无关,则称此时的点A 为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.21. (本小题满分14分) 已知关于x 函数()()()()22ln ,g x a x a R f x x g x x=-∈=+, (I )试求函数()g x 的单调区间;(II )若()f x 在区间()0,1内有极值,试求a 的取值范围; (III )0a >时,若()f x 有唯一的零点0x ,试求[]0x .(注:[]x 为取整函数,表示不超过x 的最大整数,如[][][]0.30, 2.62, 1.42==-=-;以下数据供参考:ln 20.6931,ln 3 1.099,ln 5 1.609,ln 7 1.====)又∵0B π<<∴2B π=6C π=……6分∴(()2cos sin cos cos )2sin()6f x C x A x x π=-=-,………… 8分将()f x 图象上所有点的横坐标变为原来的12,得到()2sin(26g x x π=-,…………9分所以()g x 的单调增区间为222,262k x k πππππ-≤-≤+…………10分即,()63k x k k Z ππππ-≤≤+∈…………11分()g x 的单调区间为,,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦…………12分(17)解:(Ⅰ)由题意知,ξ的所有可能取值为0,10,20,30.…………1分1111(=0)5436041113111293(=10)=54354354360204314121322613(=20)=5435435436030432242(=30)==.5543605P P P P ξξξξ=⨯⨯==⨯⨯+⨯⨯+⨯⨯==⨯⨯+⨯⨯+⨯⨯==⨯⨯⋯⋯⋯⋯,,,分ξ的分布列为:…………6分所以 AC 1∥平面B 1CD . ………………………………………4分 (Ⅱ) 由6,8,10===BC AC AB ,得AC ⊥BC ,以C 为原点建立如图所示的空间直角坐标系C -xyz . 则B (6, 0, 0),A (0, 8, 0),A 1(0, 8,8),B 1(6, 0, 8).设D (a , b , 0)(0a >,0b >),…………………5分 因为 点D 在线段AB 上,且13BD AB =, 即13BD BA =. 所以84,3a b ==.…………………7分所以1(6,0,8)BC =--,8(4,,0)3CD =. 平面BCD 的法向量为1(0,0,1)n =. 设平面B 1CD 的法向量为2(,,1)n x y =,由 120BC n ⋅=,20CD n ⋅=, 得 6808403x x y --=⎧⎪⎨+=⎪⎩, 所以4,23x y =-=,24(,2,1)3n =-. …………………10分 设二面角1B CD B --的大小为θ, 361cos a b a bθ⋅==所以二面角1B CD B --.……………………………12分 (19)解:()Ⅰ由1132n n n a a a +-=- ,可得112(),n n n n a a a a +--=-…………2分212,a a -={}1n n a a +∴- 是首项为2,公比为2的等比数列,即1=2.n n n a a +- …………3分()()()-1-1-221112=-+-+-12=22211221,6n n n n n nn n na a a a a a a a --∴+-++++=-=-⋯⋯⋯⋯+分()()()24222221222122log (2)2.7111111=.9141212122121111111111+=1111233521211111.2212111,+11n n n n b n b n n n n n b b b n n n n b b ==⋯⋯⋯⋯⎛⎫==-⋯⋯⋯⋯ ⎪---+-+⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫∴++-+-++- ⎪ ⎪ ⎪⎢⎥----+⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫=-< ⎪+⎝⎭∴++--Ⅱ由题意得分分对一切正整数有21.1212n b <⋯⋯⋯⋯-分(20)(I)由题意,2922221||||212==⋅⋅=⋅⋅=∆p p p MN OA S MON 3=∴p抛物线C 的方程为x y 62=---------------------------------------------------------------------3分 (II) 设),(),(2211y x N y x M ,,直线MN 的方程为a my x += 联立⎩⎨⎧=+=x y amy x 62得0662=--a my y024362>+=∆a mm y y 621=+,a y y 621-=,-----------------------------------------------------------------6分 由对称性,不妨设0>m ,(i )0<a 时,0621>-=a y y , 21y y ,∴同号,又||11||11||1||12212y m y m AN AM t +++=+= )111(1363611)()(112222222122122ma a m m y y y y m t +-=+=++=∴ 不论a 取何值,t 均与m 有关,即0<a 时A 不是“稳定点”; -------------------------9分 (ii ) 0>a 时, 0621<-=a y y , 21y y ,∴异号, 又||11||11||1||12212y m y m AN AM t +++=+=22121221222122122)(4)(11)()-(11y y y y y y m y y y y m t -+⋅+=⋅+=∴ )11321(13624361122222m a a a a m m +-+=+⋅+= 所以,仅当0132=-a ,即23=a 时,t 与m 无关,此时A 即抛物线C 的焦点,即抛物线C 对称轴上仅有焦点这一个“稳定点”. ------------------------------------------------------------13分(21)解:(I )由题意)(x g 的定义域为),0(+∞2222-)(x ax x a x x g +-=-=' (i )若0≥a ,则0)('<x g 在),0(+∞上恒成立,),0(+∞为其单调递减区间; (ii )若0<a ,则由0)('=x g 得ax 2-=, )2,0(a x -∈时,0)('<x g ,),2(+∞-∈ax 时,0)('>x g ,所以)2,0(a -为其单调递减区间;),2(+∞-a为其单调递增区间;-----------------------4分(II ))()(2x g x x f +=所以)(x f 的定义域也为),0(+∞,且232''2'2222)()()(x ax x x ax x x g x x f --=+-=+=令),0[,22)(3+∞∈--=x ax x x h (*)则a x x h -6)(2'= (**)----------------------------------------------------------------------------6分0<a 时, 0)('≥x h 恒成立,所以)(x h 为),0[+∞上的单调递增函数,又0-)1(,02)0(>=<-=a h h ,所以在区间)1,0(内)(x h 至少存在一个变号零点0x ,且0x 也是)('x f 的变号零点,此时)(x f 在区间)1,0(内有极值. ----------------------------------------8分0≥a 时)1,0(,0)1(2)(3∈<--=x ax x x h ,即在区间(0,1)上0)('<x f 恒成立,此时, )(x f 无极值.综上所述,若)(x f 在区间)1,0(内有极值,则a 的取值范围为)0,(-∞. --------------9分 (III) 0>a ,由(II )且3)1(=f 知]1,0(∈x 时0)(>x f ,10>∴x .又由(*)及(**)式知)(x f '在区间),1(+∞上只有一个极小值点,记为1x , 且),1(1x x ∈时)(x f 单调递减, ),(1+∞∈x x时)(x f 单调递增,由题意1x 即为0x ,⎩⎨⎧='=∴0)(0)(00x f x f -----------------------------------------------------------------------------------------11分 ⎪⎩⎪⎨⎧=--=-+∴0220ln 20200020ax x x a x x消去a ,得131ln 2300-+=x x -------------------------------------------------------------------12分 0>a 时令)0(131)(),1(ln 2)(321>-+=>=x x x t x x x t , 则在区间),1(+∞上为)(1x t 单调递增函数, )(2x t 为单调递减函数, 且)2(710577.022ln 2)2(21t t =<=⨯<= )3(263123ln 2)3(21t t =+>>= 320<<∴x2][0=∴x ------------------------------------------------------------------------------------------14分。

相关文档
最新文档