第四章多姿多彩的几何图形4.1.4立体图形的展开图
人教版初中数学七年级上册第四章4.1.1立体图形的展开图(教案)
-将理论知识应用于实际问题的解决,需要学生具备较强的空间想象能力和创新思维。
举例解释:
a.难点:对于圆柱的展开图,学生需要理解圆柱侧面展开成长方形的过程,以及底面圆的展开是如何与侧面连接的。
b.难点:在计算立体图形的表面积时,学生需要记住相应的公式,如长方体的表面积公式为2(lw + lh + wh),并能够根据展开图正确应用。
人教版初中数学七年级上册第四章4.1.1立体图形的展开图(教案)
一、教学内容
人教版初中数学七年级上册第四章《几何图形初步》4.1.1节,本节课主要围绕立体图形的展开图进行教学。内容包括:
1.理解立体图形及其展开图的概念;
2.学会识别和绘制常见立体图形(如正方体、长方体、圆柱、圆锥等)的展开图;
3.掌握利用展开图计算立体图形的表面积和体积的方法;
4.能够解决实际问题,如制作纸箱、纸筒等物品时,根据需要计算所需材料的面积。
二、核心素养目标
1.培养学生的空间观念,通过观察、思考和操作,形成对立体图形及其展开图的认识,提高空间想象力;
2.培养学生的数据分析能力,学会从展开图中提取信息,进行表面积和体积的计算,并能应用于实际问题;
3.培养学生的逻辑推理和几何直观,通过展开图的折叠与展开,理解立体图形之间的内在联系,提高解决问题的能力;
今天的学习,我们了解了立体图形展开图的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对立体图形展开图的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课程中,我们探讨了立体图形的展开图,这是一个既能锻炼学生的空间想象力,又能提高他们实际应用能力的重要课题。我发现,在讲解立体图形展开图的基本概念时,大部分学生能够跟上课堂节奏,但对于一些具体的操作和计算,部分学生还是感到有些吃力。
七年级数学上册第4章4.1几何图形4.1.1第2课时立体图形的展开图课件(新版)新人教版
立体图形的展开图 有些立体图形是由一些 平面图形 围成的,将它们的表面适当剪开,可以 .
展开成平面图形,这样的平面图形称为相应立体图形的 展开图 自我诊断 2. 下列立体图形中,侧面展开图是扇形的是( B )
1.从上面看如图所示的几何体,得到的图形是( B )
2.如图所示的几何体,从左面看到的平面图形是( C )
7.如图是由两个长方体组合而成的一个立体图形从三个方向看得到的平面 图形,根据图中所标尺寸 (单位:cm),求这个立体图形的表面积.
解:根据从三个方向看得到的平面图形可得,上面的长方体长 4mm,高 4mm,宽 2mm,下面的长方体长 8mm,宽 6mm,高 2mm,所以立体图形 的表面积是 4×4×2 + 4×2×2 + 4×2 + 6×2×2 + 8×2×2 + 6×8×2 - 4×2=200(mm2).
3.下面图形都是几何体的展开图,请你填上它们的名称.
(1) 正方体
(2)
长方体
(3)
五棱柱
.
4.如图所示的平面图形中,不可能围成圆锥的是( D )
5 .如图,将表面还有图案的正方体沿某些棱展开后,得到的图形可搭成的几何体从三个不同方向看到的图形, 搭成这个几何体的小正方体的个数是 4 .
数学 七年级 上册•R
2018年秋
第四章 几何图形初步
4.1 几何图形 4.1.1 立体图形与平面图形 第2课时 立体图形的展开图
从不同方向看 一个立体图形从不同方向看可以得到不同形状的平面图形,一般可以用从
正面 看,从 左面 看和从 上面 看得到的平面图形表示它.
自我诊断 1. 水平放置的圆柱体 方向看得到的平面图形依次是 ,从正面、左面、上面三个不同的 .
4.1.1从不同方向看立体图形及立体图形的展开图2023-2024学年+数学人教版七年级上册
第1节 几何图形
学习目标
1. 能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得
到的平面图形.
重点
2. 通过“展开”和“围成”两种途径认识常见几何图形.
3. 通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一
步体会立体图形与平面图形之间的关系.
难点
新课引入
课堂小结
1.从不同方向看立体图形,往往会得到不同形状的平面图形. 一般从三个方向看:从正面看、从左面看、从上面看.
2.有些立体图形是由一些平面图形围成的,将它们的表面适当剪开, 可以展成平面图形. 这样的平面图形称为相应立体图形的展开图.
随堂练习
1.正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原
正方体中,与“国”字所在面相对的面上的汉字是( D )
A.厉
B.害
C.了
D.我
分析:由正方体的表面展开图的特征可得,“的”与“害”所在面是相 对面,“了”与“厉”所在面是相对面,“我”与“国”所在面是相对 面.
2.如图是一个几何体的表面展开图,则该几何体是( C )
简记:二三紧连错一个,三一相连一随便.
第三类: 2 — 2 — 2 型,只有一种. 第四类: 3 — 3 型,只有一种.
简记:两两相连各错一,三个两排一对齐.
例3 将一个无盖的正方体形状的盒子的表面沿某些棱剪开,展开后 不能得到的平面图形是( C )
分析:选项A,B,D中的平面图形都可以拼成无盖的正方体,但选项C 中的平面图形拼成的是缺少两个面,且有一个面重合的“正方体”.
观察与思考
将一个正方体的表面适当剪开,能展开成哪些平面图形?
提示:沿着棱剪,展开后是一个平面图形.
七年级数学上册第四章几何图形初步4.1几何图形4.1.1第2课时从不同方向看立体图形与立体图形的展开
第2课时从不同方向看立体图形与立体图形的展开图1.[xx·台州]如图4-1-14所示的工件是由两个长方体构成的组合体,则从正面看到的图形是( )图4-1-142.[xx·襄阳]如图4-1-15所示的几何体是由6个大小完全一样的正方体组合而成的,它从上面看到的图形是( )图4-1-153.[xx·丽水]图4-1-16是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )图4-1-16A.从上面看到的图形与从正面看到的图形相同B.从左面看到的图形与从正面看到的图形相同C.从左面看到的图形与从上面看到的图形相同D.三个不同方向看到的平面图形都相同4.[xx·北京]图4-1-17是某个几何题的展开图,该几何体是( )图4-1-17A.三棱柱B.圆锥C.四棱柱D.圆柱5.[xx·舟山]一个立方体的表面展开图如图4-1-18所示,将其折叠成立方体后,“你”字对面的字是( )图4-1-18A.中B.考C.顺D.利6.如图4-1-19,从不同方向看一把茶壶,你认为从上面看到的图形是( )7.图4-1-20是一个正方体纸盒的外表面展开图,则这个正方体是( )8.若干个棱长为a的正方体摆放成如图4-1-21所示的几何体,回答下列问题:图4-1-21(1)有几个正方体?(2)表面积是多少?(3)当正方体的棱长为2时,它的表面积是多少?9.如图4-1-22,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为 .图4-1-22参考答案第2课时从不同方向看立体图形与立体图形的展开图【分层作业】1.A 2.A 3.B 4.A 5.C 6.A 7.C8.(1)7个(2)30a2(3)120 9.19 48(本资料素材和资料部分来自网络,供参考。
多姿多彩的图形
教案4.1 多姿多彩的图形几何图形教学目标:1、能从现实物体中抽象出几何图形,正确区分立体图形与平面图形;2、能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系;3、经历探索平面图形与立体图形之间的关系,发展空间观念,培养观察、分析、抽象、概括的能力和动手操作能力;4、通过所观察的现实情境和动手操作进行合作学习的过程,培养学生的学习积极性和主动性。
重、难点:重点:从现实物体中抽象出几何图形,把立体图形转化为平面图形。
难点:立体图形与平面图形之间的转化。
关键:从现实情境出发,通过动手操作进行实验和交流学习。
教具准备:长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备。
教学过程:一、引入新课用收集的故宫建筑图片和一些实物图让学生观察并讲出其中有哪些是我们熟悉的图形,这些图形就是我们今天要学习的。
多姿多彩的图形几何图形二、新课1、请同学们想一想,生活中还有哪些实物形状是几何图形的?(请同学回答)2、观察图4.1—3,看这些实物形状接近于什么几何图形?它们的各个部分都在同一个平面内吗?这样的几何图形叫立体图形。
3、把图4.1—4中的实物形状与对应的立体图形用线连起来。
4、观察图4.1—5的各图中包含哪些几何图形?这些图形的各部分都在同一个平面中吗?(学生回答)这样的几何图形叫平面图形。
因此:平面图形几何图形分为立体图形这两种图形之间有联系吗?5、观察图4.1—6中各个立体图的表面中包含哪些平面图形?(学生回答)说明立体图形与平面图形之间有联系吗?6、观察图4.1—7,从下面、左面、上面看到的平面图形一样吗?请你们把所看到的平面图形画出来。
从正面看从左面看从上面看把你们画的和老师画的对比一下,一样吗?我们把从三个不同的方向观察得到的图形分别叫正(主)视图、左视图、俯视图,统称为三视图。
7、请同学们观察图4.1—8,你们能把它的三视图画出来吗?请动手画一画,并互相对比。
人教版七年级数学上册第4章4.1几何图形4.1.1立体图形与平面图形第2课时折叠展开与从不同的方向观察几何体备
4.1 几何图形4.1.1立体图形与平面图形第3课时立体图形的展开图置疑导入归纳导入复习导入类比导入图4-1-73生活中,我们经常见到正方体形状的物体.将他们完全展开后形状是怎样的?下面我们先来将你面前的正方体盒子沿棱剪开,看看能得到一个什么样的平面图形?[说明与建议] 说明:利用常见的正方体是怎样制作的这一问题作为切入点,激发学生的兴趣,并通过动手操作让学生深刻认识正方体的面、棱之间的关系,调动学生的积极性.建议:让学生思考并动手操作,将正方体沿棱展开,再给出本节课的课题并板书:立体图形的展开图.活动内容:回答下列问题.问题1:同学们,在我们日常生活中,随处都可以见到五花八门的包装盒,你能说出几种你所见到过的包装盒的名字吗?你能说出下面几种包装盒的几何图形的名字吗?图4-1-74问题2:像上面的这几种包装盒,你知道将其拆开后会展开成什么样的平面图形吗?问题3:如果给你一些展开的包装盒的纸板,你能不能把它们恢复成完整的包装盒呢?[说明与建议] 说明:利用学生感兴趣的生活中常见的实物,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让学生进一步体会了展开与折叠的两个互逆的过程,这也为新课的学习做好铺垫.建议:问题1是从学生生活中常见到的实物——几个不同形状的包装盒出发提问,首先由学生回答完成;问题2、3学生思考交流后由代表尝试回答,根据学生回答的情况教师适当引导,从而引出新课.教材母题——教材第119页练习第3题下列图形中可以作为一个正方体的展开图的是( )图4-1-75【模型建立】正方体的表面展开后有11种图形:对的面.正方体相对的面展开前与展开后都不可能相邻,更不可能有公共边和公共顶点.注意:若展开图中出现以下图案,就不能围成正方体.图4-1-76【变式变形】1.[长春中考] 下列图形中,是正方体表面展开图的是(C)图4-1-77图4-1-782.[汕尾中考] 如图4-1-78所示是一个正方体的展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是(D)A.我B.中C.国D.梦3.[鸡西中考] 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图4-1-79),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的表面展开图可能是(C)图4-1-79 图4-1-804.[德州中考] 如图4-1-81所示给定的是纸盒的外表面,图4-1-82能由它折叠而成的是(B)图4-1-81 图4-1-824-1-27[命题角度1] 圆柱、圆锥、棱柱、棱锥的表面展开图圆柱、圆锥、棱柱、棱锥的表面展开图如下:注意:同一个立体图形按照不同的方式展开得到的平面图形是不一样的.例下面四个图形是多面体的展开图,其中是四棱锥的展开图的是(C)图4-1-83[命题角度2] 正方体的表面展开图正方体的表面展开后有11种图形:注意:若展开图中出现以下图案,就不能围成正方体:图4-1-84例[温州中考] 下列个图中,经过折叠能围成一个正方体的是(A)图4-1-85[命题角度3] 正方体的表面展开图中各正方形的对应关系正方体相对的面在正方体的表面展开图中其中间应当间隔1个正方形,反过来要在正方体中成为相对的面,这两个正方形无论怎样折叠都不会有相邻的边和顶点.图4-1-86例[贵阳中考] 一个正方体的表面展开图如图4-1-86所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与写有“成”字的面相对的面上的字是(B)A.中B.功C.考D.祝P118练习1.如图,右面三幅图分别是从哪个方向看这个棱柱得到的?[答案] (1)从上面看;(2)从正面看;(3)从左面看.2.如图,把相应的立体图形与它的展开图用线连起来.[答案] 如图所示:3.下列图形中可以作为一个正方体的展开图的是( )[答案] C[当堂检测]1. 【2011•龙岩】如图可以折叠成的几何体是()A.三棱柱 B.四棱柱C.圆柱 D.圆锥2. 如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是()A B C D3.下列四个图中,是三棱锥的表面展开图的是()A B C D4. 【2011•呼和浩特】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A B C D5. 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()AA B C D参考答案:1. A2. C3. B4. C5. C正方体的平面展开图正方体是我们最常见的一种简单的立体图形,你研究过它的平面展开图?一、图形分类正方体的平面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四情形.1. 1-4-1型:展开图有3行,中间一行有4个正方形,其余两行均1个正方形,如图1中所示.图12. 2-3-1型:展开图有3行,中间一行有3个正方形,第1行有2个正方形,第3行有1个正方形,如图2中所示.图23. 2-2-2型:展开图有3行,每一行均有2个正方形,如图3所示.图3 图44. 3-3型:展开图有2行,每一行均有3个正方形,如图4所示.二、规律探究1.排在同一条直线上的小正方形,与同一个正方形相连的两个正方形折叠后,位置关系怎样?2.正方体的平面展开图中最多只能出现几个正方形有一个公共点的情形,最多只能出现几个正方形与一个正方形相邻的情形?3.当上下、左右四个面展开成一条直线时,前后两个面不可能分布在其同侧,对吗?4.原来处于相对位置上的两个面,展开后的正方形有公共顶点和公共边吗?反之,展开图中有一个公共顶点或一条公共边的两个正方形,在折叠成正方体后,必将成为相邻的两个面吗?5.当从正方体的某顶点出发,最多只能观察到几个面?能同时看到两个相对的面吗?。
苏教版七年级上册数学 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图 教学课件
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、 拖鞋等进入教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂良好纪律秩序。
谢 谢 大 家 听课时有问题,应先举手,经教师同意后,起立提问。
这是一个工件的立体图,设计师们常常画出从不同方向看 它得到的平面图形来表示它.
我们把从正面看到的图形
叫做主视图,从左面看到的图形 叫左视图,从上面看到的图形叫 做俯视图. 主视图,左视图,俯视 图合称三视图.
正方体
主视图
左视图
俯视图
正方体的三视图都 是正方形
圆柱
圆柱的主视图和 左视图都是长方
形,俯视图是圆。
正面
左面
上面
从左面看
分别画出图中几何体的主视图、左视 图和 俯视图。
从上面看
主视图
左视图
从正面看
俯视图
有些立体图形是有一些平面图形围成的,将他们的表面适当剪 开,可以展开成平面图形。这样的平面图形称为相应立体图形 的展开图
探究常见的立体图形的展开图:
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
将一个正方体的表面沿某些棱剪开,展成一个平面图形
主视图
左视图
俯视图
四棱锥
主视图
四棱锥的三视图下图
左视图
俯视图
说出圆锥、球的三视图各是什么图形.
一个长方体的立体图如图所 示,请画它的三视图.
解: 所求三视图如图
主注视意方向:要写上 各视图的名称
主视图 俯视图
左视图
几何体
人教版七年级数学上册第四章《几何图形初步》知识点汇总
⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。
人教版七年级数学第四章《几何图形初步》知识点汇总
人教版七年级数学第四章《几何图形初步》知识点汇总七年级数学期末复第四章《几何图形初步》知识点汇总1.几何图形①定义:几何图形是从实物中抽象出来的各种图形。
②分类:几何图形分为平面图形和立体图形。
③平面图形:图形所表示的各个部分都在同一平面内,如直线、三角形等。
④立体图形:图形所表示的各个部分不在同一平面内,如圆柱体。
2.常见的立体图形①柱体:A棱柱,B圆柱。
②椎体:A棱锥,B圆锥,球体等。
3.立体图形的三视图从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、左视图),这样就可以把立体图形转化为平面图形。
①会观察小正方体堆积图形画出三视图。
②会根据三视图知道堆积的小正方体的个数。
4.立体图形的展开图①圆柱的平面展开图是矩形。
②圆锥的平面展开图是扇形。
③ n棱柱的侧面展开图是n个形,n棱柱有个底面,都是n边形,n棱柱的平面展开图是多边形。
④ n棱锥的侧面展开图是n个形,n棱锥有个底面,是n 边形,n棱锥的平面展开图是多边形。
⑤正方体的展开图共分四类。
①掌握在正方体展开图中找相对面的方法。
②会根据展开图中的图案判断是哪个图形的展开图。
5.点、线、面、体几何图形的组成:由点、线、面、体组成。
点是构成图形的基本元素,点动成线,线动成面,面动成体。
6.直线①点与直线的位置关系:第一种关系:点在直线上,或者说直线经过点;第二种关系:点在直线外,或者说直线不经过点。
②直线公理:经过两点有且只有一条直线(简称:两点确定一条直线)。
7.直线与直线的位置关系①同一平面内,两条直线的位置关系分为平行和相交。
②当两条不同的直线相交时,我们就称这两条直线相交,这个点叫做它们的交点。
8.射线①表示方法:端点字母必须写在前。
②判断两条射线是同一条射线的方法:它们有一个公共端点,并且在这个公共端点的一侧的点相同。
9.线段①基本性质:线段是有限长的直线段,有两个端点。
②两点之间的距离是线段的长度。
几何图形PPT教学课件
• 7.读图,回答下列问题。
• (1)图中A、B、C、D、E五处,属背斜的 是________。
• (2)从地形上看,C处是________,形成 原因是 ________________________________ ______。
• (3)泰山的成因类型与图中________处一 致;地震多发地带位于图中________处。
超过岩石的承受能力时,岩体断发裂生面 破裂,
并沿
发生明显的位移。
• (2)断层的位移类型
• ①水平方向:会错断原有的各种地貌, 或在断层附近派生出若干地貌。
压力
• 3.中央火喷山出口
• (1)成因:岩浆火在山巨口 大的
作用下,
沿着地壳的
或管道喷出。
• (2)组在成断:层包构造括地带,由于岩石和破火坏山,易锥受两风部化侵分蚀。,
”字或“8”字状( 建设成本;
线路尽量与等高线 ②降低技术
平行);
难度;③工
①同蒲铁路 沿汾河谷地 伸展;②陇 海铁路的西
线 ③避开陡坡和断层 程施工要安 段沿渭河谷
路 、滑坡、泥石流等 全;④降低 地伸展;③
走 地质灾害多发地段 运营成本和 襄渝铁路沿
向;
提高运营安 汉水谷地伸
影响 线网密度
山区交通 建设的一 般原则
D.砾岩
• 3.图示地段发生过的地质作用不能确定 的是( )
• A.水平拉伸作用 B.岩浆活动
• C.变质作用
D.堆积作用
• 【解析】 第1题,图中①处为断层地带, 因岩层破碎易遭侵蚀而形成河谷。第2题, 从断层左侧的岩层关系可以看出③处位 于砾岩的下方,而断层右侧显示砾岩的 下方是石灰岩,说明③处原为石灰岩, 后因接触高温岩浆而变质形成大理岩, 第3题,图中有岩浆活动形成的花岗岩, 变质作用形成的大理岩,堆积作用形成 的沉积物④,不能确定是否发生了水平 拉伸作用。
第四章多姿多彩的几何图形复习课件20131229
(B)南偏西60° (C)南偏东30° (D)南偏西30°
B
1 2 A
东
东
天 津 的 世 纪 钟
工艺表
十字绣钟表
怀表
护腕表
护士表
腰表
台表
闹钟
日常手表
30 在钟面上,每一大格的度数为____°
6 在钟面上,每一小格的度数为____°
30°
(1)时间为3时整,时针与分针之间 90 的夹角是_________度。 (2)时间为8时整,时针与分针之间 120 的夹角是_________度。 (3)时间为1时整,时针与分针之间 30 的夹角是_________度。
4.1 多姿多彩的图形
---复习课件
柱体
棱柱
圆柱
三棱柱
锥体
四棱柱
五棱柱
棱锥
圆锥
三棱锥 四棱锥
六棱柱
五棱锥
六棱锥
立体图形
画出以下立体图形的三视图
图1
主视图
左视图
俯视图
C
A
正 方 体 展 开 图
友情提示:
1、沿着棱剪 2、展开后是一个完整图形
(5)两点间的距离:连结两点的线段
的长度,叫做这两点间的距离. (6)线段的特点:有两个端点,不能
向任何一方伸展,可以度量, 可以比较长短.
知识点2:射线
(1)射线的概念:把线段向一方无限延伸所形 成的图形叫做射线. (2)射线的表示方法: 可用两个大写字母表示,第一个大写字母表 示它的端点; 也可用一个小写字母表示. (3)射线的特点:只有一个端点,向一方无限延 伸,无法度量,不能比较长短.
如果1与2互余,那么1的余角是2 ,
立体图形的展开图(课件)
4.1.3 立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
1.了解立体图形可由平面图形围成,立体图形可 展开为平面图形;
2.掌握正方体的展开图,熟悉圆柱、圆锥、棱柱、 棱锥的表面展开图,能根据展开图判断立体图 形的形状.
立体图形的展开图
方
体
展
开
图
立体图形的展开图
正
第二类: "1-3-2"型
方
体
展
开
图
立体图形的展开图
正
第三类: "2-2-2"型
方
体
展
开
第四类: "3-3"型
图
立体图形的展开图
将正方体相对的面涂上颜色,你会发现什么?
对 面 相
隔
不 相 连
蓝
?
黄
立体图形的展开图
正 方 体 展 开 图
-
立体图形的展开图
自主反思:
立体图形的展开图 做个巧手活 看个妙东西 当个小帮手
立体图形的展开图
做个巧手活
1、折叠下列图形,看能不能折叠成一个立 体图形?
(1)
(2)
(3)
→经过动手折叠发现( 1 )( 3 )
可以折叠成一个( 三棱锥 )
立体图形的展开图
立体图形是平面图形围成的,把这些立 体图形的表面适当剪开,得到的平面图形称 为相应图形的展开图.
1.立体图形和平面图形之间的关系?
展开
有些立体图形
有些平面图形 折叠
平面图形 立体图形
2.常见的一些立体图形的展开图是 什么样的?正方体展开图中不能
多姿多彩的图形-几何图形
图1
图2
图3
棱柱和棱锥
四棱柱
五棱柱
六棱柱
四棱锥
五棱锥
六棱锥
圆柱
柱体
三棱柱
棱柱
四棱柱 五棱柱
六棱柱
圆锥
锥体
三棱锥
棱锥
四棱锥 五棱锥
六棱锥
常见的平面图形
三角形
长方形
五边形
圆形
正方形
六边形
找一找:有哪些熟悉的平面图形?
从上面看
从左边看
长方体
从正面看
从上面看
从左面看
给我最大快乐的, 不是已懂的知识, 而是不断的学习.
----高斯
天坛祈年殿—中国
国家体育馆—中国
金字塔—埃及
泰姬陵—印度
圆形斗兽场—意大利
白宫—美国
巴台农神庙—希腊
大英博物馆—英国
地球—我们的家
4.1.1 几何图形
长方体
正方形
长方形
线段
点
我们把从实物中抽象出的各种 图形统称为几何图形。
从正面看
从左面看
从上面看 从正面看
从上面看 从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
利用骰子,摆成下面的图形,分别从正面、 左面、上面观察这个图形,各能得到什么平 面图形?
从正面看
从上面看
从左面看
你有收获吗?
立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥等 平面图形:长方形、正方形、三角形、圆、五边形、六边形等 从正面看、从左面看、从上面看
你是这样想的吗?
足球能得到球体.
第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)
第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。
4.几何图形的结构:点、线、面、体组成几何图形。
点是构成图形的基本元素。
4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。
2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。
(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。
(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。
(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。
(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
4.线段:直线上两点和它们之间的部分叫做线段。
(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。
(3)线段的基本性质:两点的所有连线中,线段最短。
七年级数学上册第四章几何图形初步认识4.1.1 立体图形与平面图形 第2课时(图文详解)
人教版七年级数学上册第四章几何图形初步认识
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
棱柱
棱锥
圆锥
人教版七年级数学上册第四章几何图形初步认识
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).
(A)圆锥 (B)圆柱 (C)棱锥 (D)棱柱
人教版七年级数学上册第四章几何图形初步认识
你做对了吗?
人教版七年级数学上册第四章几何图形初步认识
1.下面是由六个正方形连在一起的图形,经折叠后能围 成正方体的图形有哪几个?
A
B
C
D
E
F
G
人教版七年级数学上册第四章几何图形初步认识
2.(武汉中考)如图所示,李老师办公桌上放着一个圆柱 形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的 图形是( )
人教版七年级数学上册第四章几何图形初步认识
9.下列图形中不是立体图形的是( D ).
(A)球
(B)圆柱
(C)圆锥 (D)圆
人教版七年级数学上册第四章几何图形初步认识
10.小明为班级专栏设计了一个图案,如图所示,主 题是“我们喜爱合作学习”,请你也尝试用圆、扇形、 三角形、四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
人教版七年级数学上册第四章几何图形初步认识
4.(宁波中考)骰子是一种特别的数字立方体(如图),它
符合以下规则:相对两面的点数之和总是7.下面四幅图中
可以折成符合规则的骰子的是( )
(A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体
展开
棱柱
展开
圆锥
展开
三 棱 锥
三 棱 柱
练习:
活动二:
用剪刀把正方体纸盒,按任意方式沿棱
展开,你能得到哪些展开图?
第一类: 中间四连方,两侧各一个,共六种。
第二类:
中间三连方,两侧各有一、二个,共三种。
第三类:
中间二连方,两侧各有二个,只有一种。
第四类: 两排各三个,只有一种。
(A〕
(B)
(C)
(D)
如图所示的正方体,如果把它展开, 可以是下列图形中的( D )
小丽制作了一个对面图案均相同的正
方体礼盒(如下图)则这个正方体礼品盒的平 面展开图可能是 ( A )
A
B
C
D
下图是正方形的展开图,如果a
在后面,b在下面,c在左面,试说明
其他各面的位置。
a
b
c
d e f
小壁虎的难题:
下面六个正方形连在一起的图形,经 折叠后能围成正方体的图形有哪几个? (自己动手试试吧)
A
B
C
D
E
F
G
下列图形能折叠成什么立体图形?
圆 柱 圆 锥
棱 柱Байду номын сангаас
棱 柱
由平面展开图得出多面体的唯一性
图中哪些图形经过折叠可以围 成一个多面体?
四棱锥
四棱柱
三棱柱
不能
三棱柱
三棱柱
下边的4个图形中,哪一个是由左 边的盒子展开而成的( C )。
立体图形的展开图
有些立体图形是由一些平面图形围
成的,将立体图形的表面适当剪开,可 以展开成平面图形,这样的平面图形叫 做相应立体图形的展开图. 注意:不是所有的平面图形都能围成 立体图形,也不是所有的立体图形 都能展开成平面图形,例如:球.
把你所做的立体图形展开,
看它的平面展开图是什么。
圆 柱
一只圆桶的下方有一只壁虎,上方
有一只蚊子,壁虎要想尽快吃到蚊子,
应该走哪条路径?
你有何高招 ?
●
蚊子
壁虎 ●
●
蚊子
壁虎 ●
蚊子
●
●
壁虎