2017年云南省曲靖市中考数学二模试卷
云南省曲靖市中考数学二模试卷
云南省曲靖市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2019·桥西模拟) 如图,数轴上点A、B、C、D表示的数中,表示互为相反数的两个点是()A . 点B和点CB . 点A和点CC . 点B和点DD . 点A和点D2. (2分) (2017七下·江都期末) 下列运算正确的是()A . (ab)2=a2b2B . a2+a4=a6C . (a2)3=a5D . a2•a3=a63. (2分)如图,所给条件:①∠C=∠ABE,②∠C=∠DBE,③∠A=∠ABE,④∠CBE+∠C=180°中,能判定BE∥AC 的条件有()A . ①②③B . ①②④C . ①③④D . ②③④4. (2分)(2020·襄州模拟) 如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其左视图是()A .B .C .D .5. (2分)(2020·南昌模拟) 对于一列数据,如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是().A . 平均数B . 中位数C . 众数D . 方差6. (2分)对于方程x2+bx-2=0,下面观点正确的是()A . 方程有无实数根,要根据b的取值而定B . 无论b取何值,方程必有一正根、一负根C . 当b>0时,方程两根为正;b<0时.方程两根为负D . ∵-2<0,∴方程两根肯定为负7. (2分)(2019·莲池模拟) 在中考复习中,老师出了一道题“化简”.下列是甲、乙、丙三位同学的做法,下列判断正确是()甲:原式=;乙:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4丙:原式==1A . 甲正确B . 乙正确C . 丙正确D . 三人均错误8. (2分)如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为()A . 40°B . 50°C . 80°D . 90°9. (2分)已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是()A . 0<b<2B . ﹣3<b<﹣1C . ﹣3≤b≤﹣1D . b=﹣1或﹣310. (2分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A .B .C .D . 111. (2分) (2019八下·沙河期末) 把n边形变为边形,内角和增加了720°,则x的值为()A . 6B . 5C . 4D . 312. (2分)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A . 逐渐增大B . 不变C . 逐渐减小D . 先增大后减小13. (2分) (2019八下·简阳期中) 下列命题是真命题的是().A . 有两条边、一个角相等的两个三角形全等。
2017年云南省中考数学模试卷
2017年云南省中考数学模试卷(时间:70分钟,满分:120分)一、填空题(本大题共6个小题,每小题3分,满分18分)1.5的倒数是.2.因式分解:4a2﹣8a+4=.3.函数y=中,自变量x的取值范围是.4.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,ED垂直平分AC交AB于点E,则ED的长为.5.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.6.一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a2017=.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.3a•2b=5ab B.(﹣3)﹣2=﹣9 C.(3.14﹣π)0=0 D.8.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=50°,则∠BAE的度数是()A.50°B.65°C.70°D.130°9.第31届夏季奥运会将于2016年8月5日﹣21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450000套,450000这个数用科学记数法表示为()A.45×104 B.4.5×105C.0.45×106D.4.5×10610.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.圆柱D.球11.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.512.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是613.下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.平行四边形B.菱形C.正三角形D.正五边形14.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10三、解答题(本大题共9个小题,满分70分)15.(6分)解方程: +1=.16.(7分)如图,在矩形ABCD中.点E在边AB上,∠CDE=∠DCE.求证:AE=BE.17.(7分)某校九年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?18.(7分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).19.(8分)为了让书籍开拓学生的视野,陶冶学生的情操,某中学开展课外阅读活动.为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率110≤t<30a0.16230≤t<5020m350≤t<70b0.28470≤t<906n590≤t<110c p(1)将频数和频率分布表补全,直接写出上面的频数a、b、c和频率m、n、p的值;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?20.(7分)将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.请用树状图或列表法解答下列问题:(1)从中随机抽取两张卡片,求卡片正面上的数字之积大于4的概率;(2)若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.21.(8分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(8分)如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.23.(12分)如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.。
2017年云南曲靖中考数学真题及答案
2017年云南曲靖中考数学真题及答案一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是.2.(3分)已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.(3分)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=.4.(3分)使有意义的x的取值范围为.5.(3分)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(3分)已知点A(a,b)在双曲线y=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1088.(4分)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.(4分)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a610.(4分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.(4分)sin60°的值为()A.B.C.D.12.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖13.(4分)正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r表示圆锥的底面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.14.(4分)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC 交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.(6分)观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.参考答案一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017•云南)2的相反数是﹣2.【分析】根据相反数的定义可知.【解答】解:2的相反数是﹣2.故答案为:﹣2【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017•云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为:.【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017•云南)使有意义的x的取值范围为x≤9.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•云南)如图,边长为4的正方形ABCD 外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为2π+4.【分析】连接HO,延长HO 交CD 于点P,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH、四边形OGCF、四边形OFDE、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=S ⊙O +S △HGF 可得答案.【解答】解:如图,连接HO,延长HO 交CD 于点P,∵正方形ABCD 外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD 为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P 于点F 重合,则HF 为⊙O 的直径,同理EG 为⊙O 的直径,由∠B=∠OGB=∠OHB=90°且OH=OG 知,四边形BGOH 为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH 均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF==2则阴影部分面积=S ⊙O +S △HGF=•π•22+×2×2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017•云南)已知点A(a,b)在双曲线y=上,若a、b 都是正整数,则图象经过B (a,0)、C (0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣x+1.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b 都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A(a,b)在双曲线y=上,∴ab=5,∵a、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得,解得,∴y=﹣5x+5;②当a=5,b=1时,由题意,得,解得,∴y=﹣x+1.则所求解析式为y=﹣5x+5或y=﹣x+1.故答案为y=﹣5x+5或y=﹣x+1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017•云南)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017•云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017•云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017•云南)sin60°的值为()A.B.C.D.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故选B.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•云南)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017•云南)正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r 表示圆锥的底面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=r,∵圆锥的体积等于9π∴9π=πr2h,∴r=3,∴h=3故选(D)【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017•云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB==70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017•云南)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017•云南)观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n个等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:;(2)第n个等式是:,证明:∵====n,∴第n个等式是:.【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【分析】(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017•云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:(+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017•云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为=.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•云南)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017•云南)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c即可解决问题.(2)设M(m,n),由题意•3•|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+,﹣6)或(3﹣,﹣6).【点评】本题考查抛物线与x轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017•云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,又∵x为整数,∴x的取值范围为21≤x≤62的整数.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=19460元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017•云南)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到=,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【解答】解:(1)连接OC,∵OA=OC,∴∠A=∠OCA,∵AC∥OP,∴∠A=∠BOP,∠ACO=∠COP,∴∠COP=∠BOP,∵PB是⊙O的切线,AB是⊙O的直径,∴∠OBP=90°,在△POC与△POB中,,∴△COP≌△BOP,∴∠OCP=∠OBP=90°,∴PC是⊙O的切线;(2)过O作OD⊥AC于D,∴∠ODC=∠OCP=90°,CD=AC,∵∠DCO=∠COP,∴△ODC∽△PCO,∴,∴CD•OP=OC2,∵OP=AC,∴AC=OP,∴CD=OP,∴OP•OP=OC2∴=,∴sin∠CPO==;(3)连接BC,∵AB是⊙O的直径,∴AC⊥BC,∵AC=9,AB=15,∴BC==12,当M与A重合时,d=0,f=BC=12,∴d+f=12,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤12.【点评】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.。
中考数学与平行四边形、矩形、菱形和正方形的简单证明有关的解答题(第01期)
1.(2017广东广州卷)如图,矩形ABCD 的对角线AC , BD 相交于点O , COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =, 5BC cm =.①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.2.(2017江苏淮安卷)已知:如图,在平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F .求证:△ADE ≌△CBF .3.(2017贵州贵阳卷)如图,在△ABC 中,∠ACB=90°,点D ,E 分别是边BC ,AB 上的中点,连接DE 并延长至点F ,使EF=2DF ,连接CE 、AF .(1)证明:AF=CE ;(2)当∠B=30°时,试判断四边形ACEF 的形状并说明理由.4.(2017湖北鄂州卷)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.(2017广西贵港市港南区模拟)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.6.(河北省石家庄市2017届中考数学二模试卷)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.7.(2017年云南省曲靖市中考数学二模试卷)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=78,求线段OE的长.8.(2017全国百强校模拟)如图,在平行四边形ABCD中,连接BD,在BD的延长线上取一点E,在DB 的延长线上取一点F,使BF DE,连接AF、CE.求证:AF CE.9.(2016湖南省怀化市)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.10.(2017湖北省鄂州市模拟)如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且∠EAF=45°,将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,连接EQ ,求证:(1)EA 是∠QED 的平分线;(2)EF 2=BE 2+DF 2.11.(2017四川省自贡)如图,点E F 、分别在菱形ABCD 的边DC DA 、上,且CE AF =.求证: ABF CBE ∠=∠.12.(2017四川自贡卷)如图,点E ,F 分别在菱形ABCD 的边DC ,DA 上,且CE=AF .求证:∠ABF=∠CBE .13.(2017上海卷)已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.14.(2017江苏无锡卷)(本题8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F.求证:AB=BF.15.(2017湖南张家界卷)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.16.(2017贵州安顺卷)如图,DB∥AC,且DB=12AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?17.(2017广西四市卷)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.18.(福建省莆田仙游私立一中2016-2017学年八年级下学期期中数学试卷)如图,P为正方形ABCD的边BC 上一动点(P与B. C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长。
云南省曲靖市中考数学模拟试卷2
云南省曲靖市中考数学模拟试卷2姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题3分,共30分。
) (共10题;共27分)1. (3分)(2012·钦州) 下列各数中,是负数的是()A . ﹣2B . 0C . 0.3D .2. (2分)如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A'重合,若∠A=70°,则∠1+∠2=()A . 70°B . 110°C . 130°D . 140°3. (3分)(2019·山西模拟) 如图所示的正三棱柱,它的俯视图为()A .B .C .D .4. (3分)下列运算正确的是()A . x2•x3=x6B . (x3)2=x5C . (xy2)3=x3y6D . x6÷x3=x25. (3分)如图,直线a、b与直线相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的是()A . ①③;B . ①③④;C . ②④;D . ①②③④.6. (3分)在一个不透明的袋子里装有若干个红球和黄球,这些球除颜色外完全相同.从中任意摸出一个球,记下颜色后放回,搅匀后再重新摸球,则下列说法中正确的是()A . 摸到黄球的频数越大,摸到黄球的频率越大B . 摸到黄球的频数越大,摸到黄球的频率越小C . 重复多次摸球后,摸到黄球的频数逐渐稳定D . 重复多次摸球后,摸到黄球的频率逐渐稳定7. (2分)(2017·罗平模拟) 一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A . 100πB . 50πC . 20πD . 10π8. (3分) (2016七下·东台期中) 已知两数x、y之和是10,x比y的2倍大1,则下面所列方程组正确的是()A .B .C .D .9. (2分) (2018九上·南山期末) 某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A .B .C .D .10. (3分) (2019七下·营口月考) 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2019次运动后,动点P的坐标是()A . (2018,0)B . (2017,1)C . (2019,1)D . (2019,2)二、填空题(本大题共6小题,每小题4分,共24分) (共6题;共22分)11. (4分)关于x的分式方程 - =0无解,则m=________.12. (2分)(2017·巨野模拟) 计算的结果是________.13. (4分) (2017九上·临川月考) 如图是测得的两根木杆在同一时间的影子,那么它们是由________形成的投影(填“太阳光”或“灯光”).14. (4分)如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为________cm.15. (4分) (2018九上·汨罗期中) 已知关于x的一元一次方程x2+3x+1-m=0 ,请你自选一个m的值,使方程没有实数根m=________.16. (4分)(2011·嘉兴) 如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正确结论的序号是________.三、解答题(本大题共7小题,共66分) (共7题;共39分)17. (6分) (2015九下·嘉峪关期中) 先化简,再求值:,其中.18. (9分)在一次科技知识竞赛中,两组学生的成绩统计如下:已经算得两组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中成绩哪一组好些,哪一组稍差,并说明理由.19. (6分)(2017·岱岳模拟) 随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:①每个茶壶的批发价比茶杯多110元;②一套茶具包括一个茶壶与四个茶杯;③600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.20. (2分) (2013八下·茂名竞赛) 如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)四边形AECF是什么特殊的四边形?说明理由;(2)若AB=8,求菱形的面积.21. (12分)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标:(2)由图象写出满足y1<y2的自变量x的取值范围(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.22. (2分)(2017八上·上城期中) 如图,和都是等腰直角三角形,,为边上一点.(1)≌ .(2).(3).23. (2分) (2016九上·宁波期末) 如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动,已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(x>0).(1)△EFG的边长是________(用含有x的代数式表示),当x=2时,点G的位置在________;(2)若△EFG与梯形ABCD重叠部分面积是y,求y与x之间的函数关系式;(3)探究(2)中得到的函数y在x取何值时,存在最大值?并求出最大值.参考答案一、选择题(本大题共10小题,每小题3分,共30分。
云南省曲靖市九年级数学中考二诊试卷
云南省曲靖市九年级数学中考二诊试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列几种说法中,正确的是()A . 0是最小的数B . 任何有理数的绝对值都是正数C . 最大的负有理数是-1D . 数轴上距原点3个单位的点表示的数是±32. (2分)(2017·黄冈模拟) 下列水平放置的几何体中,俯视图是三角形的是()A . 圆柱B . 长方体C . 圆锥D . 直三棱柱3. (2分)(2016·义乌) 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A . 3.386×108B . 0.3386×109C . 33.86×107D . 3.386×1094. (2分) (2017八下·新洲期末) 为了解某种电动车一次充电后行驶的里程数,对其进行了抽检,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A . 220,220B . 220,210C . 200,220D . 230,2105. (2分)如图,在□ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE,CF,则四边形AECF是()A . 矩形B . 菱形C . 正方形D . 无法确定6. (2分) (2016九上·重庆期中) 将抛物线y=(x﹣1)2+3向右平移1个单位,再向上平移3个单位后所得抛物线的表达式为()A . y=(x﹣2)2B . y=x2C . y=x2+6D . y=(x﹣2)2+67. (2分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A .B .C .D . 随H点位置的变化而变化8. (2分)如图,已知直线a∥b∥c ,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F , AC=4,CE=6,BD=3,则BF=().A . 7B . 7.5C . 8D . 8.59. (2分) (2017九上·西城期中) 如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A . 35°B . 55°C . 65°D . 70°10. (2分) (2019八下·温江期中) 如图,一次函数与的图象相交于点P(-2,3),则关于的不等式的解集为A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2017·鄞州模拟) 分解因式: =________12. (1分) (2016八上·苏州期中) 如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=________.13. (1分)已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为________.14. (1分) (2017九上·北海期末) 如图,AE,AD,BC分别切⊙O于点E、D和点F,若AD=8cm,则△ABC 的周长为________cm.15. (1分) (2015八下·灌阳期中) 若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为________.(结果保留根号)16. (1分)某样本有100个数据分成五组.第一、二组频数之和为25,第三组频数是35.第四、五组频数相等,则第五组频数是________。
云南省曲靖市中考数学二模试卷
云南省曲靖市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)计算:|3﹣π|=()A . 3B . 3﹣πC . 0.14D . π﹣32. (2分) (2017七下·无锡期中) 下列各式中计算正确的是()A . (-a2)5 =-a10B . (x4)3= x7C . b5·b5= b25D . a6÷a2=a33. (2分)(2012·桂林) 下面四个标志图是中心对称图形的是()A .B .C .D .4. (2分)(2018·遵义模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A . 12个B . 16个C . 20个D . 30个6. (2分)(2016·齐齐哈尔) 如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A . 5个B . 6个C . 7个D . 8个7. (2分)下列说法正确的是()A . 三角形的重心是三角形三边垂直平分线的交点B . 三角形的一条中位线与第三边上的中线互相平分C . 坡面的水平长度与铅垂高度的比是坡比D . 相似三角形对应高的比等于相似比的平方8. (2分) (2017九上·鄞州月考) 如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A .B .C .D .二、二.填空题 (共8题;共8分)9. (1分) (2017七上·饶平期末) 太阳半径约为696 000千米,数字696 000用科学记数法表示为________.10. (1分) (2019九上·句容期末) 一组数据:80,75,85,90,80的中位数是________.11. (1分) (2017八下·栾城期末) 函数的自变量x的取值范围是________.12. (1分)在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是________13. (1分)(2017·遵义) 如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D 两点.若∠CMA=45°,则弦CD的长为________.14. (1分)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是________15. (1分)如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B着地时,另一端A离地面的高度为________cm.16. (1分) (2017八上·西安期末) 如图,长方形的顶点的坐标为,动点从原点出发,以每秒个单位的速度沿折线运动,到点时停止,同时,动点从点出发,以每秒个单位的速度在线段上运动,当一个点停止时,另一个点也随之停止.在运动过程中,当线段恰好经过点时,运动时间的值是________.三、解答题 (共10题;共106分)17. (5分)(2016·绵阳) 计算:(π﹣3.14)0﹣| sin60°﹣4|+()﹣1 .18. (13分) (2017七下·扬州期中) 如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A′B′C′.(注:格点指网格线的交点)(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是________(4)△ABC在整个平移过程中线段AB 扫过的面积为________(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有________个19. (11分)(2017·宝坻模拟) 在一次初中生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)①中a的值为________;(2)统计的这组初赛成绩数据的平均数、众数和中位数(结果保留小数点后两位);(3)据这组初赛成绩,由高到低确定7人进入复赛,请直接写出初赛成绩为1.60m的运动员能否进入复赛.20. (7分)(2013·南通) 在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次第二次12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)①(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后________(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为________;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?21. (15分)(2018·阜宁模拟) 如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当 CD+OD的最小值为6时,求⊙O的直径AB的长.22. (5分)(2017·吉林模拟) 列方程或方程组解应用题:根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路.铺设600m后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?23. (5分)奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24. (15分)(2017·石家庄模拟) 某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆;当每辆次小车的停车费超过5元时,每增加1元,到此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费一每天的固定支出)A型利润B型利润甲店200170乙店160150(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?25. (15分)(2017·黄冈模拟) 如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.26. (15分)(2017·济宁模拟) 如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、二.填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共106分)17-1、18-1、18-2、18-3、18-4、18-5、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
初中数学17年云南省曲靖市罗平县中考模拟数学二模考试卷及答案
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列运算结果正确的是()A.a2+a3=a5 B.a3÷a2=a C.a2•a3=a6 D.(a2)3=a5试题2:要使代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥﹣1 C.x≥﹣1且x≠0 D.x>﹣1且x≠0 试题3:如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40° C.60° D.70°试题4:一艘轮船满载排水量为38000吨,把数38000用科学记数法表示为()A.3.8×103 B.38×103 C.3.8×104 D.3.8×105试题5:评卷人得分不等式≤1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≥4 D.x≤4试题6:某车间20名工人日加工零件数如表所示:日加工零件数 4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6试题7:在同一平面直角坐标系中,函数y=2x+a与y=(a≠0)的图象可能是()A. B. C.D.试题8:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①b2﹣4ac=0;②2a+b=0;③若(x1,y1),(x2,y2)在函数图象上,当x1<x2时,y1<y2;④a﹣b+c<0.其中正确的是()A.②④ B.③④ C.②③④ D.①②④的平方根是.试题10:分解因式:x3﹣xy2= .试题11:若关于x的一元二次方程x2﹣x+k=0有两个相等的实数根,那么实数k的值是.试题12:如图,已知AB是⊙O的直径,点C,D在⊙O上,∠ABC=35°,则∠D= .试题13:如图,用一个半径为30cm,面积为150πcm2的扇形铁皮,制作一个无底的圆锥(不计耗损),则圆锥的底面半径r为.试题14:按一定规律排列的一列数:1,3,6,10,…,则第n个数的排列规律是.试题15:计算:()﹣2+(﹣1)2017﹣(π﹣3)0﹣sin45°.解不等式组.试题17:先化简代数式:(﹣1)÷,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.试题18:在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.试题19:罗平、昆明两地相距240千米,甲车从罗平出发匀速开往昆明,乙车同时从昆明出发匀速开往罗平,两车相遇时距罗平90千米,已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.试题20:如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC 绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,点B所经过的路径的长度.试题21:已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线.(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半径.试题22:如图,有四张背面完全相同的卡片A,B,C,D,小伟将这四张卡片背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能出现的结果(卡片可用A,B,C,D表示);(2)求摸出两张卡片所表示的几何图形是轴对称图形而不是中心对称图形的概率.试题23:如图,在平面直角坐标系xoy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣,且经过A,C两点,与x轴的另一个交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求四边形PAOC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△AOC相似?若存在,求出点M的坐标;若不存在,请说明理由.试题1答案:B【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a,符合题意;C、原式=a5,不符合题意;D、原式=a6,不符合题意,故选B试题2答案:C【考点】二次根式有意义的条件.【分析】利用二次根式有意义的条件以及分式有意义的条件得出即可.【解答】解:根据题意得,解得x≥﹣1且x≠0.故选C.试题3答案:A【考点】三角形的外角性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.故选:A.试题4答案:C【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将38000元用科学记数法表示为3.8×104元.故选C.试题5答案:D【考点】解一元一次不等式.【分析】先去分母,再去括号,移项,再合并同类项即可.【解答】解:去分母得,3x﹣2(x﹣1)≤6,去括号得,3x﹣2x+2≤6,移项得,3x﹣2x≤6﹣2,合并同类项得,x≤4.试题6答案:D【考点】众数;加权平均数;中位数.【分析】根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选D.试题7答案:B【考点】反比例函数的图象;一次函数的图象.【分析】利用反比例函数的图象及一次函数的图象的性质采用淘汰的方法确定正确的选项即可.【解答】解:∵一次函数y=2x+a中,k=2>0,∴y随着x的增大而增大,∴C、D错误;当a>0时,一次函数与y轴交与正半轴且反比例函数的图象位于一三象限,A错误,B符合,故选B.试题8答案:A【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴x=1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:①∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故①错误;②∵二次函数的开口向下,∴a<0,∵对称轴x=1,∴﹣=1,∴2a+b=0,故②正确;③若(x1,y1),(x2,y2)在函数图象上,当x1<x2时,无法确定y1与y2的大小,故③错误;④观察图象,当x=﹣1时,函数值y=a﹣b+c<0,故④正确.故选:A.试题9答案:±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2试题10答案:x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).试题11答案:.【考点】根的判别式.【分析】根据方程的系数结合根的判别式即可得出△=1﹣4k=0,解之即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣x+k=0有两个相等的实数根,∴△=(﹣1)2﹣4k=1﹣4k=0,解得:k=.故答案为:.试题12答案:55°.【考点】圆周角定理.【分析】由圆周角定理可知,∠D=∠A,由于AB为直径,∠ACB=90°,在Rt△ABC中,利用互余关系求∠A即可.2·1·c·n·j·y【解答】解:∵AB为直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣35°=55°,由圆周角定理可知,∠D=∠A=55°,故答案为:55°.试题13答案:5cm .【考点】圆锥的计算;扇形面积的计算.【分析】由圆锥的几何特征,我们可得用半径为30cm,面积为150πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=30,由Rl=150π得l=10π;由2πr=l得r=5cm.故答案是:5cm.试题14答案:.【考点】规律型:数字的变化类.【分析】根据给出的4个数,可得:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,据此判断出第n个数的排列规律即可.【解答】解,1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,∴第n个数的排列规律是:1+2+3+4+…+n=.故答案为:.试题15答案:【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1﹣1﹣1=1.试题16答案:【考点】解一元一次不等式组.【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4∴原不等式组的解集为:1≤x<4.试题17答案:【考点】分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的x的值代入即可解答本题.【解答】解:(﹣1)÷===,当x=2时,原式=.试题18答案:【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.试题19答案:【考点】分式方程的应用.【分析】设甲车的速度为xkm/h,则乙车的速度为(x+30)km/h.根据时间相等列出方程即可解决问题.【解答】解:设甲车的速度为xkm/h,则乙车的速度为(x+30)km/h.由题意=,解得x=45,经检验x=45是原方程的解,且符合题意,x+30=75,答:甲车的速度为45km/h,则乙车的速度为75km/h.试题20答案:【考点】作图﹣旋转变换;轨迹.【分析】(1)先利用点A、B的坐标画出直角坐标系,再利用网格特点和旋转的性质画出点A1、B1,从而得到写出点A1、B1的坐标;(2)点B所经过的路径为以B点为圆心,BC为半径,圆心角为90°的弧,然后利用弧长公式计算即可.【解答】解:(1)如图,△A1B1C为所作,点A1、B1的坐标分别为(4,3),(4,1);(2)点B所经过的路径的长度==π.试题21答案:【考点】切线的判定.【分析】(1)连接OB,求出∠ABC=90°,∠PBA=∠OBC=∠C,推出∠PBO=90°,根据切线的判定推出即可;2-1-c-n-j-y (2)证△ABC≌△PBO(ASA),进而得出⊙O的半径.【解答】(1)证明:连接OB,∵AC是⊙O直径,∴∠ABC=90°,∵OC=OB,∴∠OBC=∠C,∵∠PBA=∠C,∴∠PBA=∠OBC,即∠PBA+∠OBA=∠OBC+∠ABO=∠ABC=90°,∴OB⊥PB,∵OB为半径,∴PB是⊙O的切线;(2)解:∵OC=OB,∠C=60°,∴△OBC为等边三角形,∴BC=OB,∵OP∥BC,∴∠CBO=∠POB,∴∠C=∠POB,在△ABC和△PBO中∵,∴△ABC≌△PBO(ASA),∴AC=OP=8,即⊙O的半径为4.试题22答案:【考点】列表法与树状图法;轴对称图形;中心对称图形.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由是轴对称图形而不是中心对称图形情况数,直接利用概率公式求解即可求得答案.【解答】(1)画树状图得:则共有16种等可能的结果;(2)∵是轴对称图形而不是中心对称图形情况数C、C,∴是轴对称图形而不是中心对称图形的概率=.试题23答案:【考点】二次函数综合题.【分析】(1)先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=m2﹣2m,然后利用三角形的面积公式可求得S四边形PAOC=S△AOC+S△PAC=2PQ+4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标;(3)根据两个角对应相等得两个三角形相似,可得M1,根据抛物线的对称性,可得M2,根据对应边成比例且夹角相等的两个三角形相似,可得关于n的方程,根据解方程,可得答案.【解答】解:(1)y=x+2中,当x=0时,y=2,当y=0时,x=﹣4,∴C(0,2),A(﹣4,0),由抛物线的对称性可知:点A与点B关于x=﹣对称,∴点B的坐标为1,0).∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x﹣1),又∵抛物线过点C(0,2),∴2=﹣4a∴a=﹣∴y=﹣x2﹣x+2.(2)设P(m,﹣m2﹣m+2).如图1,过点P作PQ⊥x轴交AC于点Q,∴Q(m,m+2),∴PQ=﹣m2﹣m+2﹣(m+2)=﹣m2﹣2m,∵S四边形PAOC=S△AOC+S△PAC=×4×2+×PQ×4=2PQ+4=﹣m2﹣4m+4=﹣(m+2)2+8,∴当m=﹣2时,△PAC的面积有最大值是8,此时P(﹣2,3).(3)如图2,,在Rt△AOC中,AC==2,在Rt△BOC中,BC==,∵AC2+BC2=20+5=25=AB2,∴∠ACB=90°,CO⊥AB,∴△ABC∽△AOC∽△CBO,①若点M在x轴上方时,当M点与C点重合,即M(0,2)时,△MAN∽△BAC.根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;②若点M在x轴的下方时,设N(n,0),则M(n,﹣n2﹣n+2),∴MN=n2+n﹣2,AN=n+4,当=,即===时,MN=AN,即n2+n﹣2=(n+4),化简,得n2+2n﹣8=0,n1=﹣4(舍),n2=2,M(2,﹣3);当=,即===2时,MN=2AN,即n2+n﹣2=2(n+4),化简,得n2﹣n﹣20=0,解得:n1=﹣4(舍去),n2=5,∴M(5,﹣18),综上所述:存在点M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC 相似.。
2017年云南中考数学模拟卷
2017年云南省初中学业水平考试模拟卷数学试题卷(一)(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卡一并交回.一、填空题(本大题共6个小题,每小题3分,共18分)1. -6的相反数是________.2. 因式分解:a3-9a=________.3. 函数y=3x-2中自变量x的取值范围是________.4. 如图,BD⊥AB,BD⊥CD,∠2=50°,则∠1的度数是________.第4题图5. 已知一个圆锥底面直径为6,母线长为12,则其侧面展开图的圆心角为________度.6. 观察图①至图⑤中小黑点的摆放规律,并按照这样的规律继续摆放,则第n个图中小黑点的个数为________.第6题图二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 政府报告大会中,2017工作重点任务中提到大力促进就业创业.完善就业政策,加大就业培训力度,加强对灵活就业、新就业形态的支持.今年高校毕业生7950000人,再创历史新高,要实施好就业促进、创业引领、基层成长等计划,促进多渠道就业创业.7950000用科学记数法表示为()A.7.95×106B. 79.5×104C.7.95×107D. 0.795×1068. 不等式3x-2>1的解集是()A. x<1B. x>-1 3C. x>1D. x<-1 39. 下列运算正确的是()A. a2·a4=a8B. a2+a3=a5C. (a-2)2=a2-4D. (a2)3=a610. 在二次函数y=x2-2x-3的图象中,若y随x的增大而增大,则x的取值范围是()A. x<1B. x<-1C. x>1D. x>-111. 如图所示是一个几何体的三视图,则这个几何体是()A. 圆柱B. 三棱锥C. 球D. 圆锥第11题图12. 关于x的一元二次方程x2-2x-(4-k)=0有实数根,则k的取值范围是()A. k≥3B. k≤3C. k≥5D. k≤513. 如图,点A、B、C在⊙O上,CO的延长线交AB 于点D,BD=BO,∠A=50°,则∠B的度数为()A. 15°B. 20°C. 25°D. 30°第13题图14. 云南省云县首届“龙胆草王”评选大赛,总共139位龙胆草种植户报名参加此次大赛.最终的比赛结果将根据龙胆草的长度、重量及外观长势三方面综合考量得出.下表是参赛龙胆草的重量统计结果:在上表统计的数据中,中位数和众数分别是( )A. 230,232B. 231,232C. 232,232D. 232,233三、解答题(本大题共9个小题,共70分)15. (本小题满分6分)化简求值:x 2+2x +1x 2-1·(1-x x +1),其中x =5+1.16. (本小题满分6分)如图,B、C、D三点在同一直线上,∠B=∠D,∠BCE =∠DCA,CA=CE,求证:AB=ED.第16题图17. (本小题满分6分)近年来玉溪市积极开展“六城同创”工作大力提升城市形象及群众幸福感,在城市建设中不断纳入海绵城市理念.某工程队接到了修建3000米海绵型道路的施工任务,修到一半的时候,由于采用新的施工工艺,修建效率提高为原来的1.5倍,结果提前5天完成了施工任务,问原来每天修建多少米海绵型道路?18. (本小题满分7分)近年来电子竞技在许多国家高速发展.某教学网站开设了有关电子竞技的课程,网上学习的月收费方式为:月使用费8元(包时上网时间40小时),超时费0.5元/小时.设小明每月上网学习电子竞技课程的时间为x小时,收费金额为y元.(1)求出y与x之间的函数关系式;(2)若小明5月份上该网站学习的时间为60小时,则他上网学习电子竞技课程的费用为多少元?19. (本小题满分8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:DE∥BF;(2)若DB平分∠EDF,求证:四边形DEBF是菱形.第19题图20. (本小题满分8分)小赵和小刘准备在国庆期间一起去昆明周边游玩,小赵想去西山森林公园,小刘想去金殿名胜区,为此他们想通过一个游戏决定去哪里游玩,谁赢了听谁的,现有一个圆形转盘,被5等分,上面的数字分别为-2、-1、0、1、2,每人转一次,若两个人所转的数字之和为正数则小赵胜;若两个人所转的数字之和为负数则小刘胜;若两数之和为0则重新转,直至分出胜负为止.(1)用画树状图或列表的方法(任选其一)列举出两人各转一次后所有可能出现的结果;(2)请计算出他们两人各转一次转盘一起去西山森林公园的概率.第20题图21. (本小题满分8分)如今共享单车可以说是火遍大江南北,在全国各大城市都可以看到各种颜色的共享单车,一时间如雨后春笋般冒出来,在方便大家出行的同时,也有很多不文明行为产生,主要表现为以下四个方面:A.用户私藏;B.不规范停车;C.上私锁;D.恶意损坏,某市文明办对于“共享单车时如何共享文明?”做了调研,并将调研结果绘制成如下不完整的统计图.请你结合图中信息解答下列问题:(1)此次参与调研的总人数是多少人?(2)请把条形统计图补充完整;(3)若该市使用共享单车存在不文明行为的有1200人,请根据样本估计全市“B.不规范停车”的人数是多少?第21题图22. (本小题满分9分)如图,AB是⊙O的直径,点C在AB的延长线上,∠BDC=∠A,CE⊥AD,交AD的延长线于点E.(1)求证:CD与⊙O相切;(2)若CE=6,tan∠DCE=12,求AD的长.第22题图23. (本小题满分12分)如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,与x轴相交于A、B两点,与y轴相交于点C,已知B点的坐标为B(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.第23题图2017年云南省初中学业水平考试模拟卷数学 试题卷(二)(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卡一并交回.一、填空题(本大题共6个小题,每小题3分,共18分)1. -14的倒数是________.2. 云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八,394000用科学记数法表示为____________.3. 不等式组⎩⎪⎨⎪⎧x -2<03x +5>0的解集是______________. 4. 如图,直线a ∥b ,直线c 与直线a 、b 分别交于A 、B 两点,AC ⊥b 于点C ,若∠1=43°,则∠2=________.第4题图5. 若(x-1)2=2,则代数式2x2-4x+5的值为________.6. 如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=________.第6题图二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列实数中最小的数是()A. -2B. - 5C. 13 D. -138. 下列计算正确的是()A. 3-1=-3B. 5-2= 3C. a6÷a2=a4D. (-12)0=09. 下面四个立体图形中,主视图与左视图不同的是()10. 某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A. 众数是110B. 方差是16C. 平均数是109.5D. 中位数是10911. 关于x 的一元二次方程x 2-2x -4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. 一个扇形的圆心角为60°,它所对的弧长为2π cm ,则这个扇形的半径为( ) A. 2 3 cm B. 3 cmC. 6 cmD. 3 cm13. 如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =k x 的图象上,OA =5,OC =1,则△ODE 的面积为( )A. 2.5B. 5C. 7.5D. 10第13题图14. 如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,再顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2,…,以此类推,则第六个正方形A6B6C6D6的周长是()A. 12 B.13 C.14 D. 1第14题图三、解答题(本大题共9个小题,共70分) 15. (本小题满分6分)化简求值:(x 2x -3+93-x )·xx 2+6x +9,其中x =-2.16. (本小题满分6分)如图,E 、F 是线段BD 上的两点,且DF =BE ,AE =CF ,AE ∥CF ,求证:AD ∥BC .第16题图17. (本小题满分7分)某水果批发市场香蕉和苹果某天的批发价与市面零售价如下表所示:水果经营户老王用了470元从水果批发市场批发,当天他卖完这些香蕉和苹果共赚了340元,这天他批发的香蕉和苹果分别是多少千克?18. (本小题满分7分)甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6,先从甲袋中随机取一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x,y分别作为A点的横坐标、纵坐标.(1)用适当的方法(列表或画树状图)写出点A(x,y)的所有情况;(2)求点A在第二象限的概率.19. (本小题满分7分)如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40 m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)第19题图20. (本小题满分8分)为迎接云南国际英语大赛暨国际文化交流大使选拔赛,某校举行了“英语单词听写”竞赛,每位学生听写单词99个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.第20题图根据以上信息解决下列问题:(1)本次共随机抽查了________名学生,并补全频数分布直方图;(2)若把每组听写正确的个数用这组数据的组中值代替,则被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于60个定为不合格,请你估计这所学校本次竞赛听写不合格的学生人数.21. (本小题满分8分)某果园苹果丰收,首批采摘46吨,计划租用A、B 两种型号的汽车共10辆,一次性运往外地销售.A、B两种型号的汽车的满载量和租车费用如下:设租A型汽车x辆,总租车费用为y元.(1)求y与x之间的函数关系式;(2)总租车费用最少是多少元?并说明此时的租车方案.22. (本小题满分9分)如图,在▱ABCD中,AE平分∠BAD交DC于点E,AD=5 cm,AB=8 cm.(1)求EC的长;(2)作∠BCD的平分线交AB于点F,求证:四边形AECF为平行四边形.第22题图23. (本小题满分12分)如图,直线y =-23x +2与x 轴、y 轴分别相交于点A 、B ,经过A 、B 的抛物线与x 轴的另一个交点为C (1,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使△PBC 周长最小?若存在,求出点P 的坐标;若不存在,请说明理由;(3)在线段AB 上是否存在点Q ,使△ACQ 与△AOB相似?若存在,求出点Q的坐标;若不存在,请说明理由.第23题图。
曲靖市2017年中考数学二模试卷
2017年云南省曲靖市中考数学二模试卷一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣|的相反数是.2.在函数y=中,自变量x的取值范围是.3.若x、y为实数,且|x+3|+=0,则()2017的值为.4.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是(只需添加一个即可)5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是.6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.2370008.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.510.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)11.下面空心圆柱形物体的左视图是()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.2017年云南省曲靖市中考数学二模试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣|的相反数是﹣.【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣|的相反数是,故答案为:﹣.2.在函数y=中,自变量x的取值范围是x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.3.若x、y为实数,且|x+3|+=0,则()2017的值为﹣1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y﹣3=0,解得x=﹣3,y=3.则原式=(﹣1)2017=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是∠ABC=90°(只需添加一个即可)【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面的几何体中,主视图为圆的是()A .B .C .D .2.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1 4.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个5.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1096.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F 处,若CD=3,则△ACE的面积为()A.1 B.3C.2 D.237.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )A.2 B.3 C.4 D.58.cos30°=()A.12B2C.32D39.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AGGF的值是()A.43B.54C.65D.7610.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m11.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.212.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a <﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH 为菱形,则对角线AC、BD应满足条件_____.14.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.15.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN 上的一个动点,则PA+PB的最小值为_____.16.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.17.方程3x(x-1)=2(x-1)的根是18.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.20.(6分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=. 21.(6分)如图,AB 、AD 是⊙O 的弦,△ABC 是等腰直角三角形,△ADC ≌△AEB ,请仅用无刻度直尺作图:在图1中作出圆心O ;在图2中过点B 作BF ∥AC .22.(8分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m 的值为____,表示“D 等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.23.(8分)如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE=∠C .求证:AE 与⊙O 相切于点A ;若AE ∥BC ,72,求AD 的长.24.(10分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数myx=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.25.(10分)先化简,后求值:(1﹣11a+)÷(2221a aa a-++),其中a=1.26.(12分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.27.(12分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.2.D【解析】【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.3.B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.4.D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.5.A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】39000000000=3.9×1.故选A.【点睛】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.6.B【解析】【分析】由折叠的性质可得,DE=EF,AC=EF的长,即可求△ACE的面积.【详解】解:∵点F是AC的中点,∴AF=CF=1AC,2∵将△CDE沿CE折叠到△CFE,∴DE=EF,∴AC=在Rt△ACD中,.∵S △ADC =S △AEC +S △CDE , ∴12×AD×CD=12×AC×EF+12×CD×DE ∴,∴DE=EF=1,∴S △AEC=12× 故选B .【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.7.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE=;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案.【详解】如图,连接BD 、CD,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.8.C【解析】【分析】直接根据特殊角的锐角三角函数值求解即可.【详解】3cos30︒=故选C.【点睛】 考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成. 9.C【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.【解析】【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.C【解析】【分析】由方程有两个相等的实数根,得到根的判别式等于0,求出m 的值,经检验即可得到满足题意m 的值.【详解】∵一元二次方程mx 1+mx ﹣12=0有两个相等实数根, ∴△=m 1﹣4m×(﹣12)=m 1+1m =0, 解得:m =0或m =﹣1,经检验m =0不合题意,则m =﹣1.故选C .。
2017年云南省曲靖市九年级中考模拟数学试卷二及解析
2017 年云南省曲靖市中考数学模拟试卷(二)
一、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 1. 的倒数是 . 边形.
2.一个多边形的内角和是 720°,那么这个多边形是
3. 云南省鲁甸县 2014 年 8 月 3 日发生 6.5 级地震,造成重大人员伤亡的经济损 失,灾害牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬 “一方有难、 八方支援”的中华民族优良传统, 及时向灾区同胞伸出援助之手. 截 至 9 月 19 日 17 时,云南省级共接收昭通鲁甸“8.3”地震捐款 80100 万元.科 学记数法表示为 元. . ,以点 C 为圆心,CB 的长为半径
(3)若点 P 是抛物线上的动点,点 Q 是直线 y=﹣x 上的动点,判断有几个位置 能够使得点 P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点 Q 的 坐标.
18.(7 分)如图,在平面直角坐标系中,直线 AC 与 x 轴交于 C 点,与 y 轴交 于 A 点,直线 AB 与 x 轴交于 B 点,与 y 轴交于 A 点,已知 A(0,4),B(2,0) . (1)求直线 AB 的解析式.
(2)若 S△ABC=7,求点 C 的坐标.
3
2017 年云南省曲靖市九年级中考模拟数学试卷二及解析
19. (7 分) 如图, 已知点 E, F 分别是▱ ABCD 的边 BC, AD 上的中点, 且∠BAC=90°. (1)求证:四边形 AECF 是菱形;
(2)若∠B=30°,BC=10,求菱形 AECF 面积.
20.(8 分)在 2016CCTV 英语风采大赛中,娄底市参赛选手表现突出,成绩均 不低于 60 分. 为了更好地了解娄底赛区的成绩分布情况, 随机抽取利了其中 200 名学生的成绩(成绩 x 取整数,总分 100 分)作为样本进行了整理,得到如图的 两幅不完整的统计图表: 根据所给信息,解答下列问题: (1)在表中的频数分布表中,m= 成绩 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 (2)请补全图中的频数分布直方图.
云南省曲靖市中考数学二模试卷
云南省曲靖市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分) (2018七下·太原期中) 计算2﹣2的结果是()A . 4B . ﹣4C .D . ﹣2. (2分)若x2·x4·()=x16 ,则括号内应填x的代数式为()A . x10B . x8C . x4D . x23. (2分)(2017·绵阳) 如图所示的几何体的主视图正确的是()A .B .C .D .4. (2分)(2017·枝江模拟) 在践行社会主义核心价值观活动中,共评选出各级各类“湖北好人”45 000多名.45 000这个数用科学记数法表示为()A . 4.5×103B . 4.5×104C . 4.5×105D . 0.45×1055. (2分) (2011八下·新昌竞赛) 等边三角形、平行四边形、矩形、菱形、正方形、正五边形中,既是轴对称图形,又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个6. (2分)(2018·遵义模拟) 下列各数中,为不等式组解的是()A . -1B . 0C . 2D . 47. (2分)若x2﹣4x﹣1=0,则 =()A .B . ﹣1C .D . ﹣8. (2分)(2017·曲靖模拟) 某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.52424.52525.5销售量(双)12252A . 25,25B . 24.5,25C . 25,24.5D . 24.5,24.59. (2分)(2019·毕节模拟) 如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3 ),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A . ( , )B . (2, )C . ( , )D . ( ,3﹣ )10. (2分)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为A .B .C .D .11. (2分) (2018九上·下城期中) 如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x轴的一个交点B(4,0),有下列结论:①2a+b=0,②abc>0;③方程ax2+bx+c=3有两个相等的实数根,④当y<0时,﹣2<x<4,其中正确的是()A . ②③B . ①③C . ①③④D . ①②③④12. (2分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)和B(3,0).下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=2(a≠0)没有实数根.其中正确的结论有()A . ①②B . ①③C . ②③D . ①②③13. (2分)(2020·荆门) 中,,D为的中点,,则的面积为()A .B .C .D .14. (2分) (2017七下·西华期末) 如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A . 40°B . 50°C . 60°D . 70°15. (2分)(2012·丽水) 分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A .B .C .D .16. (2分) (2016七下·嘉祥期末) 根据下列表述,能确定位置的是()A . 东经118°,北纬40°B . 江东大桥南C . 北偏东30°D . 某电影院第2排17. (2分)(2019·温州模拟) 如图,直角坐标系中,A是反比例函数(x>0)图象上一点,B是y轴正半轴上一点,以OA,AB为邻边作□ABCO.若点C及BC中点D都在反比例函数(k<0,x<0)图象上,则k的值为()A . -3B . -4C . -6D . -818. (2分)如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为A . 1B .C . 2D . 219. (2分) (2013八下·茂名竞赛) 如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A . 4 cmB . 5 cmC . 6 cmD . 10 cm20. (2分)(2017·深圳模拟) 如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O 路线作匀速运动,设运动时间为t(秒).∠APB=y(度),则下列图象中表示y与t之间函数关系最恰当的是()A .B .C .D .二、填空题 (共4题;共4分)21. (1分)(2019·昌图模拟) 在实数范围内分解因式: ________.22. (1分)(2011·钦州) 分式方程 = 的解是________.23. (1分)(2017·枣庄) 如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为________.24. (1分)(2017·盐城) 如图,曲线l是由函数y= 在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4 ,4 ),B(2 ,2 )的直线与曲线l相交于点M、N,则△OMN的面积为________.三、解答题 (共5题;共60分)25. (10分)某超市用5000元购进一批儿童玩具进行试销,很快销售一空.于是超市又调拨18000元资金购进该种儿童玩具,这次进货价比试销时每件多1元,购进的数量是试销时购进数量的3倍.(1)求试销时该种儿童玩具每件进货价是多少元?(2)超市将第二批儿童玩具按照试销时的标价出售90%后,余下的八折售完.试销和第二批儿童玩具两次销售中,超市总盈利不少于8520元,那么该种儿童玩具试销时每件标价至少为多少元?26. (15分) (2018八上·巴南月考) △ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE为边作等边△DEF,连接CF.(1)如图1,当点D与点B重合时,求证:△ADE≌△CDF;(2)如图2,当点D运动到如图2的位置时,猜想CE、CF、CD之间的数量关系,并说明理由;(3)如图3,当点D在BC延长线上时,直接写出CE、CF、CD之间的数量关系,不证明.27. (10分) (2019八下·乐陵期末) 如图,四边形是正方形,点是边上的任意一点,于点,,且交于点,求证:(1)(2)28. (10分) (2019九下·峄城月考) 交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使,.(1)求AB的长(精确到0.1米,参考数据:,);(2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A到B用时为2秒,这辆汽车是否超速?说明理由.29. (15分)(2017·南通) 已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.参考答案一、选择题 (共20题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、填空题 (共4题;共4分)21-1、22-1、23-1、24-1、三、解答题 (共5题;共60分) 25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、29-1、29-3、。
曲靖市中考数学二模试卷
曲靖市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)实数﹣5,0,,3中最大的数是()A . 3B . 0C .D . ﹣52. (2分)如图1所示,将点A向下平移5个单位长度后,将重合于图中的()A . 点CB . 点FC . 点DD . 点E3. (2分)(2020·北京模拟) 用反证法证明命题” 三角形中至少有一个内角不大于60°”, 首先应假设三角形中()A . 没有一个角不小于60°B . 没有一个角不大于60°C . 所有内角均不大于60°D . 所有内角均不小于60°4. (2分)(2020·石家庄模拟) 点A(1,),B(-2,)在函数的图像上,则下列结论正确的是()A .B .C .D .5. (2分)如图,AB∥CD,如果∠1是∠2的2倍,那么∠1等于()A . 60°B . 90°C . 120°D . 150°6. (2分) (2020九上·卫辉期末) 如图,小明为了测量高楼MN的高度,在离N点20米的A处放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度(精确到0.1米)约是()A . 18.75米B . 18.8米C . 21.3米D . 19米8. (2分)(2018·拱墅模拟) 下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是()A . 中位数是14B . 中位数可能是14.5C . 中位数是15或15.5D . 中位数可能是16二、填空题 (共8题;共8分)9. (1分)(2017·泸州) 分解因式:2m2﹣8=________.10. (1分)一组数据的方差是, ,则这组数据共有________个,平均数是________.11. (1分) (2017八下·宣城期末) 直线y= 不经过第________象限,y随x的增大而________.12. (1分)如图,DC∥AB,OA=2OC,则△OCD与△OAB的位似比是________13. (1分)(2018·镇江模拟) 用半径为10,圆心角为54°的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径等于________.14. (1分)如图,己知是的垂直平分线,的周长为,,则的周长为________.15. (1分)(2020·南通模拟) 数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是________.16. (1分) (2019八上·丹东期中) 比较大小:2 ________3 , ________三、解答题 (共12题;共99分)17. (6分) (2018九上·邗江期中) 如图,在四边形ABCD中,∠A=∠C=90°.(1)用直尺和圆规作⊙O,使它经过A、B、D三点(保留作图痕迹);(2)点C是否在⊙O上?请说明理由.18. (5分)下列数中哪些是不等式的解?哪些不是?-8,-4.5,-1.5,0,1,2.5,3,,7,8.319. (5分) (2017七上·西华期中) 若a是绝对值最小的数,b是最大的负整数。
云南省曲靖市数学中考二模试卷
云南省曲靖市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题) (共10题;共20分)1. (2分)(2017·温州) ﹣6的相反数是()A . 6B . 1C . 0D . ﹣62. (2分) (2018七上·宿迁期末) 如图是一个带有三角形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住三角形空洞又能堵住圆形空洞的几何体是()A .B .C .D .3. (2分)在苹果手机全球热销的今天,国产手机也在悄然崛起。
某网站对国产品牌手机的关注度进行了统计,并把关注度绘制成扇形统计图如图所示,关注度最高的手机品牌是()A . 小米B . 魅族C . 华为D . 步步高4. (2分) (2016八下·夏津期中) 已知一次函数y=kx+b的图象如图,则k、b的符号是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<05. (2分)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()A . 144cmB . 180cmC . 240cmD . 360cm6. (2分)一个盒子里有完全相同的三个小球,球上分别标有数字-1、1、2.随机摸出一个小球(不放回)其数字记为P ,再随机摸出另一个小球其数字记为q ,则满足关于的方程x2+Px+q=0 有实数根的概率是()A .B .C .D .7. (2分)(2017·广丰模拟) 如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为()A . 2B . 3C .D .8. (2分)某公园在取消售票之前对游园人数进行了10天的统计,结果有3天是每天有800人游园,有2天是每天1200人游园,有5天是600人游园,则这10天平均每天游园的人数是()A . 750B . 800C . 780D . 6009. (2分)如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A . -B . -C . -3D . -610. (2分)(2020·龙湾模拟) 如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm,宽留出1cm,则该六棱柱的侧面积是()A . (108- )cm2B . (108- )cm2C . (54- )cm2D . (54- )cm2二、填空题(共6小题) (共6题;共6分)11. (1分)(2017·延边模拟) 因式分解:m2﹣4n2=________.12. (1分) (2018九上·丹江口期末) 如图为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为5m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,由此可估计不规则区域的面积是________m2.13. (1分) (2019八上·浦东期中) 化简 ________.14. (1分)(2020·广西模拟) 如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°.若上面圆锥的侧面积为1,则下面圆锥的侧面积为________.15. (1分) (2019八下·嘉陵期中) 如图,将n个边长都为1cm的正方形按如图所示摆放,点A1, A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为 ________16. (1分) (2016八上·杭州月考) 在如图正方形网格的格点中找一点C,使得△ABC是等腰三角形,且AB 为其中一腰.这样的C点有________个。
曲靖市九年级数学中考二模试卷
曲靖市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共23分)1. (2分)下列说法正确的是()A . 正数和负数互为相反数B . -a的相反数是正数C . 任何有理数的绝对值都大于它本身D . 任何一个有理数都有相反数2. (2分)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A . 7.26×1010元B . 72.6×109元C . 0.726×1011元D . 7.26×1011元3. (5分) (2020八下·宁波期末) 下列①平行四边形,②矩形,③菱形,④正方形四个图形中,是中心对称图形,但不是轴对称图形是()A . ①B . ②C . ③D . ④4. (2分)(2018·东莞模拟) 下列运算结果正确的是()A . 5x﹣x=5B . 2x2+2x3=4x5C . ﹣n2﹣n2=﹣2n2D . a2b﹣ab2=05. (2分) (2020七下·焦作期末) 已知AD是△ABC中BC边上的中线,若AB=3,AD=2,则AC的长可以是()A . 6B . 7C . 8D . 96. (2分) (2020八下·温州期中) 学习组织“超强大脑”答题赛,参赛的12名选手得分情况如表所示,那么这10名选手得分的中位数和众数分别是()A . 86.5和90B . 80和90C . 90和95D . 90和907. (2分)用圆心角为120°,半径为6cm的扇形纸片恰好围成一个圆锥形无底纸帽(接缝忽略不计),则这个纸帽的高是()A . cmB . 4cmC . cmD . cm8. (2分)在下列四个图形中,能作为y是x的函数的图象的是()A .B .C .D .9. (2分) (2019八上·鄞州期中) 如图,折叠长方形纸片的一边,使点落在边上的点处,已知,,则折痕的长为A .B .C .D . 1310. (2分)(2016·镇江) 如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B 坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A .B .C . 2D . 3二、填空题 (共8题;共8分)11. (1分) (2020八下·眉山期末) 若关于若关于x的分式方程的解为正数,那么字母a的取值范围是________.12. (1分)(2020·湘西州) 若多边形的内角和是外角和的2倍,则该多边形是________边形.13. (1分)已知关于x的一元二次方程x2+bx+c=0,从﹣1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是________.14. (1分)(2020·盘锦) 如图,直线,的顶点和分别落在直线和上,若,,则的度数是________.15. (1分)若,,则的末位数字是________.16. (1分)某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是________ m.17. (1分)如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于________18. (1分)(2019·西藏) 如图,把一张长为,宽为的矩形纸片,沿对角线折叠,则重叠部分的面积为________.三、解答题 (共10题;共102分)19. (10分)(2020·临潭模拟)(1)计算:(2)化简:20. (10分) (2018八上·天河期末) 已知:多项式A=b³-2ab.(1)请将A进行因式分解;(2)若A=0且a≠0,b≠0,求的值21. (11分)(2017·盘锦模拟) 今年是第39个植树节,我们提出了“追求绿色时尚,走向绿色文明”的倡议.某校为积极响应这一倡议,立即在八、九年级开展征文活动,校团委对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿3篇的班级个数所对应的扇形的圆心角的度数.(2)求该校八、九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数最多的4个班中,八、九年级各有两个班,校团委准备从这四个班中选出两个班参加全校的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.22. (6分)(2016·南沙模拟) 某学校举办一项小制作评比活动,对初一年级6个班的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1,其中三班的件数是8.请你回答:(1)本次活动共有________件作品参赛;(2)经评比,四班和六班分别有10件和2件作品获奖,那么你认为这两个班中哪个班获奖率较高?为什么?(3)小制作评比结束后,组委会评出了4件优秀作品A、B、C、D.现决定从这4件作品中随机选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.23. (5分)如图,菱形ABCD中,对角线AC,BD交于O点,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC截取CF=CO,连接OF,若AC=8,BD=6,求四边形OFCD的面积.24. (5分)(2016·海南) 如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)25. (10分) (2018九上·宜城期中) 如图,是的直径,是的中点,于点,交于点.(1)求证:;(2)若,,求的半径和的长.26. (15分)(2018·成华模拟) 工人师傅用一块长为10分米,宽为8分米的矩形铁皮(厚度不计)制作一个无盖的长方体容器,如图所示,需要将四角各裁掉一个小正方形.(1)若长方体容器的底面面积为48平方分米,求裁掉的小正方形边长是多少分米?(2)若要求制作的长方体容器的底面长不大于底面宽的3倍,并将容器内部进行防锈处理,侧面每平方分米的防锈处理费用为0.5元,底面每平方分米的防锈处理费用为2元,问裁掉的正方形边长是多少分米时,总费用最低,最低费用为多少元?27. (15分)(2019·银川模拟) 如图,四边形ABCD是矩形,AB=6,BC=8,点P从A出发在线段AD上以1个单位/秒向点D运动,点Q同时从点C出发,以1个单位/秒的速度向点A运动,当点P到达点D时,点Q也随之停止运动.(1)设△APQ的面积为S,点P的运行时间为t,求S与t的函数关系式;(2) t取几时S的值最大,最大值是多少?(3)当t为何值时,△APQ是等腰三角形?28. (15分) (2019九上·港口期中) 如图,抛物线与轴交于两点( 在的左侧),与轴交于点,点与点关于抛物线的对称轴对称.(1)求抛物线的解析式及点的坐标:(2)点是抛物线对称轴上的一动点,当的周长最小时,求出点的坐标;(3)点在轴上,且,请直接写出点的坐标.参考答案一、单选题 (共10题;共23分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共102分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
曲靖市数学中考二模试卷
曲靖市数学中考二模试卷姓名:________班级:________一、 单选题 (共 10 题;共 20 分)成绩:________1. (2 分) 设 a= −1 , a 在两个相邻整数之间,则这两个整数是( ) A . 1和2 B . 2和3 C . 3和4 D . 4和52. (2 分) (2018·秦淮模拟) 计算的结果是( )A.3B.C.9D.3. (2 分) 下列计算结果正确的是( )A.=±6B . (﹣ab2)3=﹣a3b6C . tan45°= D . (x﹣3)2=x2﹣94. (2 分) 下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为 k,那么位似图形对应点的坐标的比等于k 或﹣k5. (2 分) (2020·天台模拟) 二次函数的顶点坐标是( )A.B.C.D.6.(2 分)(2020 八上·吴兴期末) 关于 x 的一元一次不等式 3x>6 的解都能满足下列哪一个不等式的解( )第 1 页 共 17 页A . 4x-9<x B . -3x+2<0 C . 2x+4<0D. 7. (2 分) (2020·天台模拟) 如图,AB 是⊙O 的直径,点 C 在⊙O 上,CD 平分∠ACB 交⊙O 于点 D , 若∠ABC =30°,则∠CAD 的度数为( )A . 100°B . 105°C . 110°D . 1208. (2 分) (2020·天台模拟) 如图,4 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为 60°, 、 、 都是格点,则()A.B.C.D. 9. (2 分) (2020·天台模拟) 如图,的半径为 2,圆心 在坐标原点,正方形的边长为 2,点 、 在第二象限,点 、 在上,且点 的坐标为(0,2).现将正方形绕点 按逆时针方向旋转 150°,点 运动到了上点 处,点 、 分别运动到了点 、 处,即得到正方形(点 与 重合);再将正方形绕点 按逆时针方向旋转 150°,点 运动到了第 2 页 共 17 页上点 处,点 、 分别运动到了点 、 处,即得到正方形合),……,按上述方法旋转 2020 次后,点的坐标为( )(点 与 重A . (0,2)B.C.D.10. (2 分) (2020·天台模拟) 如图,在作交 的延长线于点 ,若中,点 是线段 的面积等于 4,则上一点, 的面积等于(,过点 )A.8 B . 16 C . 24 D . 32二、 解答题 (共 8 题;共 74 分)11. (5 分) (2019·龙岩模拟) 先化简,再求值: 12. (2 分) (2019 九上·西岗期末) (1) 解方程:x2+4x﹣5=0÷(x﹣),其中 x= .(2) +( ) ﹣1﹣2cos30°+(2﹣π)0 13. (10 分) (2020·天台模拟) 如图,在 4×4 的格点图中, 均在格点上,利用无刻度直尺按要求完成下列各题,并保留作图痕迹:为格点三角形,即顶点 、 、第 3 页 共 17 页(1) 在边 上找一点 ,使(请在图①中完成);(2) 在边 上找一点 ,使(请在图②中完成).14. (11 分) (2020·天台模拟) 某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了部分学生,并将其结果绘制成如下不完整的条形图和扇形图.抽取的学生最喜欢体育活动的条形统计图抽取的学生最喜欢体育活动的扇形统计图请结合以上信息解答下列问题:(1) 在这次调查中一共抽查了________学生,扇形统计图中“乒乓球”所对应的圆心角为________度,并请补全条形统计图________;(2) 己知该校共有 1200 名学生,请你估计该校最喜爱跑步的学生人数;(3) 若在“排球、足球、跑步、乒乓球”四个活动项目任选两项设立课外兴趣小组,请用列表法或画树状图的方法求恰好选中“排球、乒乓球”这两项活动的概率.15. (10 分) (2020·天台模拟) 已知:如图,在矩形中,若,以 为圆心, 长为半径作交 的延长线于 ,过 作,垂足为 ,且.(1) 求证: 是 (2) 求 的长.的切线;第 4 页 共 17 页16. (10 分) (2020·天台模拟) 在平面直角坐标系中,点 , 为反比例函数上的两个动点,以 , 为顶点构造菱形.(1) 如图 1,点 , 横坐标分别为 1,4,对角线轴,菱形(2) 如图 2,当点 , 运动至某一时刻,点 ,点 恰好落在.求点 , 的坐标.面积为 .求 的值. 轴和 轴正半轴上,此时17. (15 分) (2020·天台模拟) 如图 1,抛物线过点,直线 下方抛物线上一动点, 为抛物线顶点,抛物线对称轴与直线 交于点 .,点 为(1) 求抛物线的表达式与顶点 的坐标;(2) 在直线 上是否存在点 ,使得 , , , 为顶点的四边形是平行四边形,若存在,请求出 点坐标;(3) 在 轴上是否存在点 ,使?若存在,求点 的坐标;若不存在,请说明理由.18. (11 分) (2020·天台模拟) 某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图 1、图 2、图 3 中, 、 是的中线,于点 ,像这样的三角形均称为“中垂三角形”.(1) (特例探究)如图 1,当,时,________,第 5 页 共 17 页________;如图 2,当,(2) (归纳证明)请你观察(1)中的计算结果,猜想明你的结论;(3) (拓展证明)时, 、________,________;、三者之间的关系,用等式表示出来,并利用图 3 证如图 4,在中,,, 、 、 分别是边 、的中点,连结 并延长至 ,使得,连结 ,当于点 时,求的长.三、 填空题 (共 6 题;共 7 分)19. (1 分) 数 2016 的相反数是________ .20. (1 分) (2019 七下·丰县月考) 已知 2m+5n+3=0,则 4m×32n 的值为________.21. (1 分) (2020 八下·无锡期中) 已知:如图,在△ABC 中,点 A1 , B1 , C1 分别是 BC、AC、AB 的中点,A2 , B2 , C2 分别是 B1C1 , A1C1 , A1B1 的中点,依此类推….若△ABC 的周长为 1,则△AnBnCn 的周长为________.22. (1 分) (2017 八下·重庆期中) 已知 a,b 为直角三角形的两条直角边的长,且 a,b 满足|a﹣3|+=0,则此三角形的周长为________.23. (1 分) (2020·天台模拟) 为运用数据处理道路拥堵问题,现用流量 (辆/小时)、速度 (千米/小时)、密度 (辆/千米)来描述车流的基本特征.现测得某路段流量 与速度 之间关系的部分数据如下表:速度 (千米/小时) 流量 (辆/小时)…… ……15 105020 120032 11524045……800 450 ……若己知 、 满足形如( 、 为常数)的二次函数关系式,且 、 、 满足.根据监控平台显示,当时,道路出现轻度拥堵,试求此时密度 的取值范围是________.24. (2 分) (2020·天台模拟) 在滑草过程中,小明发现滑道两边形如两条双曲线.如图,点 , , …在反比例函数的图象上,点 , , …在反比例函数轴,己知点 , …的横坐标分别为 1,2…,令四边形面积分别为 、 、…,的图象上,、、…的第 6 页 共 17 页(1) 用含 的代数式表示________;(2) 若,则________.第 7 页 共 17 页一、 单选题 (共 10 题;共 20 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、二、 解答题 (共 8 题;共 74 分)参考答案11-1、 12-1、第 8 页 共 17 页12-2、 13-1、 13-2、14-1、 14-2、第 9 页 共 17 页14-3、 15-1、15-2、第 10 页 共 17 页16-1、16-2、17-1、17-2、17-3、18-1、18-2、18-3、三、填空题 (共6题;共7分) 19-1、20-1、21-1、22-1、23-1、24-1、24-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2017年云南省曲靖市中考数学二模试卷学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、一个数用科学记数法表示为2.37×105,则这个数是( ) A .237 B .2370 C .23700 D .2370002、下列运算正确的是( )A .3a +2a =5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=03、在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .54、在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A ′B ′,若点A ′的坐标为(﹣2,2),则点B ′的坐标为( ) A .(4,3) B .(3,4) C .(﹣1,﹣2) D .(﹣2,﹣1)5、下面空心圆柱形物体的左视图是( )A .B .C .D .6、如图,下列哪个不等式组的解集在数轴上表示如图所示( )A .B .C .D .7、某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是( ) 码(cm ) 23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A. 25,25B. 24.5,25C. 25,24.5D. 24.5,24.58、如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =4,则AE 的长为( )A .B .2C .3D .4第II 卷(非选择题)二、填空题(题型注释)9、|﹣|的相反数是_____.10、在函数y =中,自变量x 的取值范围是_____.11、若x 、y 为实数,且|x +3|+=0,则()2017的值为_____.12、如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是_____(只需添加一个即可)13、已知A (0,3),B (2,3)是抛物线y =﹣x 2+bx +c 上两点,该抛物线的顶点坐标是_____.14、为了求1+3+32+33+…+3100的值,可令M =1+3+32+33+…+3100,则3M =3+32+33+34+…+3101,因此,3M ﹣M =3101﹣1,所以M =,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是_____.三、解答题(题型注释)15、先化简,再求值:(1+)÷ ,其中x =﹣1.16、已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:AB =DE .17、当前,“校园ipad 现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度? (3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18、学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19、有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20、某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y (℃)随时间x (h )变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y 随x 的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21、如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E . (1)求证:AC ⊥BD ;(2)若AB =14,cos ∠CAB =,求线段OE 的长.22、如图,点A 、B 、C 、D 均在⊙O 上,FB 与⊙O 相切于点B ,AB 与CF 交于点G ,OA ⊥CF 于点E ,AC ∥BF .(2)若tan∠F=,⊙O的半径为4,求CD的长.23、如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案1、D2、B3、C4、B5、A6、A7、A8、B9、10、x≥111、﹣112、∠ABC=90°13、(1,4)14、.15、,16、证明见解析17、(1)50人,补图表见解析;(2)36°;(3)2400人.18、甲、乙两种矿泉水的价格分别是2元、3元.19、(1);(2).20、(1)y=5x+10;(2)15小时21、(1)见解析;(2)22、(1)证明见解析;(2)23、(1);(2)a;(3)存在,a的值为2或4+8【解析】1、试题分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.解:2.37×105=237000.故选:D.2、试题分析:根据整式的运算法则即可求出答案.解:A.原式=5a,故A不正确;C.原式=2a4,故C不正确;D.原式=1,故D不正确;故选B.3、试题分析:根据中心对称图形的概念对各图形分析判断即可得解.解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.4、试题分析:直接利用平移中点的变化规律求解即可.解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.5、试题分析:找出从几何体的左边看所得到的视图即可.解:从几何体的左边看可得,故选:A.6、试题分析:根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.7、试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.8、试题分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO=,∴AE=2AO=2.故选B.点睛:本题主要考查等腰三角形的性质和平行四边形的性质.解题的关键在于理解作图所引出的平行四边形对角线互相平分这一性质,并利用勾股定理求解.9、试题分析:根据只有符号不同的两个数叫做互为相反数解答.解:|﹣|的相反数是,故答案为:.10、试题分析:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.根据二次根式的性质,被开方数大于等于0可知:x+5≥0,解不等式求x的范围.解:根据题意得:x+5≥0,解得x≥-5.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.11、试题分析:首先根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解:根据题意得:x+3=0,且y﹣3=0,解得x=﹣3,y=3.则原式=(﹣1)2017=﹣1.故答案是:﹣1.12、试题分析:此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.点睛:本题主要考查正方形的判定.熟练运用正方形判定定理是解题的关键.13、把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).“点睛”本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.14、试题解析:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016-1,则M=考点:有理数的乘方.15、试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解:原式=•=,当x=﹣1时,原式=.16、试题分析:首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF 可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17、试题分析:(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;统计图为:故答案为:5,0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18、试题分析:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19、试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20、试题分析:(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21、试题分析:本题考查了解直角三角形及菱形的判定与性质、平行四边变形的判定与性质的知识,解题的关键是读懂题意,选择合适的边角关系,难度不大.(1)、根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)、分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.试题解析:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.考点:菱形的判定与性质;平行四边形的性质;解直角三角形22、试题分析:(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=,tan∠ACF==,即,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.点睛:本题主要圆的相关证明、求解问题,涉及的知识有等腰三角形的性质及判定、切线的性质、勾股定理等.利用已知条件并结合图形进行推理是解题的关键.23、试题分析:(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=.(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.点睛:本题主要考相似的判定和性质.在解题中要注重数形结合、分类讨论及方程思想的应用.。