最新-江苏省泰州市海陵区2018届中考数学适应性考试 精品
江苏省泰州市海陵区2018-2019学年第二学期九年级数学二模试题含答案
二O 一九年海陵区适应性训练试题初三数学(考试时间:120分钟,满分150分)第一部分选择题(共18分)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号涂在答题卡相应位置上) 1.-2的绝对值等于(▲)A .-2B .2C .21 D .21- 2.下列各运算中,计算正确的是(▲)A .4xy +xy =5xyB .x +2x =2x 2C .5xy -3xy =2D .x +y =xy 3. 如图,右边几何体的主视图是(▲)4. 将一枚均匀的硬币连续抛掷两次,则两次都是正面朝上的概率等于(▲)A .0.5B .0.25C .0.75D .1 5.下列命题的逆命题...是真命题的是(▲) A .对顶角相等 B .如果a =0,那么ab =0 C .成中心对称的两个图形全等 D .两直线平行,同位角相等 6.函数)0(1>=x x y 与)0(4>=x xy 的图像如图所示,点C 是y 轴上的 任意一点,直线AB 平行于y 轴,分别与两个函数图像交于点A 、B , 连结AC 、BC .当AB 从左向右平移时,△ABC 的面积(▲) A .不变 B .逐渐减小 C .逐渐增大 D .先增大后减小二、填空题(本大题共10小题,每小题3分,共30分.请将答案直接填在答题卡相应的位A .D .C .B .置上) 7.38= ▲ .8. 2019年第一季度,泰州市实现地区生产总值1285.4亿元,同比增长7.2%,将数字128 540 000 000用科学记数法表示为 ▲ .9.若二次根式4 x 在实数范围内有意义,则x 的取值范围是 ▲ . 10.因式分解:2x 2-8= ▲ .11.一组数据:7,8,8,10,12,这组数据的中位数是 ▲ .12.一个圆锥的底面半径等于2,母线长为6,则该圆锥的侧面积等于 ▲ . 13.如图,AB ∥CD ,若∠B +∠D +∠BED =180°,则∠BED = ▲ . 14.已知x +2y =2,则1-2x -4y 的值等于 ▲ .15.如图,矩形ABCD 中,AB =4,点E 是边AD 上一点,且AE =1,将△ABE 沿BE 翻折后,点A 落在F 处,则点F 到直线AD 的距离等于 ▲ .16.如图,已知⊙O 的半径为m ,点C 为直径AB 延长线上一点,BC =m .过点C 任作一直线l ,若l 上总存在点P ,使过P 所作的⊙O 的两切线互相垂直,则∠ACP 的最大值等于 ▲ .三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出FEDCBAED CBA第13题第15题F C必要的文字说明、证明过程或演算步骤) 17.(本题12分,每小题6分) (1)计算:27)21(30cos 62--︒+-π;(2)化简:)383(311-++÷---x x x x .18.(本题8分)某校准备组织本校学生开展研学旅游活动,提供了4个研学基地:A (天德湖公园)、B (泰州科技馆)、C (沈毅纪念馆)、D (桃园),每位学生只选择一个基地.该校老师随机调查了部分学生,并对选取的研学基地情况进行统计,绘制了两幅不完整的统计图(如图所示).(1)该校老师选取的样本容量是_______; (2)补全条形统计图;(3)该校共有800名学生,请估计选择沈毅纪念馆研学基地的学生有多少人?19.(本题8分)如图,在3×3的方格中,A 、B 、C 、D 、E 分别位于格点上. (1)从A 、B 、C 、D 四个点中任选三个点,求所选的三点不能..构成三角形的概率; (2)在A 、B 、C 、D 四个点中任选两点,求所选的两点与点E 构成直角三角形的概率. (用列举法或表格法或树状图法)20.(本题8分)如图,在□ABCD 中,点E 、F 分别在AB 、CD 上,EF 与AC 相交于O ,学生选择研学基地情况条形统计图学生选择研学基地情况扇形统计图OE=OF.求证:OA=OC.21.(本题8分)为方便市民出行,泰州市政府决定重点建设两条快速路:永定路、东风路.目前两条路已建成通车里程约26千米,总造价为27.2亿元.如果永定快速路每千米的造价为0.8亿元,东风快速路每千米的造价为1.2亿元.问:永定快速路、东风快速路分别长多少千米?22.(本题10分)已知关于x的一元二次方程2x2+(m-2)x-m=0.(1)求证:不论m取何值,方程总有实数根;(2)若该方程的两根互为相反数,求m的值.23.(本题10分)如图,点A处的雷达可扫描半径500海里区域内的物体.已知B船在雷B 30°45°DCB A 达的南偏东30°处,C 船在B 船的正东方向,D 船在C 船的正北方向且在雷达的北偏东45°处,C 、D 两船相距((1)若AB =200海里,则点A 到直线BC 的距离是多少海里? (2)若BC =300海里,问D 船能否被雷达扫描到?24.(本题12分)如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 与点D ,过点D 作⊙O 的切线EF ,交AB 于点E ,交AC 的延长线于点F . (1)求证:BD =CD ; (2)求证:∠BAC =2∠FDC ;(3)若OA =3,DF =7,求CF 的长.25.(本题12分)如图所示,反比例函数y x在第一象限内分支上有一动点A ,连接AO 并延长与另一分支交于点B ,以AB 为边作一个等边△ABC ,使得点C 落在第四象限内.(1)当BC 平行x 轴时,试求出点C 的坐标;(2)在点A 运动过程中,直接写出△ABC 面积的最小值 ▲ ;(3)在点C 的运动路径上是否存在点D ,使得以A 、B 、C 、D 四个点构成的四边形为菱形?如果存在,请求出一个点D 的坐标;如果不存在,请说明理由.26.(本题14分)设二次函数c bx x y ++=2131,一次函数y 2=x ,若方程y 1=y 2的两根是x 1=1,x 2=2. (1)求b 、c 的值;(2)当x 满足1 < x < 2时,比较y 1与x 的大小并说明理由;(3)设点M 的坐标是(0,4),点P 是抛物线y 1上的一个动点,当点P 到点M 的距离与到直线y 2=x 的距离之和最小时,求点P 坐标.二O 一九年海陵区适应性训练数学试题参考答案说明:本参考答案只提供一种解法,其它解法参照给分 一、选择题 1-6:BABBDA 二、填空题xyxoFA7. 2 8. 1.2854×1011 9. x ≥4 10.2(x-2)(x+2) 11. 8 12. 12π 13.90° 14. -3 15. 178 16. 45°三、解答题17.(1)原式==1+33-4-33=-3. ……………………………过程4分,答案2分;(2)原式=)3839(3112-+--÷---x x x x x =111+-x =1+x x ……过程4分答案2分; 18.(1)200……………2分;(2)48人(图略)……………3分; (3)256人……………3分;19.(1)P=41……………………………………………………3分 (2)列表略:…………………………2分P=21.……………………3分 20. 证明△AOE ≌△COF ,…………………………6分所以OA =OC ……………………2分21.解:设永定快速路长x 千米,东风快速路y 千米,由题意得:⎩⎨⎧=+=+2.272.18.026y x y x ……………………4分; 解之得:⎩⎨⎧==1610y x .……………………………3分答:略………………………1分22.解:(1)Δ=(m-2)2+8m=(m+2)2 ≥0,所以方程总有实数根…………………………4分 (2) 由求根公式得x 1=1,x 2=2m-,…………………………4分 由题得2m-+1=0,m=2…………………………2分 (用根与系数关系求解不扣分)23.解:(1)过A 点作AE 垂直直线BC ,垂足为E 在直角三角形AEB 中,由cos30°=ABAE得AE =3100海里………………4分 (2)过A 作AF 垂直CD ,垂足为F ,设BE =x ,可得AE =x 3BAF =DF =300+x 即300+x+x 3=400+3100,解得x =100, 求得AD =2400>500………………5分 答略………………1分 24.(1)连接AD ,∵AC 是直径∴∠ADC =90°,AD ⊥BC ∵AB =AC ∴BD =DC ………………4分 (2)由等腰三角形三线合一可得∠CAD =21∠BAC 连接OD ,EF 是圆O 的切线,所以OD ⊥EF ,∴∠ODF =90°,∠FDC +∠ODC =90° 又∠OCD +∠CAD =90° ,OC =OD 所以∠OCD =∠ODC∴∠FDC =∠CAD =21∠BAC 即∠BAC =2∠FDC ………………4分 (3)易得△DFC ∽△AFD ,AFDF DFCF =,DF 2=CF ×AF )6()7(2+=CF CF,解得CF =1(舍去负值) ………………4分25.(1)过点A 作AD⊥x 轴,D 为垂足易得OD ,从而A 3)由中心对称得B (-3) 由轴对称得C (,-3)…………………………………4分 (2)△ABC 的面积最小值等于18…………………………………3分 (3)存在; 易证△AOF∽△OCG ,得OF , 由点A 坐标得OF ·CG ·从而点C 在函数(0)y x x=->图像上 ① 当BC ∥x 轴时,由(1)得A,3), B (-3),轴对称可得D ,-9) 把D ,-9)代入函数y x=-成立,所以A、B、C、D四个点构成菱形②当AC⊥X轴时,A(3,B(-3,,轴对称可得D(9,D(9,)代入函数y=成立,所以A、B、C、D四个点构成菱形 (5)分(写出一个点的坐标即可)26.(1)由题意可得⎪⎪⎩⎪⎪⎨⎧=++=++2234131cbcb解得b=0,c=32 (4)分(2)y1-x=)2)(1(3132312--=+-xxxx当1<x<2时,y1-x<0,所以y1 <x(3)由题知,抛物线与直线的两个交点坐标为(1,1)、(2,2)当P点坐标是(2,2)时,P到M的距离与到直线y2=x距离之和最小,(此时P到M的距离就是垂线段MP,P到y2=x的距离是0 )OP=22,MP=22,而OM=4,可证得MP垂直OP;P点在抛物线其它位置时,如果P在直线与抛物线两交点之外的P1处,可用垂线段最短证明当P在(2,2)时两者和最小;如果P在直线与抛物线两交点之间的P2处,由于P2在直线y2=x下方,MP2与直线必有交点N,用垂线段最短同样可以证明P在(2,2)时两者和最小,即所求P点坐标是(2,2)………6分。
2018年江苏省泰州市中考数学试卷及答案解析
泰州市二○一八年初中毕业、升学统一考试数 学 试 题(考试时间:120分钟 满分:150分)第一部分 选择题(共24分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.(2018江苏泰州,1,3分)()2--等于( )【答案】B【解析】-(-2)=2.故选B.【知识点】相反数2.(2018江苏泰州,2,3分)下列运算正确的是( )= = 2= 【答案】DA =,所以选项B ,所以选项C 2==,所以选项D 正确,故选D. 【知识点】积的算术平方根的性质,二次根式的乘除3.(2018江苏泰州,3,3分) 下列几何体中,主视图与俯视图不相同的是( )A.正方体B.四棱锥C.圆柱D.球【答案】B【解析】正方体的主视图和俯视图都是正方形;四棱锥的主视图是等腰三角形,俯视图是正方形及对角线;圆柱的主视图和俯视图都是矩形;球的的主视图和俯视图都是圆.故选B.【知识点】三视图4.(2018江苏泰州,4,3分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球 【答案】C【解析】在多次重复试验中,一个随机事件发生的频率会在某一个常数附近摆动,并且随着试验次数增多,摆动的幅度会减小,这个性质称为频率的稳定性。
选项C 、D 肯定错误,如果小亮以往比赛次数较少,他的进球率就不一定稳定,就是稳定的话,选项A 也应加上“大约”或“左右”.故选B.【知识点】频率的稳定性,概率的意义5.(2018江苏泰州,5,3分)已知1x 、2x 是关于x 的方程220x ax --=的两根,下列结论一定正确的是( )A.12x x≠ B.12x x+> C.12x x⋅> D.1x<,2x<【答案】A【解析】∵△=280a+>,∴无论a为何值,方程总有两个不相等的实数根,根据“根与系数的关系”得122x x=-g,∴12x x、异号,故选A.【知识点】根的判别式,根与系数的关系6.(2018江苏泰州,6,3分)如图,平面直角坐标系xOy中,点A的坐标为()0,6,AB y⊥轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是( )A.线段PQ始终经过点()2,3 B.线段PQ始终经过点()3,2C.线段PQ始终经过点()2,2 D.线段PQ不可能始终经过某一定点【答案】A【解析】连接AO交PQ于点C,过点C作CD⊥AB于点D,∵AB⊥y轴,∴AB∥x轴,∴∠A=∠COP,∠AQC=∠OPC,∴△AQC∽△OPC,∴2AC AQOC OP==,∴23ACAO=,同上得243CD BO==,263AD AB==,∵点A的坐标为(9,6),∴点C的坐标为(3,2).故选A.【知识点】双动点,相似,定点第二部分非选择题(共132分)二、填空题(本大题共10个小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置.......上.)7.(2018江苏泰州,7,3分)8的立方根等于= .【答案】2【解析】∵32=8,∴8的立方根等于2.【知识点】立方根8.(2018江苏泰州,8,3分)亚洲陆地面积约为44 00万平方千米,将44 000 000用科学记数法表示为.【答案】74.410⨯第6题答图第6题图【解析】44 000 000=74.410⨯【知识点】科学记数法9.(2018江苏泰州,9,3分)计算:231(2)2x x-g= .【答案】74x-【解析】231(2)2x x-g=61(8)2x x-g=74x-【知识点】积的乘方,单项式的乘法10.(2018江苏泰州,10,3分)分解因式:3a a-= .【答案】(1)(1)a a a+-【解析】3a a-=2(1)a a-=(1)(1)a a a+-.【知识点】因式分解11.(2018江苏泰州,11,3分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这四个统计量中,该鞋厂最关注的是.【答案】众数【解析】出现次数最多的数据叫做众数,鞋厂通过调查销售的情况来决定如何生产,所以鞋厂最关注众数.【知识点】众数12. (2018江苏泰州,12,3分)已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为.【答案】5【解析】由“三角形三边关系”得5-1<第三边的长<5+1,即4<第三边的长<6,又因为第三边长为整数,所以第三边的长为5.【知识点】三角形三边关系13.(2018江苏泰州,13,3分)如图,□ABCD中,AC、BD相交于点O,若6AD=,16AC BD+=,则BOC△的周长为.【答案】14【解析】在□ABCD中,12OC AC=,12OB BD=,6BC AD==,∴1()82OC OB AC BD+=+=,∴△BOC的周长为14.【知识点】平行四边形的性质14. (2018江苏泰州,14,3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为第13题图AC、BD的中点,∠D=α,则∠BEF的度数为.(用含α的式子表示)【答案】2703°α-【解析】∵∠ACD=90°,∴∠CAD=90°-∠D=90°-α,∵E、F分别为AC、BD的中点,∴EF∥AD,∴∠CEF=∠CAD=90°-α,∵AC平分∠BAD,∴∠BAC=∠CAD=90°-α,∵∠ABC=90°,E为AC的中点,∴AE=BE,∴∠EBA=∠BAC=90°-α,∴∠BEC=180°-2α,∴∠BEF=270°-3α.【知识点】三角形中位线,直角三角形的性质,等腰三角形的性质15.(2018江苏泰州,15,3分)已知23369x y a a-=-+,269x y a a+=+-.若x≤y,则实数a的值为.【答案】3【解析】两式相减,得22221218x y a a-=-+,所以2269(3)x y a a a-=-+=-,∵x≤y,∴x-y≤0,∴2(3)a-≤0,∴3a=.【知识点】方程组,非负数,作差法16.(2018江苏泰州,16,3分)如图,△ABC中,∠ACB=90°,sin A=513,AC=12,将△ABC绕点C顺时针旋转90°得到△A′B′C,P为线段A′B′上的动点,以点P为圆心、PA'长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为.【答案】15625或10213【解析】设⊙P的半径为r,∵∠ACB=90°,∴BCAB=sin A=513,222BC AC AB+=,∵AC=12,∴BC=5,AB=13,第16题图第14题图由旋转得∠A′CB′=∠ACB=90°,∠A′=∠A,A′C= AC=12,B′C= BC=5,A′B′=AB=13,∴∠A′CB=180°,∴A′、C、B′三点共线,∵点P到直线BC的距离小于半径P′A,∴⊙P与直线BC始终相交,过点P作PD⊥AC于点D,则∠B′DP=∠B′CA′=90°,∵∠DB′P=∠CB′A′,∴△B′DP∽△B′CA′,∴PD PBA C A B'=''',∴131213PD r-=,∴12(13)12121313rPD r-==-,当⊙P与AC边相切时,PD=P A′,∴121213r r-=,∴15625r=,延长A′B′交AB于点E,∵∠A+∠B=90°,∠A′=∠A,∴∠A′+∠B=90°,∴∠A′EB=90°,第16题答图2第16题答图1同上得122041313A E AB ''==, 当⊙P 与AB 边相切时,A′E =2P A′, ∴10213r =, 综上所述,⊙P 的半径为15625或10213. 【知识点】锐角三角函数,直线与圆的位置关系三、解答题(本大题共有10小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(2018江苏泰州,17,12分)(本题满分12分)(1)计算:0212cos302()2°π-+--;【思路分析】逐项计算,然后合并.【解题过程】0212cos302()2°π-+--=12(242+⨯---=5-+【知识点】负指数幂、零指数幂、三角函数、二次根式(2)化简:22169(2)11x x x x x -++-÷+- 【思路分析】根据分式的混合运算法则,先通分算括号里的减法,再把除法转化为乘法运算,最后约成最简分式或整式. 【解题过程】22169(2)11x x x x x -++-÷+- =22(1)(1)(3)1(1)(1)x x x x x x +--+÷++- =23(1)(1)1(3)x x x x x ++-++g =13x x -+ 【知识点】分式的化简18.(2018江苏泰州,18,8分)(本题满分8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐4款软件,投入市场后,游戏软件的利润占这4款软件总利润的40%.下图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,回答下列问题:(1)直接写出a、m 的值;(2)分别求网购和视频软件的人均利润; (3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.【思路分析】本题考查了统计图及统计的相关知识,解答本题的关键是能从条形统计图和扇形统计图中读取有用的信息,利用读取的信息进行判断.第(1)问中根据“扇形统计图中各百分比之和为1”得a 值,根据两图对应关系可得总利润,然后可求m 值;还是根据两图对应关系解决第(2)问;一元一次方程解决第(3)问.【解题过程】(1)a=20,m=1200÷40%-1200-560-280=960;(2)960÷(20×30%)=160,560÷(20×20%)=140,答:网购的人均利润为160万元,视频软件的人均利润为140万元;(3)设网购人数为x ,则视频软件的人数为10-x ,160x +140(10-x )-(960+560)=60,∴x=9,答:网购9人,视频软件1人,使总利润增加60万元.【知识点】条形统计图;扇形统计图;一元一次方程的应用19.(2018江苏泰州,19,8分)(本题满分8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A ,B 两个景点中任意选择一个游玩,下午从C 、D 、E 三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点B 和C 的概率.【思路分析】画出树状图或列表,然后根据概率公式列式计算即可得解.【解题过程】画树状图如下:开始下午 上午 (第19题答图)A E C D BEC D所有等可能的结果为(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),∴P(恰好选中景点B和C)=16.【知识点】概率;列表法与树状图法20.(2018江苏泰州,20,8分)(本题满分8分)如图,90A D==∠∠°,AC DB=,AC、DB相交于点O.求证:OB OC=.【思路分析】根据“HL”可证Rt△ABC≌Rt△DCB,得∠A CB=∠DBC,从而得证OB OC=.【解题过程】在Rt△ABC和Rt△DCB中AC DBBC CB=⎧⎨=⎩∴Rt△ABC≌Rt△DCB(HL)∴∠A CB=∠DBC,∴OB OC=.【知识点】三角形全等21.(2018江苏泰州,21,10分)(本题满分10分)为了改善生态环境,某乡村计划植树4000棵,由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?【思路分析】先找出相等关系为:①原计划植树4000棵天数=实际植树4080棵天数-3,②实际工作效率=原计划工作效率(120%)⨯+,再设出未知数,将其中一个相等关系变成代数式,根据所剩相等关系得方程.【解题过程】设原计划植树x天,则实际植树(x-3)天,40804000(120%)3x x=⨯+-,解之得20x=,经检验,20x=是原方程的根.答:原计划植树20天.【知识点】分式方程的应用22.(2018江苏泰州,22,10分)(本题满分10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.第20题图【思路分析】(1)DE与⊙O的公共点为D,所以连接DO,证明DE⊥OD即可,(2)显然图中阴影部分的面积等于扇形AOD的面积减去△DOF的面积,然后去为求两个面积而准备条件.【解题过程】解:(1)DE与⊙O相切,理由:连接DO,∵AD平分∠ABC,∴∠CBD=∠ABD,∵OD=OB,∴∠ODB=∠ABD,∴∠ODB=∠CBD,∴OD∥BE,∵DE⊥BC,∴DE⊥OD,∵D为半径OD的外端,∴DE与⊙O相切;(2)∵AD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF=3,∵BE=33,∴3tanDECBDBE∠==,∴∠CBD=30°,∴∠ABC=60°,∵OD∥BE,第22题答图第22题图∴∠AOD=∠ABC=60°,∴23sinDFODAOD==∠,∴3OF=,∴DOFAODS=S-S∆阴影部分扇形=260(23)1333602π⨯-⨯⨯=3322π-,∴图中阴影部分的面积为332π-.【知识点】直线与圆的位置关系,扇形面积23.(2018江苏泰州,23,10分)(本题满分10分)日照间距系数反映了房屋日照情况,如图①,当前后房屋都朝向正南时,日照间距系数()1:L H H=-,其中L为楼间水平距离,H为南侧楼房高度,1H为北侧楼房底层窗台至地面高度. 如图③,山坡EF朝北,EF长为15m,坡度为1:0.75i=,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?【思路分析】(1)在Rt△EFH中,根据“勾股定理”可得一个相等关系,再根据“坡度的定义”又得FH与EH 的一个关系,已知EF长为15m,可求FH和EH的长;(2)现将图②构造成图①的形状(直角梯形),再根据日照间距系数()1:L H H=-和日照间距系数≥1.25得不等式,从而得解.【解题过程】解:(1)在Rt△EFH中,1:0.75EHiFH==,222215EH FH EF+==,∴9,12FH EH==,答:山坡EF的水平宽度FH的长度为9m;(2)第23题图过点A 作AG ⊥CF ,交CF 的延长线于点G ,过点P 作PK ⊥AG 于点K ,则KG =PC =0.9m ,AG =EH =12m ,∴BK =BA +AG -KG =22.5+12-0.9=33.6,∵ 1.25PK BK≥, ∴ 1.25PK BK ≥=1.25×33.6=42, ∴CG ≥42, ∵FH =9,HG =EA =4, ∴CF ≥29,答:底部C 距F 处至少29m.【知识点】新定义,锐角三角函数的应用24.(2018江苏泰州,24,10分)(本题满分10分)平面直角坐标系xoy 中,二次函数22222y x mx m m =-+++的图像与x 轴有两个交点.(1)当m =-2时,求二次函数的图像与x 轴的交点坐标;(2)过点P (0,m -1)作直线l ⊥y 轴,二次函数图像的顶点A 在直线l 与x 轴之间(不包含点A 在直线l 上),求m 的范围;(3)在(2)的条件下,设二次函数图像的对称轴与直线l 相交于点B ,求△ABO 的面积最大时m 的值.【思路分析】(1)当m =-2时,二次函数变为242y x x =++,令2420x x ++=,得解;(2)先根据“二次函数的图像与x 轴有两个交点”得m 的取值范围,从而确定点P (0,m -1)的大致位置,在用m 的代数式表示二次函数顶点A 的坐标,最后“顶点A 在直线l 与x 轴之间”得关于m 的不等式组,解不等式组即可;(3)先用m 的代数式表示出△ABO 的面积,根据增减性求出面积最大时m 的值.【解题过程】解:(1)当m =-2时,242y x x =++,令2420x x ++=,得22x =-±,∴二次函数的图像与x 轴的交点坐标为(22-±,0); (2)令22222x mx m m -+++=0,则△=22(2)4(22)0m m m --++>,∴1m <-, ∴点P (0,m -1)在x 轴负半轴上,∵2()22y x m m =-++,∴顶点A (m ,2m +2)在第三象限,∵点A 在直线l 与x 轴之间,∴m -1<2m +2<0,∴-3<m <-1;(3)∵二次函数图像的对称轴与直线l 相交于点B ,∴点B 的坐标为(m ,m -1),∴AB =A B y y -=(2m +2)-(m -1)= m +3,∴S △ABO =1122A AB x ⨯⨯=1(3)()2m m ⨯+⨯-=21322m m --=2139()228m -++, 第23题答图∴△ABO的面积最大时32m=-.【知识点】二次函数与一元二次方程的关系,三角形面积,二次函数的最值25.(2018江苏泰州,25,12分)(本题满分12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②).(1)根据以上操作和发现,求CDAD的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开,求证:90HPC=∠°.②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由) .【思路分析】(1)由折叠得△BCE是等腰直角三角形,所以CE=CD=2BC=2AD,得解;(2)①先证△AEH 是等腰直角三角形,设BC=m,先后用m的代数式表示出AE、AH、HD、HC的长,再设AP=x,用x的代数式分别表示出PH、PC的长,根据“PH=PC”得方程,解方程得AP=BC,再证Rt△APH≌Rt△CBP后易得90HPC=∠°;②折叠后得AP=AD或∠BCP=22.5°即可.【解题过程】(1)在矩形ABCD中,∠A=∠BCD=∠B=∠D=90°,AD=BC,AB=CD,由折叠得∠BCE=12∠BCD=45°,CE=CD,∴CE=CD=cosBCBCE∠=2BC=2AD,∴CDAD=2;(2)①方法一:连接EH,PHA DEB C第25题图∵BE =BC ×tan ∠BCE =m ,∴AE =-1)m ,由折叠得∠HEC =∠D =90°,∵∠BEC =90°-∠BCE=45°,∴∠AEH =90°-∠BEC =45°,∴AH = AE ×tan ∠AEH=-1)m ,设AP =x ,则BPm - x ,由折叠得PH =PC ,∴))22221m x x m ⎡⎤-+=-+⎣⎦ , ∴x =m ,∴AP =BC ,∴Rt △APH ≌Rt △CBP (HL ),∴∠APH =∠BCP ,∵∠BPC +∠BCP =90°,∴∠APH +∠BCP =90°,∴∠HPC =90°;方法二:同方法一得AH=-1)m ,∴HD =(2)m , 过点F 作AD 的平行线,与AB 、DC 分别交于点M 、N ,则AD ∥MN ∥BC ,∴12CN CF CD CH ==, ∴FN 是△CHD 的中位线, ∴1(12FN HD m ==, 证MN =BC =m,得2FM MN FN m =-=, 证122FG ND CD m ===, ∴FM FG =,证△FMP ≌△FGH (ASA ),∴FP =FH ,∵∠PFH =90°,∴∠FPH =45°,同理:∠FPC =45°,∴∠HPC =90°;②沿过点D 的直线折叠矩形纸片,使点A 落在DC 边上,折痕与AB 相交于点P .【知识点】矩形折叠,全等,相似,方程思想26.(2018江苏泰州,26,14分)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数()10k y x x =>的图象.点'A 与点A 关于点O 对称,一次函数2y mx n =+的图象经过点'A .(1)设2a =,点()4,2B 在函数1y ,2y 的图像上.①分别求函数1y ,2y 的表达式;②直接写出使120y y >>成立的x 的范围;(2)如图①,设函数1y ,2y 的图像相交于点B ,点B 的横坐标为3a ,'AA B △的面积为16,求k 的值;(3)设12m =,如图②,过点A 作AD x ⊥轴,与函数2y 的图像相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数2y 的图像与线段EF 的交点P 一定在函数1y 的图像上.【思路分析】(1)①由B (4,2)可求18y x=,将点A 的横坐标为a 代入1y 可得点A 的坐标,继而可求直线'A B 即2y 的表达式;②结合图像求不等式组1220y y y >⎧⎨>⎩的解集即可;(2) A (a ,k a ),方法一:如图③,连接OB ,根据“中线平分面积”得S △AOB =12S △AA′B =8,根据“k 得几何意义”得S 四边形BAGH = S △AOB =8,再解关于k 的方程即可;方法二:如图④,分割法,过点A 作x 轴的垂线,交A′B 于点L ,得S △AA′B = S △AA′L + S △ABL =12AL (1h +2h )=12AL (B x -A x '),再用k 的代数式分别表示AL 、B x 、A x ',最后解方程;方法三:如图⑤,通过补形法用k 的代数式'AA B △的面积后解方程;(3)如图⑥,先由12m=、A′(-a,-ka)得21122ky x aa=+-,求22a kON akOMaa-=-+=12,再用a的代数式表示出AD、DE的长,再证△MON∽△DEP,得PEDE=ONOM=12,所以12PE DE=,从而用k的代数式表示点P坐标,最后验证点P在函数1y的图像上.【解题过程】(1)①∵B(4,2),∴18yx=,∵a=2,∴A(2,4),∵点A′与点A关于原点对称,∴A′(-2,-4),A′O=AO,∴4224m nm n+=⎧⎨-+=-⎩,∴12mn=⎧⎨=-⎩,∴22y x=-;②2<x<4;(2)方法一:如图③,连接OB,∵A′O=AO=12AA′,∴S△AOB=12S△AA′B=8,分别过点A、B作x轴的垂线,垂足为点G、H,OB与AG相交于点K,则∴S△BOH=S△AOG,∴S四边形BKGH = S△AOK,∴S四边形BAGH= S△AOB=8,∴12(AG+BH)×GH=8,∵A(a,ka),B(3a,3ka),∴12(ka+3ka)(3a-a)=8,∴k=6;方法二:如图④,过点A作x轴的垂线,交A′B于点L,分别作点A′、B到AL的距离1h、2h,S△AA′B= S△AA′L+S△ABL=12AL(1h+2h),将A′(-a,-ka),B(3a,3ka)代入2y mx n=+,得33kma nakma na⎧-+=-⎪⎪⎨⎪+=⎪⎩,∴2323kmakna⎧=⎪⎪⎨⎪=-⎪⎩,∴22233k ky xa a=-,当x=a时,222333ak k kya a a=-=-,∴点L的坐标为(a,3ka-),∴AL=4()33A Lk k ky ya a a-=--=,∴S△AA′B=12×43ka×(3a+a),∴k=6;方法三:如图⑤,分别过点A′、A作x轴平行线,过点A′、B作y轴平行线,它们的交点为Q、R、S,∵A(a,ka),B(3a,3ka),∴A′(-a,-ka),Q(3a,-ka),R(3a,ka),S(-a,ka),∴S A′=RQ=2ka,SR =A′Q=4a,SA=2a,AR=2a,RB=23ka,BQ=43ka,∵S△AA′B=16,∴4a×2ka-12×2a×2ka-12×2a×23ka-12×4a×43ka=16,∴k=6;(3)如图⑥,A′(-a,-ka)代入212y x n=+,得12ka na-+=-,∴12kn aa=-,∴21122ky x aa=+-,设21122ky x aa=+-与x轴交于点M,与y轴交于点N,则M(2kaa-+,0),N(0,2a ka-),∴12()2222()a k kaON a ak kOMa aa a--==-+--=12,∵AD⊥x轴,∴DE∥x轴,∴∠OMN=∠EDP,∵∠MON=∠E=90°,∴△MON∽△DEP,∴PE DE =ON OM =12, ∵AD ⊥x 轴, ∴点D 坐标为(,)ka a a -,∴AD =2()A D k k k y y a a a a a -=--=-, ∴DE =2k a a-, ∴PE =12DE =2k a a -, ∵点D 坐标为(,)k a a a-, ∴点P 坐标为2(,)2k a a , ∴点P 在函数1k y x=上.【知识点】反比例函数,方程思想,数形结合,三角形面积,三线共点。
2018年泰州市网上阅卷适应性训练数学试题
2018年泰州市中考模拟试题数学试卷(考试用时:共120分钟 试卷满分:150分)命题人(整编):吴骏涛 (2017-9)一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列计算正确的是( ▲ )A . 325a b ab +=B .44a a a ⋅=C .623a a a ÷=D .3262()a b a b -= 2.下面的几何体中,主视图不是..矩形的是( ▲ ) A . B . C . D .3.如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于( ▲ ) A .90° B .180° C .210° D .270°4.钟面上的分针的长为1,从3点到3点30分,分针在钟面上扫过的面积是( ▲ ) A .12πB .14πC . 18πD .π5 2①()220x x x -->的值随着x 的增大越来越小; ②()20x x ->的值有可能等于1; ③()220x x x -->的值随着x 的增大越来越接近于1;④()220x x x -->的值最大值是3.其中推测正确的有( ▲ )A . 1个B . 2个C .3个D .4个 6.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y1和过P 、A 两点的二次函数y2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于(▲ ) A .B .C .3D .4二、填空题(本大题共10小题,每小题3分,共30分,不需要写出解答过程,请把答案直接填写在答题..卡相应位置.....上) 7.已知a 是1-17的整数部分,则a = ▲ .(第3题)8.母线长为3,底面圆的直径为2的圆锥的侧面积为 ▲ . 9.下列四个函数:①21y x =-+,②32y x =-,③3y x =-,④22y x =+中,当0x >时,y 随x 的增大而增大的函数是 ▲ (选填序号).10.若二次函数2()1y x m =--,当2x ≤时,y 随x 的增大而减小,则m 的取值范围是 ▲ .11.某超市的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以相同的价格卖出同样的52支牙刷和28盒牙膏,这一天收入应该是 ▲ 元.12.如果关于x 、y 二元一次方程组⎩⎨⎧=+=-1516ny mx by ax 的解是⎩⎨⎧==27y x ,那么关于x 、y 的二元一次方程组⎩⎨⎧=-++=--+15)()2(16)()2(y x n y x m y x b y x a 的解是 ▲ .13.如图,点G 为△ABC 的重心,GE ∥BC ,BC =12,则GE = ▲ .14.如图,点A 在反比例函数)0(4>=x x y 的图像上,点B 在反比例函数)0(9<-=x x y 的图像上,且∠AOB =90°,则tan ∠OAB 的值为 ▲ . 15.如图,在Rt △ABC 中,∠ACB =90°,将三角形ABC 沿BD 折叠,点C 恰巧落在边AB上的C ′处,折痕为BD ,再将其沿DE 折叠,使点A 落在DC ′的延长线上的A ′处,若三角形BED 与三角形ABC 相似,则AC BD= ▲ .16.如图是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA ,OB ,OC抽象为线段,有OA =OB =OC ,且∠AOB =120°,折线NG ﹣GH ﹣HE ﹣EF 表示楼梯,GH ,EF 是水平线,NG ,HE 是铅垂线,半径相等的小轮子⊙A ,⊙B 与楼梯两边都相切,且AO ∥GH .如果一级楼梯的高度HE =(83+2)cm ,点H 到线段OB 的距离d 满足条件d ≤3cm ,那么小轮子半径r 的取值范围是 ▲ . 三、解答题 (本大题共10小题,共102分,请在答题卡的指定区域内.........作答,解答时写出必要的文字说明、证明过程或演算步骤)17. (本题10分)(1)计算:(123tan 302--++o(2)化简:22()()(2)3a b a b a b a ++-+-.18.(本题6分)先化简121()a a a a a --÷-,再选择一个有意义的数a 代入求值.(第16题) (第14题) GE C DB A(第15题)C'A'E CD BA19.(本题8分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,可以随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少? (用树状图或列表法求解)20.(本题10分)已知关于x 的方程220x ax a ++-=.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.21. (本题10分)根据某网站调查,2018年泰州市市网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若某市中心城区约有90万人口,请你估计该市中心城区最关注教育问题的人数约为多少万人?(3)据统计,2016年网民最关注教育问题的人数所占百分比约为10%,则从2016年到2018年的最关注教育问题的人数所占百分比的年平均增长率约为多少?(已知16.310≈)泰州市网民关注的热点问题情况统计图人数32122.(本题10分)A 、B 两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B 城,乙车驶往A 城,甲车在行驶过程中速度始终不变.甲车距B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的关系如图.(1)求y 关于x 的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设 行驶过程中,相遇前两车相距的路程为s (千米). 请直接写出s 关于x 的表达式; (3)当乙车按(2)中的状态行驶与甲车相遇后, 速度随即改为a (千米/时)并保持匀速行驶,结果比 甲车晚40分钟到达终点,求乙车变化后的速度a .23.(本题10分)一透明的敞口正方体容器ABCD ﹣A ′B ′C ′D ′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(∠CBE =α,如图1所示).探究 如图1,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.【解决问题】 (1)CQ 与BE 的位置关系是 ▲ ,BQ 的长是 ▲ ;(2)求液体的体积;(参考算法:直棱柱体积V 液=底面积S △BCQ ×高AB )(3)求α的度数.(注:sin49°=cos41°=43,tan37°=43)【拓展】在图1的基础上,以棱AB 为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C ′C 或CB 交于点P ,设PC =x ,BQ =y .分别就图3和图4直接写出....y 与x 的函数关系式,并写出相应的α的范围. 【延伸】在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM =1dm ,BM =CM ,NM ⊥BC .继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm 3.24.(本题12分)如图,∠ABC=45°,△ADE是等腰直角三角形,AE=AD,顶点A、D分别在∠ABC的两边BA、BC上滑动(不与点B重合),△ADE的外接圆交BC于点F,点D在点F的右侧,O为圆心.(1)求证:△ABD≌△AFE(2)若AB=4,8<BE≤4,求⊙O的面积S的取值范围.25.(本题12分)如图,已知在Rt△ABC中,∠A=90°,AB=8,AC=6,若将△ABC翻折,折痕EF分别交边AB、边AC于点E和点F且点A落在BC边上,记作点D,设BD =x,y=tan∠AFE.(1)连AD交折痕EF于点P,当点E从AB边中点运动到与点B重合的过程中,点P的运动路径长是多少?(直接写出答案)(2)若点E不与B点重合,点F不与C点重合,求y关于x的函数关系式及x的取值范围;(3)当45ADEF时,求x的值.P FED CBA26.(本题14分)对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:①<π>= ▲ (π为圆周率);②如果<2x﹣1>=3,则实数x的取值范围为▲ ;(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>=的所有非负实数x的值;(4)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<>=n的所有整数k的个数记为b.求证:a=b=2n.。
2018年中考数学卷精析版——江苏泰州卷
2018年中考数学卷精析版——泰州卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡...相应位置....上) 1.(2018江苏泰州3分)13-等于【 】 A .3 B .31- C .-3 D .31【答案】D 。
【考点】负整数指数幂。
【分析】直接应用负整数指数幂的概念作答:113=3-。
故选D 。
2.(2018江苏泰州3分)下列计算正确的是【 】A .6232x x x =⋅B .824x x x =⋅C .632)(x x -=-D .523)(x x = 【答案】C 。
【考点】同底幂乘法,幂的乘方和积的乘方。
3.(2018江苏泰州3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装 纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为【 】 A .51012.3⨯ B .61012.3⨯ C .5102.31⨯ D .710312.0⨯ 【答案】B 。
【考点】科学记数法。
4.(2018江苏泰州3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是【 】 A .236(1x)3625-=- B .36(12x)25-=C .236(1x)25-=D .236(1x )25-= 【答案】C 。
5.(2018江苏泰州3分)有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确..的是【 】 A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件 【答案】D 。
【考点】随机事件和必然事件。
【分析】在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,据此直接得出结果。
最新-2018泰州市中考数学试题 精品
泰州市2018年初中毕业、升学统一考试数学试题(考试时间:120分钟,满分:150分)注意:1.本试卷分第一部分选择题和第二部分非选择题。
2.考生答卷前,必须将自己的姓名、考试号用黑色或蓝色钢笔或圆珠笔填写在试卷和答题卡的相应位置,再用2B 铅笔将考试号、科目填涂在答题卡上相应的小框内。
第一部分 选择题(共48分)注意:考生必须将所选答案的字母标号用2B 铅笔填涂在答题卡相应的题号内,答在试卷上无效。
一、选择题(下列各题所给答案中,只有一个答案是正确的.每小题4分,共48分) 1.下列实数:3,-3.14,32-,︒45sin ,4中,无理数的个数是 A .1个 B .2个 C .3个 D .4个 2.下列运算正确的是A .4222x x x =+ B .532a a a =⋅C .64216)2(x x =- D .223)3)(3(y x y x y x -=-+3.2018年6月1日,世界最大的水利枢纽——三峡工程正式下闸蓄水.三峡水库的库容可达393 000 000 000立方米,用科学计数法表示该水库库容为A .0.393×1012立方米B .0.393×1011立方米C .3.93×1011立方米D .3.93×1012立方米4.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为A .8个B .16个C .32个D .64个5.某省为了解决老百姓看病难的问题,决定大幅度降低药品价格.某种常用药品降价30%后的价格为a 元,则降价前此药品价格为A .a 710元 B .a 310元 C .70%·a 元 D .30%·a 元 6.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是A .2>kB .12≠<k k 且C .2<kD .12≠>k k 且7.圆内接正三角形的一条边所对的圆周角为A .30°B .60°C .30°或150°D .60°或120° 8.如图,某防洪大坝的横断面是梯形,斜坡AB 的坡度i =1∶2.5, 则斜坡AB 的坡角α为(精确到1°)A .24°B .22°C .68°D .66°AB α1∶2.59.顺次连结等腰梯形各边中点所得的四边形一定是A .菱形B .矩形C .梯形D .正方形 10.在Rt △ABC 的直角边AC 边上有一点P (点P 与点A 、C 不重合),过点P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足条件的直线共有A .1条B .2条C .3条D .4条 11.下列四个命题中,正确的命题有①三角形中至少有一个角不小于60度.②用边长相等的正五边形与正六边形的组合能镶嵌成一个平面. ③如果4>a ,那么不等式a x a ->-4)4(的解集是1->x .④Rt △ABC 中,∠C =90°,AC =3,BC =4,如果以点C 为圆心,r 为半径的圆与AB 只有一个公共点,那么r =512. A .1个 B .2个 C .3个 D .4个12.向一容器内均匀注水,最后把容器注满.在注水过程中,容器的水面高度与时间的关系如右图所示,图中PQ 为一线段..,则这个容器是第二部分 非选择题(共102分)注意:考生必须将答案直接做在试卷上二、填空题(每题3分,共24分)13.一个数的倒数是23,这个数的相反数是_________. 14.以3 和-2为根的一元二次方程是______________________.15.用计算器探索:按一定规律排列的一组数:1,2,3-,2,5,6-,7,…,如果从1开始依次连续选取若干个数,使它们的和大于5,那么至少要选_____个数.16.已知圆锥的底面直径为8㎝,母线长为9㎝,则它的表面积是________㎝2(结果保留π).17.如图所示,在△ABC 和△DCB 中 ,AB =DC ,要使△ABO ≌△DCO ,请你补充条件________________________________________(只要填写一个你认为合适的条件).18.某市开展“保护母亲河”植树造林活动.该市金桥村有1000亩荒山绿化率达80%,300亩良田视为已绿化,河坡地植树绿化率已达20% ,目前金桥村所有土地的绿化率为60%.则河坡地有__________亩.A B C D O时间B19.在5月24日《中国青年报》上刊登了这样一幅图:请用简洁的语言描述出2018年5月13日到5月23日我国内地新发现SARS病例的变化情况:_____________________________________________________________________ 20.如图,由边长为1的25个小正方形组成的正方形网格上有一个△ABC;在网格上画出一个与△ABC相似且面积最大的△A1B1C1,使它的三个顶点都落在小正方形的顶点上,则△A1B1C1的最大面积是__________.三、解答下列各题(第21、22、23、25题每题6分,第24题8分,共32分)21.计算260tan23)1()14.3(26420033-︒++---+-π.22.先化简,再计算222)2()2121(-÷---+-aaaaaa,其中a=3.23.用换元法解方程xxxx+=++2221.24.如图,将矩形ABCD(AB<AD)沿BD 折叠后,点C 落在点E 处,且BE 交AD 于点F.⑴若AB=4,BC=8,求DF 的长(4分); ⑵ 当DA 平分∠EDB 时,求BC AB的值.(4分)25.初一年级某班教室里,三位同学正在为谁的数学成绩最好而争论.他们的五次数学成绩如表Ⅰ所示,这五次数学成绩的平均数、中位数、众数如表Ⅱ所示.现在这三位同学都说自己的数学成绩是最好的.⑴请你猜测并写出他们各自的理由;⑵三人似乎都有道理,你对此有何看法?请运用统计知识作出正确的分析.四、(本题满分6分 )26.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要A B EC DF表Ⅱ 表Ⅰ求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(图1) ⑵过一条边的三等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法)请你按照上述三个要求,分别在下面三个正方形中给出另外三种不同的分割方法........... (只要求正确画图,不写画法).(画对一个得2分)五、(本题满分8分)27.某校举行庆祝十六大的文娱汇演,评出一等奖5个,二等奖10个,三等奖15个.学校⑵学校要求一等奖的奖品单价是二等奖奖品单价的5倍,二等奖的奖品单价是三等奖奖品单价的4倍;在总费用不超过1000元的前提下,有几种购买方案,花费最多的一种方案需要多少钱?(5分) 六、(本题满分10分)28.点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线xy 1于点A ,连结OA.图1 图2方法一 方法二 方法三⑴如图①,当点P 在x 轴的正方向上运动时,Rt △AOP 的面积大小是否变化?若不变,请求出Rt △AOP 的面积;若改变,试说明理由.(3分)⑵如图②,在x 轴上点P 的右侧有一点D ,过点D 作x 轴的垂线交双曲线于点B ,连结BD 交AP 于点C.设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2大小关系是 S 1__________S 2(填“>”或“<”或“=”).(3分) ⑶如图③,AO 的延长线与双曲线xy 1的另一个交点为点F ,FH 垂直于x 轴,垂足为 点H ,连结AH 、PF ,试证明四边形APFH 的面积为一常数.(4分)图① 图② 图③七、(本题满分10分)29.已知:如图,⊙O 与⊙O 1内切于点A ,AO 是⊙O 1的直径,⊙O 的弦AC 交⊙O 1于点B ,弦DF 经过点B 且垂直于OC ,垂足为点E. ⑴求证:DF 与⊙O 1相切.(3分)⑵求证:2AB 2=AD ·AF.(3分) ⑶若AB=52,cos ∠DBA=55,求AF 和AD 的长.(4分)八、(本题满分12分)30.已知:如图,抛物线)1(3)2(2-++-=m x m x y 与x 轴的两个交点M 、N 在原点的两侧,点N 在点M 的右边,直线621++-=m x y 经过点N,交y 轴于点F. ⑴求这条抛物线和直线的解析式.(4分)⑵又直线)0(2>=k kx y 与抛物线交于两个不同的点A 、B ,与直线1y 交于点P ,分别过OA DE BCF O 1·点A 、B 、P 作x 轴的垂线,垂足分别是C 、D 、H. ①试用含有k 的代数式表示OD OC 11-;(2分)②求证:OHOD OC 211=- .(2分) ⑶在⑵的条件下,延长线段BD 交直线1y 于点E ,当直线2y 绕点O 旋转时,问是否存在满足条件的k 值,使△PBE 为等腰三角形?若存在,求出直线2y 的解析式;若不存在,请说明理由.(4分)6+mkx。
江苏省泰州市2018年中考数学试题(含答案)-精品推荐
泰州市二○一八年初中毕业、升学统一考试数学试题(考试试卷:120分钟满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.第一部分选择题(共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣(﹣2)等于A .﹣2B .2C .12D .±2 2.下列运算正确的是A ==C =2= 3.下列几何体中,主视图与俯视图不相同的是A .正方体B .四棱锥C .圆柱D .球4.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是A .小亮明天的进球率为10%B .小亮明天每射球10次必进球1次C .小亮明天有可能进球D .小亮明天肯定进球5.已知1x ,2x 是关于x 的方程220x ax --=的两根,下列结论一定正确的是 A .12x x ≠B .120x x +>C .120x x ⋅>D .10x <,20x <6.如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB ⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P 、Q 同时停止运动,若点P 与点Q 的速度之比为1:2,则下列说法正确的是 A .线段PQ 始终经过点(2,3) B .线段PQ 始终经过点(3,2) C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点第6题第二部分非选择题(共132分)二、填空题(本大题共10小题,每小题3分,本大题共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 7.8的立方根等于.8.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为. 9.计算:231(2)2x x ⋅-=.10.分解因式:3a a -=.11.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂最关注的是.12.已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为.13.如图,平行四边形ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC 的周长为.14.如图,四边形ABCD 中,AC 平分∠BAD ,∠ACD =∠ABC =90°,E 、F 分别为AC 、CD 的中点,∠D =α,则∠BEF 的度数为(用含α的式子表示). 15.已知23369x y a a -=-+,269x y a a +=+-,若x ≤y ,则实数a 的值为. 16.如图,△ABC 中,∠ACB =90°,sinA =513,AC =12,将△ABC 绕点C 顺时针旋转90°得到△A′B′C,P 为线段A′B′上的动点,以点P 为圆心,PA′长为半径作⊙P ,当⊙P 与△ABC 的边相切时,⊙P 的半径为.三、解答题(本大题共10小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)(1)计算:0212cos302()2π-+︒--;(2)化简:22169(2)11x x x x x -++-÷+-.18.(本题满分8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润点这4款软件总利润的40%.下图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,回答下列问题:(1)直接写出图中a、m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.19.(本题满分8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A,B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点B和C的概率.20.(本题满分8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O,求证:OB=OC.21.(本题满分10分)为了改善生态环境,某乡村计划植树4000棵,由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.(本题满分10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=DF=3,求图中阴影部分的面积.23.(本题满分10分)日照间距系数反映了房屋日照情况,如图①,当前后房屋都朝向正南时,日照间距系数=L :(H ﹣H 1),其中L 为楼间水平距离,H 为南侧楼房高度,H 1为北侧楼房底层窗台至地面高度.如图②,山坡EF 朝北,EF 长为15m ,坡度为i =1:0.75,山坡顶部平地EM 上有一高为22.5m 的楼房AB ,底部A 到E 点的距离为4m .(1)求山坡EF 的水平宽度FH ;(2)欲在AB 楼正北侧山脚的平地FN 上建一楼房CD ,已知该楼底层窗台P 处至地面C 处的高度为0.9m ,要使该楼的日照间距系数不低于1.25,底部C 距F 处至少多远?24.(本题满分10分)平面直角坐标系xOy 中,二次函数22222y x mx m m =-+++的图象与x 轴有两个交点.(1)当m =﹣2时,求二次函数的图象与x 轴交点的坐标; (2)过点P(0,m ﹣1)作直线l ⊥y 轴,二次函数的图象的顶点A 在直线l 与x 轴之间(不包含点A 在直线l 上),求m 的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l 相交于点B ,求△ABO 的面积最大时m 的值.25.(本题满分12分)对给定的一张矩形纸片ABCD 进行如下操作:先沿CE 折叠,使点B 落在CD 边上(如图①),再沿CH 折叠,这时发现点E 恰好与点D 重合(如图②).(1)根据以上操作和发现,求CDAD的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C 与点H 重合,折痕与AB 相交于点P ,再将该矩形纸片展开,求证:∠HPC =90°.②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P 在折痕上,请简要说明折叠方法(不需说明理由).26.(本题满分14分)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数1ky x=(x >0)的图象,点A′与点A 关于点O 对称,一次函数2y mx n =+的图象经过点A′.(1)设a =2,点B(4,2)在函数1y ,2y 的图像上.①分别求函数1y ,2y 的表达式;②直接写出使1y >2y >0成立的x 的范围;(2)如图①,设函数1y ,2y 的图像相交于点B ,点B 的横坐标为3a ,△AA ′B 的面积为16,求k 的值;(3)设m =12,如图②,过点A 作AD ⊥x 轴,与函数2y 的图像相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数2y 的图像与线段EF 的交点P 一定在函数1y 的图像上.参考答案17.(1)5;(2)13xx-+.18.(1)a=20,m=900;(2)网购人均利润150万元,视频软件人均利润140万元;(3)不能,如果10人全部负责研发网购也不能实现总利润增加60万. 19.16. 20.先用HL 证明Rt △ABC ≌Rt △DCB ,得到∠ACB =∠DBC ,从而等角对等边OB =OC . 21.原计划植树18天. 22.(1)结合等腰△OBD 和∠ABC 的平分线可以证出OD ∥BE ,再用同旁内角互补即可得出OD ⊥DE ,进而证明DE 切⊙O 于点D ;(2)图中阴影部分的面积为2π. 23.(1)山坡EF 的水平宽度FH 是9m ; (2)底部C 距F 处至少29m .24.(1)二次函数图像与x 轴交点的坐标为(2-,0),(2-,0). (2)m 的范围是:﹣3<m <﹣1; (3)△ABO 最大时m 的值为32-.25.(1;(2)①设AB =CD =2a ,AD =BC =a ,先求出DH =2a a ,AH a ﹣a ,设AP =y ,则BP a ﹣y ,因为翻折PH =PC ,即PH 2=PC 2,从而22221)])a y y a +=-+,解得y =a ,即AP =BC ,所以根据HL 证明Rt △PAH ≌Rt △CPB ,利用对应角相等,最终推出∠HPC =90°; ②沿着过点D 的直线翻折,使点A 落在CD 边上,此时折痕与AB 交于点P . 26.(1)①18y x=,22y x =-,②0<x <4; (2)k 的值为6;(3)设A(a ,k a ),则A ′(﹣a ,﹣k a ),代入2y 得2a k n a=-, ∴21+22a k y x a=-,∴D(a ,ka a -)∴AD =2k a a -,∴22P k k x a a a a =+-=,代入2y 得2P a y =,即P(2k a ,2a) 将点P 横坐标代入1k y x =得纵坐标为2a,可见点P 一定在函数1y 的图像上.。
2018泰州中考数学试卷及答案解析
2018泰州中考数学试卷及答案解析2018年初三的同学们,中考已经离你们不远了,数学试卷别放着不做,要对抓紧时间复习数学。
下面由店铺为大家提供关于2018泰州中考数学试卷及答案解析,希望对大家有帮助!2018泰州中考数学试卷一、选择题本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的算术平方根是( )A. B. C. D.2【答案】B.试题分析:一个数正的平方根叫这个数的算术平方根,根据算术平方根的定义可得2的算术平方根是,故选B.考点:算术平方根.2.下列运算正确的是( )A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3【答案】C.试题分析:选项A,a3•a3=a6;选项B,a3+a3=2a3;选项C,(a3)2=a6;选项D,a6•a2=a8.故选C.考点:整式的运算.3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C.考点:中心对称图形;轴对称图形.4.三角形的重心是( )A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【答案】A.试题分析:三角形的重心是三条中线的交点,故选A.考点:三角形的重心.5.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变【答案】C.试题分析:,S2原= ; ,S2新= ,平均数不变,方差变小,故选C.学#科网考点:平均数;方差.6.如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是( )A.2B.4C.6D.8【答案】D.∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∵在△BOE和△AOD中,,∴△BOE∽△AOD;∴ ,即 ;整理得:nk+2n2=8n+2n2,化简得:k=8;故选D.考点:反比例函数综合题.2018泰州中考数学试卷二、填空题(每题3分,满分30分,将答案填在答题纸上)7. |﹣4|= .【答案】4.试题分析:正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.由此可得|﹣4|=4.考点:绝对值.8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.【答案】4.25×104.考点:科学记数法.9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.【答案】8.试题分析:当2m﹣3n=﹣4时,原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8.考点:整式的运算;整体思想. 学#科.网10. 一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)【答案】不可能事件.试题分析:已知袋子中3个小球的标号分别为1、2、3,没有标号为4的球,即可知从中摸出1个小球,标号为“4”,这个事件是不可能事件.考点:随机事件.11.将一副三角板如图叠放,则图中∠α的度数为.【答案】15°.试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°.考点:三角形的外角的性质.12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.【答案】3π.试题分析:设扇形的圆心角为n,则:2π= ,解得:n=120°.所以S扇形= =3πcm2.考点:扇形面积的计算.13.方程2x2+3x﹣1=0的两个根为x1、x2,则的值等于.【答案】3.试题分析:根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,所以 = =3.考点:根与系数的关系.14.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了m.【答案】25.考点:解直角三角形的应用.15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.【答案】(7,4)或(6,5)或(1,4).考点:三角形的外接圆;坐标与图形性质;勾股定理.16.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为.【答案】6试题分析:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′= =6 .21世纪教育网考点:轨迹;平移变换;勾股定理.2018泰州中考数学试卷三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:( ﹣1)0﹣(﹣ )﹣2+ tan30°;(2)解方程: .【答案】(1)-2;(2)分式方程无解.考点:实数的运算;解分式方程.18. “泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【答案】(1)详见解析;(2)960.(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200× =960人.考点:条形统计图;用样本估计总体.21世纪教育网19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【答案】 .考点:用列表法或画树状图法求概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【答案】(1)详见解析;(2)4.试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.试题解析:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴ ,即,∴AD=4. 学@科网考点:基本作图;相似三角形的判定与性质.21.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.【答案】(1)点P在一次函数y=x﹣2的图象上,理由见解析;(2)1 考点:一次函数图象上点的坐标特征;一次函数的性质.22.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【答案】(1)详见解析;(2)2.由题意2× ×(x+1)×1+ ×x×(x+1)=6,解得x=2或﹣5(舍弃),∴EF=2.考点:正方形的性质;全等三角形的判定和性质;勾股定理.23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元.试题分析:(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a 份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论.试题解析:=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)=﹣a2+12a+280=﹣(a﹣6)2+316当a=6,w最大,w=316答:这两种菜品每天的总利润最多是316元.考点:二元一次方程组和二次函数的应用.24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为的中点;(2)若∠C=∠D,求四边形BCPD的面积.【答案】(1)详见解析;(2)18 .试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∴四边形BCPD的面积=PC•PE=6 ×3=18 .学科%网考点:切线的性质;垂径定理;平行四边形的判定和性质.25.阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【答案】(1) 4 ;(2) t=5或t=11;(3)当8﹣2 ≤t≤ 时,点P到线段AB的距离不超过6.试题分析:(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P到线段AB的距离PA= = =4 ;(2)如图2,过点B作BD∥x轴,交y轴于点E,①当点P位于AC左侧时,∵AC=4、P1A=5,∴P1C= =3,∴OP1=5,即t=5;②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,∴∠CAP2+∠EAB=90°,∵BD∥x轴、AC⊥x轴,∴CE⊥BD,(3)如图3,①当点P位于AC左侧,且AP3=6时,则P3C= =2 ,∴OP3=OC﹣P3C=8﹣2 ;②当点P位于AC右侧,且P3M=6时,过点P2作P2N⊥P3M于点N,考点:一次函数的综合题.26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD 的长随m的值的变化而变化.当8﹣2m=0时,m=4时,CD=|8﹣2m|=0,即点C与点D重合;当m>4时,CD=2m﹣8;当m<4时,CD=8﹣2m.试题分析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD与m的关系式.试题解析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A(1,6),B(3,0).将点A和点B的坐标代入直线的解析式得:,解得:,所以k的值为﹣3.把x=a+2代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点B的纵坐标相同,∴AB∥x轴.(3)线段CD的长随m的值的变化而变化.∵y=﹣x2+(m﹣2)x+2m过点A、点B,∴当x=a时,y=﹣a2+(m﹣2)a+2m,当x=a+2时,y=﹣(a+2)2+(m﹣2)(a+2)+2m,∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m).∴点A运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B运动的路线的函数关系式为y2=﹣(a+2)考点:二次函数综合题.。
(完整版)2018年江苏省泰州市中考数学试卷及答案解析,推荐文档
2018年江苏省泰州市中考数学试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂再答题卡相应位置上)1.(3分)﹣(﹣2)等于()A.﹣2 B.2 C.D.±22.(3分)下列运算正确的是()A.+=B.=2C.•=D.÷=23.(3分)下列几何体中,主视图与俯视图不相同的是()A.正方体B.四棱锥C.圆柱D.球4.(3分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球5.(3分)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<06.(3分)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B 运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写再答题卡相应位置上)7.(3分)8的立方根等于.8.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.9.(3分)计算:x•(﹣2x2)3=.10.(3分)分解因式:a3﹣a=.11.(3分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是.12.(3分)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为.13.(3分)如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为.14.(3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F 分别为AC、CD的中点,∠D=α,则∠BEF的度数为(用含α的式子表示).15.(3分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为.16.(3分)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.18.(8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.19.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B 两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C 的概率.20.(8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.21.(10分)为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O 于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.23.(10分)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F 处至少多远?24.(10分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x 轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x 轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO 的面积最大时m的值.25.(12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B 落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)26.(14分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x >0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.2018年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂再答题卡相应位置上)1.(3分)﹣(﹣2)等于()A.﹣2 B.2 C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)下列运算正确的是()A.+=B.=2C.•=D.÷=2【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D 进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.(3分)下列几何体中,主视图与俯视图不相同的是()A.正方体B.四棱锥C.圆柱D.球【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:四棱锥的主视图与俯视图不同.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球【分析】直接利用概率的意义分析得出答案.【解答】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球.故选:C.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.5.(3分)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0【分析】A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.【解答】解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选:A.【点评】本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B 运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点【分析】当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),利用待定系数法求出PQ的解析式即可判断;【解答】解:当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),将P(t,0)、Q(9﹣2t,6)代入y=kx+b,,解得:,∴直线PQ的解析式为y=x+.∵x=3时,y=2,∴直线PQ始终经过(3,2),故选:B.【点评】本题考查一次函数图象上的点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写再答题卡相应位置上)7.(3分)8的立方根等于2.【分析】根据立方根的定义得出,求出即可.【解答】解:8的立方根是=2,故答案为:2.【点评】本题考查了对立方根的应用,注意:a的立方根是,其中a可以为正数、负数和0.8.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 4.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:44000000=4.4×107,故答案为:4.4×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)计算:x•(﹣2x2)3=﹣4x7.【分析】直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.【解答】解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.【点评】此题主要考查了积的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.10.(3分)分解因式:a3﹣a=a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.11.(3分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是众数.【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.【解答】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故答案为:众数.【点评】本题主要考查了学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用,比较简单.12.(3分)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为5.【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】解:根据三角形的三边关系,得第三边>4,而<6.又第三条边长为整数,则第三边是5.【点评】此题主要是考查了三角形的三边关系,同时注意整数这一条件.13.(3分)如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为14.【分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F 分别为AC、CD的中点,∠D=α,则∠BEF的度数为270°﹣3α(用含α的式子表示).【分析】根据直角三角形的性质得到∠DAC=90°﹣α,根据角平分线的定义、三角形的外角的性质得到∠CEB=180°﹣2α,根据三角形中位线定理、平行线的性质得到∠CEF=∠D=α,结合图形计算即可.【解答】解:∵∠ACD=90°,∠D=α,∴∠DAC=90°﹣α,∵AC平分∠BAD,∴∠DAC=∠BAC=90°﹣α,∵∠ABC=90°,EAC的中点,∴BE=AE=EC,∴∠EAB=∠EBA=90°﹣α,∴∠CEB=180°﹣2α,∵E、F分别为AC、CD的中点,∴EF∥AD,∴∠CEF=∠D=α,∴∠BEF=180°﹣2α+90°﹣α=270°﹣3α,故答案为:270°﹣3α.【点评】本题考查的是三角形中位线定理、直角三角形的性质、角平分线的定义,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.(3分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为3.【分析】根据题意列出关于x、y的方程组,然后求得x、y的值,结合已知条件x≤y来求a的取值.【解答】解:依题意得:,解得∵x≤y,∴a2≤6a﹣9,整理,得(a﹣3)2≤0,故a﹣3=0,解得a=3.故答案是:3.【点评】考查了配方法的应用,非负数的性质以及解二元一次方程组.配方法的理论依据是公式a2±2ab+b2=(a±b)2.16.(3分)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为或.【分析】分两种情形分别求解:如图1中,当⊙P与直线AC相切于点Q时,如图2中,当⊙P与AB相切于点T时,【解答】解:如图1中,当⊙P与直线AC相切于点Q时,连接PQ.设PQ=PA′=r,∵PQ∥CA′,∴=,∴=,∴r=.如图2中,当⊙P与AB相切于点T时,易证A′、B′、T共线,∵△A′BT∽△ABC,∴=,∴=,∴A′T=,∴r=A′T=.综上所述,⊙P的半径为或.【点评】本题考查切线的性质、勾股定理、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【分析】(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+﹣4=2﹣5;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.18.(8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.【分析】(1)根据各类别百分比之和为1可得a的值,由游戏的利润及其所占百分比可得总利润;(2)用网购与视频软件的利润除以其对应人数即可得;(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,根据“调整后四个类别的利润相加=原总利润+60”列出方程,解之即可作出判断.【解答】解:(1)a=100﹣(10+40+30)=20,∵软件总利润为1200÷40%=3000,∴m=3000﹣(1200+560+280)=960;(2)网购软件的人均利润为=160元/人,视频软件的人均利润=140元/人;(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,根据题意,得:1200+280+160x+140(10﹣x)=3000+60,解得:x=9,即安排9人负责网购、安排1人负责视频可以使总利润增加60万元.【点评】本题考查条形统计图、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.19.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B 两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C 的概率.【分析】通过列表展示所有6种等可能的结果数,找出小名恰好选中B和C这两处的结果数,然后根据概率公式求解.【解答】解:列表如下:A BC AC BCD AD BDE AE BE由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为.【点评】此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.【点评】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.21.(10分)为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?【分析】设原计划每天种x棵树,则实际每天种(1+20%)x棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【解答】解:设原计划每天种x棵树,则实际每天种(1+20%)x棵,依题意得:﹣=3解得x=200,经检验得出:x=200是原方程的解.所以=20.答:原计划植树20天.【点评】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O 于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【解答】解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.23.(10分)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F 处至少多远?【分析】(1)在Rt△EFH中,根据坡度的定义得出tan∠EFH=i=1:0.75==,设EH=4x,则FH=3x,由勾股定理求出EF==5x,那么5x=15,求出x=3,即可得到山坡EF的水平宽度FH为9m;(2)根据该楼的日照间距系数不低于1.25,列出不等式≥1.25,解不等式即可.【解答】解:(1)在Rt△EFH中,∵∠H=90°,∴tan∠EFH=i=1:0.75==,设EH=4x,则FH=3x,∴EF==5x,∵EF=15,∴5x=15,x=3,∴FH=3x=9.即山坡EF的水平宽度FH为9m;(2)∵L=CF+FH+EA=CF+9+4=CF+13,H=AB+EH=22.5+12=34.5,H1=0.9,∴日照间距系数=L:(H﹣H1)==,∵该楼的日照间距系数不低于1.25,∴≥1.25,∴CF≥29.答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,将实际问题转化为数学问题是解题的关键.24.(10分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x 轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x 轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO 的面积最大时m的值.【分析】(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围.(3)在(2)的基础上表示△ABO的面积,根据二次函数性质求m.【解答】解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=﹣2+,x2=﹣2﹣抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2∴抛物线顶点坐标为A(m,2m+2)∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)∴当直线1在x轴上方时不等式无解当直线1在x轴下方时解得﹣3<m<﹣1(3)由(1)点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3△ABO的面积S=(m+3)(﹣m)=﹣∵﹣∴当m=﹣时,S=最大【点评】本题以含有字母系数m的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想.25.(12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B 落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)【分析】(1)依据△BCE是等腰直角三角形,即可得到CE=BC,由图②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;(2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,而AD=BC,∴CD=AD,∴=;(2)①设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【点评】本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.26.(14分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x >0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.【分析】(1)由已知代入点坐标即可;(2)面积问题可以转化为△AOB 面积,用a 、k 表示面积问题可解; (3)设出点A 、A′坐标,依次表示AD 、AF 及点P 坐标.【解答】解:(1)①由已知,点B (4,2)在y 1═(x >0)的图象上 ∴k=8 ∴y 1= ∵a=2∴点A 坐标为(2,4),A′坐标为(﹣2,﹣4) 把B (4,2),A (﹣2,﹣4)代入y 2=mx +n解得∴y 2=x ﹣2②当y 1>y 2>0时,y 1=图象在y 2=x ﹣2图象上方,且两函数图象在x 轴上方 ∴由图象得:2<x <4(2)分别过点A 、B 作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连BO∵O 为AA′中点 S △AOB =S △AOA′=8 ∵点A 、B 在双曲线上 ∴S △AOC =S △BOD ∴S △AOB =S 四边形ACDB =8由已知点A 、B 坐标都表示为(a ,)(3a ,)∴。
泰州市2018年初中毕业、升学统一考试数学试题及答案
泰州市2018年初中毕业、升学统一考试数学试题及答案泰州市2018年初中毕业、升学统一考试数学试题(考试试卷:120分钟满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔,并请加黑加粗.第一部分选择题(共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣(﹣2)等于A .﹣2B .2C .12D .±2 2.下列运算正确的是 A .235+=B .1823=C .235⋅=D .1222÷=3.下列几何体中,主视图与俯视图不相同的是A .正方体B .四棱锥C .圆柱D .球二、填空题(本大题共10小题,每小题3分,本大题共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 7.8的立方根等于.8.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.9.计算:231(2)2x x ⋅-=. 10.分解因式:3a a -=.11.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂最关注的是.12.已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为.13.如图,平行四边形ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC 的周长为.14.如图,四边形ABCD 中,AC 平分∠BAD ,∠ACD =∠ABC =90°,E 、F 分别为AC 、CD 的中点,∠D =α,则∠BEF 的度数为(用含α的式子表示).15.已知23369x y a a -=-+,269x y a a +=+-,若x ≤y ,则实数a 的值为.16.如图,△ABC 中,∠ACB =90°,sinA =513,AC =12,将△ABC 绕点C 顺时针旋转90°得到△A ′B ′C ,P 为线段A ′B ′上的动点,以点P 为圆心,PA ′长为半径作⊙P ,当⊙P 与△ABC 的边相切时,⊙P 的半径为.三、解答题(本大题共10小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分12分)(1)计算:0212cos3023()2π-+︒--; (2)化简:22169(2)11x x x x x -++-÷+-.18.(本题满分8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润点这4款软件总利润的40%.下图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,回答下列问题:(1)直接写出图中a、m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.19.(本题满分8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A,B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点B和C的概率.20.(本题满分8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O,求证:OB=OC.21.(本题满分10分)为了改善生态环境,某乡村计划植树4000棵,由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.(本题满分10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.23.(本题满分10分)日照间距系数反映了房屋日照情况,如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C 处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?24.(本题满分10分)平面直角坐标系xOy中,二次函数22=-+++的图象与x轴有两个交点.222y x mx m m(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线l⊥y轴,二次函数的图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.25.(本题满分12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D 重合(如图②).的值;(1)根据以上操作和发现,求CDAD(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB 相交于点P,再将该矩形纸片展开,求证:∠HPC =90°.②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P 在折痕上,请简要说明折叠方法(不需说明理由).26.(本题满分14分)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数1k y x=(x >0)的图象,点A′与点A 关于点O 对称,一次函数2ymx n=+的图象经过点A′.(1)设a =2,点B(4,2)在函数1y ,2y 的图像上.①分别求函数1y ,2y 的表达式;②直接写出使1y >2y >0成立的x 的范围;(2)如图①,设函数1y ,2y 的图像相交于点B,点B的横坐标为3a,△AA′B的面积为16,求k的值;,如图②,过点A作AD⊥x (3)设m=12轴,与函数y的图像相交于点D,以AD为一边2向右侧作正方形ADEF,试说明函数y的图像与2线段EF的交点P一定在函数y的图像上.1参考答案一、选择题二、填空题三、解答题 17.(1)5;(2)13x x -+. 18.(1)a =20,m =900;(2)网购人均利润150万元,视频软件人均利润140万元;(3)不能,如果10人全部负责研发网购也不能实现总利润增加60万..19.1620.先用HL证明Rt△ABC≌Rt△DCB,得到∠ACB=∠DBC,从而等角对等边OB=OC.21.原计划植树18天.22.(1)结合等腰△OBD和∠ABC的平分线可以证出OD∥BE,再用同旁内角互补即可得出OD⊥DE,进而证明DE切⊙O于点D;(2)图中阴影部分的面积为2π-.23.(1)山坡EF的水平宽度FH是9m;(2)底部C距F处至少29m.24.(1)二次函数图像与x轴交点的坐标为(2-,0),(2-,0).(2)m的范围是:﹣3<m<﹣1;(3)△ABO最大时m的值为3-.2;25.(1(2)①设AB =CD =2a ,AD =BC =a ,先求出DH =2a,AH a ﹣a , 设AP =y ,则BPa ﹣y ,因为翻折PH =PC ,即PH 2=PC 2,从而22221)])a y y a +=-+,解得y =a ,即AP =BC ,所以根据HL 证明Rt △PAH ≌Rt △CPB ,利用对应角相等,最终推出∠HPC =90°;②沿着过点D 的直线翻折,使点A 落在CD 边上,此时折痕与AB 交于点P .26.(1)①18y x=,22y x =-,②0<x <4;(2)k 的值为6;(3)设A(a ,k a ),则A ′(﹣a ,﹣k a ),代入2y 得2a kn a=-, ∴21+22a kyx a=-,∴D(a ,k a a -) ∴AD =2k a a -, ∴22Pk kxa a a a=+-=,代入2y 得2Pay=,即P(2k a ,2a )将点P横坐标代入1kyx得纵坐标为2a,可见点P一定在函数1y的图像上.。
2018年泰州市中考数学试卷含答案
2018年泰州市中考数学试卷含答案泰州市2018年初中毕业升学统一考试数学试题(含参考答案)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.-(-2)等于( )A。
-2 B。
2 C。
1/2 D。
±22.下列运算正确的是( )A。
2+3=5 B。
18=23 C。
2×3=5 D。
2÷3=2/33.下列几何体中,主视图与俯视图不相同的是( )A。
正方体 B。
四棱锥 C。
圆柱 D。
球4.XXX是一名职业足球队员,根据以往比赛数据统计,XXX进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A。
XXX明天的进球率为10% B。
XXX明天每射球10次必进球1次 C。
XXX明天有可能进球 D。
XXX明天肯定进球5.已知x1,x2是关于x的方程x2-ax-2=0的两根,下列结论一定正确的是( )A。
x1≠x2 B。
x1+x2>0 C。
x1×x2>0 D。
x1<x26.如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是( )A。
线段PQ始终经过点(2,3) B。
线段PQ始终经过点(3,2) C。
线段PQ始终经过点(2,2) D。
线段PQ不可能始终经过某一定点第Ⅱ卷(共132分)二、填空题(每题5分,共20分,将答案填在答题纸上)7.8的立方根等于2.8.亚洲陆地面积约为4400万平方千米,将xxxxxxxx用科学记数法表示为4.4×107.9.计算:x×(-2x2)/3=-2x3/3.10.分解因式:a3-a=a(a2-1)。
11.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂最关注的是方差。
最新-江苏省泰州市2018届九年级数学18月学业水平测试
江苏省泰州市2018届九年级数学12月学业水平测试试题(无答案) 苏科版(时间:120分钟 满分:150分)请注意:考生须将本卷所有答案答到答题纸上,答在试卷上无效!一、选择题(每题3分,共24分)1.函数y x 的取值范围是A .x ≤12B .x ≠12C .x ≥12D .x <122.一名篮球运动员投篮命中的概率是0.8,下列陈述中,正确的是A .他在每10次投篮中必有8次投中B .他在10次一组的投篮中,平均会有8次投中C .他投篮 10次,不可能投中9次D .他投篮100次,必投中80次3. 如图,AB 是⊙O 的直径,C ,D 为圆上两点∠AOC =130°,则∠D 等于A .25°B .30°C .35°D .50° 4. 已知两圆半径1r 、2r 分别是方程01072=+-x x 的两根,两圆的圆心距为7,则两圆的位置关系是A .相交B . 相切C . 外切D . 外离 5. 已知二次函数y =2(x -3)2+1,可知正确的是A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大6. 下列命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤菱形的四个顶点在同一个圆上;⑥正多边形都是中心对称图形;⑦若圆心到直线的距离恰好等于圆的半径,则该直线是圆的切线;⑧在圆中90°的角所对弦是直径。
其中正确结论的个数有A .3个B .4个C .5个D .6个7.如图,在Rt△ABC 中,∠C=90°,∠A=30°,BC=1,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD⊥ED,那么线段DE 的长为A .1BC . —1D .二、填空题(每题3分,共30分)9.现有一个样本方差的计算式S 2=101[(x 1-20)2+(x 2-20)2+…+(x 10-20)2],则该样本的平均 数是_______.10.已知最简二次根式2+a 与8是同类二次根式,则a= 。
江苏省泰州市海陵区2018届数学中考适应性训练试卷及参考答案
(1) 求点B的坐标; (2) 求直线BC的函数关系式; (3) 若点P(m,2)在△ABC的内部,求m的取值范围. 22. 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调、彩电、冰 箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:
(1) 若点A的坐标为(a,3),求a的值; (2) 当k=- ,且CA=CB,∠ACB=90°时,求C点的坐标; (3) 当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式. 26. 如图,抛物线T1:y=-x2-2x+3,T2:y=x2-2x+5,其中抛物线T1与x 轴交于A、B两点,与y轴交于C点.P点是x 轴上一个动点,过P点并且垂直于x轴的直线与抛物线T1和T2分别相交于N、M两点.设P点的横坐标为t.
A.
B.
பைடு நூலகம்
C.
D.
4. 如图是由相同小正方体组成的立体图形,它的左视图为( )
A.
B.
C.
D.
5. 一组数据1,2,4,x,6,8的众数是1,则这组数据的中位数是( ) A.2B.3C.4D.6 6. 当x=m和n(m<n)时,代数式x2-4x+3的值相等,并且当x分别取m-1、n+2、
为 , , .那么 , , 的大小关系为( ) A. < < B. > > C. > > D. > >
江苏省泰州市海陵区2018届数学中考适应性训练试卷
一、单选题
1. 在-4,-6,0,2四个数中,最小的实数是( ) A . -6 B . -4 C . 0 D . 2 2. 下列各运算中,计算正确的是( ) A . 4a2﹣2a2=2 B . (a2)3=a5 C . a3•a6=a9 D . (3a)2=6a2 3. 在下列平面图形中,既是轴对称图形又是中心对称图形的是( )
江苏省泰州市海陵区2018届中考数学适应性考试
泰州市海陵区2021年初三数学适应性训练一、选择题〔本大题共8题,每题3分,合计24分〕1.2的相反数是〔▲〕A.2B.211 C.D.222中,自变量x的取值范围是〔▲〕2.在函数y=x-2A.x>2B.x≥2C.x≠0D.x≠23.2021年冬天,中国五省市遭受世纪大旱,截止1月尾,约有60000000同胞受灾,这个数据用科学记数法可表示为〔▲〕A.6×118B.6×118C.6×118D.6×1184.假如一个多边形的内角和等于360度,那么这个多边形的边数为〔▲〕A.4B.5C.6D.75.同一平面内的⊙O1、⊙O2的半径分别为3cm、5cm,且O1O2=4cm,那么两圆的地点关系为〔▲〕A.外离B.内含C.订交D.以上都不正确6.将直径为60cm的圆形铁皮,做成三个同样的圆锥容器的侧面〔不浪费资料,不计接缝处的资料消耗〕,那么每个圆锥容器的底面半径为〔▲〕A.10cm B.20cm C.30cm D.60cm7.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按以下列图的方式折叠,使点A与点D重合,折痕为EF,那么△DEF的周长为〔▲〕A.9.5B.10.5C.11D.15.5A AEFB DC B D(A)C〔第7题〕〔第8题〕8.如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,那么S四边形ADCE∶S正方形ABCD的值为〔▲〕4335A.5B.4C.8D.8二、填空题〔本大题共10小题,每题3分,合计30分〕9.分解因式a21=.10.一组数据:3,3,4,5,5,6,6,6.这组数据的众数是.11.假定对于x的方程ax=2a+3的根为x=3,那么a的值为.12.小聪在一个正方体盒子的每个面上都写有一个字,分别为“遨〞、“游〞、“数〞、“学〞、“世〞、“界〞,其平面睁开图以下列图,那么在这个正方体盒子中,和“数〞相对的面上所写的字是.13.半径为r的圆内接正三角形的边长为.〔结果保留根号〕14.如,△ABC 点A 旋80°获取△AEF ,假定∠B=100°,∠F=50°,∠α的度数是.15.在平面直角坐系中,□ABCD 的点A 、B 、D 的坐分是(0,0),(5,0),(2,3),点C 的坐是.Cy遨BEDC数学世 界α F游AOBx〔第12 题〕〔A 〕〔第14题〕〔第15题〕16.如,正方形ABCD 的点B 作直l ,A ,C 作l 的垂,垂足分 E ,F .假定AE 1,CF3,AB 的度.17.如,D 是反比率函数yk(k0)的像上一点,D 作DE ⊥x 于E ,DC ⊥y 于C ,一次函数xyxm 与y3x 2的象都点C ,与x 分交于A 、B 两点,四形DCAE 的面4,3k 的.AyBBlD 1FECDD 2D 3DC〔第16题〕EOA B 〔第17 题〕xCAE3E 2E 1〔第18题〕18.如, Rt △ABC ,D 1是斜AB 的中点, D 1作D 1E 1⊥AC 于E 1,BE 1交CD 1于D 2;D 2作D 2E 2⊥AC 于E 2,BE 2交CD 1于D 3;D 3作D 3E 3⊥AC 于E 3,⋯,这样,能够挨次获取点E 4、E 5、⋯、E n ,分△BCE 1、△BCE 2、△BCE 3···△BCE n 的面S 1、S 2、S 3、⋯S n .S n =S△ABC 〔用含n 的代数式表示〕.三、解答〔本大共10小,共96分〕19.〔本大分12分,每小 6分〕〔1〕算(π2021)12 |32|+(1)1;2〔2〕先化后求:当x21,求代数式1 1 x2 2x1 的.x 1 x 21 x120.〔本题总分值8分〕:如图,在梯形ABCD中,AD∥BC,BC=DC,CF均分BCD,DF∥AB,BF的延伸线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.21.〔本题总分值8分〕某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个同样的小球,球上分别标有“0元〞、“10元〞、“20元〞和“30元〞的字样.规定:顾客在本商场同一日内,每花费满200元,就能够在箱子里先后摸出两个球〔第一次摸出后不放回〕.商场依据两小球所标金额的和返还相应价格的购物券,能够从头在本商场花费.某顾客恰好花费200元.〔1〕该顾客起码可获取元购物券,至多可获取元购物券;〔2〕请你用画树状图或列表的方法,求出该顾客所获取购物券的金额不低于30元的概率.22.〔本题总分值10分〕某校初二年级全体320名学生在参加电脑培训前后各进行了一次水平同样的考试,考试都以同一标准区分红“不合格、合格、优异〞三个等级,为了认识培训的成效,用抽签的方式得到此中32名学生的两次考试等级,所绘的统计图如图所示,联合图示信息回复以下问题:⑴这32名学生培训前考分的中位数所在的等级是;⑵这32名学生经过培训后,考分等级“不合格〞的百分比是;⑶预计该校整个初二年级中,培训后考分等级为“合格〞与“优异〞的学生共有名;⑷你以为上述预计合理吗?原因是什么?人数24培训前16培训后8871等级不合格合格优异23.〔本题总分值8分〕如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前面的海底有黑匣子信号发出,持续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前面的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?〔保留根号〕D海面A30°B60°C24.〔本题总分值10分〕甲乙两人同时爬山,甲、乙两人距地面的高度y〔米〕与爬山时间x〔分〕之间的函数图象以下列图,依据图象所供给的信息解答以下问题:〔1〕甲爬山的速度是每分钟米,乙在A地加速时距地面的高度b为_______米;〔2〕假定乙加速后,乙的速度是甲爬山速度的3倍,请分别求出甲、乙二人爬山全过程中,爬山时距地面的高度y〔米〕与爬山时间x〔分〕之间的函数关系式;〔3〕爬山多长时间时,乙追上了甲?y〔米〕B D300乙甲C100b A15x〔分〕O12t2025.〔本题8分〕如图,AB是⊙O的直径,BC是弦,∠ABC的均分线BD交⊙OBC的延伸线于点E,BD交AC于点F.⑴求证:DE是⊙O的切线;〔2〕假定的半径.于点D,DE⊥BC,交CE=1,ED=2,求⊙OECDFBAO26.〔本题10分〕某企业准备投资开发A、B两种新产品,经过市场调研发现:假如独自投资A种产品,那么所获收益〔万元〕与投资本额x〔万元〕之间知足正比率函数关系:y A kx;假如独自投资B种产品,那么所获收益〔万元〕与投资本额x〔万元〕之间知足二次函数关系:y B ax2bx.依据企业信息部的报告,y A,y B〔万元〕与投资本额x〔万元〕的局部对应值以下表所示:x15yA0.84yB3.815〔1〕填空:y A;y B;〔2〕假如企业准备投资20万元同时开发A 、B 两种新产品,设企业所获取的总收益为w 〔万元〕,试写出w 与某种产品的投资本额x 之间的函数关系式;〔3〕请你设计一个在⑵中能获取最大收益的投资方案.27.〔本题10分〕假如一个点能与此外两个点能组成直角三角形,那么称这个点为此外两个点的勾股点.例如:矩形 ABCD 中,点C 与A ,B 两点可组成直角三角形 ABC ,那么称点 C 为A ,B 两点的勾股点.同样,点D 也是A ,B 两点的勾股点.〔1〕如图1,矩形ABCD 中,AB =2,BC =1,请在边CD 上作出A ,B 两点的勾股点〔点 C 和点D 除外〕 .......〔要求:尺规作图,保留作图印迹,不要求写作法〕 ;DCAB〔第27题图1〕2〕矩形ABCD 中,AB =3,BC =1,直接写出边CD 上A ,B 两点的勾股点的个数;3〕如图2,矩形ABCD 中,AB =12,BC =4,DP=4,DM =8,AN =5.过点P 作直线l 平行于BC ,点H 为M ,N 两点的勾股点,且点 H 在直线l 上.求PH 的长.DM·PCABN〔第27题图2〕28.〔本题总分值 12分〕如图,菱形 ABCD 的边长为 20cm ,∠ABC =120°.动点P 、Q 同时从点 A 出发,其中P 以4cm/s 的速度,沿A →B →C 的路线向点 C 运动;Q 以2 3cm/s 的速度,沿A →C 的路线向点 C 运动.当 P 、Q 抵达终点 C 时,整个运动随之结束,设运动时间为 t 秒. 〔1〕在点P 、Q 运动过程中,请判断 PQ 与对角线 AC 的地点关系,并说明原因;〔2〕假定点Q 对于菱形ABCD 的对角线交点 O 的对称点为 M ,过点P 且垂直于AB 的直线l 交菱形ABCD的边AD 〔或CD 〕于点N .①当t 为什么值时,点 P 、M 、N 在向来线上?②当点P 、M 、N 不在向来线上时,是 否存在这样的 t ,使得△PMN 是以PN 为向来角边的 直角三角形?假定存在,恳求出全部切合条件的 t 的值;假定不存在,请说明原因.D CNOQA P Bl2021年初三数学适应性训练参照答案一、〔本大题共 8题,每题3分,合计24分〕12345678题号答案A D C A C A D D 二、〔本大题共 10小题,每题3分,合计30分〕9.(a1)(a1)10.611.312.世13.3r14.50度15.〔7,3〕16.101三、19.〔1〕原式=123 ( 3 2) 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=123322⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分=53⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分〔2〕原式=2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分1)2(x当x21,原式=1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分20.(1)△BFC≌△DFC〔SAS〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)延DF,交BC于点G⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分四形ABGD平行四形,得AD=BG⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分再△BFG≌△DFE〔ASA〕,得BG=DE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分得:AD=DE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分21.〔1〕10、50⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分〔2〕状或列表正确⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分P(所得购物卷的金额不低于30)2分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8322.〔1〕不合格⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分〔2〕25%⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分〔3〕240⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分(4)略(言之有理即可)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分23.解:如,点C作CE⊥DE,交AB于D,交DE于E,⋯⋯⋯⋯⋯1分∵∠DBC=60°,∠BAC=30°D 海面E∴BC=AB=3000⋯⋯⋯⋯⋯⋯⋯⋯3分A30°B60°D易得:CD15003,⋯⋯⋯⋯6分CE15003500⋯⋯⋯⋯7分答:⋯⋯.⋯⋯⋯⋯⋯8分C24.〔1〕10,30⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分〔2〕甲:y10x100,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分15x(0x2)乙:y⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分30x 30(2 x11)〔3〕分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10分25.〔1〕接OD , ∠EBD=∠ABD ,∠ABD=∠ODB ,∠EBD=∠ODB ⋯⋯⋯⋯1分OD ∥BE ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分 ∠ODE=∠DEB=90°⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 DE 是⊙O 的切⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 〔2〕OD 交AC 于点M 易得矩形 DMCE ,DM=EC=1 AM=MC=DE=2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分⊙O 的半径x ,得x 2 22 (x1)2⋯⋯⋯⋯⋯⋯⋯⋯6分解得:x5分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯72⊙O 的半径5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分226.〔1〕,1x 2 4x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分5〔2〕2或w 216⋯⋯⋯⋯⋯⋯8分〔3〕谋利A 品12万元,B品8万元。
江苏省泰州市海陵区2018届中考数学适应性训练试题(二)
二O 一八年海陵区中考适应性训练(二)数学试题(考试时间:120分钟,满分150分) 第一部分 选择题(共18分)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是正确的,请将正确选项的字母代号写在相应括号内) 1.31-的倒数等于 ( ) A .3B .-3C .31-D .31 2.下列计算正确的是 ( )A . (a 2)2=a 4B .a 2·a 3=a 6C .(a +1)2=a 2+1D .a 2+a 2=2a 43.下列图形中,是中心对称图形的是 ( ) A .直角 B .直角三角形 C .等边三角形 D .平行四边形 4.下列水平放置的四个几何体中,主视图与其它三个不相同的是 ( )A .B .C .D .5.小明抽样调查了某校30位男生的衬衫尺码,数据如下(单位cm)( ) A .37 B .38 C .39 D .40 6.已知反比例函数y=xk,点A (m ,y 1),B (m +2,y 2 )是函数图像上两点,且满足211121-=y y ,则的值为 ( ) A .2 B .3 C .4 D .5第二部分 非选择题(共132分)二、填空题(本大题共10小题,每小题3分,满分30分) 7.9的平方根是 .8.2017年10月10日,中科院国家天文台宣布,“中国天眼”发现1颗新脉冲星,距离地球16000光年。
将16000用科学记数法表示为 . 9.分解因式:2a 2-8a +8= .10.投掷一枚材质均匀的正方体骰子,向上的一面出现的点数是2的倍数的概率等于 . 11.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,且∠BAD =80°,则∠DAC 的度数是 .12.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为 . 13.已知关于的一元二次方程a 2-2+1=0有两个不相等的实数根,则a 的取值范围是 .14.如图,正方形OABC 与正方形ODEF 是位似图形,点O 是位似中心,相似比为12,点D 的坐标为(0,22),则点B 的坐标是 .15.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC = .16.如图,在平面直角坐标系中,A (1,3),B (2,0),C 点在轴上运动,过点O作直线AC 的垂线,垂足为D .当点C 在轴上运动时,点D 也随之运动.则线段BD 长的最大值为 .三、解答题(本大题共10小题,满分102分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(1)计算:0230cos 232)1(+-+-- (2)解不等式组:⎩⎨⎧+<-≥-3)1(212x x xA第11题第14题CBA第15题 第16题15518.(本题满分8分)某企业500名员工参加安全生产知识测试,成绩记为A ,B ,C ,D ,E 共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图.(1)求这次抽样调查的样本容量,并补全图1;(2)如果测试成绩(等级)为A ,B ,C 级的定为优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.图1 图240%E 级D 级C 级B 级A 级DCBA19.(本题满分8分)在一个不透明的箱子里,装有红、白、黑球各1个,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.20.(本题满分8分)如图,在矩形ABCD 中,AB =1.(1)用直尺和圆规作出∠ABC 的平分线交AD 于E (不要求写作法,保留作图痕迹). (2)若(1)中所作的点E 满足∠BEC =∠DEC ,求BC 的长度.FHGCBADE21.(本题满分10分)甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?22.(本题满分10分)如图,在四边形ABCD 中,AB =DC ,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点.(1)求证:四边形EGFH 是菱形;(2)若AB =4,且BA 、CD 延长后相交所成的锐角是60°,求四边形EGFH 的面积.23.(本题满分10分)如图,小明在A 处利用测角仪观测气球C 的仰角为30°,然后他沿正对气球方向前进了40m 到达B 处,此时观测气球的仰角为45°.如果测角仪高度为1m ,那么气球的高度是多少?(精确到0.1m ) (备注:2≈1.414,3≈1.732)24.(本题满分10分)如图:一次函数y=+b 的图像交轴正半轴于点A 、y 轴正半轴于点B ,且OA =OB =1.以线段AB 为边在第一象限作正方形ABCD ,点D 在反比例函数y=xm图像上. (1)求一次函数的关系式,并判断点C 是否在反比例函数y=xm图像上; (2)在直线AB 上找一点P ,使PC +PD 的值最小,并求出点P 的坐标.25.(本题满分12分)如图1,已知AB =8,直线l 与AB 平行,且l 与AB 的距离为4,P 是l 上的动点,过点P 作PC ⊥AB ,垂足为C ,点C 不与A ,B 重合,过A ,C ,P 三点作⊙O . (1)若⊙O 与线段PB 交于点D ,∠PAD =22.5°,则∠APB 等于多少度?(2)如图2,⊙O 与线段PB 的一个公共点为D ,一条直径垂直AB 于点E ,且与AD 交于点M .①若ME =2532,求AE 的长; ②当ME 的长度最大时,判断直线PB 与⊙O 的位置关系,并说明理由.26. (本题满分14分)已知二次函数y=a(+1)(-m) (a为常数,a 1)的图像过点(1,2).(1)当a=2时,求m的值;(2)试说明方程a(+1)(-m)=0两根之间(不包括两根)存在唯一整数,并求出这个整数;(3)设M(n,y1)、N(n+1,y2)是抛物线上两点,当n <-1时,试比较y1与y2的大小.二O 一八年海陵区中考适应性训练(二)数学答案说明:试题给出一种或两种解法,其他解法参照得分;答案中分值分配不一定标准,请自行调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第7题)CBD AEF CBD (A )A泰州市海陵区2018年初三数学适应性训练 2018.5一、选择题(本大题共8题,每小题3分,共计24分)1.2-的相反数是 ( ▲)A .2B .2-C .21 D .21- 2.在函数y =2x -2中,自变量x 的取值范围是 ( ▲ )A .x >2B .x ≥2C .x ≠0D .x ≠23.2018年冬季,中国五省市遭遇世纪大旱,截止1月底,约有60 000 000同胞受灾,这个数据用科学记数法可表示为 ( ▲ ) A .6×118B .6×118C .6×118D .6×1184.如果一个多边形的内角和等于360度,那么这个多边形的边数为 ( ▲ )A .4B .5C .6D .75.已知同一平面内的⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且O 1O 2=4cm ,则两圆的位置关系为 ( ▲ )A .外离B .内含C .相交D .以上都不正确6.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( ▲ ) A .10cmB .20cmC .30cmD .60cm7.在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为 ( ▲ ) A .9.5 B .10.5 C .11D .15.58.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE ∶S 正方形ABCD 的值为 ( ▲ ) A .45B .34C .38D .58二、填空题(本大题共10小题,每小题3分,共计30分) 9.分解因式12-a = .10.已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是 . 11.若关于x 的方程ax =2a +3的根为x =3,则a 的值为 .12.小聪在一个正方体盒子的每个面上都写有一个字,分别为“遨”、 “游”、“数”、“学”、“世”、“界”,其平面展开图如图所示,那么在这个正方体盒子中,和“数”相对的面上所写的字是 . 13.半径为r 的圆内接正三角形的边长为.(结果保留根号)(第8题)14.如图,△ABC 绕点A 顺时针旋转80°得到△AEF ,若∠B =100°,∠F =50°,则∠α的度数是 . 15.在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则点C 的坐标是 .16.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .17.如图,D 是反比例函数)0(<=k xky 的图像上一点,过D 作DE⊥x 轴于E ,DC⊥y 轴于C ,一次函数y x m =-+与233+-=x y 的图象都经过点C ,与x 轴分别交于A 、B 两点,四边形DCAE 的面积为4,则k 的值为 .18.如图,已知Rt △ABC ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E n ,分别记△BCE 1、△BCE 2、△BCE 3···△BCE n 的面积为S 1、S 2、S 3、…S n . 则S n = S△ABC(用含n 的代数式表示).三、解答题(本大题共10小题,共96分) 19.(本大题满分12分,每小题6分)(1)计算 0(π2009)12|32|-++-+1)21(- ;(2)先化简后求值:当12-=x 时,求代数式221121111x x x x x -+-⋅++- 的值.游遨界世学数(第12题)(第14题)C ABEFα (第15题)B CD(A )O x yAC DEFlB (第16题)(第17题)xyBACE DO (第18题)D 2D 3E 2E 3E 1D 1ABC20.(本题满分8分)已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分 ∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E . 求证:(1)△BFC ≌△DFC ;(2)AD=DE .21.(本题满分8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元. (1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.22.(本题满分10分)某校初二年级全体320名学生在参加电脑培训前后各进行了一次水平相同的考试,考试都以同一标准划分成“不合格、合格、优秀”三个等级,为了了解培训的效果,用抽签的方式得到其中32名学生的两次考试等级,所绘的统计图如图所示,结合图示信息回答下列问题: ⑴这32名学生培训前考分的中位数所在的等级是 ;⑵这32名学生经过培训后,考分等级“不合格”的百分比是 ;⑶估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有 名;⑷你认为上述估计合理吗?理由是什么?23.(本题满分8分)如图,一艘核潜艇在海面下500米A 点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B 点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度?(保留根号)人数等级 不合格 合格 优秀2487 1618 培训前培训后30°60°B AD C海面24.(本题满分10分)甲乙两人同时登山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟 米,乙在A 地提速时距地面的高度b 为_______米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式; (3)登山多长时间时,乙追上了甲?t 乙3002120100y (米)x (分)15bAB C甲DO25.(本题8分)如图,AB 是⊙O 的直径,BC 是弦,∠ABC 的平分线BD 交⊙O 于点D ,DE ⊥BC ,交BC 的延长线于点E ,BD 交AC 于点F .⑴求证:DE 是⊙O 的切线;(2) 若CE=1,ED=2,求⊙O 的半径.26.(本题10分)某公司准备投资开发A 、B 两种新产品,通过市场调研发现:如果单独投资A 种产品,则所获利润(万元)与投资金额x (万元)之间满足正比例函数关系:A y kx =;如果单独投资B 种产品,则所获利润(万元)与投资金额x (万元)之间满足二次函数关系:2B y ax bx =+.根据公司信息部的报告,A y ,B y (万元)与投资金额x (万元)的部分对应值如下表所示:x 1 5 A y 0.8 4 B y3.815FOEDCBA(1)填空:A y = ;B y = ;(2)如果公司准备投资20万元同时开发A 、B 两种新产品,设公司所获得的总利润为w (万元),试写出w 与某种产品的投资金额x 之间的函数关系式; (3)请你设计一个在⑵中能获得最大利润的投资方案.27.(本题10分)如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD 中,点C 与A ,B 两点可构成直角三角形ABC ,则称点C 为A ,B 两点的勾股点.同样,点D 也是A ,B 两点的勾股点.(1)如图1,矩形ABCD 中,AB =2,BC =1,请在边CD 上作出A ,B 两点的勾股点(点.C .和点..D .除外..)(要求:尺规作图,保留作图痕迹,不要求写作法);(2)矩形ABCD 中,AB =3,BC =1,直接写出边CD 上A , B 两点的勾股点的个数;(3)如图2,矩形ABCD 中,AB =12,BC =4,DP=4,DM =8,AN =5.过点P 作直线l 平行于BC ,点H 为M ,N 两点的勾股点,且点H 在直线l 上.求PH 的长.28.(本题满分12分)如图,菱形ABCD 的边长为20cm ,∠ABC =120°.动点P 、Q 同时从点A 出发,其中P 以4cm/s 的速度,沿A →B →C 的路线向点C 运动;Q 以23cm/s 的速度,沿A →C 的路线向点C 运动.当P 、Q 到达终点C 时,整个运动随之结束,设运动时间为t 秒.(1)在点P 、Q 运动过程中,请判断PQ 与对角线AC 的位置关系,并说明理由;(2)若点Q 关于菱形ABCD 的对角线交点O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N .①当t 为何值时,点P 、M 、N 在一直线上?②当点P 、M 、N 不在一直线上时,是否存在这样的t ,使得△PMN 是以PN 为一直角边的直角三角形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.(第27题图1)B AC D(第27题图2)BACD ·MNP2018年初三数学适应性训练参考答案一、(本大题共8题,每小题3分,共计24分)二、(本大题共10小题,每小题3分,共计30分)lNQP DCBAO题号 1 2 3 4 5 6 7 8 答案ADCACADD9.)1)(1(-+a a10. 611. 3 12. 世 13.r 3 14. 50度15. (7,3) 16.101三、19.(1)原式=2)23(321+--+ ……………………………………4分=223321++-+ ……………………………………5分 =35+ ……………………………………6分(2)原式=2)1(2+x ……………………………………4分当12-=x 时,原式=1 …………………………………6分20.(1)△BF C ≌△DFC (SAS ) …………………………………4分 (2)延长DF ,交BC 于点G ……………………………5分 证四边形ABGD 为平行四边形,得AD=BG …………………………6分 再证△BFG ≌△DFE (ASA ),得BG=DE ……………………………7分 得证:AD=DE ………………………………8分21.(1)10、50 ………………………………………………………………4分 (2)树状图或列表正确 …………………………………………6分32)30(=于所得购物卷的金额不低P ………………………………8分 22.(1)不合格 ………………………………………………………………3分 (2)25% ………………………………………………………………6分 (3)240 ………………………………………………………………8分 (4)略(言之有理即可) ………………………………………………10分 23.解:如图,过点C 作CE ⊥DE ,交AB 于D ,交DE 于E ,……………1分∵∠DBC =60°,∠BAC =30°∴BC=AB=3000……………………3分 易得:31500=CD ,…………6分 则50031500+=CE …………7分 答:……. ……………8分24.(1)10, 30 …………………………………………………………2分 (2)甲:10010+=x y ,………………………………………………5分乙:⎩⎨⎧≤≤-≤≤=)112(3030)20(15x x x x y ……………………………………8分30°60°B AD C海面DE(3)6.5分………………………………………………………10分25.(1)连接OD ,∠EBD=∠ABD ,∠ABD=∠ODB ,则∠EBD=∠ODB…………1分则OD ∥BE ,……………………………………………………2分 ∠ODE=∠DEB=90°……………………………………………3分 DE 是⊙O 的切线………………………………………………4分 (2)设OD 交AC 于点M易得矩形DMCE ,DM=EC=1AM=MC=DE=2…………………………………………………5分 设⊙O 的半径为x ,得222)1(2-+=x x ……………………6分 解得:25=x ……………………………………………………7分 ⊙O 的半径为25…………………………………………………8分 26.(1)x 8.0,x x 4512+-…………………………………………4分 (2)x x w 8.42.02+-=或162.32.02++-=x x w ………………8分 (3)投机A 产品12万元,B 产品8万元。