中考试题分类汇编(整式与分式)

合集下载

北京中考数学试题分类汇编

北京中考数学试题分类汇编

目录北京中考数学试题分类汇编 ............................................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................北京中考数学试题分类汇编(答案) ............................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................2011-2016年北京中考数学试题分类汇编本套试卷汇编了11-16年北京市中考数学试题真题,将真题按照知识点内容重新进行编排,通过试卷可看出北京中考数学学科各知识点所占整套试卷的百分比,知识点所对应的出题类型。

中考数学试题分类汇编 整式与分式

中考数学试题分类汇编 整式与分式

中考数学试题分类汇编:整式与分式一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2m 3 3、下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 4、下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=-4、化简:(a +1)2-(a -1)2=( )(A )2 (B )4 (C )4a (D )2a 2+25、下列计算中,正确的是( )A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()a b a b = 6.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。

7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。

8、下列计算正确的是( )A 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+ D 、87y y y =∙ 9、代数式2346x x -+的值为9,则2463x x -+的值为( )A .7 B .18 C .12D .9 10、下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+ C .221a a -- D .21a + 二、填空题1、当x=2,代数式21x -的值为_______.2、因式分解:xy 2–2xy +x = .3、分解因式:2218x -= .4、分解因式:2x -9= 。

数学中考试题分类汇编(分式)

数学中考试题分类汇编(分式)

15.(芜湖市)已知,则代数式的值为 山东省马新华的分类 一、选择1、(宜宾市)若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.2 1、(本题共3小题,每小题5分,共15分)(宜宾市)(1)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值..121)11(2+-÷--a a a a 2.(四川省资阳市)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.1、(08凉山州)先化简再求值2111224x x x -⎛⎫+÷⎪--⎝⎭,其中,3x =. (襄樊市)当m = 时,关于x 的分式方程213x mx +=--无解(黄冈市)计算()a b a bb a a+-÷的结果为( )A .a b b -B .a b b +C .a b a -D .a b a +简求值:222161816416x x x x x x ⎛⎫-+÷ ⎪++--⎝⎭,其中1x =. 答(恩施自治州)请从下列三个代数式中任选两个构成一个分式,并化简该分式x2-4xy+4y2x2-4y2x-2y(无锡)计算22()ab ab的结果为( ) A.b B .aC.1D.1b(常州市) 化简:211111a a a a +---+ (无锡)先化简,再求值:244(2)24x x x x -++-,其中x = 113x y -=21422x xy yx xy y----(苏州)若220x x --=2)A .3B .3 C D 或3 (苏州)解方程:222(1)160x x x x+++-=. (威海市)方程423532=-+-xx x 的解是 . (威海市)先化简,再求值:⎪⎭⎫⎝⎛--÷-+x x x x x 1211,其中2=x .(枣庄市)先化简,再求值:22212221x x x x x x --+--+÷x ,其中x =23. (枣庄市)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.(西宁市) 2.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义) .用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅(1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.三、解答题(甘肃省白银市)化简: a a a a a a 4)22(2-⋅+--. (重庆市)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中 以下是江苏省王伟根分类全国中考数学试题分类汇编(分式)1. (扬州市)(2)课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-的值。

中考数学专题复习:整式与分式测试题

中考数学专题复习:整式与分式测试题

2019-2020年中考数学专题复习:整式与分式测试题一、选择题(本大题共6题,每题4分,满分24分)1..化简(-x 2)3的结果是 …………………………………………( )(A)x 5 ; (B) x 6 ; (C) -x 5 ; (D) - x 6 .2. 下列计算中,正确的是……………………………………… ( )(A) ; (B);(C); (D) .3.化简:(a +1)2-(a -1)2=……………………………………… ( )(A )2; (B )4; C )4a; (D )2a 2+2.4.计算()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+-+313191331x x x x 的结果是………………( ) (A); (B); (C )0; (D).5.若把分式中的x 和y 都扩大3倍,那么分式的值………( )(A)扩大3倍;(B)不变; (C )缩小3倍; (D)缩小6倍.6. 计算:结果为…………………………………( )(A);1; (B)-1;; (C ); (D).二、填空题(本大题共12题,每题4分,满分48分)7.当x =2,代数式的值为________________.8.分解因式: .9.a 3÷a ·=___________________10.计算(a +2b )(a —b )= _______ .11. (a -b )2+ ____ =(a +b ) 212.分解因式: x 2-xy -2y 2= .13.当x 时,分式值为0;x 时,这个分式值无意义.14.若是同类项,则m +n =____________.15.计算:= _______________________.16.化简: __________________ .17. (16x 2y 3z +8x 3y 2z )÷8x 2y 2=_______________________.18.5号公路全长s 千米,骑车t 小时可跑完全程,若要跑完全程的时间减少40分钟,则每小时应多走___________千米.三、解答题(本大题共7题,满分78分)19. (本题满分10分) (5x -3y -2xy )-(6x +5y -2xy ),其中,解:20. (本题满分10分)先化简再求值:,其中解:21. (本题满分10分)(1)因式分解:2x -1+y 2-x 2 ; (2)因式分解:.22. (本题满分12分) (1)先化简112111122++-⋅--+x x x x x ,再求出x =时的值.(2))232(212++-÷-++x x x x x ,其中23. (本题满分12分)(1)已知(a +b )2=15,ab =2,求①a 2+b 2;②(a -b )2的值.(2)已知:222,053nm m n m m n m m n m ---++=-求的值.24.(1) (本题满分12分)已知方程,求①; ②.(2)已知x y y x xy y x +=-=+求,25,5的值.25. (本题满分12分)若,求[12(a +b )3(b -a )]3÷[4(a +b )2(a -b )]2的值.24073 5E09 帉; 122818 5922 夢,32110 7D6E 絮27114 69EA 槪23096 5A38 娸B25859 6503 攃#35151 894F 襏。

2022中考真题分类6——分式(参考答案)

2022中考真题分类6——分式(参考答案)

2022中考真题分类——分式(参考答案)一、分式概念1.(2022·湖南怀化)代数式25x ,1π,224x +,x 2−23,1x ,12x x ++中,属于分式的有( ) A .2个B .3个C .4个D .5个2.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________.3.(2022·内蒙古包头)1x在实数范围内有意义,则x 的取值范围是___________.【答案】1x ≥−且0x ≠【分析】根据二次根式与分式有意义的条件求解即可.【详解】解:由题意得:x +1≥0,且x ≠0,解得:1x ≥−且0x ≠,故答案为:1x ≥−且0x ≠.【点睛】本题考查二次根式与分式有意义的条件,熟练掌握二次根式有意义的条件:被开方数为非负数;分式有意义的条件:分母不等于零是解题的关键.4.(2022·湖南娄底)函数y =的自变量x 的取值范围是_______. 10,10x x 即x 解得: 1.x >故答案为:1x >二、分式计算(选填题)5.(2022·四川眉山)化简422a a +−+的结果是( ) A .1B .22a a +C .224a a −D .2a a +6.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( )A .fv f v −B .f v fv −C .fv v f −D .v f fv−7.(2022·湖北襄阳)化简分式:ma mb a b a b +++=_____.8.(2022·辽宁沈阳)化简:21111x x x −⎛⎫−⋅= ⎪+⎝⎭______. 【答案】1x −##1x −+9.(2022·江苏苏州)化简2222x xx x−−−的结果是______.10.(2022·四川自贡)化简:223423244a aa aa a−−⋅+−+++=____________.11.(2022·广西玉林)若x是非负整数,则表示22242(2)x xx x−−++的值的对应点落在下图数轴上的范围是()A.①B.②C.③D.①或②12.(2022·山东济南)若m-n=2,则代数式222m n mm m n−⋅+的值是()A.-2B.2C.-4D.413.(2022·湖南郴州)若23a bb−=,则ab=________.【详解】解:23 a bb−=b,,14.(2022·河北)若x和y互为倒数,则112x yy x⎛⎫⎛⎫+−⎪⎪⎝⎭⎝⎭的值是()A.1B.2C.3D.415.(2022·四川成都)已知2272a a −=,则代数式2211a a a a a−−⎛⎫−÷ ⎪⎝⎭的值为_________. 【答案】72##3.5##312 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变16.(2022·四川南充)已知a >b >0,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .17.(2022·山东菏泽)若22150a a−−=,则代数式2442a aaa a−⎛⎫−⋅⎪−⎝⎭的值是________.【答案】15【分析】先按分式混合运算法则化简分式,再把已知变形为a2−2a=15,整体代入即可.18.(2022·湖北鄂州)若实数a 、b 分别满足a 2−4a +3=0,b 2−4b +3=0,且a ≠b ,则11a b+的值为 _____.19.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =____________.20.(2022·四川达州)0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______. 【详解】解:a 111a S =+2221S a =+…,1001001S a =+100S ++=1故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab=,找出的规律是本题的关键.21.(2022·湖北随州)已知m是整数,则根据==可知m有最小值3721⨯=.设n于1的整数,则n的最小值为______,最大值为______.22.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n个数记为na,且满足21112n n na a a+++=.则4a=________,2022a=________.,三、分式计算(解答题)23.(2022·内蒙古·)先化简,再求值:2344111x x x x x −+⎛⎫−−÷ ⎪−−⎝⎭,其中3x =.24.(2022·辽宁阜新)先化简,再求值:2691122a a a a a −+⎛⎫÷− ⎪−−,其中4a =.25.(2022·山东东营)先化简,再求值:221122y x y x y x xy y⎛⎫−÷⎪−+++⎝⎭,其中3,2x y ==. )()22x y y+ )()22x y y+ 时,原式=+−x x 26.(2022·辽宁朝阳)先化简,简求值:22234+4243x x x x x x x x −÷−−+++,其中212x −⎛⎫= ⎪⎝⎭. 2222332x x x x x x x x2233x x x x x 33x x x x =2142x −⎛⎫== ⎪⎭,27.(2022·辽宁丹东)先化简,再求值:224+−x x ÷24x x −−1x ,其中x =sin 45°.28.(2022·山东枣庄)先化简,再求值:(2x x −−1)÷22444x x x −−+,其中x =−4. 22)(2)(2)(x x x −−+222x x −+ 22x =−4时,原式=242−+=−1.【点睛】本题主要考查了分式的混合运算,熟练地掌握分式的运算法则将分式进行约分化简是解题的关键29.(2022·内蒙古鄂尔多斯)先化简,再求值:(22969a a a −−++1)÷226a a −,其中a =4sin 30°−(π−3)0.30.(2022·四川绵阳)先化简,再求值:3x y x y x yx x y x y⎛⎫−−+−÷⎪−−⎝⎭,其中1x=,100y=31.(2022·辽宁大连)计算2224214424x x x x x x x−+÷−−+−. 22222122x x x x x x x 211.x xx 【点睛】本题考查的是分式的混合运算,掌握键.32.(2022·广东深圳)先化简,再求值:2222441,x x x x x x −−+⎛⎫−÷ ⎪−⎝⎭其中 4.x =33.(2022·山东聊城)先化简,再求值:44422a a a a a a −−⎛⎫÷−− ⎪−⎝⎭,其中112sin 452a −⎛⎫=︒+ ⎪⎝⎭.34.(2022·湖南郴州)先化简,再求值:22a b a b a b ⎛⎫÷+ ⎪−+−⎝⎭,其中1a ,1b =.35.(2022·辽宁锦州·)先化简,再求值:2211211x x x x ⎛⎫÷−+ ⎪−++−⎝⎭,其中|1x =+.x 36.(2022·黑龙江)先化简,再求值:22221111a a a a a ⎛⎫−−−÷ ⎪−+⎝⎭,其中2cos301a =︒+.37.(2022·贵州毕节)先化简,再求值:2241442a a a a −⎛⎫÷− ⎪+++,其中2a =.38.(2022·湖北荆州)先化简,再求值:222212a b a b a b a ab b ⎛⎫−÷ ⎪−+−+⎝⎭,其中113a −⎛⎫= ⎪⎝⎭,()02022b =−.39.(2022·湖南湘潭)先化简,再求值:22211391x x x x x x x +÷−⋅−−+,其中2x =. 【答案】x +2,4【分析】先运用分式除法法则和乘法法则计算,再合并同类项.40.(2022·新疆)先化简,再求值:22931121112a aa a a a a⎛⎫−−÷−⋅⎪−+−−+⎝⎭,其中2a=.41.(2022·四川达州)化简求值:222112111a a aa a a a⎛⎫−+÷+⎪−+−−⎝⎭,其中31a.31a 时,原式=【点睛】本题考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.42.(2022·山东滨州)先化简,再求值:344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,其中10(1tan 45π2)a −=︒+−。

各地中考数学试卷分类汇编 整式与分解因式(含解析)

各地中考数学试卷分类汇编 整式与分解因式(含解析)

整式与分解因式一.选择题1. (xx ·湖北随州·3 分)下列运算正确的是( )A .a 2•a 3=a 6B .a 3÷a ﹣3=1C .(a ﹣b )2=a 2﹣ab+b 2D .(﹣a 2)3=﹣a 6【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得. 【解答】解:A.a 2•a 3=a 5,此选项错误; B.a 3÷a ﹣3=a 6,此选项错误; C.(a ﹣b )2=a 2﹣2ab+b 2,此选项错误; D.(﹣a 2)3=﹣a 6,此选项正确; 故选:D .【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底 数幂的除法、幂的乘方的运算法则.2. (xx ·湖北襄阳·3 分)下列运算正确的是( )A .a 2+a 2=2a 4B .a 6÷a 2=a 3C .(﹣a 3)2=a6 D .(ab )2=ab 2【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指 数不变;同底数幂相除,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把 所得的幂相乘;对各选项分析判断后利用排除法求解. 【解答】解:A.a 2+a 2=2a 2,故 A 错误; B.a 6÷a 2=a 4,故 B 错误; C.(﹣a 3)2=a 6,故 C 正确; D.(ab )2=a 2b 2,故 D 错误. 故选:C .【点评】本题考查合并同类项、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解 题的关键.3. (xx ·湖南郴州·3 分)下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .D .(a+2)(a ﹣2)=a 2+4【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法 则、平方差公式分别计算得出答案. 【解答】解:A.a 3•a 2=a 5,故此选项错误;1 a ,故此选项错误;B.a﹣2=2C.3﹣2=,故此选项正确;D.(a+2)(a﹣2)=a2﹣4,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.(xx•江苏宿迁•3 分)下列运算正确的是()A. B. C. D.【答案】C【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. a2 与a1 不是同类项,不能合并,故B选项错误;C. ,故C选项正确;D.,故 D 选项错误,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.5.(xx•江苏徐州•2 分)下列运算中,正确的是()A.x3+x3=x6 B.x3•x9=x27 C.(x2)3=x5D.x÷x2=x﹣1【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A.应为x3+x3=2x3,故本选项错误;B.应为x3•x9=x12,故本选项错误;C.应为(x2)3=x6,故本选项错误;D.x÷x2=x1﹣2=x﹣1,正确.故选:D.【点评】本题主要考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质和法则是解题的关键.6.(xx•江苏无锡•3 分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5 C.a4﹣a3=aD.a4÷a3=a【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A.a2.a3 不是同类项不能合并,故A错误;B.(a2)3=a6)x5•x5=x10,故B错误;C.a4.a3 不是同类项不能合并,故C错误;D.a4÷a3=a,故D正确.故选:D.【点评】本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.7.(xx•山东东营市•3分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A.﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B.a2+a2=2a2,此选项错误;C.a2•a3=a5,此选项错误;D.(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.8.(xx•山东聊城市•3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.9.(xx •内蒙古包头市•3 分)如果 2x a+1y 与 x 2y b ﹣1是同类项,那么a b的值是()A .12B .32C .1D .3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出 A .b 的值,然后 代入求值.【解答】解:∵2x a+1y 与 x 2y b ﹣1 是同类项, ∴a+1=2,b ﹣1=1, 解得 a =1,b=2. ∴a b =12. 故选:A .【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母 的指数也相同,是解答本题的关键.10.(xx•山东济宁市•3 分)下列运算正确的是( ) A .a 8÷a 2 =a 4 B .(a 2)2=a 4 C .a 2•a 3=a 6 D .a 2+a 2=2a 4【解答】解:A. a 8÷a 2 =a 6,故此选项错误;B. (a 2)2=a 4,故原题计算正确; C. a 2•a 3=a 5, 故 此 选 项 错 误 ;D. a 2+a 2=2a 2,故此选项错误; 故选:B . 11.(xx•山东济宁市•3 分)多项式4a ﹣a 3分解因式的结果是( ) A .a (4﹣a 2) B .a (2﹣a )(2+a ) C .a (a ﹣2)(a+2)D .a (2﹣a )2【解答】解:4a ﹣a 3= a (4﹣a 2)= a (2﹣a )(2+a )选:B . 12.(xx•临安•3 分)下列各式计算正确的是( )A .a 12÷a 6=a 2B .(x+y )2=x 2+y 2C.221=42x x x--+ 【分析】此类题目难度不大,可用验算法解答.【解答】解:A.a 12÷a 6 是同底数幂的除法,指数相减而不是相除,所以 a 12÷a 6=a 6,错误; B.(x+y )2 为完全平方公式,应该等于 x 2+y 2+2xy ,错误; C.2221=4(2)(2)2x x x x x x--=--+-+,错误; D.正确. 故选:D .【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键. 运算法则:①a m ÷a n =a m ﹣n ,精品-②=(a≥0,b>0).13.(xx•湖州•3 分)计算﹣3a •(2b ),正确的结果是( ) A. ﹣6ab B. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可. 详解:-3a •(2b )=-6ab ,故选:A . 点睛:此题考查单项式的乘法,关键是根据法则计算.14.(xx•金华、丽水•3 分)计算 3()a a -÷结果正确的是( )A.2aB. 2a -C.3a -D. 4a -【解析】【解答】解:3()a a -÷3=a a -÷2=a -,故答案为:B 。

整式及其运算(50题)2023年中考数学真题分项汇编(全国通用)(解析版)

整式及其运算(50题)2023年中考数学真题分项汇编(全国通用)(解析版)

整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a −=( )A .aB .a −C .3aD .1 【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a −=,故A 正确.故选:A .【点睛】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a −=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:33a ,2a 不是同类项,不能合并,故A 不符合题意; ()2222a b a ab b +=++,故B 不符合题意;3222a b a ab ÷=,故C 不符合题意;()2242a b a b =,故D 符合题意;故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键. 3.(2023·江西·统考中考真题)计算()322m 的结果为( ) A .68mB .66mC .62mD .52m【答案】A 【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选:A . 【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键. 4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a −=B .325a a a ⋅=C .321a a ÷=D .()23a a = 【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a +⋅==,故B 选项正确;32a a a ÷=,故C 选项错误; ()236a a =,故D 选项错误;故选:B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法可判断A ,根据幂的乘方可判断B ,根据积的乘方可判断C ,根据整数指数幂的运算可判断D ,从而可得答案.【详解】解:235a a a ⋅=,运算正确,故A 符合题意; ()326a a =,原运算错误,故B 不符合题意;333()ab a b =,原运算错误,故C 不符合题意;231a a a ÷=,原运算错误,故D 不符合题意;故选:A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键. 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a 【答案】D【分析】根据积的乘方法则计算即可. 【详解】解:()2239a a =.故选:D. 【点睛】此题考查了积的乘方,积的乘方等于各因数乘方的积,熟练掌握积的乘方法则是解题的关键. 7.(2023·湖南常德·统考中考真题)若2340a a +−=,则2263a a +−=( )A .5B .1C .1−D .0【答案】A【分析】把2340a a +−=变形后整体代入求值即可. 【详解】∵2340a a +−=,∴234+=a a∴()222632332435a a a a +−=+−=⨯−=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.8.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 【答案】B【分析】根据同底数幂的运算法则即可求解.【详解】解:A 选项,不是同类项,不能进行加减乘除,不符合题意;B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意;C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意;D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a −=,不符合题意;故选:B .【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键. 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=【答案】D【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A 、23x x x +≠,错误,故不符合要求; B 、6332x x x x ÷=≠,错误,故不符合要求;C 、()43127x x x =≠,错误,故不符合要求;D 、347x x x ⋅=,正确,故符合要求;故选:D .【点睛】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算. 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a −=【答案】D【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==A 错误; 2222(3)39a a a ==,故B 错误;63633a a a a −÷==,故C 错误;()22223312a a a a −=−=,故D 正确.故选:D . 【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键. 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b【答案】C【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab ⋅÷3122a b ab =÷26a =,故选:C .【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键. 12.(2023·湖南怀化·统考中考真题)下列计算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()2329ab a b =D .523a a −=【答案】A【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ⋅=,故选项正确,符合题意; B .624a a a ÷=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a −=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a a a a a +−=+−=,故选:B.【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键. 14.(2023·浙江温州·统考中考真题)化简43()a a ⋅−的结果是( )A .12aB .12a −C .7aD .7a − 【答案】D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:43()a a ⋅−()437a a a =⨯−=−,故选:D .【点睛】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键. 15.(2023·山东烟台·统考中考真题)下列计算正确的是( )A .2242a a a +=B .()32626a a =C .235a a a ⋅=D .824a a a ÷=【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.2222a a a +=,故该选项不正确,不符合题意; B.()32628a a =,故该选项不正确,不符合题意;C.235a a a ⋅=,故该选项正确,符合题意;D.826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、 23a a a ⋅=,故该选项正确,符合题意; B 、 624a a a ÷=,故该选项不正确,不符合题意;C 、 32a a a −=,故该选项不正确,不符合题意;D 、222()2a b a ab b −=−+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.17.(2023·江苏扬州·统考中考真题)若23( )22a b a b ⋅=,则括号内应填的单项式是( )A .aB .2aC .abD .2ab【答案】A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解答.【详解】解:∵23( )22a b a b ⋅=, ∴()3222a b a b a =÷=.故选:A .【点睛】本题主要考查了整式除法的应用,弄清被除式、除式和商之间的关系是解题的关键.【答案】A【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意; B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.19.(2023·浙江绍兴·统考中考真题)下列计算正确的是( )A .623a a a ÷=B .()52a a −=−C .()()2111a a a +−=−D .22(1)1a a +=+【答案】C【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A . 6243a a a a ÷=≠,原计算错误,不符合题意; B . ()5210a a a −=−≠−,原计算错误,不符合题意;C . ()()2111a a a +−=−,原计算正确,符合题意;D .222(1)211a a a a +=++≠+,原计算错误,不符合题意; 故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键. 20.(2023·浙江台州·统考中考真题)下列运算正确的是( ).A .()2122a a −=−B .()222a b a b +=+C .2325a a a +=D .()22ab ab = 【答案】A【分析】根据去括号法则判断A ;根据完全平方公式判断B ;根据合并同类项法则判断C ;根据积的乘方法则判断D 即可.【详解】解:A .()2122a a −=−,计算正确,符合题意;B .()222222a b a ab b a b +=++≠+,计算错误,不符合题意; C .23255a a a a +=≠,,计算错误,不符合题意;D . ()2222ab a b ab =≠,计算错误,不符合题意;故选:A .【点睛】本题考查了去括号法则,合并同类项法则,积的乘方法则,完全平方公式等知识,熟练掌握各运算法则是解题的关键.【答案】B 【分析】运用积的乘方法则、幂的乘方法则即可得出结果.【详解】解:()236322112124x xx ⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故选:B .【点睛】本题考查了积的乘方法则、幂的乘方法则,熟练运用积的乘方法则、幂的乘方法则是解题的关键. 22.(2023·山东临沂·统考中考真题)下列运算正确的是( )A .321a a −=B .222()a b a b −=−C .()257a a =D .325326a a a ⋅=.【答案】D【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、32a a a −=,故选项错误,不符合题意;B 、222()2a b a ab b −=−+,故选项错误,不符合题意;C 、()2510a a =,故选项错误,不符合题意;D 、325326a a a ⋅=,故选项正确,符合题意;故选:D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x −=−C .633x x x ÷=D .236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意; B 、()32628x x −=−,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ×=,选项计算错误,不符合题意;故选:C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 6【答案】B【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A 、3a 和4b 不是同类项,不能合并,所以此选项不正确;B 、x12÷x6=x6,所以此选项正确;C 、(a+2)2=a2+4a+4,所以此选项不正确;D 、(ab3)3=a3b9,所以此选项不正确;故选:B .【点睛】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键. 25.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b −=−C .632a a a ÷=D .()326a a = 【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .235a a a ⋅=,故该选项计算错误,不符合题意, B .()2362a b a b −=,故该选项计算错误,不符合题意,C .633a a a ÷=,故该选项计算错误,不符合题意,D .()326a a =,故该选项计算正确,符合题意,故选:D .【点睛】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键. 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A. 4322x x x ÷=,计算正确,故选项A 符合题意; B. ()4312x x =,原选项计算错误,故选项B 不符合题意;C. 4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意;D. 347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握. 27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a −=D .()222a b a b −=− 【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A 、437a a a ⋅=,选项计算正确,符合题意; B 、()326a a =,选项计算错误,不符合题意;C 、22232a a a −=选项计算错误,不符合题意;D 、()2222a b a ab b −=−+,选项计算错误,不符合题意;故选:A .【点睛】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键.【答案】B【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A. 347a a a +≠,故该选项不符合题意; B. 347a a a ⋅=,故该选项符合题意;C. 437a a a a ÷=≠,故该选项不符合题意;D. ()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b −=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +−=−【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A. 22ab a b −≠ ,故该选项不正确,不符合题意;B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 233a b a ab ÷=,故该选项不正确,不符合题意;D. 222()()4a a a +−=−,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键. 30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b −=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 23232332a b a b a b −=,故该选项正确,符合题意; B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 624a a a ÷=,故该选项不正确,不符合题意;D. ()326a a =,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =【答案】D【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A .235x x x ×=,所以A 选项不符合题意;B .12210x x x ÷=,所以B 选项不符合题意;C .222()2x y x y xy +=++,所以C 选项不符合题意;D .()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键. 32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 【答案】B【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、633a a a ÷=,故选项错误; B 、235a a a ⋅=,故选项正确;C 、()23624a a =,故选项错误;D 、()2222a b a ab b +=++,故选项错误; 故选:B .【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键. 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=【答案】C【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A 、22(2)44x x x +=++,选项计算错误,不符合题意; B 、246a a a ⋅=,选项计算错误,不符合题意;C 、()23624x x =,计算正确,符合题意;D 、222235x x x +=,选项计算错误,不符合题意;故选:C .【点睛】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键. 34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a −=−B .222()a b a b −=−C .()()2224m m m −+−−=−D .()257a a = 【答案】C【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.()2224a a −=,原式计算错误;B.()2222a b a ab b −=−+,原式计算错误; C.()()2224m m m −+−−=−,计算正确; D. ()2510a a =,原式计算错误.故选:C .式是解题的关键.35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x −=D .326a a a ⋅=【答案】C【分析】根据单项式乘以单项式,幂的乘方,积的乘方,合并同类项,进行计算即可求解.【详解】解:A. 22234b b b +=,故该选项不正确,不符合题意; B. ()248a a =,故该选项不正确,不符合题意;C. ()224x x −=,故该选项正确,符合题意; D. 2326a a a ⋅=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握以上运算法则是解题的关键. 36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=【答案】D【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 826a a a ÷=,故该选项不正确,不符合题意; B. 23a a a +≠,故该选项不正确,不符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 235a a a ⋅=,故该选项正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断. 【详解】解:A 、()236a a =,不符合题意;B 、1028a a a ÷=,不符合题意;C 、45a a a ⋅=,符合题意;D 、515(1)a a −−=−,不符合题意;故选:C .【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键. 38.(2023·内蒙古赤峰·统考中考真题)已知2230a a −−=,则2(23)(23)(21)a a a +−+−的值是( ) A .6B .5−C .3−D .4【答案】D【分析】2230a a −−=变形为223a a −=,将2(23)(23)(21)a a a +−+−变形为()2428a a −−,然后整体代入求值即可.【详解】解:由2230a a −−=得:223a a −=,∴2(23)(23)(21)a a a +−+−2249441a a a =−+−+2848a a =−−()2428a a =−−438=⨯−4=, 故选:D .【点睛】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +−+−变形为()2428a a −−. 39.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab −=C .34()a a a −⋅=D .222()a b a b +=+【答案】A【分析】根据幂的运算法则,乘法公式处理.【详解】A. ()22346a b a b =,正确,符合题意;B. 32ab ab ab −=,原计算错误,本选项不合题意;C. 34()a a a −⋅=−,原计算错误,本选项不合题意;D.222()2a b a b ab +=++ 【点睛】本题考查幂的运算法则,整式的运算,完全平方公式,掌握相关法则是解题的关键. 40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a −=【答案】A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a −÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a −不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘. 41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab −=C .()2211a a +=+D .()236a a −= 【答案】D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:∵325a a a ⋅=,故A 不符合题意; ∵4=3ab ab ab −,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a −=,故D 符合题意; 故选:D .【点睛】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.二、填空题【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 【答案】24x y【分析】直接利用积的乘方运算法则计算即可求得答案.【详解】解:()2224xy x y =故答案为:24x y .【点睛】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式. 45.(2023·全国·统考中考真题)计算:(3)a b +=_________.【答案】3ab a +【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a +=+.故答案为:3ab a +.【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键. 46.(2022秋·上海·七年级专题练习)计算:2232a a −=________.【答案】2a【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a −=−= 故答案为:2a .【点睛】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:22x y xy +()xy x y =+, ∵3x y +=,2y =,∴1x =,∴原式123=⨯⨯6=,故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键. 48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab+()ab a b =+76=⨯42=. 故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.【答案】a6b3【详解】试题分析:根据积的乘方运算法则可得 (a2b )3= a6b 3.故答案为:a6b3.三、解答题【答案】226a ab −,24 【分析】先展开,合并同类项,后代入计算即可.【详解】()()233(3)a b a b a b −++−2222969a b a ab b =−+−+226a ab =−当13,3a b =−=时,原式()()2123633=⨯−−⨯−⨯24=.【点睛】本题考查了平方差公式,完全平方公式的计算,熟练掌握两个公式是解题的关键.。

整理中考数学知识归纳测试题重庆整式与分式

整理中考数学知识归纳测试题重庆整式与分式

文件编号: 06-83-AF -62-BE整理人 尼克中考数学试题及答案分类汇编中考数学试题及答案分类汇编:方程(组)和不等式(组)一、选择题1(山西省2分)分式方程的解为A.B.C.D.【答案】B。

【考点】解分式方程。

【分析】观察可得最简公分母是2(+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘2(+3),得+3=4,解得=1.检验:把=1代入2(+3)=8≠0。

∴原方程的解为:=1。

故选B。

2.(山西省2分)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为元,根据题意,下面所列方程正确的是A.B.C.D.【答案】A。

【考点】由实际问题抽象出一元一次方程。

【分析】设该电器的成本价为元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程:(1+30%)×80%=2080。

故选A。

3.(内蒙古巴彦淖尔、赤峰3分)不等式组错误!未找到引用源。

的解集在数轴上表示正确的是【答案】B。

【考点】解一元一次不等式组,在数轴上表示不等式的解集。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

解不等式组得到﹣2<x≤2。

不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

据此观察在数轴上的表示。

故选B。

4.(内蒙古巴彦淖尔、赤峰3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是A、2.5秒B、3秒C、3.5秒D、4秒【答案】D。

全国中考真题分类汇编3整式与因式分解.doc

全国中考真题分类汇编3整式与因式分解.doc

基础义务教育资料整式与因式分解考点一.整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如1 1Q-^-a2b ,这种表示就是错误的,应写成-勺。

一个单项式中,所有字母的指数的和3 3叫做这个单项式的次数。

如-5a3b2c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,〃整体〃代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1) 括号前是"+〃,把括号和它前面的〃+"号一起去掉,括号里各项都不变号。

(2 )括号前是〃-〃,把括号和它前面的〃-”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:=/"〃("?,〃都是正整数)=一(5都是正整数)(沥)都是正整麴(ci + b)(ci - b) = a2 -b2(Q +5)2 =。

2 +2迎+驴(a -b)2 =a2 -2ab-\-b2整式的除法:cT‘=】〃「〃(办〃都是正整数Q。

0)注意:(1)单项式乘单项式的结果仍然是单项式。

(2) 单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3) 计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

广东省历年(2019-2023年)中考数学真题分类汇编 整式与因式分解

广东省历年(2019-2023年)中考数学真题分类汇编 整式与因式分解

广东省历年(2019-2023年)中考数学真题分类汇编整式与因式分解一、选择题1.(2023·深圳)下列运算正确的是()A.a3⋅a2=a6B.4ab−ab=4C.(a+1)2=a2+1D.(−a3)2=a6【答案】D【解析】【解答】解:A、由于a3·a2=a5,故此选项计算错误,不符合题意;B、由于4ab-ab=3ab,故此选项计算错误,不符合题意;C、由于(a+1)2=a2+2a+1,故此选项计算错误,不符合题意;D、由于(-a3)2=a6,故此选项计算正确,符合题意.故答案为:D.【分析】由同底数幂的相乘,底数不变,指数相加,进行计算,可判断A选项;整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序没有关系,与系数也没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数不变,但不是同类项的一定就不能合并,据此可判断B选项;由完全平方公式的展开式是一个三项式,可判断C 选项;由幂的乘方,底数不变,指数相乘,可判断D选项.2.(2021·广州)下列运算正确的是()A.|−(−2)|=−2B.3+√3=3√3C.(a2b3)2=a4b6D.(a-2)2=a2-4【答案】C【解析】【解答】A. |−(−2)|=2≠−2,选项A计算不符合题意;B. 3与√3不是同类项,不能合并,3+√3≠3√3,选项B计算不符合题意;C. (a2b3)2=a2×2b3×2=a4b6,选项C计算符合题意;D. (a−2)2=a2−4a+4≠a2−4,选项D计算不符合题意.故答案为:C.【分析】利用绝对值,同类项,幂的乘方,完全平方公式计算求解即可。

3.(2021·广东)设6−√10的整数部分为a,小数部分为b,则(2a+√10)b的值是()A.6B.2√10C.12D.9√10【答案】A【解析】【解答】解:∵√9<√10<√16∴3<√10<4∴−4<−√10<−3∴6−4<6−√10<6−3∴2<6−√10<3∴6−√10的整数部分a=2,小数部分b=6−√10−2=4−√10∴(2a+√10)b=(2×2+√10)(4−√10)=(4+√10)(4−√10)=16−10=6故答案为:A.【分析】考查无理数的估算、整数部分与小数部分,先估算出无理数的范围,确定整数部分,再用无理数减去整数部分,得到小数部分,最后再计算表达式的数值。

2024年中考数学真题分类汇编(全国通用)(第一期)专题05 分式及其运算(37题)(解析版)

2024年中考数学真题分类汇编(全国通用)(第一期)专题05 分式及其运算(37题)(解析版)

专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b -C .22a b-D .2a b a b-【答案】A【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.93=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=【答案】D【分析】本题考查了单项式的乘除法,多项式除以单项式,负整数指数幂,根据运算法则进行逐项计算,即可作答.4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=故选:B .6.(2024·天津·中考真题)计算3311x x x ---的结果等于()A .3B .xC .1x x -D .231x -【答案】A【分析】本题考查分式加减运算,熟练运用分式加减法则是解题的关键;运用同分母的分式加减法则进行计算,对分子提取公因式,然后约分即可.【详解】解:原式()3133311x x x x --===--故选:A7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为xy -,则A =()A .xB .yC .x y+D .x y-【答案】A【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得22y x y A x xy xy xy y -+=++,对2y x yx xy xy-++进行通分化简即可.【详解】解:∵22A y xy y x xy-++的结果为x yxy -,∴22y x y Ax xy xy xy y -+=++,∴()()()()()2222x y x y y x x Axy x y xy x y xy x y xy y xy y -++===+++++,∴A x =,故选:A .二、填空题8.(2024·四川南充·中考真题)计算-a b a b a b的结果为.【答案】1【分析】本题主要考查了同分母分式减法运算,按照同分母减法运算法则计算即可.【详解】解:1a b a ba b a b a b--==---,故答案为:1.9.(2024·湖北·中考真题)计算:111m m m +=.10.(2024·广东·中考真题)计算:333a a -=.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:422x x x+=.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;【答案】0x ≠【分析】本题考查函数的概念,根据分式成立的条件求解即可.熟练掌握分式的分母不等于零是解题的关键.【详解】解:由题意可得,0x ≠,故答案为:0x ≠.14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.【答案】1x-【分析】此题考查了分式的混合运算,利用分式的运算法则计算得到每三个为一个循环,分别为1x +,1x-,1xx +,进一步即可求出2024a .【详解】解:11a x =+ ,()21111111a a x x∴===---+,32111111xa a x x ===-+⎛⎫-- ⎪⎝⎭,43111111111a x xa x x ∴====+--++,51a x∴=-,61x a x =+,……,由上可得,每三个为一个循环,2024367432÷=⨯+ ,20241a x∴=-.故答案为:1x-.三、解答题16.(2024·江苏盐城·中考真题)先化简,再求值:2391a a a---÷,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.22222y x xy x x x y +-=⋅-()()()2x y xx x y x y -=⋅+-x y x y-=+18.(2024·四川广安·中考真题)先化简111a a a ++⎛⎫+-÷--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.【答案】22a a -+,0a =时,原式1=-,2a =时,原式0=.【分析】本题考查的是分式的化简求值,先计算括号内分式的加减运算,再计算分式的除法运算,再结合分式有意义的条件代入计算即可.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭2213(2)111a a a a a ⎛⎫-+=-÷⎪---⎝⎭2(2)(2)11(2)a a a a a +--=⋅-+22a a -=+1a ≠ 且2a ≠-∴当0a =时,原式1=-;当2a =时,原式0=.19.(2024·山东·中考真题)(111422-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪,其中1a =.【答案】(1)3(2)3a -2-【分析】本题主要考查实数的运算、分式的运算:(1)根据求算术平方根和负整数指数幂、有理数的减法的运算法则计算即可;(2)先通分,然后求解即可.【详解】(1)原式112+322=+=(2)原式()()3123333a a a a a a ++⎛⎫-÷ ⎪+++-⎝⎭()()332·32a a a a a +-+=++3a =-将1a =代入,得原式132=-=-21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-【答案】1-【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x -.【答案】(1)6;(2)1【分析】题目主要考查零次幂、绝对值的化简,分式的加减运算,熟练掌握运算法则是解题关键.(1)先计算零次幂及绝对值化简,然后计算加减法即可;(2)直接进行分式的减法运算即可.【详解】解:(1)0π5+-=1+5=6;(2)888x x x ---88x x -=-1=.24.(2024·江苏苏州·中考真题)计算:()0429-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.25.(2024·福建·中考真题)计算:0(1)54-+-【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式152=+-4=.26.(2024·陕西·()()025723-+-⨯.【答案】2-【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:()()025723--+-⨯516=--2=-.27.(2024·湖南·中考真题)先化简,再求值:22432x x x x x-⋅+,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b-+的值.29.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫-+ ⎪⎝⎭.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式2310=-+=.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷ ⎪.【答案】1a a +【分析】本题考查分式的混合运算,掌握分式的混合运算法则是解题关键.根据分式的混合运算法则计算即可.【详解】解:21111a a a a a +⎛⎫++÷ ⎪--⎝⎭,()()()1111111a a a a a a a ⎡⎤-+=⎢+÷⎣-⎥+--⎦()211111a a a a a -+=⨯--+()2111a a a a a =-⨯-+1a a =+.31.(2024·浙江·中考真题)计算:131854-⎛⎫-- ⎪⎝⎭【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.【详解】131854-⎛⎫-+- ⎪⎝⎭425=-+7=.32.(2024·四川广元·中考真题)先化简,再求值:22222a a b a b a b a ab b a b--÷-,其中a ,b 满足20b a -=.【答案】b a b +,23【分析】本题考查了分式的化简求值,熟练掌握分式的化简求值方法是解题的关键.先将分式的分子分母因式分解,然后将除法转化为乘法计算,再计算分式的加减得到b a b+,最后将20b a -=化为2b a =,代入b a b +即得答案.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:2669x x x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.【答案】262m m --,25-.【分析】本题考查了分式的化简求值,先利用分式的性质和运算法则对分式化简,然后根据题意求出m 的值,把m 的值代入到化简后的结果中计算即可求解,正确化简分式和求出m 的值是解题的关键.【详解】解:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭()22274393m m m m m m --⎛⎫=-÷ ⎪--+⎝⎭,()()()()()()3743333322m m m m m m m m m ⎡⎤+-+=-⨯⎢⎥+-+--⎢⎥⎣⎦,()()()()()23743333322m m m m m m m m m ⎡⎤+-+=-⨯⎢⎥+-+--⎢⎥⎣⎦,()()()24433322m m m m m m -++=⨯+--,()()()()2233322m m m m m -+=⨯+---,()223m m -=--,262m m -=-,∵2354-=,∴235-的平方根为2±,∵420m -≠,∴2m ≠,又∵m 为235-的平方根,∴2m =-,∴原式()2226225--==--⨯-.35.(2024·江苏苏州·中考真题)先化简,再求值:212124x x +-⎛⎫+÷ ⎪.其中3x =-.【答案】2x x+,13【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅,其中3x =.4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.37.(2024·四川乐山·中考真题)先化简,再求值:242x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.【答案】(1)③(2)见解析【分析】本题考查了分式的化简求值,异分母的分式减法运算,熟练掌握知识点是解题的关键.(1)第③步分子相减时,去括号变号不彻底;(2)先通分,再进行分子相减,化为最简分式后,再代入求值即可.【详解】(1)解:∵第③步分子相减时,去括号变号不彻底,应为:()()()()()()2222222222x x x x x x x x x x -----=+++-+;(2)解:()()2212142222x x x x x x x -=---+--()()()()222222x x x x x x +=-+-+-。

2022中考真题分类3——整式计算(参考答案)

2022中考真题分类3——整式计算(参考答案)

2022中考真题分类——整式(参考答案)一、整式运算1.(2022·湖南永州)若单项式3m x y 的与62x y −是同类项,则m =______. 【答案】6【分析】由题意直接根据同类项的概念,进行分析求解即可. 【详解】解:∵单项式3m x y 与62x y −是同类项, ∴6m =. 故答案为:6.【点睛】本题主要考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”即相同字母的指数相同.2.(2022·西藏)下列计算正确的是( ) A .2ab−ab =ab B .2ab +ab =2a 2b 2 C .4a 3b 2−2a =2a 2b D .−2ab 2−a 2b =−3a 2b 2【答案】A【详解】A 、2ab −ab =(2−1)ab =ab ,选项正确,符合题意; B 、2ab +ab =(2+1)ab =3ab ,选项不正确,不符合题意;C 、4a 3b 2与−2a 不是同类项,不能合并,选项不正确,不符合题意;D 、−2ab 2与−a 2b 不是同类项,不能合并,选项不正确,不符合题意. 故选A .【点睛】本题考查整式的加减.在计算的过程中,把同类项进行合并,不能合并的直接写在结果中即可.3.(2022·江苏徐州)下列计算正确的是( ) A .268a a a ⋅= B .842a a a ÷= C .224236a a a += D .()2239a a −=−【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项,积的乘方逐项分析判断即可求解.【详解】解:A . 268a a a ⋅=,故该选项正确,符合题意; B . 844a a a ÷=,故该选项不正确,不符合题意; C . 222235a a a +=,故该选项不正确,不符合题意; D . ()2239a a −=,故该选项不正确,不符合题意; 故选A【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,积的乘方,正确的计算是解题的关键.4.(2022·山东淄博)计算3262(2)3a b a b −−的结果是( ) A .−7a 6b 2 B .−5a 6b 2C .a 6b 2D .7a 6b 2【答案】C【分析】先根据积的乘方法则计算,再合并同类项. 【详解】解:原式62626243a b a b a b =−=, 故选:C .【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则.5.(2022·江苏镇江)下列运算中,结果正确的是( ) A .224325a a a += B .3332a a a −=C .235a a a ⋅=D .()325a a =【答案】C【分析】根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则逐项计算即可判断选择.【详解】222325a a a +=,故A 计算错误,不符合题意;3332a a a −=−,故B 计算错误,不符合题意;235a a a ⋅=,故C 计算正确,符合题意;()326a a =,故D 计算错误,不符合题意.故选C .【点睛】本题考查合并同类项,同底数幂的乘法,幂的乘方.熟练掌握各运算法则是解题关键.6.(2022·湖北黄石)下列运算正确的是( ) A .972a a a −= B .632a a a ÷= C .236a a a ⋅= D .()224224a ba b −=【答案】D【分析】根据合并同类项法则,同底数幂的乘处法法则以及积的乘方运算法则即可求出答案.【详解】解:A .9a 与7a 不是同类项,所以不能合并,故A 不符合题意 B .原式=3a ,故B 不符合题意 C .原式=5a ,故C 不符合题意 D .原式=424a b ,故D 符合题意. 故选:D .【点睛】本题考查合并同类项法则,同底数幂的乘处法法则以及积的乘方运算法则,本题属于基础题型.7.(2022·山东东营)下列运算结果正确的是( ) A .336325x x x += B .22(1)1x x +=+ C .842x x x ÷= D 2=8.(2022·辽宁鞍山)下列运算正确的是( )A =B .3412a a a ⋅=C .222()a b a b −=−D .()323628ab a b −=−9.(2022·四川资阳)下列计算正确的是( ) A .235a b ab += B .222()a b a b +=+ C .23a a a ⨯=D .()325a a =【答案】C【分析】分别根据合并同类项法则,完全平方公式,同底数幂的乘法法则以及幂的乘方运算法则逐一判断即可.【详解】A . 2a 与3b 不是同类项,所以不能合并,故选项A 不合题意; B . 222()2a b a ab b +=++,故选项B 不合题意; C . a 2×a =a 3,故选项C 符合题意; D . (a 2 )3=a 6,故选项D 不合题意. 故选:C .【点睛】此题考查合并同类项,同底数幂的乘法,幂的乘方,完全平方公式,熟练掌握相关运算法则及公式,是解题的关键.10.(2022·内蒙古鄂尔多斯)下列运算正确的是( ) A .a 3b 2+2a 2b 3=3a 5b 5 B .(−2a 2b )3=−6a 6b 3C .2−2=−14D =【答案】D【分析】把每一选项按照运算法则计算后判断结果即可. 【详解】A .a 3b 2与2a 2b 3不是同类项,不能合并,故A 错误; B .(−2a 2b )3=−8a 6b 3,故B 错误;故选:D .【点睛】本题主要考查了整式的运算和实数的运算,关键要掌握合并同类项、负整数指数幂、二次根式的混合运算.11.(2022·上海)下列运算正确的是( ) A .a ²+a ³=a 6 B .(ab )2 =ab 2C .(a +b )²=a ²+b ²D .(a +b )(a −b )=a ² −b 2【答案】D【分析】根据整式加法判定A ;运用积的乘方计算关判定B ;运用完全平方公式计算并判定C ;运用平方差公式计算并判定D .【详解】解:A .a ²+a ³没有同类项不能合并,故此选项不符合题意; B .(ab )2 =a 2b 2,故此选项不符合题意; C .(a +b )²=a ²+2ab +b ²,故此选项不符合题意 D .(a +b )(a −b )=a ² −b 2,故此选项符合题意 故选:D .【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.12.(2022·黑龙江哈尔滨)下列运算一定正确的是( ) A .()22346a b a b = B .22434b b b += C .()246a a = D .339a a a ⋅=【答案】A【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意;B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意;D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意; 故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.13.(2022·辽宁锦州)下列运算正确的是( ) A .()222448ab a b −= B .633a a a −÷=−C .32622a a a ⋅=D .3362a a a +=【答案】B【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,同底数幂的除法法则以及合并同类项逐一判断即可. 【详解】解:A .()2224416ab a b −=,故本选项不合题意;B .633a a a −÷=−,故本选项符合题意;C .32522a a a ⋅=,故本选项不合题意;D .3332a a a +=,故本选项不合题意. 故选:B .【点睛】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记这些运算法则是解答本题的关键.14.(2022·四川眉山)下列运算中,正确的是( ) A .3515x x x ⋅= B .235x y xy +=C .22(2)4x x −=−D .()2242235610x x y x x y ⋅−=−【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A . 根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B . 2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C . 根据完全平方公式可得:22(2)44−=+−x x x ,故选项计算错误,不符合题意;D . ()2242235610x x y x x y ⋅−=−,根据单项式乘多项式的法则可知选项计算正确,符合题意; 故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.15.(2022·青海)下列运算正确的是( ) A .235347x x x +=B .()222x y x y +=+C .()()2232394x x x +−=−D .()224212xy xy xy y +=+【答案】D【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A .选项,3x 2与4x 3不是同类项,不能合并,故该选项计算错误,不符合题意; B .选项,原式= ()2222x y x xy y +=++,故该选项计算错误,不符合题意; C .选项,原式= 249x −,故该选项计算错误,不符合题意; D .选项,原式=()212xy y +,故该选项计算正确,符合题意; 故选:D .【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.二、整体代入16.(2022·湖南邵阳)已知2310x x −+=,则2395x x −+=_________. 【答案】2【分析】将2395x x −+变形为23(31)+2x x −+即可计算出答案.【详解】22239539323(31)+2x x x x x x −+=−++=−+ ∵2310x x −+= ∴23950+2=2x x −+= 故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.17.(2022·内蒙古赤峰)已知()()2221x x x +−−=,则2243x x −+的值为( ) A .13 B .8 C .-3 D .5【答案】A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +−−= ∴225x x −=∴222432(2)313x x x x −+=−+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.18.(2022·江苏盐城)先化简,再求值:()()()2443x x x +−+−,其中2310x x −+=. 【答案】2267x x −−,-9【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式221669x x x =−+−+ 2267x x =−−. 2310x x −+=, 231x x ∴−=−,原式()()22372179x x =−−=⨯−−=−【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.三、乘法公式19.(2022·广西)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.222a b a ab b−=−+()2a b a ab b()2+=++B.222C.22ab a b=()()()a b a b a b+−=−D.222【答案】A【分析】根据大正方形的面积=边长为a的正方形的面积+两个长为a,宽为b的长方形的面积+边长为b的正方形的面积,即可解答.【详解】根据题意得:(a+b)2=a2+2ab+b2,故选:A.【点睛】本题考查了完全平方公式的几何背景,用整体和部分两种方法表示面积是解题的关键.20.(2022·黑龙江大庆)已知代数式22+−+是一个完全平方式,则实数t的值为(21)4a t ab b____________.21.(2022·山东滨州)若10m n +=,5mn =,则22m n +的值为_______. 【答案】90【分析】将22m n +变形得到()22m n mn +−,再把10m n +=,5mn =代入进行计算求解. 【详解】解:∵10m n +=,5mn =, ∴22m n + ()22m n mn =+− 21025=−⨯10010=− 90=.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.22.(2022·四川德阳)已知(x +y )2=25,(x −y )2=9,则xy =___. 【答案】4【分析】根据完全平方公式的运算即可. 【详解】∵()225x y +=,()29x y −= ∵()2x y ++()2x y −=4xy =16, ∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用.23.(2022·四川乐山)已知221062m n m n ++=−,则m n −=______. 【答案】4【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解. 【详解】解:221062m n m n ++=−,2210620m n m n +−+∴+=, 即()()22310m n −++=,3,1m n ∴==−,()314m n ∴−=−−=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.24.(2022·湖北襄阳)先化简,再求值:(a +2b )2+(a +2b )(a −2b )+2a (b −a ),其中ab25.(2022·江苏泰州)已知22222,2,()a m mn b mn n c m n m n =−=−=−≠ 用“<”表示a b c 、、的大小关系为________.【答案】b<c<a【分析】利用作差法及配方法配成完全平方式再与0比较大小即可求解.【详解】解:由题意可知:222222222)(2))(()(22m n mn m n a b m mn mn n m n m n ,∵m n ≠,∴222()0m n m n ,∴b a <;22222223)()2)(4(2n m mn a c m mn n m m n n ,当且仅当002n m n 且时取等号,此时0m n ==与题意m n ≠矛盾,∴223()024n m n a ;22222223)()()24(2n m c b m n m n n m n n m n ,同理故答案为:b<c<a . 【点睛】本题考查了两代数式通过作差比较大小,将作差后的结果配成完全平方式,利用26.(2022·江苏南通)已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)−++−m n m n m n 的最大值为( )A .24B .443C .163D .4−四、整式应用27.(2022·青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料______根.(n++=n【点睛】本题考查了图形的变化类问题,仔细观察,分析,归纳并发现其中的规律是解本28.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.29.(2022·贵州六盘水)已知()443223412345x y a x a x y a x y a xy a y +=++++,则12345a a a a a ++++的值是( )A .4B .8C .16D .12【答案】C【分析】令1,1x y ==,代入已知等式进行计算即可得.【详解】解:观察所求式子与已知等式的关系,令1,1x y ==,则412345(11)16a a a a a ++++=+=,故选:C .【点睛】本题考查了代数式求值,观察得出所求式子与已知等式的关系是解题关键.。

中考数学试题分类汇编(整式与分式).doc

中考数学试题分类汇编(整式与分式).doc

中考数学试题分类汇编(整式与分式)一、选择题1、(2007湖北宜宾)实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( )DA .2a +bB .2aC .aD .b2、(2007重庆)计算)3(623m m -÷的结果是( )B(A )m 3- (B )m 2- (C )m 2 (D )m 33、(2007广州)下列计算中,正确的是( )CA .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x +=4、(2007四川成都)下列运算正确的是( )DA.321x x -=B.22122x x --=- C.236()a a a -=· D.236()a a -=- 4、(2007浙江嘉兴)化简:(a +1)2-(a -1)2=( )C(A )2 (B )4 (C )4a (D )2a 2+25、(2007哈尔滨)下列计算中,正确的是( )DA .325a b ab +=B .44a a a =∙C .623a a a ÷=D .3262()a b a b = 6.(2007福建晋江)对于非零实数m ,下列式子运算正确的是( )DA .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。

7.(2007福建晋江)下列因式分解正确的是( )CA .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。

8、(2007湖北恩施)下列计算正确的是( )DA 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+D 、87y y y =∙9、(2007山东淮坊)代数式2346x x -+的值为9,则2463x x -+的值为( )A A .7 B .18 C .12 D .910、(2007江西南昌)下列各式中,与2(1)a -相等的是( )BA .21a -B .221a a -+C .221a a --D .21a + 二、填空题b 0a1、(200浙江义乌))当x=2,代数式21x -的值为____▲___.32、(2007湖北宜宾)因式分解:xy 2–2xy +x = .x (y -1)23、(2007浙江金华)分解因式:2218x -= .2(3)(3)x x -+4、(2007江苏盐城)分解因式:2x -9= 。

中考分类汇编--整式与分式

中考分类汇编--整式与分式

中考分类汇编—整式与分式一、整式1. 计算x x ÷)2(3的结果正确的是( ) A )28x B )26x C )38x D )36x2.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 3.下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 4. 34a a ⋅的结果是( )A. 4a B. 7a C.6a D. 12a 5.下列说法或运算正确的是( ) A .1.0×102有3个有效数字B .222)(b a b a -=-C .532a a a =+ D .a 10÷a 4= a 66.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-7.如果33-=-b a ,那么代数式b a 35+-的值是( )A .0B .2C .5D .8 8.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.我们把等式①叫做多项式乘法的立方公式。

下列应用这个立方公式进行的变形不正确...的是( ) (A )(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 (B )(2x+y )(4x 2-2xy+y 2)=8x 3+y 3 (C )(a +1)(a 2+a +1)=a 3+1 (D )x 3+27=(x +3)(x 2-3x +9) 9.下列运算正确的是( )A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 10.已知1=-b a ,则a 2-b 2-2b 的值为( )A .4B .3C .1D .0 11.下列计算正确的是( )A.= B.1)(11=C .422()a a a --÷= D .2111()24xy xy xy -⎛⎫= ⎪⎝⎭12.下列运算中正确的是( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+13.已知有一多项式与(2x 2+5x -2)的和为(2x 2+5x +4),求此多项式为何?( ) (A) 2 (B) 6 (C) 10x +6 (D) 4x 2+10x +2 。

【中考数学】整式及分式化简专题训练(解析版)

【中考数学】整式及分式化简专题训练(解析版)

题型一 计算类型二 整式及分式化简1.下列等式正确的是( ) A .3tan 452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+-【答案】D 【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可. 【详解】A. 3tan 45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意故选D . 【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义. 2.下列运算正确的是( ) A .235a a a ⋅= B .()235aa = C .22()ab ab = D .632(0)a a a a=≠【答案】A【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解. 【详解】解:A 、235a a a ⋅=,故本选项正确,符合题意; B 、()236a a =,故本选项错误,不符合题意;C 、222()ab a b =,故本选项错误,不符合题意;D 、462(0)a a a a=≠,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.3.下列运算中,正确的是( ) A .3515x x x ⋅= B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ⋅-=-【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ⋅=,根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x -=-,根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则. 4.计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2aa + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.5.已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=,a b +=代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∴222a ab b ab -+=,∴()2a b ab -=,∵a>b>0,∴a b -∵223a b ab +=,∴2225a ab b ab ++=,∴()25a b ab +=,∵a>b>0,∴a b +==B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 6.下列计算正确的是( )A .2m m m +=B .()22m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=- 【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意; B.()222m n m n -=-,故该选项错误,不符合题意; C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意; D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 7.下列计算正确的是( )A .2()a ab a a b +÷=+B .22a a a ⋅=C .222()a b a b +=+D .325()a a = 【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确; B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误; D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键. 8.因式分解:24x -=__________. 【答案】(x+2)(x-2) 【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +- 9.分解因式:34x x -=______. 【答案】x (x+2)(x ﹣2). 【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2). 考点:提公因式法与公式法的综合运用;因式分解. 10.分解因式:2a 3﹣8a=________. 【答案】2a (a+2)(a ﹣2) 【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.11.因式分21x -= . 【答案】(1)(1)x x +-. 【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-. 考点:1.因式分解-运用公式法;2.因式分解. 12.分解因式:23x x -=_____________. 【答案】x(x-3) 【详解】直接提公因式x 即可,即原式=x(x-3). 13.分解因式:2ab a -=______. 【答案】a (b+1)(b ﹣1). 【详解】解:原式=2(1)a b -=a (b+1)(b ﹣1), 故答案为a (b+1)(b ﹣1). 14.分解因式:24m -=_____. 【答案】(2)(2)m m +- 【分析】直接根据平方差公式进行因式分解即可. 【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +- 【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式. 15.因式分解:24-=x x _____. 【答案】2(1)(1)+-x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)-=-=+-x x x x x x x ,故答案为:2(1)(1)+-x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.16.分解因式:2x x + = ______. 【答案】(1)x x +【分析】利用提公因式法即可分解. 【详解】2(1)x x x x +=+, 故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解. 17.分解因式:x 2-2x+1=__________. 【答案】(x-1)2【详解】由完全平方公式可得:2221(1)x x x -+=- 故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底. 18.若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∴10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键. 19.计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减. 20.化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2aa + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2aa +【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.21.化简:2291(1)362m m m m -÷---.【解析】2291(1)362m m m m -÷---()()()333322m m m m m m +--=÷--()()()332323m m m m m m +--=⋅--33m m+=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 22.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 【答案】12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++ 2212x x x =-++12x =+当12x =时,原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键. 23.先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-. 【答案】2a 2ab +,3-【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算. 【详解】解:原式222222a b ab b a ab =-++=+, 将1a =,2b =-代入式中得:原式()21212143=+⨯⨯-=-=-.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.24.已知23230x x --=,求()2213x x x ⎛⎫-++ ⎪⎝⎭的值.【答案】24213x x -+,3【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解. 【详解】原式222213x x x x =-+++24213x x =-+. ∵23230x x --=,∴2213x x -=. ∴原式22213x x ⎛⎫=-+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键. 25.先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键. 26.先化简,再求值:()()212(2)x x x +++-,其中1x =.【答案】25x +,7. 【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得. 【详解】解:原式22214x x x =+++-,25x =+,将1x =代入得:原式2157=⨯+=. 【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键.27.先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 【答案】4,5a【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】221a a a a224a a a =-+- 4a =-当4a =时,原式44-=. 【点睛】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 28.先化简,再求值:()()()221x x x x +---,其中12x =. 【答案】4x -,132- 【分析】先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后代入求出答案即可. 【详解】解:()()()221x x x x +---224x x x =--+4x =-,当12x =时,原式114322=-=-. 【点睛】本题考查了平方差公式,单项式乘以多项式,合并同类项,运用平方差公式是解题的关键. 29.已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy=-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=, ∴1121y x x y xy xy---===, ∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.30.化简:22311(1).m m m m m -+-+÷【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可. 【详解】解:22311(1)m m m m m -+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键. 31.先化简,再求值:211121x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121x x x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+1x =+,∵x∴原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 32.计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++-=()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.33.先化简,再求值:22211a a a a a ⎫⎛-÷⎪ +-⎝⎭,其中2cos601a =︒+. 【答案】1a a -;12【分析】根据分式的混合运算法则进行化简,再结合特殊角的三角函数值求出a 的值,再代入求解即可.【详解】 解:原式22(1)1(1)(1)a a a a a a a +-=÷++- 2(1)(1)1a a a a a+-=⨯+ 1a a-=; 当12cos6012122a =︒+=⨯+=时, 原式121122a a --===. 【点睛】本题主要考查分式的化简求值问题,掌握运算法则与顺序,熟记特殊角的三角函数值是解题关键.34.先化简,再求值:21111m m m-⎛⎫+ ⎪-⎝⎭,其中2m =. 【答案】1m +,3【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m-+-+=⋅- (1)(1) 1m m m m m-+=⋅- 1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.35.先化简,再求值:22211a a a a a ⎫⎛-÷⎪ +-⎝⎭,其中2tan45a =︒+1.【答案】1a a -,23【分析】先去括号,然后再进行分式的化简,最后代值求解即可.【详解】解:原式=2222111a a a a a a a a+---⨯=+, ∵2tan45a =︒+1,∴2113a =⨯+=,代入得:原式=31233-=. 【点睛】本题主要考查分式的化简求解及特殊三角函数值,熟练掌握分式的化简求解及特殊三角函数值是解题的关键.36.先化简,再求值: 2212(1)121x x x x x x +++-÷+++,其中x 满足220x x --=. 【答案】x (x+1);6【分析】先求出方程220x x --=的解,然后化简分式,最后选择合适的x 代入计算即可.【详解】解:∵220x x --=∴x=2或x=-1 ∴2212(1)121x x x x x x +++-÷+++ =()221212()111x x x x x x +++÷+++- =()2222()11x x x x x ++÷++=()()22112x x x x x ++⨯++=x (x+1)∵x=-1分式无意义,∴x=2当x=2时,x (x+1)=2×(2+1)=6.【点睛】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x 的值是解答本题的易错点.37.先化简,再求值:23219a a a ⎛⎫+⋅ ⎪-⎝⎭,其中2a =. 【答案】23a -,2-. 【分析】先计算括号内的分式加法,再计算分式的乘法,然后将2a =代入求值即可得.【详解】 解:原式32(3)(3)a a a a a a ⎛⎫+⋅+= ⎪-⎝⎭, 32(3)(3)a a a a a +=+⋅-, 23a =-, 将2a =代入得:原式222323a ===---. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.38.先化简,再求值:23210119x x x x --⎛⎫⋅- ⎪--⎝⎭,其中x 是1,2,3中的一个合适的数. 【答案】13x x -+,15. 【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x 值代入计算即可.【详解】 解:23210119x x x x --⎛⎫⋅- ⎪--⎝⎭ 2392101(3)(3)(3)(3)x x x x x x x x ⎡⎤---=⋅-⎢⎥-+-+-⎣⎦ 23211(3)(3)x x x x x x --+=⋅-+-23(1)1(3)(3)x x x x x --=⋅-+- 13x x -=+, ∵1x ≠,3x ≠±,∴2x =, 原式211235-==+. 【点睛】本题考查了分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.39.先化简2222424421a a a a a a a a a ---++++-÷,然后从0,1,2,3中选一个合适的a 值代入求解.【答案】2a ,6【分析】将分子、分母因式分解除法转化为乘法,约分、合并同类项,选择合适的值时,a 的取值不能使原算式的分母及除数为0.【详解】解:原式()2(2)(2)(2)(1)212a a a a a a a a a -++-=⨯+--+ 2a =因为a=0,1,2时分式无意义,所以3a =当3a =时,原式6=【点睛】本题考查了分式的化简求值,关键是先化简,后代值,注意a 的取值不能使原算式的分母及除数为0.40.先化简,再求值:2293411x x x x x x-+÷+--,其中2x =. 【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.【详解】解:原式()()()313341x x x x x xx -=⨯++--+ 1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.41.先化简,再求值:32212111x x x x x x --+⎛⎫+÷ ⎪+-⎝⎭,其中1x =.【答案】21x -;3【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入式子进行计算即可.【详解】 原式21(1)11(1)(1)x x x x x x --⎛⎫=+÷ ⎪++-⎝⎭ 22(1)(1)1(1)x x x x x x +-=⋅+- 21x =-当1x =+时,原式3== 【点睛】本题主要考查的是分式的化简求值,最简二次根式,在解答此类型题目时,要注意因式分解、通分和约分的灵活运算,熟练掌握分式的混合运算法则是解题的关键.42.先化简,再求值:222442342x x x x x x-+-÷+-+,其中4x =-. 【答案】x+3,-1【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.【详解】解:原式=()()()()2223222x x x x x x -+⨯++-- =3x +,将4x =-代入得:原式=-4+3=-1,故答案为:-1.【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 43.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=. 【答案】2m m+1,1. 【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1. 【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.44.先化筒,再求值:22221244y x x y x y x xy y---÷+++其中11cos30(3)()3x y π-==-︒-︒ 【答案】23x y x y++,0 【解析】【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案.【详解】 解:22221244y x x y x y x xy y ---÷+++ ()()()2122x y x y x y x y x y +--=+÷++, ()()()2212x y x y x y x y x y +-=+⨯++-, 21x y x y +=++, 23x y x y+=+;∵cos3032x ==⨯=,()10131323y π-⎛⎫=--=-=- ⎪⎝⎭所以,原式()()2332032⨯+⨯-==+-. 【点睛】 此题主要考查了分式的化简求值,正确进行分式的混合运算是解题的关键.45.先化简,再求值:22244242x x x x x x -+-÷-+,其中12x =. 【答案】2.【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.【详解】解:22244242x x x x x x -+-÷-+ ()()()()222222x x x x x x -+=∙+-- 1x = 当1,2x = 上式11 2.2=÷= 【点睛】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键.46.先化简,再求值:229222a a a -⎛⎫-÷ ⎪--⎝⎭,其中3=-a .【答案】23a + 【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.【详解】 解:原式226229a a a a --=⋅--, 2(3)22(3)(3)a a a a a --=⋅-+-, 23a =+.当3=a 时,原式3=== 【点睛】 此题主要考查了分式的化简求值以及分母有理化,关键是熟练掌握分式的减法和除法计算法则.47.先化简,再求值:222y y x y x y ⎛⎫- ⎪--⎝⎭÷2x xy y +,其中x ,y 1.【答案】化简结果为2y x y-;求值结果为2【解析】【分析】 根据分式四则运算顺序和运算法则对原式进行化简222y y x y x y ⎛⎫- ⎪--⎝⎭÷2x xy y +,得到最简形式后,再将x 、y ﹣1代入求值即可.【详解】 解:222y y x y x y ⎛⎫- ⎪--⎝⎭÷2x xy y + =2()()()()()y x y y x y x y x y x y ⎡⎤+-⎢⎥+-+-⎣⎦÷()x y x y + =()()xy x y x y +-×()y x y x+ =2y x y-当x ,y 1时=2 【点睛】本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的关键.48.先化简,再求值:211()11a a a a a a ---÷++,其中2a =- 【答案】1a a +;2a =-时,原式=2. 【解析】【分析】先利用分式的运算法则化简,然后代入2a =-计算即可.【详解】 解:211()11a a a a a a---÷++ 111a a a a --=÷+ 111a a a a -=+-1a a =+ 2a =-时,原式=2221-=-+ 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.49.先化简,再求值:2221221(2)1144a a a a a a a a ⎛⎫+-+-⋅⋅+ ⎪+-++⎝⎭,其中2a =. 【答案】31a +,1 【解析】【分析】先根据分式的混合运算步骤进行化简,然后代入求值即可.【详解】 解:2221221(2)1144a a a a a a a a ⎛⎫+-+-⋅⋅+ ⎪+-++⎝⎭ 2212(1)(2)1(1)(1)(2)a a a a a a a ⎡⎤+-=-⋅⋅+⎢⎥++-+⎣⎦ 11(2)1(1)(2)a a a a a ⎡⎤-=-⋅+⎢⎥+++⎣⎦ 2111a a a a +-=-++ 31a =+ 当2a =时,原式3121==+ 【点睛】此题主要考查分式的化简求值,熟练掌握分式混合运算法则是解题关键.50.先化简,再求值:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭,其中1x =+【答案】11x x +-1 【解析】【分析】先将括号中的两个分式分别进行约分,然后合并后再算括号外的除法,化简后的结果再将1x =.【详解】解:原式()()()()()22111111x x x x x x x x x ⎡⎤+-+=-⋅⎢⎥⎢⎥⎣⎦+-- 1211x x x x x x +⎛⎫=-⋅⎪⎝⎭- - 11x x x x +=⋅- 11x x +=-将1x =111x x +===-. 【点睛】 本题考查分式的混合运算,遇到分子分母都能因式分解的,可以先把分子分母进行因式分解,将分式进行约分化简之后再进行通分,然后再合并,合并的时候分子如果是多项的话注意符号;求值的时候最后的结果必须是最简的形式.。

中考数学试题分类汇编整式与分式试题(共4页)

中考数学试题分类汇编整式与分式试题(共4页)

2021年中考(zhōnɡ kǎo)数学试题分类汇编整式与分式一、选择题a+b–a的结1、〔2021〕实数a、b在数轴上的位置如下图,那么化简代数式||果是〔〕D(第1题图)A.2a+b B.2a C.a D.b2、〔2021〕计算的结果是〔〕B〔A 〕〔B 〕〔C 〕〔D 〕3、〔2021〕以下计算中,正确的选项是〔〕CA .B .C .D .4、〔2021〕以下运算正确的选项是〔〕DA.B.C.D.4、〔2021〕化简:(a+1)2-(a-1)2=〔〕C〔A〕2 〔B〕4 〔C〕4a〔D〕2a2+25、〔2021〕以下计算中,正确的选项是〔〕DA .B .C .D .6.〔2021〕对于非零实数,以下式子运算正确的选项是〔〕DA .;B .;C .;D .。

7.〔2021〕以下因式分解正确的选项是〔〕CA .;B .;C .;D .。

8、〔2021〕以下计算(jì suàn)正确的选项是〔〕DA、 B、 C、 D、9、〔2021淮坊〕代数式的值是9,那么的值是〔〕A A.B.C.D.10、〔2021〕以下各式中,与相等的是〔〕BA.B.C.D.二、填空题1、〔200〕〕当x=2,代数式的值是____▲___.32、〔2021〕因式分解:xy2–2xy+x = .x〔y-1〕23、〔2021〕分解因式:.4、〔2021〕分解因式:-9=。

〔x+3〕〔x-3〕5、〔2021〕分解因式:.;6、〔2021〕分解因式a3-ab2=.a(a+b)(a-b)7、〔2021〕请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果.解:答案不唯一,如2+2=2〔+1〕28、〔2021株州〕假设9、〔2021〕计算:=______.10、〔2021〕化简:.111、〔2021淮坊〕在实数范围内分解因式:.解:三、解答题1、〔2021〕给出三个多项式:请你选择其中(q ízh ōng)两个进展加法运算,并把结果因式分解。

最新全国各地中考数学试题分类汇编(第二期) 专题3 整式与因式分解(含解析)

最新全国各地中考数学试题分类汇编(第二期) 专题3 整式与因式分解(含解析)
二.填空题 1.【解答】解:a2﹣9=(a+3)(a﹣3).
2.【分析】提公因式 a 即可. 【解答】解:ab﹣a=a(b﹣1). 故答案为:a(b﹣1). 【点评】本题考查了提取公因式法因式分解.关键是求出多项式里各项的公因式,提公
因式.
3.【答案】 x6
【解析】根据“同底数幂相乘,底数不变,指数相加”,可知 x5 x = x6 .
13. (2019•广西贺州•3 分)计算 a3•a 的结果是

14. (2019•广东省广州市•3 分)分解因式:x2y+2xy+y= 15. (2019•甘肃省庆阳市•4 分)因式分解:xy2﹣4x=
. .
16. (2019•甘肃省庆阳市•4 分)已知一列数 a,b,a+b,a+2b,2a+3b,3a+5b,……,按
10. (2019•广西贺州•3 分)把多项式 4a2﹣1 分解因式,结果正确的是( )
A.(4a+1)(4a﹣1)
B.(2a+1)(2a﹣1)
C.(2a﹣1)2
D.(2a+1)2
11. (2019•贵州省安顺市•3 分)下列运算中,计算正确的是( )
A.(a2b)3=a5b3
B.(3a2)3=27a6

(2)当 y=﹣2 时,n 的值为

8. (2019•江苏无锡•2 分)计算:(a+3)2= 9. (2019•江苏宿迁•3 分)分解因式:a2﹣2a=
. .
第 2 页 共 10 页
10. (2019•江苏扬州•3 分)因式分解:a3b-9ab=

11. (2019•江西•3 分)因式分解:x2-1=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式与分式历年中考试题
一、选择题
1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b
2、计算)3(62
3
m m -÷的结果是( )
(A )m 3- (B )m 2- (C )m 2 (D )m 3 3、下列计算中,正确的是( )
A .33x x x =∙
B .3x x x -=
C .32x x x ÷=
D .336
x x x += 4、下列运算正确的是( ) A.321x x -= B.2
2
122x
x --=-
C.2
3
6
()a a a -=·
D.23
6
()a a -=-
4、化简:(a +1)2-(a -1)2=( )
(A )2 (B )4 (C )4a (D )2a 2+2 5、下列计算中,正确的是( ) A .325a b ab += B .4
4a a a =∙
C .6
2
3
a a a ÷=
D .3
2
62
()a b a b =
6.对于非零实数m ,下列式子运算正确的是( )
A .9
2
3)(m m =;B .623m m m =⋅;C .532m m m =+;D .4
26m m m =÷。

7.下列因式分解正确的是( )
A .x x x x x 3)2)(2(342
++-=+-; B .)1)(4(432
-+-=++-x x x x ; C .2
2
)21(41x x x -=+-; D .)(2
3
2
y x y xy x y x xy y x +-=+-。

8、下列计算正确的是( )
A 、623a a a =∙
B 、4442b b b =∙
C 、1055x x x =+
D 、8
7y y y =∙ 9、代数式2
346x x -+的值为9,则24
63x x -+的值为( ) A .7
B .18
C .12
D .9
10、下列各式中,与2
(1)a -相等的是( ) A .2
1a -
B .2
21a a -+
C .2
21a a --
D .2
1a +
二、填空题
1、当x=2,代数式21x -的值为_______.
2、因式分解:xy 2–2xy +x =
3、分解因式:2
218x -= .
4、分解因式:2
x -9= 5、分解因式:22
33ax ay -= .
6、分解因式a 3
-ab 2
= .
7、请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 .
8、若3
2
23m
n
x y x y -与 是同类项,则m+n =____________.
9、计算:
11-⨯
-m n
mn m = ______. 10、化简:23224
x x
x x +-+=+- .
11、在实数范围内分解因式:2
484m m +-= .
三、解答题
1、给出三个多项式:
222111
1,31,,222
x x x x x x +-++- 请你选择其中两个进行加法运算,并把结果因式分解。

2、先化简,再求值:)1()1(2
---a a a ,其中12-=a 。

3、先化简,再求值:⎪⎭⎫ ⎝
⎛+---÷--11211222x x x x x x ,其中21
=x 。

4、化简:2
42
14a a a
+⎛⎫+ ⎪-⎝⎭·
5、有意道题:“先化简,再求值:22
361
(
)399
x x x x x -+÷+--,其中“x=一2”.小亮同学做题时把“x= 一2”错抄成了“x=2”,但他的计算结果也是正确的,请你解释这是怎么,回事.
6、化简:241
42
x x -
--.
7、先化简,再求代数式22a b ab b a a a ⎛⎫
--÷- ⎪⎝⎭
的值,其中a=5,b=3.
8、(2007湖北恩施)求代数式的值:
(12-x x -x x -12)÷1
-x x ,其中x =3+1.
9、先化简代数式
22
22
1244a b a b a b a ab b --÷-+++,然后选择一个使原式有意义的a 、b 值代入求值.。

相关文档
最新文档