2015年秋高一人教A版数学必修4课件: 第1章 三角函数 1.2 第1课时

合集下载

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=

15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt

5
55
5
5
3.已知cos α= 1 ,且α是第四象限角,则sin α=( )
2
A . 1
B .3 C .3 D . 1
2
2
2
2
【解析】选C.因为α是第四象限角,所以sin α<0,
所以 sin 1cos21(1)23.
22
6
4.化简:s i n =_______.
tan
【解析】
sin tan
10
10 10
方法二:(cosα+2sinα)2= cos24sincos4sin2
sin2cos2
1 4 ta n 4 ta n 2 1 4 3 4 3 2 4 9
由已知条件得
分子分母同除以cos2α可得关于tanα的方程.
(cos2sin)2 sin2cos2
5,
12
【解析】方法一:因为cosα+2sinα= 5 , 所以cosα=-2sinα 5 , 又因为sin2α+cos2α=1,所以sin2α+(-2sinα- )2=5 1, 整理得5sin2α+4 s5 inα+4=0,( si5 nα+2)2=0,
sin sin
cos.
答案:cos θ cos
7
5.已知tan φ=- 2 ,φ∈( ,π),则sin φ=_____.
2
sin 2 cos 2 1,
【解析】由已知得
sin cos
所以
2,
sin2(sin)2 1, 2
所以sin2φ= 2 ,由φ∈( , π)得sin φ>0,
3
2
限决定的,不可凭空想象.
11

《红对勾》2015-2016学年人教A版高中数学必修4课件1-2-1任意角的三角函数-2

《红对勾》2015-2016学年人教A版高中数学必修4课件1-2-1任意角的三角函数-2

(1)sinβ________sinα. (2)cosα________cosβ. (3)tanβ________tanα. 答:(1)> (2)> (3)>
(1)三角函数线的特征:①三角函数线的位置:正弦线 为角α的终边与单位圆的交点到x轴的垂直线段,余弦线在x 轴上,正切线在过单位圆与x轴正方向的交点的切线上,三 条有向线段中有两条在单位圆内,一条在单位圆外.②三 角函数线的方向:正弦线由垂足指向角α的终边与单位圆的 交点,余弦线由原点指向垂足,正切线由切点指向切线与 角α的终边或其反向延长线的交点.③三角函数线的正负: 三条有向线段凡与x轴或y轴同向的,为正值,与x轴或y轴 反向的,为负值.
在单位圆中画出适合下列条件的角α终边的范围,并由 此写出角α的集合.
(1)sinα≥ 23;(2)cosα≤-12.
解:直线y=
3 2
交单位圆于A,B两点,连接OA与OB,则
OA与OB围成的区域(图(1)的阴影部分)即为角α的终边范围.
故满足条件的角的集合为{α|
π 3
+2kπ≤α≤
2π 3
+2kπ,k∈
解析:因为π4<1<2π,如图所示:
由三角函数线可得sin1> 22>cos1,故sin1-cos1>0. 答案:>
(2)下列关系式中正确的是( ) A.sin10°<cos10°<sin160° B.sin160°<sin10°<cos10° C.sin10°<sin160°<cos10° D.sin160°<cos10°<sin10°
【解】 如图(1). ∵2cosx-1≥0,∴cosx≥12. ∴函数定义域为2kπ-π3,2kπ+3π(k∈Z).

高中数学必修四 第1章 三角函数课件 1.2.2 同角三角函数的基本关系

高中数学必修四 第1章 三角函数课件 1.2.2 同角三角函数的基本关系

互动探究 探究点1 同角三角函数的基本关系式对任意角α都成立吗?
提示 同角三角函数的基本关系式成立的条件是使式子两边都
有意义.所以sin2α+cos2α=1对于任意角α∈R都成立,而
sin cos
αα=tan
α并不是对任意角α∈R都成立,这时α≠kπ+π2,k∈
Z.
探究点2 在利用平方关系求sin α或cos α时,其正负号应怎样确 定?
=tan
tan2αsin2α α-sin αtan
αsin
α=tatnanαα-sisninαα=左边,
∴原等式成立.
[规律方法] (1)证明三角恒等式的实质:清除等式两端的差异, 有目的的化简. (2)证明三角恒等式的基本原则:由繁到简. (3)常用方法:从左向右证;从右向左证;左、右同时证.
ቤተ መጻሕፍቲ ባይዱ
【活学活用2】 化简:
1-2sinα2cosα2+ 1+2sinα2cosα20<α<π2.
解 原式=
cosα2-sinα22+
cosα2+sinα22
=cosα2-sinα2+cosα2+sinα2.
∵α∈0,π2,∴α2∈0,π4.
利用tan α=csoins αα和sin2α+cos2α=1向等号左边式子进行转化;
也可利用tan
α=
sin cos
α α
将等号左、右两边式子进行切化弦,结
合sin2α+cos2α=1达到两边式子相等的目的.
证明
∵右边= tan
tan2α-sin2α α-sin αtan αsin
α
=tantaαn2-α-sintaαn2tαacnoαs2sαin α=tantαan-2αsi1n-αctaons2ααsin α

2015年秋高一人教A版数学必修4课件: 第1章 三角函数 1.1.1

2015年秋高一人教A版数学必修4课件: 第1章 三角函数 1.1.1

成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
优效预习
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
●知识衔接
1 .初中我们已经学习过角,那么初中对角的定义是什么 呢?所谓角就是________________. [答案] 由两条具有公共端点的射线组成的图形
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
成才之路 ·数学
人教A版 ·必修4
路漫漫其修远兮 吾将上下而求索
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
第一章
三角函数
第一章 三角函数
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
到过海边的人都知道,海水有涨潮和落潮现象,涨潮时, 海水上涨,波浪滚滚,景色十分壮观;退潮时,海水悄然退去, 露出一片海滩.在我国,有闻名中外的钱塘江涨潮,当潮流涌 来时,潮端陡立,水花四溅,像一道高速推进的直立水墙,形 成“滔天浊浪排空来,翻江倒海山为摧”的壮观景象.科学地 讲,潮汐是海水在月球和太阳引潮力作用下发生的周期性运动, 是海洋中常见的自然现象之一.实际上,现实中的许多运动变 化都有着循环反复、周而复始的现象,这种变化规律称为周期 性.在唐代诗人王湾的《江南恋》中有这样的诗句:“客路青 山外,行舟绿水前.潮平两岸阔,风正一帆悬 .海日生残夜, 江春入旧年.”诗中生动地描述了潮汐运动、昼夜交替的周期 性变化规律.
第一章 三角函数
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
第一章
1.1 任意角和弧度制

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

cos
2
3 2
6, 4
tan
3
15 3
.
(3) 当 y 5 时,P( 3 , 5),r 2 2 ,
cos 6 ,tan 15 .
4
3
综上所述:
(1) 当 y 0 时,cP(os 3,1, 0)ta,nr 03.
(2) 当 y 5 时 ,coP(s 3 ,6 ,5 )tan,r2 125,.
sin 5 3 ,
3
2
cos 5 1 ,
32
tan 5 3.
3
例1.求下列角的正弦、余弦和正切值:
(1) 5 ; (2) ; (3) 3 .
3
2
解:(2)∵ 当 时,在直角坐标系中, y 角 的终边与单位圆的交点坐标为 P(1, 0).
sin 0, cos 1, tan 0.
y
(1)正弦:sinα=y ;
P(x,y)
α
(2)余弦:cosα=x ;
0
A(1,0) x (3)正切:tanα= (yx≠0).
x
三角函数 sinα cosα tanα
定义域
正弦、余弦、正切都是以角(弧度)为自变量,以单位圆 上的点的坐标或坐标的比值为函数值的函数,我们将它们 统称为三角函数。
三角函数的定义域、值域
|
OP0
|5
P0(-3,-4)
x cos 3
三角函数的坐标定义 :(见教材13页)
一般地,设角α终边上任意一点(异于原点)P(x,y),它到原
点(顶点)的距离为r>0,则
sinα=y ;cosα= x ;tanα= .y
r
r
x
例2.已知角α终边上经过点P0(-3,-4), 求角的正弦、余弦和正切值.

《红对勾》2015-2016学年人教A版高中数学必修4课件1-2-2同角三角函数的基本关系

《红对勾》2015-2016学年人教A版高中数学必修4课件1-2-2同角三角函数的基本关系

【例】 已知 tanα=2,则 (1)24ssiinnαα- -39ccoossαα=________; (2)4sin2α-3sinαcosα-5cos2α=________.
【思维导图】
【解】 (1)24ssiinnαα- -39ccoossαα=24ttaannαα--39=24× ×22- -39=-1. (2)4sin2α-3sinαcosα-5cos2α =4sin2α-si3ns2iαn+αccoossα2-α 5cos2α, 因为 cos2α≠0,所以分子和分母同除以 cos2α, 则 4sin2α-3sinαcosα-5cos2α=4tan2tαa-n2α3+tan1α-5 =4×4-4+3×1 2-5=1.
(2)sin2α是(sinα)2的简写,不能写成sinα2.
(3)在使用同角三角函数关系式时要注意使式子有意 义,如式子tan90°=csoins9900°°不成立.
(4)注意公式变形的灵活应用. (5)在应用平方关系式求sinα或cosα时,其正负号是由角 α所在的象限决定的.当角所在象限不明确时,要进行分类 讨论.
cos2α sin2α
(2)原式=1-sincoαsα·
csoinsαα-sinα csoinsαα+sinα
=1-sincoαsα·
1-cosα 1+cosα
=1-sincoαsα·
1-cosα2 1-cos2α
=1-sincoαsα·1-|sincoαs| α
=±1.
通法提炼 同角三角函数关系化简常用方法有: ①化切为弦,减少函数名称;②对含根号的,应先把 被开方式化为完全平方,去掉根号;③对含有高次的三角 函数式,可借助于因式分解,或构造平方关系,以降幂化 简.
【评析】 形如(2)式的求解,应灵活利用“1”的代换, 将整式变为分式,即可利用分式的性质将式子变为关于 tanα 的代数式,从而代入求值.

1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)

1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π +2kπ,74π+2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
变式训练
3.求函数 y=2sin(x+π4)的单调区间. 解:y=sinx 的单调增区间为[-π2+2kπ,π2+ 2kπ],k∈Z;单调减区间为[π2+2kπ,32π+2kπ], k∈Z. 由-π2+2kπ≤x+π4≤π2+2kπ,k∈Z,
栏目 导引
第一章 三角函数
由-π2+2kπ≤x-π4≤π2+2kπ,k∈Z, 得-π4+2kπ≤x≤34π+2kπ,k∈Z; 由π2+2kπ≤x-π4≤32π+2kπ,k∈Z, 得34π+2kπ≤x≤74π+2kπ,k∈Z. 所以函数 y=sin(x-π4)的单调增区间为[-π4 +2kπ,34π+2kπ](k∈Z);
∴y=sin12x 的周期是 4π.
(2)∵2sinx3-π6+2π=2sinx3-π6, 即 2sin13(x+6π)-π6
栏目 导引
=2sinx3-π6, ∴y=2sinx3-π6的周期是 6π.
(3)y=|sinx|的图象如图所示.
第一章 三角函数
∴周期T=π.
∴|φ|的最小值|φ|min=2π+π2-83π=π6.
栏目 导引
归纳总结
第一章 三角函数
栏目 导引
函 数 y= sinx (k∈z)
性质
y= cosx 第(k一∈章z) 三角函数
定义域 值域
最值及相应的 x的 集合
单调性
对称轴 对称中心

必修四第一章 三角函数1.2.2

必修四第一章 三角函数1.2.2
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
[思路分析] tanα=3,即sinα=3cosα,结合sin2α+cos2α=1,解方程组可求 出sinα和cosα;对于(2),注意到分子分母都是sinα与cosα的一次式,可分子分母 同除以cosα化为tanα的表达式;对于(3),如果把分母视作1,进行1的代换,1= sin2α+cos2α然后运用(2)的方法,分子分母同除以cos2α可化为tanα的表达式,也 可以将sinα=3cosα代入sin2α+cos2α=1中求出cos2α,把待求式消去sinα,也化为 cos2α的表达式求解.
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
[解析] (1)tanα=3=csoinsαα>0, ∴α 是第一或第三象限角. 当 α 是第一象限角时,结合 sin2α+cos2α=1,有
sinα=3
10 10

cosα=
10 10
当 α 是第三象限角时,结合 sin2α+cos2α=1,有
如 sin23α+cos23α=1 成立,但是 sin2α+cos2β=1 就不一定成立.
(2)sin2α 是(sinα)2 的简写,读作“sinα 的平方”,不能将 sin2α 写成 sinα2,前
者是 α 的正弦的平方,后者是 α2 的正弦,两者是不同的,要弄清它们的区别,并
能正确书写.

(3)同角三角函数的基本关系式是针对使三角函数有意义的角而言的,sin2α+


A

返回导航
第一章 三角函数
3.化简 1-sin2440°=____c_o_s_8_0_°_____.

必修四第一章 三角函数1.2.1第一课时

必修四第一章 三角函数1.2.1第一课时

(2)若 cosθ<0 且 sinθ>0,则2θ是第
象限角.
A.一

学 必
C.一或三


·


A

B.三 D.任意象限角
( C)
返回导航
第一章 三角函数
[解析] (1)①π2<3<π,π<4<32π,32π<5<2π,
∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.
②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标
(a,b),则对应角的正弦值 sinα= a2b+b2,余弦值 cosα= a2a+b2,正切值 tanα数 学Fra bibliotek必=ab.
修 ④
(2)当角 α 的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参
·
人 教
数进行分类讨论.
A

返回导航
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
3.已知α是第三象限角,设sinαcosα=m,则有
A.m>0
B.m=0
C.m<0
D.m的符号不确定
(A)
4.(2018·江西高安中学期末)已知角α的终边经过P(1,2),则tanα·cosα等于 25 _____5_.
数 学 必
[解析] 由三角函数的定义,tanα=yx=2,cosα=xr= 55,∴tanα·cosα=255.
人 教
函数值的函数,我们将它们统称为三角函数(trigonometric function).
A

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)


tan 3
例5.求下列三角函数值
sin1480 10

'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin

y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?

高中数学人教A版必修四课时训练:第一章三角函数1-2任意角的三角函数

高中数学人教A版必修四课时训练:第一章三角函数1-2任意角的三角函数
11.解 (1)
图1
作直线 y= 23交单位圆于 A、B,连结 OA、OB,则 OA 与 OB 围成的区域(图 1 阴影部分), 即为角 α 的终边的范围. 故满足条件的角 α 的集合为 {α|2kπ+π3≤α≤2kπ+23π,k∈Z}. (2)
∴sin 2cos 3tan 4<0.
10.2
解析 ∵y=3x,sin α<0,∴点 P(m,n)位于 y=3x 在第三象限的图象上,且 m<0,n<0,
n=3m.
∴|OP|= m2+n2= 10|m|=- 10m= 10.
∴m=-1,n=-3,∴m-n=2.
11.解 (1)原式=cosπ3+-4×2π+tanπ4+2×2π=cos π3+tan π4=12+1=32.
3.诱导公式一的实质是说终边相同的角的三角函数值相等. 作用是把求任意角的三角函数值转化为求 0~2π(或 0°~360°)角的三角函数值.
答案
知识梳理
y 1.r
x r
y x
3.相等
sinα
cosα
tanα
作业设计
1.A 2.B
3.C [∵sinα<0,∴α 是第三、四象限角.又 tanα>0,
∴α 是第一、三象限角,故 α 是第三象限角.]
4.C [∵1,1.2,1.5 均在0,π2内,正弦线在0,π2内随 α 的增大而逐渐增大,
∴sin1.5>sin1.2>sin1.] 5.D [在同一单位圆中,利用三角函数线可得 D 正确.] 6.A [
如图所示,在单位圆中分别作出 α 的正弦线 MP、余弦线 OM、正切线 AT,很容易地观察出
OM<MP<AT,即 cosα<sinα<tanα.]

高中数学第1章三角函数1.2.3三角函数的诱导公式(第2课时)三角函数的诱导公式(五~六)课件苏教版必修4

高中数学第1章三角函数1.2.3三角函数的诱导公式(第2课时)三角函数的诱导公式(五~六)课件苏教版必修4

∴cos α=-13,
∴sinπ2+α=cos α=-13.]
3.已知 sin α=23,则 cosπ2-α= ________.
2 3
[cosπ2-α=sin α=23.]
4.若 sin α= 55,求sinπ2+cαossi3nπ-72πα+ α-1+ cos3π+αssinin525π2π+-αα- sin72π+α的值.
诱导公式在三角形中的应用 【例 3】 在△ABC 中,sinA+B2-C=sinA-B2+C,试判断△ABC 的形状. 思路点拨: sinA+B2-C=sinA-B2+C ―A―+―B―+―C=―π→ 得B,C关系 ―→ △ABC的形状
[解] ∵A+B+C=π, ∴A+B-C=π-2C,A-B+C=π-2B. 又∵sinA+B2-C=sinA-B2+C, ∴sinπ-22C=sinπ-22B,
教师独具 1.本节课的重点是诱导公式五、六及其应用,难点是利用诱导公式 解决条件求值问题. 2.要掌握诱导公式的三个应用 (1)利用诱导公式解决化简求值问题. (2)利用诱导公式解决条件求值问题. (3)利用诱导公式解决三角恒等式的证明问题.
3.本节课要掌握一些常见角的变换技巧 π6+α=π2-π3-α⇔π6+α+π3-α=π2,π4+α=π2-π4-α⇔π4+α+ π4-α=π2,56π+α-π3+α=π2等.
第1章 三角函数
1.2 任意角的三角函数 1.2.3 三角函数的诱导公式 第2课时 三角函数的诱导公式(五~六)
学习目标
核 心 素 养(教师独具)
1.能借助单位圆中的三角函数定义
推导诱导公式五、六.(难点) 通过学习本节内容提升学生的
2.掌握六组诱导公式,能灵活运用诱 数学运算核心素养.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
3.公式一(k∈Z) sin(α+2kπ)=______ , sinα cosα , cos(α+2kπ)=__________ tan(α+2kπ)=_________. tanα
[小结]该组公式说明:终边相同的角的同名三角函数值相
●知识衔接 1 .初中我们已经学习过锐角三角函数,它们都是以锐角
为自变量的,请填好下表:
图形
定义 sinA=____; cosA=____; a tanA=b
定义域
三角函数值的正负
A∈____
sinA>0,cosA>0 tanA____0
[答案]
a b c c
π 0, 2
>
第一章 1.2 第1课时
成才之路 ·数学
人教A版 ·必修4
路漫漫其修远兮 吾将上下而求索
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
第一章
集合与函数的概念
第一章
集合与函数概念
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
第一章 1.2 任意角的三角函数
第1课时 任意角的三角函数的定义
________.
637π [答案] (1) 18 km 6 370 km (2)α+β=2kπ,k∈Z
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
3.已知角α=2 rad,则角α的终边在第______象限. [答案] 二 [解析] 由2×57.3°=114.6°知在第二象限. 4.用弧度制表示终边落在第二象限的角的集合为
OAB 中,∠OAB=90° ,OA=a,AB=b,OB= r,设∠BOA=α,则有:
α 的三角函数 正弦 余弦 正切
定义 b AB sinα=OB=___ r OA a cosα=OB=___ r b AB tanα=OA=___ a
第一章 1.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
唯一 外,对于每一个确定的 α ,都分别有 ________ 确定的正弦值、 余弦值、正切值与之对应,所以这三个对应法则都是以角 α为 自变量 __________ ,以单位圆上点的坐标或坐标的比值为函数值的函
数,分别叫做正弦函数、余弦函数、正切函数,这三个函数统
三角函数 称为_______________ ,分别记作y=sinx,y=cosx,y=tanx.
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[ 破疑点 ] 由于角的集合与实数 集之间建立了一一对应关系,三角 函数可以看作是以实数为自变量的 函数,即实数 → 角 ( 其弧度数等于这个实数 )→ 三角函数值 ( 实 数),其关系如右图所示:
第一章
1.2Βιβλιοθήκη 第1课时成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
2.下列题目你会做吗?
(1)地球的赤道半径约为6370 km,那么赤道上1°的圆心角 所 对 的 弧 长 为 ________ , 1 弧 度 的 圆 心 角 所 对 的 弧 长 为 ________. (2) 若 角 α 与 角 β 的 终 边 关 于 x 轴 对 称 , 则 α 与 β 的 关 系 为
记法 sinα cosα tanα
形式 sinα=y cosα=x y tanα=x(x≠0)
y ___ x ___
y x _____ (x≠0)
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
π (4)定义:当α=__________( 2+kπ k∈Z)时,tanα无意义.除此之
2.三角函数值的符号 sinα、cosα、tanα在各个象限的符号如下:
[小结]正弦、余弦和正切函数在各象限的符号可用以下口 诀记忆: “一全正,二正弦,三正切,四余弦”. 其含义是在第一象限各三角函数值全为正,在第二象限只 有正弦值为正,在第三象限只有正切值为正,在第四象限只有 余弦值为正.
第一章 1.2 第1课时
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
1
优 效 预 习
3
当 堂 检 测
2
高 效 课 堂
4
课 时 作 业
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
优效预习
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
等;如果给定一个角,它的三角函数值是唯一确定的(不存在者 除外),反过来,如果给定一个三角函数值,却有无数多个角与 之对应.
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
●预习自测 1.有下列命题,其中正确的个数是(
①终边相同的角的三角函数值相同; ②同名三角函数值相同,角不一定相同; ③终边不相同,它们的同名三角函数值一定不相同; ④不相等的角,同名三角函数也不相同. A.0 C.2 [答案] B B.1 D.3
________.
π [答案] {α|2kπ+2<α<2kπ+π,k∈Z}
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
●自主预习 1.任意角的三角函数 原点 为 圆 心 , 以 (1) 单 位 圆 : 在 直 角 坐 标 系 中 , 称 以 ______ 单位长度 为半径的圆为单位圆. __________ (2)锐角的三角函数:如图所示,在 Rt△
(3)任意角的正弦、余弦、正切:如图所示,α是任意角, 以α的顶点O为坐标原点,以α的始边为x轴的非负半轴,建立平 面直角坐标系. 设P(x,y)是α的终边与单位圆的交点,则有:
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
α 的三角函数 正弦 余弦 正切
定义
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
(5)定义域:如表所示 三角函数 解析式 定义域
正弦函数
余弦函数 正切函数
y=sinx
y=cosx y=tanx
R
R
π {x|x≠kπ+2,k∈Z} ____________________
第一章
1.2
第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
相关文档
最新文档