新版高中数学人教A版必修5习题:第三章不等式3-3-2-2
高中新课程数学(新课标人教A版)必修五《三不等式》归纳整合
网络构建
专题归纳
解读高考
高考真题
3.二元一次不等式(组)表示的平面区域 (1)二元一次不等式(组)的几何意义 二元一次不等式(组)的几何意义是二元一次不等式(组)表示 的平面区域.一般地,二元一次不等式Ax+By+C>0在平面 直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的 平面区域.区域不包括边界时,边界直线(Ax+By+C=0)应 画成虚线. (2)二元一次不等式表示的平面区域的判定 对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+ By+C的符号相同,所以只需在此直线的某一侧取一个特殊 点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表 示直线哪一侧的平面区域,可简记为“直线定界,特殊点定 域”.特别地,当C≠0时,常取原点作为特殊点.
网络构建
专题归纳
解读高考
高考真题
【例3】 f(x)=ax2+ax-1在R上满足f(x)<0,则a的取值范围是 ________. 解析 (1)当a=0时,f(x)<0恒成立,故a=0符合题意;
(2)当 a≠0 时,由题意得:aΔ<=0a2+4a<0 ⇔a-<40<a<0 ⇔
-4<a<0,综上所述:-4<a≤0. 答案 (-4,0]
(1)当Δ<0时,-1<a<2,M=∅⊆[1,4];
(2)当Δ=0时,a=-1或2;
当a=-1时,M={-1}⃘[1,4];
当a=2时,M={2}⊆[1,4].
(3)当Δ>0时,a<-1或a>2.
设方程f(x)=0的两根x1,x2,且x1<x2, 那么M=[x1,x2],M⊆[1,4]⇔1≤x1≤x2≤4
人教版高中数学必修5第三章不等式-3
在可行域内打出网格线,
y
B(3,9)
x y0
M(18 , 39) 55
C(4,8)
x
O
2x+y=15 x+2y=18 x+3y=27
直线 x y=12 经过整点B(3,9)和C(4,8),
它们是最优解.
z最小值 =12.
答:要截得所需三种规格的钢板,且使所截两种钢板 张数最小的方法有两种,第一种截法是第一种钢板3 张,第二种钢板9张;第二种截法是截第一种钢板4 张,第二种钢板8张;这两种截法都至少要两种钢板 12张.
或最后经过的点为最优解; (4)求出最优解并代入目标函数,从而求出目标函数的
最值.
简单线性规划问题的图解方法
例1 设 z=2x+y,式中变量x、 y满足下列条件:
x 4 y 3,
3x 5 y 25, 求z的最大值和最小值.
x 1,
分析:作可行域,画平行线,解方程组,求最值.
y x1
第2课时 简单线性规划的应用
1.体会线性规划的基本思想,并能借助几何直观解决 一些简单的实际问题; 2.利用线性规划解决具有限制条件的不等式; 3.培养学生搜集、整理和分析信息的能力,提高数学 建模和解决实际问题的能力.
在实际问题中常遇到两类问题: 一是在人力、物力、资金等资源一定的条件下,
如何使用它们来完成最多的任务;
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)
一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .15.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .46.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,38.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D.y =9.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若0x >,0y >,若()()144x y --=则x y +的最小值为_________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.16.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 17.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.18.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______. 19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.已知函数2(1)()a x af x bx c-+=+(a ,b ,c 为常数).(1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.25.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 26.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242 x yzx+-=-,并理解z的几何意义,利用数形结合分析问题.4.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.5.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.8.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x xy -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e xxy -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.9.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B.【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()445529 41x y x yx y x yy xx y xy+⎛⎫+=+=++≥+⨯=⎪⎝⎭,当且仅当4x yy x=即3,6x y==时取等号.故答案为:9.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离.2=, 故答案为:2 【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.16.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.17.9【分析】将已知等式变形为然后利用乘1法将进行变形利用基本不等式即可求得【详解】因为所以即又ab 为正数所以当且仅当时等号成立故的最小值等于故答案为:9【点睛】本题考查利用基本不等式求最值关键是将已知解析:9 【分析】 将已知等式变形为111a b+=,然后利用“乘1法”将4a b +进行变形,利用基本不等式即可求得. 【详解】因为(1)(1)1a b --=,所以0ab a b --=,即111a b+=.又a ,b 为正数,所以1144(4)1459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当3a =,32b =时,等号成立. 故4a b +的最小值等于9. 故答案为:9 【点睛】本题考查利用基本不等式求最值,关键是将已知条件适当变形,得到111a b+=,以便利用“乘1法”,利用基本不等式求4a b +的最小值.利用基本不等式求最值要注意“正、定、等”的原则.18.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+. 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)st s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:22⎡-⎢⎣⎦【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=, 由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.三、解答题21.(1)见解析(2)1b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-11b =⇒>. 【详解】(1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -; ②当1a =-时,原不等式的解集为φ; ③当10a -<≤时,原不等式的解集为()1,a -; ④当0a >时,原不等式的解集为()()1,00,a -⋃. (2)当,2b c a ==时,()2211x f x bx b +<⇔<+22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()2221515512254214x t g x t x t t t+===≤=+=+--++-,时取等号, 故512b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可. max 2.():,()a f x x D a f x >∈>即可.22.(1) 8; (2)[]2,0-. 【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x ≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且,解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0]. 【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 23.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 25.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米,因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.26.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -,根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-,解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =.所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 22351024+ 点Q 到直线2410x y ++=2254|2+4+1|293353024⨯⨯+所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.。
人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1
利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。
如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。
2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。
4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。
(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。
(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。
(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。
(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。
在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。
类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。
(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。
高二数学人教A必修5练习及解析:3-2 一元二次不等式及其解法
∴a=2.
∴不等式
+1
2+1
+2
>1 可化为
>1,移项通分得 >0,
-1
-1
-1
∴(x+2)(x-1)>0,解得 x<-2 或 x>1.
∴所求解集为{x|x<-2 或 x>1}.
8.解关于 x 的不等式 2x2+ax+2>0.
解:对于方程 2x2+ax+2=0,其判别式 Δ=a2-16=(a+4)(a-4).
【解析】
1
由题意知,一元二次不等式 f(x)>0 的解集为x-1<x<2 .
而 f(10x)>0,
1
∴-1<10x<2,
1
解得 x<lg 2,即 x<-lg 2.
【答案】
D
二、填空题
6.(2015·广东高考)不等式-x2-3x+4>0 的解集为________.(用区间表示)
①当 a>4 或 a<-4 时,Δ>0,方程 2x2+ax+2=0 的两根为:
1
4
1
4
x1= (-a-√2 -16),x2= (-a+√2 -16).
∴原不等式的解集为
1
4
1
4
{ | < (--√2 -16)或 > (- + √2 -16)}.
②当 a=4 时,Δ=0,方程有两个相等实根,x1=x2=-1;
1
1
∴不等式 bx2-ax-1>0 的解集是(- 2 ,- 3).
高中数学 第三章 不等式 3.3.2 简单的线性规划问题常
线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。
2020学年高中数学第3章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法练习新人教A版必修5
第1课时 一元二次不等式的解法1.不等式6x 2+x -2≤0的解集为A.⎩⎨⎧⎭⎬⎫x |-23≤x ≤12)B.⎩⎨⎧⎭⎬⎫x |x ≤-23或x ≥12)C.⎩⎨⎧⎭⎬⎫x |x ≥12)D.⎩⎨⎧⎭⎬⎫x |x ≤-23)解析 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-23≤x ≤12).答案 A2.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎪⎫x -1a <0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |x >a 或x <1aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a>a ,∴x >1a或x <a .答案 A3.不等式2x 2-x -1>0的解集是________.解析 由2x 2-x -1>0,得(x -1)(2x +1)>0,解得x >1或x <-12,从而得原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 ⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞)4.二次函数y =ax 2+bx +c (x ∈R)的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46则不等式ax 2+bx +c >0的解集是________.解析 由表格可知,函数的图象开口向上,且零点为x =-2,x =3,因此图象关于x=12对称,从而不等式ax 2+bx +c>0的解集为(-∞,-2)∪(3,+∞). 答案 (-∞,-2)∪(3,+∞)5.已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎨⎧⎭⎬⎫x |x <-2或x >-12),则ax 2-bx +c>0的解集为________.解析 由题意,-2,-12是方程ax 2+bx +c =0的两个根且a <0,故⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-12=-b a(-2)×⎝ ⎛⎭⎪⎫-12=c a, 解得a =c ,b =52c .所以不等式ax 2-bx +c >0即为2x 2-5x +2<0, 解得12<x <2,即不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x |12<x <2.答案 ⎩⎨⎧⎭⎬⎫x |12<x <2[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.(2016·全国Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B = A.⎝⎛⎭⎪⎫-3,-32B.⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 解析 由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x |x >32),则A ∩B =⎝ ⎛⎭⎪⎫32,3.答案 D2.设-1<a <0,则关于x 的不等式(x -a )(ax -1)>0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |1a<x <aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵-1<a <0,∴(x -a )(ax -1)>0可化为(x -a )·a ⎝⎛⎭⎪⎫x -1a >0,∴(x -a )⎝ ⎛⎭⎪⎫x -1a <0.又-1<a <0,∴a >1a,∴原不等式解集为1a<x <a .答案 C3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为 A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0, 所以-2<x <1. 答案 B4.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是A.(-∞,-1)∪(3,+∞)B.(-1,3)C.(1,3)D.(-∞,1)∪(3,+∞)解析 ∵关于x 的不等式ax -b >0的解集是(1,+∞),∴⎩⎪⎨⎪⎧a >0,a -b =0, 即⎩⎪⎨⎪⎧a >0,a =b . ∴不等式(ax +b )(x -3)>0⇔a (x +1)(x -3)>0⇔(x +1)(x -3)>0⇔x <-1或x >3. 答案 A5.已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >12,则f (10x)>0的解集为A.{x |x <-1或x >lg 2}B.{x |-1<x <lg 2}C.{x |x >-lg 2}D.{x |x <-lg 2}解析 由题意可知f (x )=-(x +1)(2x -1),则f (10x)=-(10x+1)(2·10x-1)>0, 即(10x+1)(2·10x-1)<0,∵10x+1>0,∴2·10x-1<0,解得x <-lg 2. 答案 D6.(能力提升)已知f (x )=(x -a )(x -b )+2(a <b ),且α,β(α<β)是方程f (x )=0的两根,则α,β,a ,b 的大小关系是A.a <α<β<bB.a <α<b <βC.α<a <b <βD.α<a <β<b解析 ∵α,β(α<β)是方程f (x )=0的两根,∴α,β为f (x )=(x -a )(x -b )+2的图象与x 轴交点的横坐标. ∵a ,b 为(x -a )(x -b )=0的根, 令g (x )=(x -a )(x -b ),∴a ,b 为g (x )的图象与x 轴交点的横坐标.由于f (x )的图象可由g (x )的图象向上平移2个单位得到,故选A. 答案 A二、填空题(每小题5分,共15分)7.若0<t <1,则不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为________.解析 ∵0<t <1,∴1t>1,所以(x -t )⎝ ⎛⎭⎪⎫x -1t <0的解集为⎩⎨⎧⎭⎬⎫x |t <x <1t ).答案 ⎩⎨⎧⎭⎬⎫x |t <x <1t )8.已知f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0,则不等式f (x )>x 的解集为________.解析 f (x )>x ⇔⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧0>x ,x =0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0⇔x >5或-5<x <0.∴不等式f (x )>x 的解集为(-5,0)∪(5,+∞). 答案 (-5,0)∪(5,+∞)9.(能力提升)关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.解析 ∵ax 2+bx +2>0的解集为{x |-1<x <2}, ∴⎩⎪⎨⎪⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1,∴bx 2-ax -2>0,即x 2+x -2>0, 解得x >1或x <-2. 答案 {x |x >1或x <-2}三、解答题(本大题共3小题,共35分)10.(11分)解下列关于x 的不等式: (1)(7-x )(x +2)≥0;(2)-9x 2+3x -14≥0;(3)-12x 2+2x -5>0;(4)-2x 2+3x -2<0.解析 (1)原不等式化为(x -7)(x +2)≤0, 所以-2≤x ≤7.故所求不等式的解集为{x |-2≤x ≤7}.(2)原不等式化为9x 2-3x +14≤0,即⎝⎛⎭⎪⎫3x -122≤0,所以x =16. 故所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =16. (3)原不等式化为x 2-4x +10<0,即(x -2)2+6<0,故所求不等式的解集为∅.(4)原不等式化为2x 2-3x +2>0,即2⎝ ⎛⎭⎪⎫x -342+78>0.所以x ∈R.故所求不等式的解集为R.11.(12分)解关于x 的不等式:ax 2+(1-a )x -1>0(a ∈R). 解析 原不等式可化为(x -1)(ax +1)>0. (1)当a =0时,原不等式为x -1>0, 所以解集为{x |x >1}. (2)当a >0时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >1或x <-1a .(3)当a <0时,①当-1<a <0时,-1a>1.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <-1a .②当a =-1时,原不等式变为-(x -1)2>0, 所以解集为∅.③当a <-1时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-1a<x <1.12.(12分)已知不等式ax 2+bx +c >0的解集为{x |α<x <β},其中β>α>0,求不等式cx 2+bx +a <0的解集.解析 ∵ax 2+bx +c >0的解集为{x |α<x <β}, ∴α,β是方程ax 2+bx +c =0的两根,且a <0.∴αβ=c a ,α+β=-b a,∴c =aαβ,b =-a (α+β). ∵cx 2+bx +a <0,∴a αβx 2-a (α+β)x +a <0. 整理,得αβx 2-(α+β)x +1>0. ∵β>α>0,∴αβ>0,1α>1β,∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0.∵方程x 2-⎝ ⎛⎭⎪⎫1α+1βx +1αβ=0的两根为1α,1β.∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α或x <1β,即不等式cx2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α,或x <1β.。
高中数学第三章不等式3.2.2一元二次不等式的解法(第1课时)练习(含解析)新人教A版必修5
高中数学第三章不等式3.2.2一元二次不等式的解法(第1课时)练习(含解析)新人教A 版必修5一、选择题:1.不等式-x 2-x +2≥0的解集为( )A .{x |x ≤2或x ≥1}B .{x |-2<x <1}C .{x |-2≤x ≤1}D .∅【答案】C【解析】:由-x 2-x +2≥0,得x 2+x -2≤0,即(x +2)(x -1)≤0,所以-2≤x ≤1,所以原不等式解集为{x |-2≤x ≤1}.2.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)【答案】B【解析】由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1. 3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧a >0Δ>0B.⎩⎪⎨⎪⎧a >0Δ<0C.⎩⎪⎨⎪⎧a <0Δ>0D.⎩⎪⎨⎪⎧a <0Δ<0 【答案】D【解析】结合二次函数的图象,可知若ax2+bx +c <0,则⎩⎪⎨⎪⎧a <0Δ<0.4.若不等式ax 2+bx +2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-14 【答案】D【解析】由已知得,ax 2+bx +2=0的解为-12,13.所以⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,所以a +b =-14.5.已知不等式ax 2+3x -2>0的解集为{x |1<x <b }.则a ,b 的值等于( )A .a =1,b =-2B .a =2,b =-1C .a =-1,b =2D .a =-2,b =1【答案】C【解析】 因为不等式ax 2+3x -2>0的解集为{x |1<x <b },所以方程ax 2+3x -2=0的两个根分别为1和b ,根据根与系数的关系,得1+b =-3a ,b =-2a,所以a =-1,b =2.6.设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B .[0,+∞)C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)【答案】D【解析】由x <g (x ),得x <x 2-2,则x <-1或x >2;由x ≥g (x ),得x ≥x 2-2,则-1≤x ≤2.因此f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2,即f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x +122+74,x <-1或x >2,⎝ ⎛⎭⎪⎫x -122-94,-1≤x ≤2. 因为当x <-1时,y >2;当x >2时,y >8.所以 当x ∈(-∞,-1)∪(2,+∞)时,函数f (x )的值域为(2,+∞).当-1≤x ≤2时, -94≤y ≤0. 所以当x ∈[-1,2] 时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤-94,0.综上可知,函数f (x )的值域为⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题:7.设0<b <1+a .若关于x 的不等式(x -b )2>(ax )2的解集中的整数解恰有3个,则a 的取值范围为________. 【答案】(1,3)【解析】 原不等式转化为[(1-a )x -b ][(1+a )x -b ]>0,①当a ≤1时,结合不等式解集形式知不符合题意;②当a >1时,b 1-a <x <b a +1,由题意知0<ba +1<1,所以要使原不等式解集中的整数解恰有3个,则需-3≤b1-a<-2.整理,得2a -2<b ≤3a -3.结合题意b <1+a ,有2a -2<1+a .所以a <3,从而有1<a <3.综上可得a ∈(1,3).8.若0<t <1,则不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为________.【答案】⎩⎨⎧⎭⎬⎫x ⎪⎪⎪t <x <1t【解析】因为0<t <1,所以1t>1,所以(x -t )⎝ ⎛⎭⎪⎫x -1t <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |t <x <1t . 9.关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.【答案】{x |x >1或x <-2}【解析】 因为ax 2+bx +2>0的解集为{x |-1<x <2},所以⎩⎪⎨⎪⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1.所以bx 2-ax -2>0,即x 2+x -2>0,解得x >1或x <-2.10.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 【答案】(-∞,1]【解析】 A ={x |3x -2-x 2<0}={x |x 2-3x +2>0}={x |x <1或x >2},B ={x |x <a }.若B ⊆A ,如图,则a ≤1.三、解答题 11.解下列不等式:(1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1; (3)x 2-2x +3>0. 【答案】见解析【解析】 (1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <2. (2)原不等式可化为2x 2-x -1≥0,所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12或x ≥1.(3)因为Δ=(-2)2-4×3=-8<0, 故原不等式的解集是R. 12.解不等式组:-1<x 2+2x -1≤2. 【答案】见解析【解析】 原不等式组等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2, 即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0;由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.所以原不等式组的解集为{x |-3≤x <-2或0<x ≤1}, 13.设f (x )=(m +1)x 2-mx +m -1.(1)当m =1时,求不等式f (x )>0的解集;(2)若不等式f (x )+1>0的解集为⎝ ⎛⎭⎪⎫32,3,求m 的值. 【答案】见解析【解析】 (1)当m =1时,不等式f (x )>0为2x 2-x >0,因此所求解集为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.(2)不等式f (x )+1>0,即(m +1)x 2-mx +m >0,由题意知32,3是方程(m +1)x 2-mx +m =0的两根.因此⎩⎪⎨⎪⎧32+3=mm +132×3=mm +1⇒m =-97.。
高中数学人教版必修5课时练习:第三章 不等式3-2 一元二次不等式及其解法
∴M∩N={x|0≤x≤2},故选 D.
3.若{x|2<x<3}为 x2+ax+b<0 的解集,则 bx2+ax+1>0 的解集为( )
A.{x|x<2 或 x>3}
B.{x|2<x<3}
C.{x|31<x<12}
D.{x|x<31或 x>21}
[答案] D
[解析] 由 x2+ax+b<0 的解集为{x|2<x<3},知方程 x2+ax+b=0 的根分别为 x1=2,x2 =3.
则不等式 ax2+bx+c>0 的解集是________.
[答案] {x|x<-2 或 x>3}
[解析] 由表知 x=-2 时 y=0,x=3 时,y=0. ∴二次函数 y=ax2+bx+c 可化为 y=a(x+2)(x-3),又当 x=1 时,y=-6,∴a=1. ∴不等式 ax2+bx+c>0 的解集为{x|x<-2 或 x>3}. 三、解答题
<x<1},选 D.
2.设集合 M={x|0≤x≤2},N={x|x2-2x-3<0},则 M∩N 等于( )
A.{x|0≤x<1}
B.{x|0≤x≤2}
C.{x|0≤x≤1}
D.{x|0≤x≤2}
[答案] D
[解析] ∵N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x≤2},
C.{x|x<1t 或 x>t}
D.{x|t<x<1t }
[答案] D
[解析] 化为(x-t)(x-1t )<0,
∵0<t<1,∴1t >1>t,∴t<x<1t .
6.已知不等式 x2+ax+4<0 的解集为空集,则 a 的取值范围是( )
高中数学第三章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修5
B.a=2,b=-1
C.a=-2,b=2
D.a=-2,b=1
解析:因为不等式 ax2+3x-2>0 的解集为{x|1<x<b},所以 a<0,且
方程 ax2+3x-2=0 的两个根分别为 1 和 b.根据根与系数的关系,得
1+b=-3a,b=-2a,所以 a=-1,b=2.
答案:C
[随堂训练]
1.已知不等式
ax2-5x+b>0
的解集为x
x<-13或x>12,则不等式
bx2-5x+a>0 的解集为( )
A.x
-13<x<12
C.{x|-3<x<2}
B.x
x<-13或x>12
D.{x|x<-3 或 x>2}
综上所述: 当 a<0 或 a>1 时,原不等式的解集为{x|x<a 或 x>a2}; 当 0<a<1 时,原不等式的解集为{x|x<a2 或 x>a}; 当 a=0 时,原不等式的解集为{x|x≠0}; 当 a=1 时,原不等式的解集为{x|x≠1}.
解含参数的一元二次不等式应注意事项 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论; (4)若 ax2+bx+c>0(a>0)可分解为 a(x-x1)(x-x2)>0.讨论时只需比 较 x1,x2 大小即可.
3.若不等式 ax2+5x-2>0 的解集是x
1
人教A版高中数学必修5第三章 不等式3.2 一元二次不等式及其解法课件
(1)直接考查一元二次不等式的解法; (2)与函数的奇偶性等相结合,考查一元二次不等式 的解法; (3)已知一元二次不等式的解集求参数.
[例 1] 为( )
(1)(2014·全国高考)不等式组xx+2>0, 的解集 |x|<1
ax2+bx+c<0 对一切 x∈R 都成立的条件为a<0, Δ<0.
2.可用(x-a)(x-b)>0 的解集代替xx- -ab>0 的解集,你认为 如何求不等式xx- -ab<0,xx- -ab≥0 及xx- -ab≤0 的解集?
提示:xx--ab<0⇔(x-a)(x-b)<0; xx--ab≥0⇔xx--ba≠0x-;b≥0, xx--ab≤0⇔xx--ba≠0x-. b≤0,
考点二
一元二次不等式的恒成立问题
[例 2] 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范 围; (2)若对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取 值范围.
[自主解答] (1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0;
xx≠-2ba
R
判别式 Δ=b2-4ac
Δ>0
ax2+bx+c<0
(a>0)的解集 {x|x<x1<x2}
Δ=0
∅
续表 Δ<0
∅
1.ax2+bx+c>0,ax2+bx+c<0(a≠0)对一切 x∈R 都成立 的条件是什么?
提示:ax2+bx+c>0 对一切 x∈R 都成立的条件为a>0, Δ<0.
高中数学第三章不等式31不等关系与不等式课件新人教A版必修5
D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.
高中数学第三章不等式32一元二次不等式及其解法第2课时一元二次不等式的解法的应用课件新人教A版必修
2.含参数一元二次不等式有解的讨论方法 (1)当二次项系数不确定时,要分二次项系数_等__于__零_、 _大__于__零___、_小__于__零___三种情况进行讨论. (2)判别式不确定时,要分判别式大于零、等于零、小 于零三种情况进行讨论. (3)判别式大于零时,只需讨论两根大小.
1.若集合
它的同解不等式为xx--22≠x0-,5≥0, ∴x<2 或 x≥5. ∴原不等式的解集为{x|x<2 或 x≥5}.
【方法规律】1.对于比较简单的分式不等式,可直接转 化为一元二次不等式或一元一次不等式组求解,但要注意分母 不为零.
2.对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为零,然后 再用上述方法求解.
【答案】B
3.不等式x+x 1≤3 的解集为________. 【答案】x|x<0或x≥12
4.若函数f(x)=log2(x2-2ax-a)的定义域为R,则a的 取值范围为________.
【答案】(-1,0) 【解析】已知函数定义域为R,即x2-2ax-a>0对任意 x∈R恒成立,∴Δ=(-2a)2+4a<0,解得-1<a<0.
y=200a(1+2x%)(10-x)%=215a(50+x)(10-x)(0<x<10). (2)原计划税收为 200a·10%=20a(万元).依题意得215a(50
+ x)(10 - x)≥20a×83.2% , 化 简 得 x2 + 40x - 84≤0 , ∴ - 42≤x≤2.又 0<x<10,∴0<x≤2.∴x 的取值范围是{x|0< x≤2}.
)
A.x|1t <x<t
B.x|x>1t 或x<t
C.x|x<1t 或x>t
D.x|t<x<1t
高中数学 第三章 不等式 3.1 不等关系与不等式(第1课时)练习(含解析)新人教A版必修5-新人教
3.1《不等关系与不等式》(第1课时)一、选择题:1.设M =x 2,N =-x -1,则M 与N 的大小关系是( )A .M >NB .M =NC .M <ND .与x 有关 【答案】A【解析】 M -N =x 2+x +1=(x +12)2+34>0,∴M >N .2.若a <b <0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a |>|b |D .(12)a >(12)b 【答案】B【解析】 ∵a <b ,y =2x 单调递增,∴2a <2b,故选B . 3.已知a <0,-1<b <0,则下列各式正确的是( )A .a >ab >ab 2B .ab >a >ab 2C .ab 2>ab >a D .ab >ab 2>a 【答案】D【解析】 ∵-1<b <0,∴1>b 2>0>b >-1,即b <b 2<1,两边同乘以a 得,∴ab >ab 2>a .故选D .4.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2D .ac (a -c )<0 【答案】C【解析】 ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A、B 、D 均正确.∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.5.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b【答案】B【解析】 选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不等成立,故选B .6.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C .1x 2+1≤1 D.x +1x≥2 【答案】C【解析】 A 中x >0;B 中x =1时,x 2+1=2x ;C 中任意x ,x 2+1≥1,故1x 2+1≤1;D 中当x <0时,x +1x≤0.7.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c【答案】D【解析】本题考查不等式的性质,a c -b d =ad -bccd,cd >0,而ad -bc 的符号不能确定,所以选项A 、B 不一定成立.a d -b c =ac -bddc,dc >0,由不等式的性质可知ac <bd ,所以选项D 成立.本题也可以对实数a 、b 、c 、d 进行适当的赋值逐一排查.8.设a =sin15°+cos15°,b =sin16°+cos16°,则下列各式正确的是( )A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a <a 2+b 22D .b <a 2+b 22<a【答案】B【解析】a =sin15°+cos15°=2sin60°,b =sin16°+cos16°=2sin61°,∴a <b ,排除C 、D 两项.又∵a ≠b ,∴a 2+b 22-ab =a -b22>0,∴a 2+b 22>ab =2sin60°×2sin61°=3sin61°>2sin61°=b ,故a <b <a 2+b 22成立.9.已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a ,比较A 、B 、C 的大小结果为( ) A .A <B <C B .B <A <C C .A <C <B D .B <C <A【答案】B【解析】 不妨设a =-12,则A =54,B =34,C =2,由此得B <A <C ,排除A 、C 、D ,选B .具体比较过程如下:由-1<a <0得1+a >0,A -B =(1+a 2)-(1-a 2)=2a 2>0得A >B , C -A =11+a-(1+a 2)=-a a 2+a +11+a=-a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +122+341+a>0,得C >A ,∴B <A <C .二、填空题:10.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 【答案】x <y【解析】x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,∴x <y . 11.给出四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推得1a <1b成立的是________.【答案】①、②、④【解析】 1a <1b ⇔b -aab<0,∴①、②、④能使它成立.12.a ≠2、b ≠-1、M =a 2+b 2、N =4a -2b -5,比较M 与N 大小的结果为________. 【答案】M >N【解析】 ∵a ≠2,b ≠-1,∴M -N =a 2+b 2-4a +2b +5=(a -2)2+(b +1)2>0,∴M >N . 三、解答题13.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式. 【答案】见解析【解析】 设每天派出甲型卡车x 辆,乙型卡车y 辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数. (2)车队每天至少要运360 t 矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎩⎪⎨⎪⎧x +y ≤910×6x +6×8y ≥3600≤x ≤40≤y ≤7,即⎩⎪⎨⎪⎧x +y ≤95x +4y ≥300≤x ≤40≤y ≤7.14.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:关系的不等式. 【答案】见解析【解析】设需安排x 艘轮船和y 架飞机,则⎩⎪⎨⎪⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎪⎨⎪⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.15.设a >0,b >0且a ≠b ,试比较a a b b与a b b a的大小. 【答案】见解析【解析】 根据同底数幂的运算法则.a a b b a b b a =a a -b ·b b -a =(a b)a -b,当a >b >0时,ab >1,a -b >0,则(a b)a -b>1,于是a a b b>a b b a . 当b >a >0时,0<a b <1,a -b <0,则(a b)a -b>1,于是a a b b>a b b a.综上所述,对于不相等的正数a 、b ,都有a a b b>a b b a.。
高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题
第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。
高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案
答案: A 解析: 只需
1 2
x
)
1 ] 4 7 D.(−∞, − ) 2
B.(−∞,
f (x) min ⩾ g(x) min 即可.
4. 三位同学合作学习,对问题"已知不等式 xy ⩽ ax2 + 2y 2 对于 x ∈ [1, 2] , y ∈ [2, 3] 恒成立,求 a 的 取值范围"提出了各自的解题思路. 甲说:"可视 x 为变量,y 为常量来分析". 乙说:"寻找 x 与 y 的关系,再作分析". 丙说:"把字母 a 单独放在一边,再作分析". 参考上述思路,或自已的其它解法,可求出实数 a 的取值范围是 ( A.[1, +∞)
1. 若关于 x 的方程 9 x + (4 + a) ⋅ 3 x + 4 = 0 有解,则实数 a 的取值范围是 ( A.(−∞, −8) C.[−8, +∞)
答案: B 解析:
)Hale Waihona Puke B.(−∞, −8]D.(−∞, +∞)
由 9 x + (4 + a) ⋅ 3 x + 4 = 0,得 a = −3 x −
答案: B 解析:
)
D.[−1, 6]
B.[−1, +∞)
C.[−1, 4)
y y y 2 − 2( ) ,由 x ∈ [1, 2] , y ∈ [2, 3] ,x 、 y 构成正方形区域, 表示过 x x x y y 原点直线与正方形区域相交时直线的斜率的取值范围,则有 ∈ [1, 3] ,当 = 1 时, x x y y 2 − 2( ) 有最大值为 −1,则 a 的取值范围是 [−1, +∞) x x
人教A版高中数学必修5第三章不等式3.2一元二次不等式及其解法习题
精选文档课时作业一一、选择题1.不等式- 6x2-x+ 2≤ 0 的解集是 ()A. x|-2≤ x≤1B.x|x≤-2或 x≥1 3232C. x|x≥1D.x|x≤-3 222.一元二次方程ax2+ bx+ c= 0 的根为2,- 1,则当 a<0 时,不等式ax2+ bx+c≥ 0的解集为 ()A. { x|x<-1 或 x>2}B. { x|x≤- 1 或 x≥ 2} [根源:www ]C. { x|- 1<x<2}D. { x|- 1≤x≤ 2}3.函数 y= lg(x2- 4)+x2+ 6x的定义域是 ()A. (-∞,- 2)∪ [0,+∞ ) B . (-∞,- 6]∪ (2,+∞ )C. ( -∞,- 2]∪ [0 ,+∞ ) D . (-∞,- 6)∪ [2,+∞ )4.若不等式 mx2+ 2mx- 4<2x2+ 4x 的解集为 R ,则实数 m 的取值范围是 ()A. (- 2,2) B . (- 2,2]C. ( -∞,- 2)∪ [2 ,+∞ )D.( -∞, 2)22)x+k2+3k+ 5= 0(k∈ R)的两个实数根,则225.已知 x1、x2是方程 x - (k-x1+ x2的最大值为 ()5A. 18B. 19C.59 D .不存在二、填空题6.二次函数 y=ax2+ bx+ c 的部分对应点以下表:x-3- 2- 101234y60- 4-6- 6- 406则不等式 ax2+ bx+c>0 的解集是 ______________ .7.不等式- 1<x2+2x- 1≤ 2 的解集是 ________.8.若函数f(x) = lg(ax2- x+ a)的定义域为 R ,则实数a 的取值范围是 ________.三、解答题119.已知 x2+ px+ q<0 的解集为x|-2<x<3,求不等式qx2+ px+1>0 的解集.10.解对于x 的不等式: ax2- 2x+ 1>0.课时作业二一、选择题[根源 :]1.不等式 (x- 1) x+ 2≥ 0 的解集是 ()A. { x|x>1}B. { x|x≥ 1}C. { x|x≥ 1 或 x=- 2} D .{ x|x≥- 2 或 x= 1}x2- 2x-22.不等式x2+x+1 <2 的解集为 ()A. { x|x≠- 2} B . RC. ?1D. { x|x<-2 或 x>2}3.若 a>0 , b>0,则不等式-b<x<a 等价于 ()[根源:].1111A .- b <x<0 或 0< x<aB .- a <x<bC . x<- 1或 x>1D . x<-1或 x>1a bb ax 2- 4x + 6,x ≥ 0, 则不等式 f(x)>f(1) 的解集是 ()4.设函数 f(x) =x + 6, x<0,A . (- 3,1)∪ (3,+∞ )B . (- 3,1)∪(2 ,+∞ )C . ( -1,1)∪ (3,+∞ )D . (-∞,- 3)∪ (1,3)5.对随意 a ∈ [- 1,1] ,函数 f(x) =x 2 + (a -4)x +4- 2a 的值恒大于零,则 x 的取值范围是 ()A . 1<x<3B . x<1 或 x>3C . 1< x<2D . x<1 或 x>2二、填空题6.假如 A ={ x|ax 2- ax + 1<0} = ?,则实数 a 的取值范围为 ________.7.已知 x = 1 是不等式 k 2x 2- 6kx +8≥ 0 的解,则 k 的取值范围是 ________.2x 2- 3x -5 8.不等式 3x 2- 13x + 4≥ 1 的解集为 ________________ .三、解答题x 212= 0 有两个实根为 129.已知函数 f(x)= ax + b (a ,b 为常数 ),且方程 f(x)- x +x =3, x= 4.(1)求函数 f(x)的分析式;(k + 1)x - k(2)设 k>1,解对于 x 的不等式: f(x)<.2- x10.已知函数 f(x)= lg[( a 2- 1)x 2+ (a + 1)x +1] .(1)若 f(x)的定义域为 (-∞,+∞ ),务实数 a 的取值范围; (2)若 f(x)的值域为 (-∞,+∞ ),务实数 a 的取值范围.课时作业一答案1. 答案 B2. 答案 D3. 答案 B4. 答案 B5. 答案 A二、填空题6. 答案 { x|x<- 2 或 x>3} 7. 答案 { x|- 3≤ x<- 2 或 0< x ≤ 1}1 8. 答案 a>2三、解答题9. 解 ∵ x 2+ px +q<0 的解集为1 1,x|- <x< 32∴ -1, 1是方程 x 2+ px + q =0 的两实数根,2 31113-2=- pp = 6由根与系数的关系得, ∴, 1× - 1= q132q =- 621 2 1∴ 不等式 qx+ px +1>0 可化为-6 x + x + 1>0,6即 x 2- x -6<0 , ∴ -2<x<3, ∴不等式 qx 2+px + 1>0 的解集为 { x|- 2<x<3} . 10. 解 ① 当 a = 0 时,不等式即-2x + 1>0, ∴ 解集 为 x|x<1;2② 当 a<0 时, = 4- 4a>0 ,此时不等式为 x 2-2x + 1<0,因为方程 x 2- 2x + 1= 0 的两a aa a 1- 1- a 1+ 1- a 1- 1- a 1+ 1- a根分别为a 、 ,且a > a,a.1+ 1- a1- 1- a; ∴ 不等式的解集为 x|a<x<a2 1③ 当 a>0 时,若 0<a<1,则>0,此时不等式即>0.x 2- x +aa∵ 1- 1- a 1+ 1- aa <a,∴ 当 0<a<1 时,不等式解集为x|x<1- 1-a或 x>1+ 1- a.若 a =1,则不等式为 (x - 1)2>0, aa∴ 当 a = 1 时,不等式解集为 { x|x ∈ R 且 x ≠ 1} ;若 a>1 时,则 <0,不等式解集为 R .综上所述,当a<0 时,不等式的解集为1+ 1- a1- 1- a ;xa<x<a当 a =0 时,不等式的解集为x x< 1;2当 0<a<1 时,不等式的解集为x x< 1- 1- a1+ 1- a或 x> a;a当 a =1 时,不等式的解集为 { x |x ∈R 且 x ≠ 1 } ;当 a>1 时,不等式的解集为R.课时作业二答案一、选择题1. 答案 C 分析 当 x =- 2 时, 0≥0 建立.当 x>- 2 时,原不等式变成 x - 1≥ 0,即 x ≥ 1.∴ 不等式的解集为 { x|x ≥1 或 x =- 2} .2. 答案 A分析 原不等式 ? x 2- 2x - 2<2x 2+ 2x + 2? x 2+ 4x + 4>0? (x + 2)2>0 ,∴ x ≠ - 2. ∴ 不等式的解集为 { x|x ≠- 2} . 3. 答案Dx>0x<0x>0x<0分析 - b<1<a? 11?? x>1或 x<- 1.或 1 或xx <ax >- bx>abx<- 1ab4. 答案 A 分析 f(1) = 12- 4× 1+ 6=3, 当 x ≥0 时, x 2- 4x +6>3 ,解得 x>3 或 0≤ x<1 ; 当 x<0 时, x + 6>3,解得- 3< x<0.因此 f(x)>f(1)的解集是 x ∈ (- 3,1)∪(3,+ ∞ ).5. 答案B 分析 设 g(a)= (x - 2)a + (x 2- 4x +4)g(a)>0 恒建立且 a ∈ [-1,1] ? g(1)= x 2- 3x + 2>0 x<1或x>2? x<1 或 x>3.? x<2或x>3g(- 1)= x 2- 5x + 6>0 二、填空题 6. 答案0≤ a ≤ 4分析 a = 0 时, A = ?;当 a ≠ 0 时, A = ?? ax2- ax + 1≥ 0 恒建立 ?a>0 ? 0<a ≤ 4,Δ≤ 0综上所述,实数 a 的取值范围为 0≤ a ≤ 4. 7.答案k ≤ 2 或 k ≥ 4分析 x = 1 是不等式 k 2x 2- 6kx + 8≥ 0 的解,把 x = 1 代入不等 式得 k 2- 6k + 8≥0,解得 k ≥ 4 或 k ≤2..8. 答案1,1 ∪ (4,9] [根源:]3x 2- 10x + 9分析原不等式化为3x 2-13x +4≤0即 (x 2- 10x + 9)(3x 2- 13x + 4)<0 或 x 2- 10x + 9= 0. 即 (x - 1)(x - 9)(3x - 1)(x - 4)<0 或 (x - 1)(x - 9)= 0, 由下列图可知,原不等式的解为1 3<x ≤1 或 4<x ≤ 9.三、解答题 x 29. 解1 2-x + 12= 0(1)将 x = 3, x = 4 分别代入方程 ax + b9 =- 9,a =- 13a + b 2得解得 ,因此 f( x)= x16 =- 8, b = 22- x (x ≠ 2). 4a + bx 2 (k + 1)x - k x 2-( k +1) x + k(2)不等式即为 2- x < 2-x ,可转变成 2- x <0.即 (x - 2)(x - 1)(x - k)>0.① 当 1< k<2 时,原不等式的解集为 { x|1<x<k 或 x>2} ;② 当 k = 2 时,不等式为 (x - 2) 2(x - 1)>0 ,原不等式的解集为 { x|1<x<2 或 x>2} ; ③ 当 k>2 时,原不等式的解集为 { x|1<x<2 或 x>k} . 综上知, 当 1<k<2 时,不等式的解集为 { x|1<x<k 或 x>2} ; 当 k =2 时,不等式的解集为 { x|1<x<2 或 x>2} ;当 k>2 时,不等式的解集为{ x|1<x<2 或 x>k} .a 2- 1>0, 得 a<- 1 或 a>5.[根源 :]10. 解 (1)当 a 2- 1≠ 0 时,由= (a + 1)2- 4(a 2- 1)<0 ,3 又 a 2- 1= 0 时,得 a = ±=- 1 时,知足题意. a =1 时,不合题意.∴ 实数 a 的取值范围为 5a ≤ - 1 或 a> .(2)只需 t = (a 2- 1)x 2+ ( a + 1)x + 1 3能取到 (0,+ ∞)上的任何值,则 f(x)的值域为 R ,故当 a 2- 1≠ 0 时,有 a 2- 1>0, 得 1<a ≤5.Δ≥ 0,3又当 a 2- 1= 0,即 a = 1 时, t = 2x + 1 切合题意. a =- 1 时不合题意.5全品最新精选资料..。
高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案
(2)因为
为整式不等式
解得 x <
3 或 x > 4,所以原不等式的解集为 2 3 ∣ {x ∣ x < 或x > 4} . ∣ 2
4.高次不等式的解法 描述: 高次不等式的解法 解一元高次不等式一般利用数轴穿根法(或称根轴法)求解,其步骤是: (1)将 f (x) 最高次项系数化为正数; (2)将 f (x) 分解为若干个一次因式的乘积或二次不可分因式的乘积; (3)求出各因式的零点,并在数轴上依次标出; (4)从最右端上方起,自右至左依次通过各根画曲线,遇到奇次重根要一次穿过,遇到偶次重根 要穿而不过; (5)记数轴上方为正,下方为负,根据曲线显现出的 f (x) 的值的符号变化规律,写出不等式 的解集. 例题: 解不等式 (x + 2)(x + 1)2 (x − 1)3 (x − 2) < 0 . 解:不等式中各因式的实数根为 −2,−1,1 ,2 . 利用根轴法,如图所示.
2 )(x − a) ⩽ 0 . a 2 2 ① 当 < a ,即 a > √2 时,原不等式的解集为 {x| ⩽ x ⩽ a}. a a 2 2 ② 当 > a ,即 0 < a < √2 时,原不等式的解集为 {x|a ⩽ x ⩽ }. a a 2 ③ 当 = a ,即 a = √2 时,原不等式的解集为 {x|x = √2 } . a 2 (3)当 a < 0 时,原不等式化为 (x − )(x − a) ⩾ 0 . a 2 2 ① 当 < a ,即 −√2 < a < 0 时,原不等式的解集为 {x|x ⩽ 或x ⩾ a} . a a 2 2 ② 当 > a ,即 a < −√2 时,原不等式的解集为 {x|x ⩽ a或x ⩾ }. a a 2 ③ 当 = a ,即 a = −√2 时,原不等式的解集为 R. a
人教A版高中数学必修5精品课件3-3-2简单的线性规划问题
第30页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
【解析】 由-4≤f(1)≤-1,得-4≤a-c≤-1.
A.-7 C.-5
B.-6 D.-3
第18页
第三章 3.3 3.3.2 第一课时
高考调研
【解析】
新课标A版 ·数学 ·必修5
第19页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
如图所示,约束条件所表示的区域为图中的阴影部分,而
目标函数可化为y=
2 3
x-
z 3
,先画出l0:y=
高考调研
新课标A版 ·数学 ·必修5
课后巩固
第35页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
x+2y≥2,
1.已知x、y满足3x≥x+0y,≥1, 则z=2x+y(
)
y≥0,
A.有最大值1
B.有最小值1
C.有最大值4
D.有最小值4
答案 B
第36页
第三章 3.3 3.3.2 第一课时
高考调研
Байду номын сангаас
新课标A版 ·数学 ·必修5
第三章 不等式
第1页
第三章 不等式
高考调研
新课标A版 ·数学 ·必修5
3.3 二元一次不等式(组)与简单的线性规划问题
第2页
第三章 不等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时线性规划的实际应用
课时过关·能力提升
基础巩固
1某所学校计划招聘男教师x名,女教师y名,若x和y须满足约束条
A.6
B.8
C.10
D.12
解析:该校招聘男教师x名,女教师y名,此时该校招聘的教师人数为z名,
则z=x+y,且x≥0,y≥0,x,y均为自然数,画出可行域如图阴影部分中的整数点所示,可得M(3,1),
所以可行解有(3,1),(4,2),(4,3),(5,3),(5,4),(5,5),
则z=4,6,7,8,9,10,所以z的最大值是10,即该校招聘的教师人数最多是10.
答案:C
2在一次促销活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为().
A.2 000元
B.2 200元
C.2 400元
D.2 800元
答案:B
3已知签字笔2元一支,练习本1元一本.某学生欲购买的签字笔不少于3支,练习本不少于5本,但买签字笔和练习本的总数量不超过10,则支出的钱数最多是元.
答案:15
4某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元.现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为元.
答案:2 300
5某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.设生产书桌x张,书橱y个,利润总额为z元,则线性约束条件是,线性目标函数是.
答案:
6某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
解析:设生产产品A x件,生产产品B y件,
由题意
目标函数z=2100x+900y,画出约束条件对应的可行域(如图阴影部分中的整数点所示),作直线y=5x+3y=600与10x+3y=900的交点时,z取最大值,
所以z max=2100×60+900×100=216000.
答案:216 000。