浙江省杭州市中考数学一轮复习第九章解直角三角形第二节解直角三角形及其应用同步测试

合集下载

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。

[精品]杭州市2019年中考数学一轮复习 第九章 解直角三角形 第二节 解直角三角形及其应用同步测试

[精品]杭州市2019年中考数学一轮复习 第九章 解直角三角形 第二节 解直角三角形及其应用同步测试

第二节解直角三角形及其应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏苏州中考)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( )A.40海里B.60海里C.203海里D.403海里2. (2018·重庆中考A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底面E处测得旗杆顶端的仰角∠A E D=58°,升旗台底部到教学楼底部的距离D E=7米,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)( )A.12.6米B.13.1米C.14.7米D.16.3米3.(2018·浙江湖州模拟)一个小球由地面沿着坡度1∶2的坡面向上前进了10米,此时小球距离地面的高度为________米.4.(2018·山东济宁中考)如图,在一笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是______km.5.(2018·辽宁葫芦岛中考)如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__________________米(结果保留根号).6.(2018·四川成都中考)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan 37°≈0.75)7.(2018·浙江舟山中考)如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8 m,PD=2 m,CF=1 m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1 m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1 m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,2≈1.41,3≈1.73)8.(2018·江苏扬州中考)问题呈现如图1,在边长为1的正方形网格中,连结格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连结格点M,N,可得MN∥EC,则∠DNM=∠CPN,连结DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为________;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CP N的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连结AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.9.(2018·山东聊城中考)随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)15.6°≈0.96,tan 15.6°≈0.28)10.(2018·江苏连云港中考)如图1,水坝的横截面是梯形ABCD ,∠ABC=37°,坝顶DC =3 m ,背水坡AD 的坡度i(即tan ∠DAB)为1∶0.5,坝底AB =14 m .(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE =2DF ,EF⊥BF,求DF 的长.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34)参考答案【基础训练】1.D 2.B 3.2 5 4. 3 5.100+100 36.解:由题意得∠ACD=70°,∠BCD=37°,AC=80(海里),在直角三角形ACD中,CD=AC·cos∠ACD=27.2(海里),在直角三角形BCD中,BD=CD·tan∠BCD=20.4(海里).答:还需航行的距离BD的长为20.4海里.7.解:(1)如题图2,当P位于初始位置时,CP0=2 m,如题图3,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1. ∵∠BEP1=90°,∠CAB=90°,∠ABE=65°,∴∠AP1E=115°,∴∠CP1E=65°,∵∠DP1E=20°,∴∠CP1F=45°,∵CF=P1F=1 m,∴∠C=∠CP1F=45°,∴△CP1F是等腰直角三角形,∴P1C= 2 m,∴P0P1=CP0-P1C=2-2≈0.6 m,即为使遮阳效果最佳,点P需从P0上调0.6 m.(2)解:如图,中午12:00时,太阳光线与PE,地面都垂直,点P上调至P2处,∴P2E∥AB.∵∠CAB=90°,∴∠CP2E=90°,∵∠DP2E=20°,∴∠CP2F=∠CP2E-∠DP2E=70°,∵CF=P2F=1 m,得△CP2F为等腰三角形,∴∠C=∠CP2F=70°.过点F作FG⊥CP2于点G,∴GP2=P2F·cos 70°=0.34 m,∴CP2=0.68 m,∴P1P2≈0.7 m,即点P在(1)的基础上还需上调0.7 m. 【拔高训练】8.解:(1)2(2)如图,取格点D,连结CD,DM.∵CD∥AN,∴∠CPN=∠DCM.∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos ∠CPN=cos ∠DCM=22.(3)如图,如图取格点F,连结AF,FN.∵PC∥FN,∴∠CPN=∠ANF.∵AF=FN,∠AF N=90°,∴∠ANF=∠FAN=45°.∴∠CPN=45°.9.解:如图,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF,AF=BE,设AF=x,∵∠BAC=150°,∠BAF=90°,∴∠CAF=60°,则AC =AFcos∠CAF =2x ,CF =AFtan∠CAF=3x ,在Rt△ABD 中,∵AB=EF =2,∠ADB=9°, ∴BD=AB tan ∠ADB =2tan 9°,则DE =BD -BE =2tan 9°-x ,CE =EF +CF =2+3x ,在Rt△CDE 中,∵tan∠CDE=CEDE ,∴tan 15.6°=2+3x2tan 9°-x,解得x≈0.75,则2x =1.5,即AC =1.5米, 即保温板AC 的长约是1.5米. 【培优训练】10.解:(1)如图,作DM⊥AB 于M ,CN⊥AN 于N.由题意tan∠DAB=DMAM =2,设AM =x ,则DM =2x.∵四边形DMNC 是矩形, ∴DM=CN =2x.在Rt△NBC 中,tan 37°=CN BN =2x BN =34,∴BN=83x.∵x+3+83x =14,∴x=3,∴DM=6,∴坝高为6 m.(2)如图,过F 点作FH⊥AB 于H ,过D 点作DM⊥AB 于M.设DF =y ,则AE =2y ,EH =3+2y -y =3+y ,BH =14+2y -(3+y)=11+y. 由△EFH∽△FBH,可得HF HB =EHFH ,即611+y =3+y6, 解得y =-7+213或-7-213(舍弃), ∴DF=213-7.答:DF 的长为(213-7)m.。

中考总复习解直角三角形

中考总复习解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。

知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。

详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。

(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。

2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。

若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。

2020年浙江中考数学一轮课件:35第九章 第二节解直角三角形及其应用

2020年浙江中考数学一轮课件:35第九章 第二节解直角三角形及其应用

【分析】根据方向角的定义即可得到结论. 【自主解答】由图可得,目标A在南偏东75°方向5 km处,故选D.
例5 (2019·宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400 米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方 向的B处,则此时这艘船与哨所的距离OB约为________米.(精确到1米,参 考数据: ≈1.414, ≈1.732)
墙PM是否需要拆除?请说明理由.
解:(1)∵新坡面坡角为α,新坡面的坡度为
(2)该文化墙PM不需要拆除. 理由如下: 如图,作CD⊥AB于点D,则CD=6米.
易错易混点一 构造直角三角形解三角函数问题
例1 如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都 在格点上,则sin∠ACB的值为( )
解:(1)如图,过点C作CE⊥BD于点E,
则有∠DCE=18°,∠BCE=20°, ∴∠BCD=∠DCE+∠BCE=18°+20°=38°.
(2)由题意得,CE=AB=30(m), 在Rt△CBE中,BE=CE·tan 20°≈10.80(m), 在Rt△CDE中,DE=CE·tan 18°≈9.60(m), ∴教学楼的高BD=BE+DE=10.80+9.60≈20.4(m). 则教学楼的高BD约为20.4 m.
考点二 利用解直角三角形解决测量问题
【要点知识拓展】 已知角度及其三角函数值时,可以构造直角三角形,通过解直角三角形帮 助解决长度计算问题.
例2 (2019·金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简 易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°, 则此时观察楼顶的仰角度数是________.
解:如果渔船不改变航线继续向东航行,没有触礁的危险. 理由如下:如图,过点A作AD⊥BC,垂足为D, 根据题意可知∠ABC=30°,∠ACD=60°. ∵∠ACD=∠ABC+∠BAC,∴∠BAC=30°=∠ABC, ∴CB=CA=20. 在Rt△ACD中,∠ADC=90°,∠ACD=60°,

2023年中考数学一轮复习考点过关 解直角三角形的应用

2023年中考数学一轮复习考点过关  解直角三角形的应用

2023年中考数学一轮复习考点过关解直角三角形的应用1. 3月份,长江重庆段开始进入枯水期,有些航道狭窄的水域通航压力开始慢慢增加.为及时掌握辖区通航环境实时情况,严防船舶搁浅、触礁等险情事故发生,沿江海事执法人员持续开展巡航检查,确保近七百公里的长江干线通航安全.如图,巡航船在一段自西向东的航道上的A处发现,航标B在A处的北偏东45°方向200米处,以航标B为圆心,150米长为半径的圆形区域内有浅滩,会使过往船舶有危险.(1)由于水位下降,巡航船还发现在A处北偏西15°方向300米的C处,露出一片礁石,求B、C两地的距离;(精确到1米)(2)为保证航道畅通,航道维护项目部会组织挖泥船对该条航道被浅滩影响的航段进行保航施工.请判断该条航道是否被这片浅滩区域影响?如果有被影响,请求出被影响的航道长度为多少米?如果≈)2 1.4147 2.6462. 如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.3. 为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:23)4. 如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60︒的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15︒的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C 处,请问补给船能否在83分钟之内到达C3 1.73≈)5. 为做好疫情防控工作,确保师生生命安全,学校每日都在学生进校前进行体温检测.某学校大门AB高6.5米,学生DF身高1.5米,当学生准备进入体温检测有效识别区域时,在点D处测得摄像头A的仰角为30︒,当学生刚好离开体温检测有效识别区域CD段时,在点C处测得摄像头A的仰角为60︒,求体温检测有效识别区域CD 段的长(结果保留根号)6. 数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈3 1.73)7. 如图1,和平大桥是徐州市地标建筑,也是国内跨铁路最多的大桥,某数学小组的同学利用课余时间对该桥进行了实地测量,如图2所示的测量示意图,测得如下数据;∠A =27°,∠B =31°,斜拉主跨度AB =368米.(1)过点C 作CD ⊥AB ,垂足为D ,求CD 的长(结果精确到0.1);(2)若主塔斜拉链条上的LED 节能灯带每米造价90元,求斜拉链条AC 上灯带的总造价是多少元?(参考数据tan27°≈0.5,sin27°≈0.45,cos27°≈0.9:tan31°≈0.6)8. 为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速,如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的中点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度1:23i AB的长(结果保留根号).9. 某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与地平线的夹角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米.(1)应在地面上距点B多远的A处开始斜坡施工?(精确到0.1米)(2)如果给该购物广场送货的货车高度为2.5米,那么按这样的设计能否保证货车顺利进入地下停车场?请说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)10. 如图,某城市的一座古塔CD 坐落在湖边,数学老师带领学生隔湖测量古塔CD 的高度,在点A 处测得塔尖点D 的仰角∠DAC 为31°,沿射线AC 方向前进35米到达湖边点B 处,测得塔尖点D 在湖中的倒影E 的俯角∠CBE 为45°,根据测得的数据,计算这座灯塔的高度CD (结果精确到0.1).参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60.(结果精确到0.1)11. 如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长AB =17cm ,支撑板长CD =16cm ,底座长DE =14cm ,托板AB 联结在支撑板顶端点C 处,且CB =7cm ,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若70,60DCB CDE ∠=︒∠=︒,求点A 到直线DE 的距离(精确到0.1cm )(参考数值sin 400.64,cos400.77,tan 403 1.73︒︒︒≈≈≈)12. 图①是某车站的一组智能通道闸机,图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角∠ABC =∠DEF =20°,半径BA =ED =60cm ,点A 与点D 在同一水平线上,且它们之间的距离为10cm .求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).13. 如图,1号楼在2号楼的南侧,两楼高度均为90,m 楼间距为AB .冬至日正午,太阳光线与水平面所成的角为32.3︒.1号楼在2号楼墙面上的影高为CA ,春分日正午,太阳光线与水平面所成的角为55.7︒,1号楼在2号楼墙面上的影高为DA .已知42CD m =.(1)求楼间距AB ;(2)若2号楼共30层,层高均为3,m 则点C 位于第几层? ( 参考数据:32.30.53,sin ︒≈32.30.85cos ︒≈,32.30.6355.70.83tan sin ︒≈︒≈,,55.70.5655.7 1.47cos tan ︒≈︒≈,)14. 如图,小明站在江边某瞭望台DE 的顶端D 处,测得江面上的渔船A 的俯角为40°.若瞭望台DE 垂直于江面,它的高度为3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE 的顶端D 到江面AB 的距离;(2)求渔船A 到迎水坡BC 的底端B 的距离.(结果保留一位小数)15. 如图,小锋将一-架4米长的梯子AB 斜靠在竖直的墙AC 上,使梯子与地面所成的锐角α为60°.(1)求梯子的顶端与地面的距离AC (结果保留根号)(2)为使梯子顶端靠墙的高度更高,小锋调整了梯子的位置使其与地面所成的锐角α为70°,则需将梯子底端点B 向内移动多少米(结果精确到0.1米)?参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈.。

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。

11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。

2024年中考第一轮复习直角三角形 课件

2024年中考第一轮复习直角三角形 课件

[解析] 设AB=x,则AC=x-2.由勾股定理,
.
得x2-(x-2)2=82.解得x=17.
■ 知识梳理
勾股定理
直角三角形两条直角边的平方和等于⑥ 斜边的平方
勾股定理
如果三角形中两边的平方和等于第三边的⑦ 平方 ,那么这个三角形
的逆定理 是直角三角形
勾股数
能够成为直角三角形三条边长的三个正整数,称为勾股数
∴AD=BC,∠A=∠B=∠CFE=90°,AB∥CD,∴∠AED=∠CDF,∠A=∠CFD=90°,
AD=CF,∴△ADE≌△FCD,∴ED=CD=x,∴FD=x-1,
在Rt△CFD中,FD2+CF2=CD2,∴(x-1)2+32=x2,解得x=5,∴CD=5.故选B.
考向三
勾股定理与拼图
例 3 [2020·孝感]如图 19-11①,四个全等的直角三角形围成一个大正方形,中间是个
图19-6
∴∠BEC=90°,∠BFC=90°,
1
2
∵G 是 BC 的中点,∴EG=FG= BC=5,
∵D 是
1
EF 的中点,∴ED= EF=3,GD⊥EF,
2
∴∠EDG=90°.在 Rt△ EDG 中,
由勾股定理得,DG= 2 - 2 =4,故答案为 4.
考向二
利用勾股定理进行计算
例2 [2020·宜宾]如图19-7,在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分
∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是
.
图19-7
【方法点析】勾股定理是求线段长的重要工具,主要应用:(1)已知直角三角形的
两边长求第三边长;(2)已知直角三角形的一边长求另两边的关系;(3)用于证明平

2013年浙教版九年级中考数学辅导(解直角三角形)

2013年浙教版九年级中考数学辅导(解直角三角形)

2013年浙教版九年级中考数学辅导(解直角三角形)一、锐角三角函数的定义: sin α=斜边的邻边斜边的对边ααα=cos , tan α=的对边的邻边的邻边的对边ααααα=cot , 2、同角三角函数间的关系:(1)平方关系:sin 2α+cos 2α=1⇒sin 2α=1-cos 2α, cos 2α=1-sin 2α(2)倒数关系:tan α·cot α=1⇒tan α=αcot 1, cot α=αtan 1(3)商数关系:tan α=αααααsin cos cot ,cos sin =3、特殊角的三角函数值:4、①锐角α的sin α(或tan α)随角度α的增大而增大。

(增函数) ②锐角α的cos α(或cot α)随角度α的增大而减小。

(减函数) 二、解直角三角形1、解直角三角形的定义:在直角三角形中,除一个直角外,一共还有5个元素:3条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

2、直角三角形中,边、角及边与角间的关系: (1)三边间的关系:a 2+b 2=c 2 (勾股定理)(2)两锐角的关系:∠A+∠B=900 (直角三角形两锐角互余)(3)边角之间的关系:①sinA=cosB=c a , cosA=sinB=cb(知斜用正、余弦)②tanA=cotB=c a , cotA=tanB=ab(无斜用正、余切)3、解直角三角形的类型:(从给定的已知条件可把解直角三角形分为两大类四小类) (1)已知一边一角①斜边和一锐角(如c 、A )解法:∠B=900-∠A , a=csinA, b=ccosA ②一直角边和一锐角(如a 、A ) 解法:∠B=900-∠A , b=acotA, c=22sin b a c Aa+=或 (2)已知两边①两直角边(如a 、b )解法:22b a c +=,由tanA=b a求出∠A ,则∠B=900-∠A ②斜边和一直角边(如c 、a )解法:b=ca A a c =-sin ,22由求出∠A ,则∠B=900-∠A一、选择题1、(漳州)已知锐角A 满足关系式2sin 2A-7sinA+3=0,则sinA 的值为( ) A .0.5 B .3 C .0.5或3 D .42、(山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) (A )150m(B )350m (C )100 m (D )3100m3、(威海市)在△ABC 中,∠C =90°,tanA =31,则sinB =( )(A )1010 (B )32 (C )43 (D )101034、如图,在Rt △ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1 ,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )A 333、 B、 C、5、(齐齐哈尔市)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( ) A .23 B .32C .34D .436、(2011浙江杭州义蓬一中一模)如图,小明发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .14米 B .28米 C .314+米 D .3214+米7、Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C.sin sin a b A B + D.cos sin a bA B+8、(南通市)如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( ) A .6(3+1)m B .6(3-1)m C.12(3+1)m D .12(3-1)m10、(浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( )(A )68米 (B )70米 (C )121米 (D )123米11、(2011•绵阳)10.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶 的仰角α 为45︒,小丽站在B 处(A 、B 与塔的轴心共线)测得她看塔 顶的仰角β 为30︒.她们又测出A 、B 两点的距离为30米.假设她们的 眼睛离头顶都为10 cm ,则可计算出塔高约为(结果精确到0.01)( ). A .36.21米 B .37.71米 C .40.98米 D .42.48米(第4题图)(第5题图)(第6题图)(第20题图)CA GFE D 15° 30°23米 (第3题图)(第1题图)D C B A(第2题图)二、填空题1、如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)2、如图:为了测量河对岸旗杆AB 的高度,在点C 处测得顶端A 的仰角为30°,沿CB 方向前进20m 达到D 处,在D 点测得旗杆顶端A 的仰角为45°,则旗杆AB 的高度为__________m.(精确到0.1m)3、如图,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30 , 旗杆底部B 点的俯角为45 .若旗杆底部B 点到建筑物的水平距离9BE =米, 旗杆台阶高1米,则旗杆顶点A 离地面的高度为_________米(结果保留根号)4、如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 .5、如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .三、解答题1. (诸暨市)由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD.2.课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图8,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度.A(第5题) AC (B ′) B A ′ 4题′3、永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB1.732≈,结果保留整数).5、(遵义市)如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F=45,求AF 的长度(结果精确到1米,参考数据:414.12≈,732.13≈).6、 (广安市)如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A 点处测得P 在它的北偏东600的方向, 继续行驶20分钟后, 到达B 处又测得灯塔P 在它的北偏东450方向. 问客轮不改变方向继续前进有无触礁的危险?7、(2011•宜宾)如图,飞机沿水平方向(A 、B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个距离MN 的方案,要求: (1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN 的步骤.AD45°60°MNB A。

中考专题复习解直角三角形(含答案)

中考专题复习解直角三角形(含答案)

中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。

2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。

4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。

5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。

7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。

第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。

依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。

2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。

(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。

⽤字母表⽰,即。

坡度⼀般写成的形式,如等。

把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。

【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。

九年级下学期一轮复习解直角三角形

九年级下学期一轮复习解直角三角形

例题赏析
例2
如图,在△ ABC中,AD是BC边上的高, A 若tanB=cos∠DAC, C
B (1)AC与BD相等吗?说明理由; D 12 (2)若sinC= ,BC=12,求AD的长。 13 解 (2) 在Rt △ACD中,因为sinC= 12 13 设AC=13k,AD=12k,所以CD=5k,又AC=BD=13k, 2 所以BC=18k=12,故k= 3 2 所以AD=12× =8 3
分析: 若AD≤250km,则受台风影响; 若AD>250km,则不会受台风影响。
解:会受到影响。
C E D
250
A
N
F
600
B
作AD⊥BC于D, 则∠ADB=900,AB=300km,∠ABD=300, ∴AD=150km, ∵150<250,∴会受到台风影响 以A为圆心,250km长为半径画圆交直线 BC于E、F, 连结AF,AE, 400 则DF=DE=200km, 16 ∴t (小时) 25 答:影响时间为16小时。
1,在Rt△ABC中,如果各边都扩大2倍,则锐角A的正 弦值和余弦值(
A,都不变 B,都扩大2倍
A
C,都缩小2倍

D,不确定。
√2 2,在△ABC中,若 sinA= 2 ,tanB=√3,则∠C= 75° B = √3 Tan 3, 在Rt△ABC中∠C=90°, AC= √3, 3 2 , AB=2, 4,如果α和β都是锐角,且sinα= cosβ, 则α与β的关系 是(
例题赏析
例3
如图,海岛A四周20海里周围内为暗礁区,一艘 货轮由东向西航行,在B处见岛A在北偏西60˚方 向,航行24海里到C处,见岛A在北偏西30˚方向, 货轮继续向西航行,有无触礁的危险? N1 N A 过点A作AD⊥BC于D,设AD=x

2020届中考数学专题:解直角三角形及其应用知识点及典型例题(含答案)

2020届中考数学专题:解直角三角形及其应用知识点及典型例题(含答案)

解直角三角形及其应用【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4; (2)a=1,3b=.【答案】(1)∠A=90°-∠B=90°-60°=30°.由tanbBa=知,tan4tan6043b a B==⨯=g°.由cosaBc=知,48cos cos60acB===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°. ∵ 222a b c +=,∴ 2242c a b =+==.2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c=°,∴ 1202c =.∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,203a =.举一反三:(1)已知a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=25 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是»AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值;(3)在(2)的条件下,求弦AB 的长.【答案】(1)∵ »»AD CD =,∴ ∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=52,∴ BD=225BC CD-=,∴ sin∠AEB=sin∠DCB=525552BDBC==.(3)在Rt△BDC中,BD=5,又∠1=∠2=∠3,∠ADE=∠BDA,∴△AED∽△BAD.∴AD DEDB AD=,∴2AD DE DB=g.又∵52CD AD==,∴ CD2=(BD-BE)·BD,即25(5)52BE⎛⎫=-⎪⎪⎝⎭g,∴354BE=.在Rt△ABE中,AB=BE.sin∠AEB=32355452⨯=.举一反三:如图,在△ABC中,AC=12cm,AB=16cm,sinA=13.(1)求AB边上的高CD;(2)求△ABC的面积S;(3)求tanB.【答案】(1)CD=4cm;(2)S=32 cm2;(3)tanB=+224.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD的坡度为1:3i=(i=1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532,在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【巩固练习】一、选择题1.在△ABC 中,∠C =90°,4sin 5A =,则tan B =( ). A .43 B .34 C .35 D .452.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .7cos35°C .7cos 35°D .7tan 35°3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h αg6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos5BDC∠=,则BD的长是( ).A.4 cm B.6 cm C.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( ).A.30海里 B.40海里 C.50海里 D.60海里第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是( ).A.2003m B.20033m C.1003m D.100m二、填空题9.如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35,则tan∠B的值为______.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.第9题第10题第11题11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE 沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. 如图所示,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(3≈1.732,结果保留一位小数).17.如图所示是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度.(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)【答案与解析】 一、选择题 1.【答案】B ;【解析】如图,sin A =45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴ 33tan 44AC x B BC x ===. 2.【答案】C ;【解析】在Rt △ABC 中,cos BCB AB=.∴ BC =ABcosB =7cos 35°. 3.【答案】A ; 【解析】由tan BCi A BC===1:3知,353AC BC ==g (米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =.二、填空题9.【答案】23;【解析】在Rt△ACM中,sin∠CAM=35,设CM=3k,则AM=5k,AC=4k.又∵ AM是BC边上的中线,∴ BM=3k,∴ tan∠B=4263 AC kBC k==.10.【答案】32;【解析】由已知条件可证△ACE≌△CBD.从而得出∠CAE=∠BCD.∴∠AFG=∠CAE+∠ACD=∠BCD+∠ACD=60°,在Rt△AFG中,3sin602 AGAF==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴ DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴ BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴ AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt △ABC 中,∵ 13AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x-2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE . ∴ 33(2)233x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得3tan 30BD BC BD ==°. 又∵ BC-AB =AC .∴ 320BD BD -=,∴ BD =2031-≈27.3(m). 答:该古塔的高度约为27.3m .17.【答案与解析】(1)在Rt △DCE 中,∠CED =60°,DE =76,∵ sin ∠CED =DC DE,∴ DC =DE ×sin ∠CED =383(厘米) 答:垂直支架CD 的长度为383厘米.(2)设水箱半径OD =x 厘米,则OC =(383)x +厘米,AO =(150)x +厘米,∵ Rt △OAC 中,∠BAC =30°∴ AO =2×OC ,即:150+x =2(383)x +厘米,AO =(150+x)厘米, 解得:150763x =-≈18.52≈18.5(厘米)答:水箱半径OD 的长度约为18.5厘米.。

浙教版初中数学九年级《解直角三角形》全章复习与巩固--知识讲解(基础)

浙教版初中数学九年级《解直角三角形》全章复习与巩固--知识讲解(基础)

《解直角三角形》全章复习与巩固--知识讲解(基础)【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.【知识网络】【要点梳理】要点一、锐角三角函数1.正弦、余弦、正切的定义如右图、在Rt△ABC中,∠C=90°,如果锐角A确定:(1)sinA=,这个比叫做∠A的正弦.(2)cosA=,这个比叫做∠A的余弦.(3)tanA=,这个比叫做∠A的正切.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A三个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2.(4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.要点诠释:1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.3030°、45°、60°角的三角函数值和解30°、60°直角三角形和解45°直角三角形为本章重中之重,是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练.要点二、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)坡度:;坡角:.(2)方位角:(3)仰角与俯角:要点诠释:1求∠2.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.3.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁.如:射影定理不能直接用,但是用等角的三角函数值相等进行代换很简单:∵∴∵∴∵∴【典型例题】类型一、锐角三角函数1.(1)如图所示,P是角α的边上一点,且点P的坐标为(-3,4),则sinα=( ).A.35B.45- C.45D.2例1(1)图例1(2)图(2)在正方形网格中,∠AOB如图所示放置,则cos∠AOB的值为( ).A.55 C.12D.2【答案】(1)C; (2)A;【解析】(1)由图象知OA=3,PA=4,在Rt△PAO中5OP==.∴4sin5PAOPα==.所以选C.(2)由格点三角形知如图中存在一个格点三有形Rt△OCD,且OC=1,CD=2,则OD=因此cos5OCAOBOD∠===.所以选A.【总结升华】两小题都没有出现现成的直角三角形.∠O分别置于直角坐标系和正方形网格之中,通过观察图形,构造含∠O的直角三角形.举一反三:【课程名称:《锐角三角函数》全章复习与巩固:395953例1-例2】【变式】已知,如图,D是ABC∆中BC边的中点,90BAD∠=︒,2tan3B=,求sin DAC∠.B C【答案】过D作DE∥AB交AC于E,则∠ADE=∠BAD=90°,由2tan3B=,得2,3ADAB=设AD=2k,AB =3k,∵D是ABC∆中BC边的中点,∴DE =3,2k在Rt△ADE中,5,2AE k=332sin.552kDEDACAE k∠===类型二、特殊角三角函数值的计算2.先化简,再求代数式231122xx x-⎛⎫-÷⎪++⎝⎭的值,其中4sin452cos60x=-°°.【答案与解析】原式1212(1)(1)1x xx x x x-+=⨯=+-++.而14sin452cos6042122x=-=⨯-⨯=°°.∴4=.【总结升华】 先进行分式化简,再由1sin 45602==°°得x 的值,最后代值求出结果. 举一反三:【课程名称:《锐角三角函数》全章复习与巩固 :395953 计算】【变式】计算:tan 230°+cos 230°-sin 245°tan45°【答案】原式=222((1322-⨯ =131+342- =712类型三、 解直角三角形3.如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,3sin 5A =,则下列结论正确的个( ).①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =.A .1个B .2个C .3个D .4个 【答案】C ;【解析】由菱形的周长为20 cm 知菱形边长是5 cm .在Rt △ADE 中,∵ AD =5 cm ,sin A =35,∴ DE =AD ·sinA =3535⨯=(cm).∴ 4AE ==(cm).∴ BE =AB -AE =5-4=1(cm). 菱形的面积为AB ·DE =5×3=15(cm 2).在Rt △DEB 中,BD ==.综上所述①②③正确.故选C .【总结升华】此题是菱形的性质、三角函数的定义及勾股定理综合运用. 类型四 、锐角三角函数与相关知识的综合4. 如图,六一儿童节那天,墨墨和同学一起到游乐场游玩,该游乐场大型摩天轮的示意图,其半径OA 是24m ,它匀速旋转一周需要30分钟,最底部点D 离地面2m .(1)求此摩天轮旋转5分钟,墨墨乘坐的车厢经过的路程是多少?(结果保留π) (2)在旋转一周的过程中,墨墨将有多长时间连续保持在离地面38m 及以上的空中?【思路点拨】(1)先求出5分钟所走的角度,然后根据弧长公式计算出5分钟经过的路程即可;(2)设当旋转到E处时,离地面的距离为38m,作弦EF⊥CO交CO的延长线于点H,连接OE,OF,此时EF离地面高度为HC,在Rt△OEH中,利用三角函数求得∠HOE的度数,易得∠EOF的度数,进而可求出由点E旋转到F所用的时间.【答案与解析】解:(1)∵匀速旋转一周需要30分钟,∴旋转5分钟走过的角度为60°,则经过的路程为:6024180π⨯=8π(m);(2)当旋转到E处时,作弦EF⊥CO交CO的延长线于点H,连接OE,OF,此时EF离地面高度为HC,当HC=38时,OH=38-2-24=12(m),∵OE=24m,∴OH=12 OE,∴∠HOE=60°,∴∠FOE=120°.∵每分钟旋转的角度为:36030=12°,∴由点E旋转到F所用的时间为:=10(分钟).【总结升华】本题考查了解直角三角形的应用以及垂径定理,弧长公式等知识,解答本题的关键是构造直角三角形,运用三角函数求解.举一反三:【课程名称:《锐角三角函数》全章复习与巩固:395953例6-例8】【变式】如图,C、D是半圆O上两点,511CDAB=,求cos CEB∠和tan CEB∠.【答案】如图,连结BC ,则∠ACB=90°,易证△ECD ∽△EBA , ∴CE CD 5==EB AB 11,cos ∠CEB=5.11CE =EB tan ∠CEB=BC CE类型五、三角函数与实际问题5.如图,一海伦位于灯塔P 的西南方向,距离灯塔40海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60°方向上的B 处,求航程AB 的值(结果保留根号).【思路点拨】过P 作PC 垂直于AB ,在直角三角形ACP 中,利用锐角三角函数定义求出AC 与PC 的长,在直角三角形BCP 中,利用锐角三角函数定义求出CB 的长,由AC+CB 求出AB 的长即可. 【答案与解析】解:过P 作PC ⊥AB 于点C , 在Rt △ACP 中,PA=40海里,∠APC=45°,sin ∠APC=,cos ∠APC=,∴AC=AP •sin45°=40×=40(海里),PC=AP •cos45°=40×=40(海里),在Rt △BCP 中,∠BPC=60°,tan ∠BPC=,∴BC=PC •tan60°=40(海里),则AB=AC+BC=(40+40)海里.【总结升华】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握锐角三角函数定义是解本题的关键.6.(2016•青海)如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【思路点拨】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【答案与解析】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为48m.【总结升华】此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键.。

浙教版九年级下册数学《解直角三角形复习》PPT课件

浙教版九年级下册数学《解直角三角形复习》PPT课件
小山BD的高(精确到0.1m, 3 ≈1.732)。
练习:(2006苏州)如图,在一个坡角为15° 的斜坡上有一棵树,高为AB.当太阳光 与水平线成500时.测得该树在斜坡上 的树影BC的长为7m,求树高.(精确到
0.1m)
A 50°
C
15°
D
B 7cm
▪ 24.(附加题10分)如图所示,学校在楼顶平
B)
A,相等 B,互余 C,互补 D,不确定。
5,已知在Rt△ABC中, ∠C=90°,sinA=
1 2
,则
cosB=(
)
A,
1 2
BA,√22
C,
√3 2
D, √3


在Rt△ABC中,∠C=90°斜边AB=2,直角 边AC=1,∠ABC=30°,延长CB到D,连接 AD使∠D=15°求tan15°的值。
▪ 22.如图,AB是江北岸滨江路一段,长为3千米, C为南岸一渡口, 为了解决两岸交通困难,拟在 渡口C处架桥.经测量得A在C北偏西30°方向, B在C的东北方向,从C处连接两岸的最短的桥长 多少?(精确到0.1)
小结:
1、本节例题学习以后,我们可以得到解直角
三角形的两种基本图形:
A
A
B
C
D
B
解(2):设点E、F是以A为圆心,150km 为半径的圆与BM的交点,由题意得:
∴CE = √AE2 – AC2 = 90
∴EF = 2CE = 2 x 90 = 180
∴A城受到沙尘暴影响的时间为
180÷12 = 15小时
M
A
F
C
E
240 30°
答:A城将受到这次沙尘暴影响, 影响的时间为15小时。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节解直角三角形及其应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏苏州中考)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( )A.40海里B.60海里C.203海里D.403海里2. (2018·重庆中考A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底面E处测得旗杆顶端的仰角∠A E D=58°,升旗台底部到教学楼底部的距离D E=7米,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)( )A.12.6米B.13.1米C.14.7米D.16.3米3.(2018·浙江湖州模拟)一个小球由地面沿着坡度1∶2的坡面向上前进了10米,此时小球距离地面的高度为________米.4.(2018·山东济宁中考)如图,在一笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是______km.5.(2018·辽宁葫芦岛中考)如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__________________米(结果保留根号).6.(2018·四川成都中考)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan 37°≈0.75)7.(2018·浙江舟山中考)如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8 m,PD=2 m,CF=1 m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1 m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1 m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,2≈1.41,3≈1.73)8.(2018·江苏扬州中考)问题呈现如图1,在边长为1的正方形网格中,连结格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连结格点M,N,可得MN∥EC,则∠DNM=∠CPN,连结DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为________;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连结AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.9.(2018·山东聊城中考)随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:32≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin 15.6°≈0.27,cos15.6°≈0.96,tan 15.6°≈0.28)10.(2018·江苏连云港中考)如图1,水坝的横截面是梯形ABCD ,∠ABC=37°,坝顶DC =3 m ,背水坡AD 的坡度i(即tan ∠DAB)为1∶0.5,坝底AB =14 m .(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE =2DF ,EF⊥BF,求DF 的长.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34)参考答案【基础训练】1.D 2.B 3.2 5 4. 3 5.100+100 36.解:由题意得∠ACD=70°,∠BCD=37°,AC=80(海里),在直角三角形ACD中,CD=AC·cos∠ACD=27.2(海里),在直角三角形BCD中,BD=CD·tan∠BCD=20.4(海里).答:还需航行的距离BD的长为20.4海里.7.解:(1)如题图2,当P位于初始位置时,CP0=2 m,如题图3,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1. ∵∠BEP1=90°,∠CAB=90°,∠ABE=65°,∴∠AP1E=115°,∴∠CP1E=65°,∵∠DP1E=20°,∴∠CP1F=45°,∵CF=P1F=1 m,∴∠C=∠CP1F=45°,∴△CP1F是等腰直角三角形,∴P1C= 2 m,∴P0P1=CP0-P1C=2-2≈0.6 m,即为使遮阳效果最佳,点P需从P0上调0.6 m.(2)解:如图,中午12:00时,太阳光线与PE,地面都垂直,点P上调至P2处,∴P2E∥AB.∵∠CAB=90°,∴∠CP2E=90°,∵∠DP2E=20°,∴∠CP2F=∠CP2E-∠DP2E=70°,∵CF=P2F=1 m,得△CP2F为等腰三角形,∴∠C=∠CP2F=70°.过点F作FG⊥CP2于点G,∴GP2=P2F·cos 70°=0.34 m,∴CP2=0.68 m,∴P1P2≈0.7 m,即点P在(1)的基础上还需上调0.7 m.【拔高训练】8.解:(1)2(2)如图,取格点D,连结CD,DM.∵CD∥AN,∴∠CPN=∠DCM.∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos ∠CPN=cos ∠DCM=22.(3)如图,如图取格点F,连结AF,FN.∵PC∥FN,∴∠CPN=∠ANF.∵AF=FN,∠AFN=90°,∴∠ANF=∠FAN=45°.∴∠CPN=45°.9.解:如图,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF,AF=BE,设AF=x,∵∠BAC=150°,∠BAF=90°,∴∠CAF=60°,则AC=AFcos∠CAF=2x,CF=AFtan∠CAF=3x,在Rt△ABD 中,∵AB=EF =2,∠ADB=9°, ∴BD=AB tan ∠ADB =2tan 9°,则DE =BD -BE =2tan 9°-x ,CE =EF +CF =2+3x ,在Rt△CDE 中,∵tan∠CDE=CEDE ,∴tan 15.6°=2+3x2tan 9°-x,解得x≈0.75,则2x =1.5,即AC =1.5米, 即保温板AC 的长约是1.5米. 【培优训练】10.解:(1)如图,作DM⊥AB 于M ,CN⊥AN 于N.由题意tan∠DAB=DMAM =2,设AM =x ,则DM =2x.∵四边形DMNC 是矩形, ∴DM=CN =2x.在Rt△NBC 中,tan 37°=CN BN =2x BN =34,∴BN=83x.∵x+3+83x =14,∴x=3,∴DM=6,∴坝高为6 m.(2)如图,过F 点作FH⊥AB 于H ,过D 点作DM⊥AB 于M.设DF =y ,则AE =2y ,EH =3+2y -y =3+y ,BH =14+2y -(3+y)=11+y.由△EFH∽△FBH,可得HF HB =EHFH ,即611+y =3+y 6, 解得y =-7+213或-7-213(舍弃), ∴DF=213-7.答:DF 的长为(213-7)m.。

相关文档
最新文档