排列练习题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列练习题

1.某年全国足球甲级联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?

2.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?

3.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?

4.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?5.将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?

6.7位同学站成一排

(1)甲、乙只能站在两端的排法共有多少种?

(2)甲、乙不能站在排头和排尾的排法共有多少种?

(3)甲、乙两同学必须相邻的排法共有多少种?

(4)甲、乙和丙三个同学都相邻的排法共有多少种?

(5)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?

(6)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起

(7)甲、乙两同学不能相邻的排法共有多少种?

(8)甲、乙和丙三个同学都不能相邻的排法共有多少种?

7.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排

在第二个节目的位置上,则共有多少种不同的排法?

8.5男5女排成一排,按下列要求各有多少种排法:

(1)男女相间;

(2)女生按指定顺序排列

9.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种10.(江苏)某校开设9门课程供学生选修,其中,,

A B C三门由于上课时间相同,至多

选一门,学校规定每位同学选修4门,共有种不同选修方案。

11.(北京)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()

A.1440种B.960种C.720种D.480种

12.(全国)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有__________ 种.(用数字作答)

13.(全国)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()

A.40种B.60种C.100种D.120种

14. (陕西)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有_____ 种.

15.(四川)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()

(A)288个(B)240个(C)144个(D)126个16.(重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有_.

17.(宁夏)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有.

排列练习题答案

1.某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?

解:任意两队间进行1次主场比赛与1 次客场比赛,对应于从14个元素中任取2个元素的一个排列.因此,比赛的总场次是2

A=14×13=182.

14

2.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?

3.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?

4.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?

解:分3类:第一类用1面旗表示的信号有1

3

A种;

第二类用2面旗表示的信号有2

3

A种;

第三类用3面旗表示的信号有3

3

A种,

由分类计数原理,所求的信号种数是:123

33333232115

A A A

++=+⨯+⨯⨯=,

答:一共可以表示15种不同的信号

5.将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司

机和一位售票员,共有多少种不同的分配方案?

分析:解决这个问题可以分为两步,第一步:把4位司机分配到四辆不同班次的公共汽

车上,即从4个不同元素中取出4个元素排成一列,有4

4

A种方法;

第二步:把4位售票员分配到四辆不同班次的公共汽车上,也有4

4

A种方法,

利用分步计数原理即得分配方案的种数

解:由分步计数原理,分配方案共有44

44576

N A A

=⋅=(种)

答:共有576种不同的分配方案

6.(1)解:根据分步计数原理:第一步 甲、乙站在两端有22A 种;第二步 余下的5名同学进行全排列有55A 种,所以,共有22A 55A ⋅=240种排列方法

(2)解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步从余下的5位同学中选5位进行排列(全排列)有55A 种方法,所以一共有25A 55A =2400

解法2:(排除法)若甲站在排头有66A 种方法;若乙站在排尾有66A 种方法;若甲站在排头且乙站在排尾则有55A 种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有7

7A -662A +55A =2400种.

(3)甲、乙两同学必须相邻的排法共有多少种?

解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有62621440A A ⋅=种(4)甲、乙和丙三个同学都相邻的排法共有多少种?

解:方法同上,一共有55A 33A =720种

(5)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?

解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有2

5A

相关文档
最新文档