最新沪科版八年级数学上册《三角形中边的关系》教学设计(精品教案)

合集下载

沪科版八年级数学上册13.1三角形中的边角关系教学设计

沪科版八年级数学上册13.1三角形中的边角关系教学设计
-小组讨论并总结三角形边角关系的解题策略和技巧。
作业要求:
-学生需按照作业要求,认真完成,书写工整,保持作业整洁。
-鼓励学生在解题过程中,标注解题思路,以便于教师了解学生的思考过程。
-对于完成作业过程中遇到的困难,学生应积极寻求帮助,及时解决疑问。
-计算给定三角形的内角和,以及未知角度。
-利用勾股定理求解直角三角形的未知边长。
2.实践应用题:设计一些与生活实际相关的问题,让学生将所学的三角形知识应用到解决实际问题中,培养学生的建模能力和实践能力。
-测量并计算学校旗杆的高度,如果知道旗杆底部与观察点的距离以及旗杆顶部的仰角。
-分析并计算给定三角形形状的屋顶面积。
-教师关注学生的学习过程,鼓励学生积极参与,体验数学学习的乐趣。
-学生通过自主探究、合作交流,形成良好的学习习惯,为终身学习打下基础。
二、学情分析
八年级学生已经在之前的数学学习中,掌握了基本的几何图形知识和相关性质,具备了一定的空间想象能力。在此基础上,他们对三角形的边角关系有了初步的认识,但对于三角形中较为复杂的边角关系及其应用,仍需进一步引导和拓展。此外,学生在解决实际问题时,可能存在以下困难:对三角形概念的理解不够深入,无法熟练运用相关定理和公式;缺乏将实际问题转化为数学模型的意识,导致解题思路不明确。因此,在本章节的教学中,教师应关注学生的基础知识掌握情况,结合生活实例,激发学生兴趣,引导他们主动探究三角形边角关系,提高解决问题的能力。同时,注重培养学生的逻辑思维和团队合作精神,使其在互动交流中,不断提升数学素养。
3.拓展提高题:提供一些综合性强、难度较高的题目,鼓励学有余力的学生挑战自我,拓展思维。
-解决涉及多个三角形的复合问题,如多边形的内角和计算。

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1一. 教材分析《三角形边角关系》是沪科版数学八年级上册的教学内容,本节课的主要内容是让学生掌握三角形的边角关系,包括三角形的内角和定理、三角形的边长关系等。

教材通过丰富的实例和活动,引导学生探究和发现三角形的边角关系,培养学生的抽象思维能力和解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和观察能力。

但是,对于三角形的边角关系的理解和运用,还需要进一步的引导和培养。

因此,在教学过程中,要注重启发学生思考,引导学生发现规律,提高学生的几何思维能力。

三. 教学目标1.了解三角形的内角和定理,掌握三角形的边长关系。

2.培养学生观察、分析、解决问题的能力。

3.培养学生的合作意识和几何思维能力。

四. 教学重难点1.三角形内角和定理的证明。

2.三角形边长关系的理解和运用。

五. 教学方法1.情境教学法:通过实例和活动,引导学生发现三角形的边角关系。

2.问题驱动法:引导学生提出问题,自主探究,解决问题。

3.合作学习法:分组讨论,共同解决问题,培养合作意识。

六. 教学准备1.准备相关的实例和活动材料。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生观察并思考:这些三角形有什么共同的特点?你想到了什么关于三角形的性质?2.呈现(10分钟)教师通过讲解和展示三角形内角和定理的证明过程,让学生理解并掌握三角形的内角和定理。

同时,引导学生发现三角形的边长关系,如:三角形的两边之和大于第三边,两边之差小于第三边等。

3.操练(10分钟)学生分组讨论,每组选择一个三角形,用尺子和量角器测量三角形的内角和,并验证三角形的边长关系。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)教师出示一些关于三角形边角关系的练习题,让学生独立完成,检验学生对知识的掌握情况。

最新沪科版八年级数学上册《三角形中的边角关系、命题与证明》教学设计(精品教案)

最新沪科版八年级数学上册《三角形中的边角关系、命题与证明》教学设计(精品教案)

第13章三角形中的边角关系、命题与证明【教学目标】1、理解三角形及其内角、外角、边、中线、高线、角平分线等概念,了解三角形的稳定性。

2、会证明三角形中任意两边之和大于第三边。

探索并证明三角形内角和定理及三角形外角性质。

3、通过具体实例,了解定义、命题、基本事实、定理、推论的意义。

会区分命题的条件和结论,了解原命题及其逆命题的概念。

会识别两个互逆命题。

知道原命题成立其逆命题不一定成立。

4、知道证明的意义和必要性。

知道证明要合乎逻辑,会综合法证明的格式,打好形式化证明的基础。

5、了解反例的作用。

知道利用反例可以判断一个命题是错误的。

【重、难点】1、重点:三角形的边角关系,及区分一个命题的题设和结论,综合法证明一个几何命题的方法和步骤。

2、难点:简单反例的构造;一个几何命题综合法证明思路的分析和证明过程的规范表述。

【教学过程】一、内容整理:(多媒体展示)二、主要知识回顾:1、三角形中的边角关系:⑴ 三角形中,任一边__其余两边和,__其余两边差。

⑵ 三角形三内角和等于____。

2、用自己的语言叙述命题、基本事实和定理的意义。

3、命题有真假之分。

要说明一个命题是假命题,只要___就可以了;而要说明一个命题是真命题,必须________。

4、用自己的语言说说证明的基本步骤。

5、由三角形内角和定理可以推出三角形外角与内角的关系:⑴ ________________________;⑵ ________________________。

三、三角形三边之间的关系(1)知识点分析三角形的三边关系是中考的常见考点。

它的应用主要体现在以下几方面:⑴ 判断已知长度的三条线段能否构成三角形或已知三角形的两边长求第三边长的取值范围。

⑵ 应用三角形三边关系进行不等关系的推理。

(2)例题讲解例1:下列各组数据可能是一个三角形的边长的是【】A、1,2,4B、4,5,9C、4,6,8D、5,5,11【点评】本题主要考查三角形的三边关系定理:三角形中任意两边的和大于第三边。

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计
3.教师将根据学生的作业完成情况,给予评价和反馈,鼓励学生持续进步。
2.教师给出三角形内角和定理,并通过几何证明来解释这个定理。同时,讲解三角形外角与相邻内角的关系,以及外角和等于360度的性质。
3.教师结合课本例题,讲解如何运用三角形的边角关系解决实际问题,如求三角形的未知边.教师将学生分成小组,每组选择一个实际问题进行讨论,如测量小河对岸两点之间的距离。
2.学生在规定时间内完成练习,教师对学生的答案进行批改,并及时反馈,纠正学生的错误。
3.教师针对共性问题进行讲解,帮助学生巩固所学知识,提高解题能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,用自己的话总结三角形边与角之间的关系、内角和定理以及实际应用。
2.学生分享学习心得,教师给予肯定和鼓励,并强调掌握三角形边角关系对于解决几何问题的重要性。
2.运用问题驱动的教学方法,引导学生主动探究三角形的内角和定理,培养学生的逻辑推理能力。
-教师可以提出问题,如“三角形的内角和是多少度?”“如何证明三角形的内角和为180度?”等,引导学生通过讨论和实验来解决问题。
3.创设丰富的教学情境,将三角形边角关系与生活实际相结合,提高学生的应用能力。
-例如,设计实际测量问题,如测量小河对岸两点之间的距离,让学生运用三角形知识解决问题。
2.将三角形的边角关系应用于解决复杂的几何问题,如计算未知边长、证明线段平行等。
3.学生在小组合作中,如何平衡独立思考与团队合作,避免过分依赖或孤立无援。
(三)教学设想
1.利用直观教具和实际案例导入新课,让学生在观察和操作中感知三角形的边角关系,从而激发学生的学习兴趣。
-例如,通过让学生测量不同三角形的三边长度,引导学生发现边与边之间的关系。

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计3

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计3

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计3一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13.1节的内容,本节课主要让学生掌握三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。

通过本节课的学习,学生能够进一步理解三角形的性质,为后续学习三角形的相关知识打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念,如三角形的定义、三角形的分类等。

同时,学生也已经学习了角的性质,如角的度量、角的分类等。

但是,学生对于三角形中的边角关系还没有深入的了解,需要通过本节课的学习来掌握。

三. 教学目标1.知识与技能:让学生掌握三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。

2.过程与方法:通过观察、操作、推理等方法,让学生发现并证明三角形中的边角关系。

3.情感态度与价值观:培养学生对数学的兴趣,让学生感受数学的美妙,培养学生的团队协作能力。

四. 教学重难点1.教学重点:让学生掌握三角形中的边角关系。

2.教学难点:证明三角形中的边角关系,并能够灵活运用。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现三角形中的边角关系。

2.探究教学法:让学生通过观察、操作、推理等方法,自主发现并证明三角形中的边角关系。

3.小组合作教学法:让学生分组讨论,培养学生的团队协作能力。

六. 教学准备1.教具:三角板、直尺、圆规等。

2.教学多媒体:PPT、视频等。

七. 教学过程1.导入(5分钟)通过一个实际问题,如“在只知道三角形两边长度的情况下,如何判断第三边的长度?”来引导学生思考三角形中的边角关系。

2.呈现(10分钟)利用PPT或视频,展示三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。

同时,让学生观察并思考这些边角关系是否成立。

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13章第1节的内容。

本节主要介绍三角形中的边角关系,包括三角形的内角和定理、三角形的边长关系等。

通过本节的学习,学生能够理解三角形的边角关系,并能够运用这些关系解决实际问题。

二. 学情分析八年级的学生已经学习了三角形的性质和角的度量,对于三角形的基本概念和性质有一定的了解。

但是,学生对于三角形边角关系的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要注重学生的参与和实践,通过操作和思考,引导学生理解和掌握三角形的边角关系。

三. 教学目标1.知识与技能:学生能够理解和运用三角形的内角和定理,掌握三角形的边长关系。

2.过程与方法:学生能够通过观察、操作和思考,探索三角形的边角关系,培养解决问题的能力。

3.情感态度与价值观:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。

四. 教学重难点1.教学重点:三角形的内角和定理,三角形的边长关系。

2.教学难点:三角形边角关系的运用和解决实际问题。

五. 教学方法1.引导法:通过问题引导,激发学生的思考,引导学生探索三角形的边角关系。

2.实践操作法:让学生通过实际操作,观察和分析三角形的边角关系,加深理解。

3.合作学习法:学生分组合作,共同解决问题,培养合作精神和沟通能力。

六. 教学准备1.教学课件:制作教学课件,包括三角形的内角和定理和边长关系的图片和示例。

2.教学用具:准备一些三角形模型和测量工具,供学生实践操作使用。

3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一些实际问题,引导学生思考三角形中的边角关系,激发学生的学习兴趣。

2.呈现(10分钟)利用课件呈现三角形的内角和定理和边长关系的图片和示例,引导学生观察和分析,探索三角形的边角关系。

3.操练(10分钟)学生分组合作,利用准备好的三角形模型和测量工具,进行实际操作,观察和分析三角形的边角关系。

沪科版 初中数学八年级上册《三角形中的边角关系》教案

沪科版 初中数学八年级上册《三角形中的边角关系》教案

《三角形中的边角关系》教学设计教学目标:(一)知识与技能1、了解三角形的概念,会对三角形按边的关系进行分类,并会用符号语言表示三角形。

2、理解三角形中三边之间的关系,并运用它解决一些简单的问题。

(二)过程与方法1、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动充满着探索性和创造性,体验探究的乐趣。

2、通过对三角形三边关系的发展及应用培养学生的分类讨论思想和方程思想。

(三)情感态度价值观1、感知数学与生活的密切联系,体会生活中的数学美、图形美。

2、激发学生的勇于探究精神,让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。

教学重点:理解三角形三边之间的关系并能灵活应用。

教学难点:探究三角形三边之间的关系。

设计理念:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想。

教学方法:情境导入法、实验比较法教学准备:1、教师准备:制作多媒体课件。

2、学生准备:小木棒、刻度尺。

教学过程:一、创设情境,引入新课问题:看下列实物中,有你熟悉的图形吗?(出示投影:一些含有三角形的建筑物)教师叙述:我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用。

三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形。

(设计说明:数学来源于生活,感受生活中的数学美,培养学生善于观察生活,洞悉生活中数学常识的能力。

)二、合作交流,初探新知活动一:师生动手任意画一三角形并通过刚才看过的图形中的三角形,讨论它们有什么共同点呢?引出三角形的定义。

教师总结三角形的定义:由不在同一条直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。

活动二:请同学们对照提纲阅读教科书第67页◆阅读提纲:1、会用几何符号表示一个三角形。

2、知道三角形的顶点、角、边等概念,并会用几何符号表示。

3、会把三角形按边进行分类,知道每类三角形的特征。

三角形中的边角关系教案沪科版

三角形中的边角关系教案沪科版
3.学生可能遇到的困难和挑战:在学习三角形的边角关系时,学生可能遇到的困难包括对三角形分类的理解和运用,以及对内角和定理的深入理解。部分学生可能在空间想象能力上有所欠缺,导致对三角形性质的理解不够直观。此外,学生在解决实际问题时,可能会遇到将数学知识与现实情境相结合的挑战。
教学资源
1.软硬件资源:多媒体投影仪、计算机、白板、几何画板软件、三角板、量角器、直尺、彩色粉笔。
-实践活动法:设计实践活动,让学生在实践中掌握三角形的分类和性质。
-合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
-帮助学生深入理解三角形的边角关系知识点,掌握相关技能。
-通过实践活动,培养学生的动手能力和解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
"三角形分类"在线互动游戏:这是一个互动性强的在线游戏,学生可以通过游戏的方式,加深对三角形分类的理解,并提高学习的兴趣。
"三角形边角关系"教学视频:这是一个详细讲解三角形边角关系的教学视频,通过视频的学习,学生可以更直观地理解三角形的性质,并掌握三角形的相关知识。
2.拓展建议:
阅读《几何原本》:建议学生在课后阅读《几何原本》中关于三角形的部分,通过阅读,加深对三角形性质的理解,并了解三角形在几何学中的重要性。
答案:这个三角形的面积为6cm²。
5.题目五:已知直角三角形的斜边长为10cm,一条直角边长为8cm,求另一条直角边的长度。
答案:另一条直角边的长度为15cm。
板书设计
①三角形的边角关系定理:边长、内角、外角
②三角形的分类:锐角三角形、直角三角形、钝角三角形
③三角形内角和定理:三角形的三个内角之和等于180°

沪科版数学八年级上册(教学设计)13.1《三角形中的边角关系》

沪科版数学八年级上册(教学设计)13.1《三角形中的边角关系》

《三角形中的边角关系》教学设计第1课时《三角形中边的关系》教学目标:1.了解三角形及相关概念,能正确识别和表示三角形;2.会根据边是否相等对三角形进行分类;3.掌握三角形三边关系,会判断已知三条线段能否构成三角形,会求三角形第三边的取值范围。

教学重点:会根据边是否相等对三角形进行分类。

教学难点:掌握三角形三边关系,会判断已知三条线段能否构成三角形,会求三角形第三边的取值范围。

教学过程:一、情境导入三角形是一种最常见的几何图形,如古埃及金字塔,香港中银大厦,交通标志等等,处处都有三角形的形象.那么什么叫做三角形呢?二、合作探究探究点一:三角形的识别如图所示,图中三角形的个数共有( )A.1个 B.2个C.3个 D.4个解析:根据三角形的定义进行判断.只要数出BC上有几条线段即可.很明显BC上有3条线段,所以有三个三角形,选C.方法总结:在比较复杂的图形中寻找三角形的方法:可以按照一定顺序寻找,即先固定一个顶点,变换另两个顶点,做到不重复、不遗漏.探究点二:三角形的分类设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是( )解析:根据它们的概念:有一个角是直角的三角形是直角三角形;有两条边相等的三角形是等腰三角形;有三条边相等的三角形是等边三角形;有一个角是直角且有两条边相等的三角形是等腰直角三角形.故选A.方法总结:考查了三角形中各类三角形的概念,根据定义就能够找到它们彼此之间的包含关系.探究点三:三角形三边关系【类型一】判断已知线段能否构成三角形下列各组长度的线段能构成三角形的是( )A.1.5cm,3.9cm,2.3cmB.3.5cm,7.1cm,3.6cmC.6cm,1cm,6cmD.4cm,10cm,4cm解析:A中,1.5+2.3=3.8<3.9,不能构成三角形;B中,3.5+3.6=7.1,不能构成三角形;C中,6+1>6,6-1<6,能构成三角形;D中,4+4=8<10,不能构成三角形.故选C.方法总结:判断三条线段能否组成三角形的简便方法是看较短的两条线段的长度是否大于最长的线段的长度.【类型二】求三角形第三边的取值范围已知三角形的三边长分别是2,2x-3,6,则x的取值范围是________.解析:∵三角形的两边长分别为2和6,∴第三边边长2x-3的取值范围是:6-2<2x -3<6+2,即3.5<x<5.5.方法总结:根据三角形三边关系定理可知:已知两边之差<第三边长<已知两边之和,。

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计2

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计2

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计2一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册13.1章节的内容,本节课的主要内容是研究三角形的边角关系。

在学习了角的度量、边的性质等基础知识后,本节课将这些知识综合起来,引导学生探究三角形中的边角关系,为后续学习三角形的全等、相似等知识打下基础。

二. 学情分析八年级的学生已经掌握了角的度量、边的性质等基础知识,具备一定的逻辑思维能力和探究能力。

但是,对于三角形中的边角关系,学生可能还存在着一定的困惑,因此需要通过实例引导学生探究,从而加深对知识的理解。

三. 教学目标1.理解三角形中的边角关系,掌握三角形中大边对大角、小边对小角的规律。

2.能够运用边角关系解决实际问题,提高学生的应用能力。

3.培养学生的探究能力、合作能力和解决问题的能力。

四. 教学重难点1.教学重点:三角形中的边角关系,三角形中大边对大角、小边对小角的规律。

2.教学难点:如何引导学生探究三角形中的边角关系,运用边角关系解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生探究三角形中的边角关系。

2.运用实例讲解法,让学生通过观察、操作、分析、归纳等过程,发现并理解三角形中的边角关系。

3.采用合作交流法,让学生在小组内讨论、分享,培养学生的合作能力。

4.运用练习法,巩固学生对三角形边角关系的理解。

六. 教学准备1.准备相关课件、教案、练习题等教学资源。

2.准备三角板、直尺、量角器等实验器材。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生关注三角形中的边角关系。

2.呈现(10分钟)通过PPT展示三角形中的边角关系,让学生观察并思考:为什么在三角形中,大边对大角,小边对小角?3.操练(10分钟)让学生分组进行实验,利用三角板、直尺、量角器等器材,测量并记录不同三角形的边角关系。

然后,各小组分享实验结果,讨论三角形中的边角关系。

4.巩固(10分钟)出示一些练习题,让学生运用所学知识解决实际问题。

八年级数学上册13.1.1三角形中边的关系教案沪科版(new)

八年级数学上册13.1.1三角形中边的关系教案沪科版(new)

第1课时三角形中边的关系教学目标【知识与技能】1.认识三角形,理解三角形的边角关系。

2.知道三角形的高、中线、角平分线等概念,并能作出三角形的一边上的高。

3.理解等腰三角形及其相关概念.【过程与方法】1。

经历三角形边长的数量关系的探索过程,理解三角形的三边关系.2.掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.【情感、态度与价值观】1。

带领学生探究三角形的边角关系问题,引起学生的好奇心,激发学生的求知欲。

2.帮助学生树立几何知识源于生活并服务于生活的意识.重点难点【重点】理解并掌握三角形的三边关系.【难点】已知三条线段能构成三角形,求表示线段长度的代数式中字母的取值范围。

教学过程一、创设情境,导入新知教师多媒体出示:教师把事先收集的与三角形有关的生活图片运用多媒体播放,让学生对三角形有一个感性认识,如图所示.教师活动:通过播放图片,引导学生认识三角形,并提出:图(b)中能找出几个三角形,这些三角形具有怎样的特性?学生活动:回顾小学学过的三角形,与同桌交流,找出图(b)中的三角形.教师归纳:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

教师多媒体出示:师:你能指出这个三角形的顶点有几个吗?分别是什么?生:这个三角形的顶点有三个,分别是A、B、C.师:这个三角形的边呢?生:边有三条,分别是AB、BC和CA。

师:对.我们把这个三角形记作“△ABC”,读作“三角形ABC”。

三角形的三边有时用它所对角的相应小写字母表示.如边AB对着∠C,记作c;边BC对着∠A,记作a;边CA对着∠B,记作b。

也就是说,一边可用两个大写字母或一个小写字母表示,角可用“∠”加上一个大写字母表示。

师:按边分类时,你知道的都有哪些三角形?生:等边三角形。

师:等边三角形是三条边都相等的三角形。

如果不是三条边都相等,比如两条边相等,这类三角形叫什么三角形呢?生:等腰三角形。

师:对,等边三角形是等腰三角形的特例。

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1一. 教材分析《三角形边角关系》是沪科版数学八年级上册的教学内容。

本节课主要让学生掌握三角形的三边关系和三角形的内角和定理,为学生进一步学习几何知识打下基础。

教材通过实例引导学生探究三角形的边角关系,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析八年级的学生已经掌握了三角形的基本概念,具备了一定的观察和动手能力。

但部分学生对几何图形的理解仍较模糊,对三角形的边角关系认识不足。

因此,在教学过程中,要关注学生的个体差异,引导学生积极参与课堂活动,提高学生的几何素养。

三. 教学目标1.知识与技能:使学生掌握三角形的三边关系和三角形的内角和定理,能运用这些知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在探究过程中体验成功的喜悦。

四. 教学重难点1.教学重点:三角形的三边关系和三角形的内角和定理。

2.教学难点:三角形边角关系的证明和运用。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、猜想、验证,培养学生的逻辑思维能力。

3.小组合作学习:让学生在小组内讨论、交流,提高学生的团队协作能力。

4.直观演示法:利用教具、模型等进行直观演示,帮助学生更好地理解三角形的边角关系。

六. 教学准备1.教具:三角板、直尺、量角器、多媒体设备。

2.学具:学生用书、练习题、剪刀、胶水。

3.课件:制作与教学内容相关的课件,包括图片、动画、实例等。

七. 教学过程1.导入(5分钟)利用生活实例引入三角形边角关系的话题,激发学生的学习兴趣。

例如,展示一个三角形的拼图游戏,让学生观察并思考:如何判断一个四边形能否拼成一个三角形?2.呈现(10分钟)利用多媒体课件展示三角形的三边关系和三角形的内角和定理。

最新沪科版八年级数学上册第13章三角形中的边角关系、命题与证明 教案教学设计(7课时含教学反思)

最新沪科版八年级数学上册第13章三角形中的边角关系、命题与证明 教案教学设计(7课时含教学反思)

第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系 (1)第1课时三角形中边的关系 (1)第2课时三角形中角的关系 (4)第3课时三角形中几条重要线段 (6)13.2 命题与证明 (10)第1课时命题 (10)第2课时证明 (14)第3课时三角形内角和定理及推论 (17)第13章三角形中的边角关系、命题与证明 (20)13.1 三角形中的边角关系第1课时三角形中边的关系【知识与技能】了解三角形的概念,掌握三角形三边关系.【过程与方法】经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵.【情感与态度】让学生养成有条理地思考的习惯以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值.【教学重点】重点是了解三角形的分类,弄清三角形三边关系.【教学难点】难点是对两边之差小于第三边的领悟.一、创设情境,探究新知1.投影图片,把事先收集的与三角形有关系的生活图片运用投影仪播放,让学生对三角形有一个感性认识.如下图:【教学说明】通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性.教师引导学生进行讨论.【归纳结论】由不在同一条直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.2.给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等.【教学说明】在这个过程中,教师要让学生学会运用大小写字母来表示三角形的边与角,如图的三角形可记作△ABC,三边可记作AB、AC、CA;三个角可记作∠A、∠B、∠C,或可用三个字母表示为∠BAC、∠ABC、∠ACB.注意:表示边时要用两个大写字母,或一个小写字母.注意小写字母标注的规律:通常顶点大写字母所对的边就是这个顶点的小写字母.3.教师给出不同类型的三角形,引导学生从边和角两种角度观察、分类.(1)从边的角度来分类有:不等边三角形等腰三角形(包括等边三角形)【教学说明】对于等腰三角形来说,相等的两边称为腰,第三边称为底边.两腰所夹的角称为顶角,腰与底边的夹角称为底角;而等边三角形的三边都相等,它是等腰三角形的特例.(2)从角的角度来分类有:锐角三角形(三个内角均为小于90°的角)直角三角形(有一个内角是90°)钝角三角形(有一个内角大于90°)二、联系实际,合作探究【问题1】国庆节的晚上,小明从甲地到乙地后再往丙地走,并到达丙地,小红从甲地直接到丙地,如图所示,请你谈谈小明和小红谁走的路程长,依据是什么?学生活动:发现小红走的路程短,小明走的路程长.依据是:两点之间线段最短.【问题2】在一个三角形中,任意两边的长度之和与第三边的长度之间有着怎样的关系呢?教师在黑板上画出按角分类的三个三角形,请三位同学量出三边的长度,再进行比较.(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.三、范例学习,应用所学例1(课本68页例1)等腰三角形中,它的周长是18 cm.(1)如果腰长是底边长的2倍,求各边长.(2)如果一边长为4 cm,求另两边长.例2有两根长度分别为8 m和5 m的钢管,再用一根长度为3 m的钢管能将它们焊接成一个三角形钢架吗?为什么?长度为4 m呢?长度为2 m呢?四、随堂练习,巩固深化1.如图,图中共有___个三角形,它们分别是__________.图中以AC为边的三角形是___________________2.下列线段能构成三角形的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,63.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5B.10C.11D.124.若一个三角形三边长分别为2,3,x,则x的值可以为____(只需填一个整数)5.若三角形三边长满足(a-b)2+|a-c|=0,则△ABC的形状是_________.6.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为_______cm.【参考答案】1.6 △ABC、△ACD、△ADE、△ABD、△ACE、△ABE △ABC、△ACD、△ACE2.B3.B4.4(答案不唯一)5.等边三角形6.35五、师生互动,课堂小结1.由学生进行归纳总结.2.教师提示:(1)三角形分类中,可以按边和角进行分类,可分成三类.(2)判定三条线段能否构成三角形,只须用较小两边相加与第三边进行比较.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.课本第69页练习1、2、3.2.完成练习册中的相应作业.本堂课的设计主要是从学生的角度出发,思路为:创设情景——激发学习欲望——联系实际——鼓励学生动手、观察、猜想——鼓励学生大胆发表自己的想法.通过学习使学生了解三角形的概念,掌握三角形三边关系.经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵,让学生养成有条理的思考的习惯以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值.第2课时三角形中角的关系【知识与技能】理解三角形三个内角等于180°的推导过程,会应用三角形内角和定理解决实际问题.【过程与方法】经历观察、思考、互动的过程,提高合情推理的能力,发展条理化的思维意识.【情感与态度】让学生养成有条理地思考的习惯以及说理有据的意识,体会三角形角的关系在现实生活中的实际价值.【教学重点】重点是应用三角形内角和定理.【教学难点】难点是对三角形内角和定理的认识.一、创设情境,探究新知动手操作:1.剪出一块三角形,并将这个三角形三个角剪下拼接在一起,形成平角.2.试一试,有几种不同的方法.3.评析:在探究的过程中,引入了几何学中的“辅助线”,这里必须说明辅助线的作用以及表达辅助线的书写文字.【归纳结论】三角形的内角和等于180°.二、范例学习,应用所学例1(课本70页例2)已知:如图,BD是△ABC的高,∠ABD=54°,∠DBC=18°.求∠A和∠C的度数.例2已知:B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求从C处看A、B两处的视角∠ACB的度数.注意:学生先独立画出图形.三、随堂练习,巩固深化1.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_______度.3.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C=_____度.【参考答案】1.D 2.75 3.70四、师生互动,课堂小结互动复习:1.本节课推导三角形内角和定理,运用了哪些方法?2.对于几何问题中的辅助线的添法,你有什么看法?1.课本第71页练习1、2、3、42.完成练习册中的相应作业.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题;让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力.并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想,使学生体验成功的喜悦,激发学生主动学习数学的兴趣.第3课时三角形中几条重要线段【知识与技能】领会三角形中的高、角平分线、中线的知识,会应用它们解决实际问题.。

沪科版数学八年级上册精品教案13.1 三角形中的边角关系

沪科版数学八年级上册精品教案13.1 三角形中的边角关系
教师可以通过学生实践以及几何画板演示,发现三角形三条中线、角平分线、高分别相交于一点的结论.
4.巩固练习
教科书72页“操作”第1,2,3题.
学生动手画图操作.
教师让学生自己规范画图.
注意:特别是钝角三角形的高要带着学生动手落实好.
说明:锐角三角形三条高的交点在三角形内部,钝角三角形三条高的交点在三角形外部,直角三角形三条高的交点在直角的顶点上.
教师巡回指导.
教师引导学生交流:
1.在同一个三角形中,任意两边之和与第三边有什么关系?
2.在同一个三角形中,任意两边之差与第三边有什么关系?
3.三角形三边有怎样的不等关系?
让学生说出得到的结论.
教师点拨:两点之间,线段最短.
得出结论:三角形的任意角边之和大于第三边;任意两边之差小于第三边.
教师在多媒体上出示教材P68例1.教师指导学生讨论做法,并参与小组讨论.
整理和反思是数学学习的必要过程和方法.
五、布置作业,巩固提升
教科书第74页习题第4,5,6题.
对所学知识复习巩固.
【板书设计】
三角形中几条重要线段
1.三角形的角平分线、中线、高的定义.2.三角形的角平分线、中线、高的画法.
提问:三角形中有哪些基本元素?
学生回答:三条边、三个角是它的六个基本元素.
引入:除了三角形的三条边之外,还有其他一些重要元素.
通过提问把学生的注意力集中起来,从基本元素引出本节课要学习的重要元素,过渡合理、自然.
二、师生互动,探究新知
1.角平分线的定义.(多媒体出示)
提问:(1)还记得如何作一个角的平分线吗?
培养学生将概念转化成结论的习惯,如:见三角形的角平分线,可得角相等;
见三角形的中线,可知线段相等;见三角形的高,可得90°的角.

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册13.1章节的内容,本节课的主要内容是让学生掌握三角形的三边关系和三角形的内角和定理。

教材通过生活中的实例引入三角形的三边关系,让学生探讨和总结三角形的性质,从而培养学生独立思考和合作交流的能力。

二. 学情分析学生在学习本节课之前,已经掌握了多边形和角的概念,具备了一定的观察和思考能力。

然而,对于三角形的边角关系,学生可能还存在着一定的困惑,因此,在教学过程中,需要教师耐心引导,让学生在实践中掌握知识点。

三. 教学目标1.让学生了解三角形的三边关系,能运用三角形的边角关系解决实际问题。

2.引导学生探讨三角形的内角和定理,并能运用内角和定理解释生活中的现象。

3.培养学生的观察能力、思考能力和合作交流能力。

四. 教学重难点1.三角形的三边关系2.三角形的内角和定理五. 教学方法1.采用情境教学法,以生活中的实例引入三角形的三边关系,激发学生的学习兴趣。

2.采用探究式教学法,让学生通过合作交流,探讨三角形的内角和定理。

3.采用讲练结合的教学法,教师讲解知识点,学生练习巩固。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备练习题,用于巩固知识点。

七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如:一个人在划船时,船和划桨的长度关系,引导学生观察和思考三角形的三边关系。

2.呈现(10分钟)教师通过讲解和展示相关的课件,向学生介绍三角形的三边关系,让学生理解和掌握。

3.操练(10分钟)教师给出一些练习题,让学生运用三角形的三边关系解决问题,教师及时进行指导和讲解。

4.巩固(10分钟)教师继续给出一些练习题,让学生巩固三角形的三边关系,教师进行点评和讲解。

5.拓展(10分钟)教师引导学生探讨三角形的内角和定理,让学生通过合作交流,共同探讨出结论。

6.小结(5分钟)教师对本节课的内容进行小结,让学生掌握三角形的三边关系和内角和定理。

13.1.1 三角形中边的关系 (教案)

13.1.1 三角形中边的关系 (教案)

沪科版本数学八年级上册13.1.1三角形中的边角关系教学设计
如图,记作:△ABC
读作:三角形ABC
三角形的边:
AB记作c、AC记作b、BC记作a
三角形的内角:∠A、∠B、∠C
三角形的顶点 A,B,C
三条边各不相等的三角形是不等边三角形
有两条边相等的三角形是等腰三角形
三条边都相等的三角形是等边三角形
三角形按边如何分类?
活动探究二:小明晨跑时,从A到B的可选择的路线有几条?走哪条最短呢?为什么?
路线1:从AC再到B路线走
路线2:沿线段AB走
请比较线路1、路线2哪条路程较短,你能说出你的根据吗?
依据:两点之间线段最短
由此可以得到:形概念做铺
垫.
学生熟记这些
概念,理解三
角形的要素,
为以后的学习
打下基础。


意等腰和等边
三角形的区别
与练习。

注意三角形的
按边分类情况。

学生思考探究
二的问题,理
解三角形三边
关系。

看、大胆说,这
节课最棒的肯定
是你.
让学生直观的接
触相关概念,比
较符合形象思维
占主导的年龄段
学生的认知特
点.授人以鱼不
如授之以渔,授
之以渔不如授之
以欲.教师一句
激励的话语,给
学生自学的动
力.
三角形边角
关系让生通过自
学,领悟要领和
关键,比教师讲
要好的多,教师
只点拨一下即
可,把主动权交
给学生,充分发
挥学生的主动。

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计
2.讲解三角形内角和定理,让学生理解三角形内角与外角之间的关系,以及内角和为180度。
3.通过举例和讲解,让学生明白如何运用三角形不等式解决实际问题,如计算三角形中未知边的长度。
4.强调三角形不等式的应用场景,如几何图形的拼接、平面几何的证明等,使学生对新知识有更深入的认识。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论以下问题:
2.采用问题驱动的教学方法,提出具有挑战性的问题,引导学生进行小组讨论和探究。例如,给出一个三角形的两边长度和一个角度,让学生计算第三边的长度范围,激发学生的思考和学习兴趣。
3.设计梯度性的练习题,从基础题入手,逐步增加难度,让学生在不同的题目中巩固和运用所学知识。同时,注重培养学生的解题策略和技巧,提高他们解决问题的能力。
3.培养学生的空间想象力和逻辑思维能力,提高学生对数学美的鉴赏能力。
4.使学生认识到数学知识与现实生活的紧密联系,培养学生的应用意识和实践能力。
5.培养学生严谨、求实的科学态度,提高学生的综合素质。
二、学情分析
八年级学生对几何图形已有一定的认识和了解,具备基本的几何知识和空间想象力。在此基础上,学生对三角形的相关性质和定理已有初步的认识,能够理解和运用三角形的内角和定理。然而,对于三角形中边与角之间的不等关系,学生可能还缺乏深入的理解和实际应用。
沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计
一、教学目标
(一)知识与技能
1.理解并掌握三角形中边与角之间的基本不等关系,即在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
2.能够运用三角形不等式解决实际问题,如计算三角形中未知边的长度。
3.熟练运用三角形的内角和定理,理解并掌握三角形内角与外角之间的关系。

三角形中的边角关系教案沪科版(精美教案)

三角形中的边角关系教案沪科版(精美教案)

三角形中的边角关系教案沪科版(精美教案)
《三角形中的边角关系》第一课时教学案例
一、内容分析:
三角形是最简单的多边形,是研究其他图形的基础。

本节课是在学生已学过了一些三角形的基础上,进一步系统的研究它的概念、分类、性质和应用。

二、学情分析:
虽然学生已在小学阶段及日常生活中了解了不少有关三角形的知识,但却偏重于感性认识,且缺乏系统化。

故教学时应从学生熟悉的事物入手,创设情境,调动学生的学习积极性,积极进行观察、操作、猜想、验证,主动探究解决问题。

三、教学目标:
、了解三角形的概念,会对三角形按边的关系进行分类,并会用符号语言表示三角形;
、理解三角形中三边之间的关系,并运用它解决一些简单的问题;
、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动中的创造性,体验探究的乐趣。

四、教学中的重、难点及处理:
、重点:理解三角形三边之间的关系,了解三角形的分类思想。

、难点:探究三角形三边之间的关系。

、处理:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想。

五、教学准备:
、教师准备:制作多媒体课件。

、学生准备:笔、刻度尺。

七、教学设计说明:。

沪科版八年级数学上册13.1三角形中的边角关系说课稿

沪科版八年级数学上册13.1三角形中的边角关系说课稿
3.三角形的分类:展示不同类型的三角形,如等边三角形、等腰三角形、直角三角形等,让学生观察它们的特征,并总结分类方法。
4.边角关系:以具体实例为例,引导学生探究三角形的边角关系,如已知两边和一角或已知一边和两角求第三边等。
本节课面向的是八年级学生,这个年龄段的学生正处于青春期,思维活跃,好奇心强,求知欲旺盛。他们的认知水平逐渐从具体运算向形式运算转变,具备一定的抽象思维能力,但在几何直观和空间想象方面还有待提高。在学习兴趣上,学生对新鲜有趣、富有挑战性的内容更感兴趣,喜欢通过动手操作和合作交流的方式学习。然而,部分学生的学习习惯还需加强,如课堂专注度、课后复习等方面。
(二)媒体资源
在本节课中,我将使用以下教具、多媒体资源和技术工具:
1.教具:三角板、量角器、直尺等,用于学生实际操作和测量三角形的内角和。
2.多媒体资源:PPT、教学视频、几何画板等,用于展示三角形的性质、分类和边角关系,使抽象的知识形象化、体化。
3.技术工具:网络资源、在线学习平台等,为学生提供丰富的学习资料和互动空间。
3.课堂展示:鼓励学生将自己的发现和成果进行展示,提高学生的表达能力和自信心。
4.课后交流:利用网络学习平台,组织学生进行课后讨论和交流,分享学习心得,拓宽知识视野。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:向学生展示一幅包含三角形元素的图片,如埃及金字塔、自行车三角架等,引导学生观察并提问:“你们在生活中还见过哪些三角形?它们有什么共同特点?”通过这个问题,激发学生对三角形的好奇心。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设情境:以生活中的实际问题为背景,引导学生发现三角形在生活中的广泛应用,从而激发学生的学习兴趣。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.三角形中边的关系
教学目标
1、了解三角形的概念,掌握分类思想
2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵
3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值
重、难点与关键
重点:了解三角形分类思想,弄清三角形三边关系
难点:对两边之差小于第三边的领悟
关键:从观察、联想入手,应用连结两点之间的线中,线段最短这一原理进行迁移
教学过程
一、情境合一,探究新知
1、投影图片,把事先收集的与三角形有关系的生活图片,运
用投影仪播放,让学生对三角形有一个感性认识.如下图:
教师活动:通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性.
学生讨论
教师归纳,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.
教师活动:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等.
学生活动:学会运用大小写字母来表示三角形的边与角,如图的三角形可记作⊿ABC,三边可记作AB、AC、CA;三个角可记作∠A、∠B、∠C,或可用三个字母表示为∠BAC、∠ABC、∠ACB. 注意:表示边时要两个大写字母,或一个小写字母.注意小写字母标注的规律:通常顶点大写字母所对的变就是这个顶点的小写字母.
2、教师给出不同类型的三角形,引导学生从边和角两种角度
观察、分类.
(1)从边的角度来分类有:
不等边三角形
等腰三角形(包括等边三角形)
说明:对于等腰三角形来说,相等的两边称为腰,第三边称为底边。

两腰所夹的角称为顶角,腰与底边的夹角称为底角:而等边三角形的三边都相等,它是等腰三角形的特例.
(2)从角的角度来分类有:
锐角三角形(三个内角均为小于900的角)
直角三角形(有一个角是900)
钝角三角形(有一个内角大于900)
二、联系实际,合作探究
1、问题牵引1.
国庆节的晚上,小明从甲地到乙地后再往丙地走,并到达丙地,小红从甲地直接到丙地,如图所示,请你谈谈小明和小红谁走的路程长?依据是什么?
学生活动:发现小红走的路程短,小明走的路程长。

依据是:两点之间线段最短.
2、问题牵引2.
在一个三角形中,任意两边的长度之和与第三边的长度之间有着怎样的关系呢?
教师在黑板上画出按角分类的三个三角形,请三位同学量出三边的长度,再进行比较.
(1)三角形任意两边之和大于第三边.
(2)三角形任意两边之差小于第三边.
三、范例学习,应用所学
1、例1(课本68页例1)等腰三角形中,周长是18cm. (1)如果腰长是底边长的2倍,求各边长.
(2)如果一边长为4cm,求另两边长.
2、例2 有两根长度分别为8m和5m的钢管,再用一根长
度为3m的钢管能将他们焊接成一个三角形钢架吗?为什么?长度为4m呢?长度为2m呢?
四、随堂练习,巩固深化
1、课本69页练习第1,2,3题.
2、等腰三角形的两边长分别是7cm,8cm.
(1)求这个三角形的周长.
(2)如果两边长分别为3cm和6cm呢?
五、课堂总结,提高认识
1、由学生进行归纳总结
2、教师提示:(1)三角形分类中,可以按边和角进行分类,
可分成三类.(2)判定三条线段能否构成三角形,只须用较小两边相加与第三边进行比较.
六、布置作业,专题突破
课本73页习题13.1 第1题
选用课时同步作业
七、教学设计与课后反思。

相关文档
最新文档