最优化实例和matlab源程序资料
最优化方法及其matlab实现
一、引言1.1 阐述最优化方法的重要性 1.2 介绍文章内容二、最优化方法的基本概念与分类2.1 最优化问题的定义2.2 最优化方法的分类2.2.1 无约束最优化2.2.2 约束最优化三、常用最优化方法的原理与特点3.1 梯度下降法3.1.1 原理介绍3.1.2 算法流程3.1.3 特点分析3.2 牛顿法3.2.1 原理介绍3.2.2 算法流程3.2.3 特点分析3.3 共轭梯度法3.3.1 原理介绍3.3.2 算法流程3.3.3 特点分析四、最优化方法在实际问题中的应用4.1 工程优化问题4.1.1 结构优化设计4.1.2 控制优化问题4.2 数据拟合与机器学习4.2.1 深度学习中的优化问题4.2.2 模型参数的优化五、 Matlab实现最优化方法的实例5.1 Matlab在最优化方法中的应用 5.2 梯度下降法的Matlab实现5.2.1 代码示例5.2.2 实例分析5.3 牛顿法的Matlab实现5.3.1 代码示例5.3.2 实例分析5.4 共轭梯度法的Matlab实现5.4.1 代码示例5.4.2 实例分析六、结论及展望6.1 对最优化方法的总结与归纳6.2 未来最优化方法的发展方向七、参考文献以上是一篇关于“最优化方法及其Matlab实现”的文章大纲,您可以根据这个大纲和相关资料进行深入撰写。
文章内容需要涉及最优化方法的基本概念与分类、常用最优化方法的原理与特点、最优化方法在实际问题中的应用、Matlab实现最优化方法的实例等方面,保证文章内容的权威性和实用性。
另外,在撰写文章过程中,建议加入一些案例分析或者数据实验,通过具体的应用场景来展示最优化方法的有效性和优越性,增强文章的说服力和可读性。
对于Matlab实现部分也要注重代码的清晰性和易懂性,方便读者理解和实践。
希望您能够通过深入的研究和精心的撰写,呈现一篇高质量、流畅易读、结构合理的中文文章,为读者提供有益的知识和参考价值。
最优化方法及其matlab程序设计
最优化方法及其matlab程序设计
最优化方法是一种利用各种技术,以提高某项工作,工程或系统
的效率为目标,并让其在某些给定基准测试中改善性能的过程。
它可
以用来提高计算机系统的性能,减少加工时间,提高生产率,等等。
Matlab是一种非常适用于最优化的程序设计语言,它拥有许多强
大的分析功能,例如数值分析、线性规划、非线性规划、二次规划、
优化算法、深度学习、图形处理和仿真等。
因此,Matlab可以帮助用
户找到最优解决方案,比如解决所谓的NP难问题,这些问题很难在
“合理”时间内找到最优解。
要在matlab中实现最优化方法,首先要定义和描述优化问题。
然后,选择合适的优化器。
一般来说,FMINCON函数可以满足大多数最优
化问题的要求,因为它可以通过求解约束和非线性问题来实现最优化。
在函数中,用户可以指定具体的约束条件、目标函数、初始解和其他
一些参数,以便更好地进行最优化。
此外,matlab中还提供了其他一些有用的优化函数,可以用于解
决更复杂的问题,包括FMINUNC、FMINBND等。
这些函数都可以实现更
高级的最优化算法,例如迭代算法、模拟退火算法、遗传算法等。
最后,用户还可以使用matlab自带的toolbox来进行最优化,例
如Optimization Toolbox。
这个工具包可以帮助用户调整参数,从而
实现最优解。
同时,它还提供了有关具体优化策略的解释,以便了解
该策略的实现方法以及它的应用范围。
总的来说,matlab可以实现各种最优化方法,无论是简单的还是
复杂的,都可以通过它找到最佳解决方案。
Matlab优化算法及应用案例
Matlab优化算法及应用案例一、引言优化算法在科学和工程领域中起着重要的作用。
Matlab作为一款强大的科学计算软件,提供了丰富的优化算法工具箱,为用户提供了广泛的优化应用场景。
本文将介绍Matlab优化算法的基本原理,并通过实际案例来展示其在实际问题中的应用。
二、优化算法的基本原理优化算法的目标是求解一个函数的最优解,通常包括最大化或最小化目标函数。
Matlab中的优化算法主要基于以下两种类型:局部搜索算法和全局优化算法。
1. 局部搜索算法局部搜索算法是在当前解的附近搜索最优解的一类算法。
其中最为常见的是梯度下降法和牛顿法。
梯度下降法是一种迭代方法,通过沿着目标函数的负梯度方向不断调整参数,以逐步接近最优解。
具体步骤如下:(1)计算目标函数在当前解的梯度。
(2)根据梯度方向和步长系数进行参数调整。
(3)重复以上步骤直到满足停止准则。
牛顿法是一种基于二阶导数的优化方法,相比梯度下降法更为高效,但也更为复杂。
其基本思想是通过泰勒展开近似目标函数,然后解析求解导数为零的方程,得到下一次迭代的参数值。
2. 全局优化算法全局优化算法是通过全局搜索空间来找到最优解的方法。
Matlab提供了一些全局优化算法工具箱,其中最常用的是遗传算法和模拟退火算法。
遗传算法是一种模拟自然进化的优化方法,通过不断迭代生成新的解并选择适应度高的个体,并模拟自然选择、交叉和变异等操作来优化目标函数。
遗传算法在搜索空间较大且复杂的问题上有很好的表现。
模拟退火算法是一种以某种概率接受劣解的搜索算法,通过模拟金属退火过程来逐渐降低目标函数的值。
它能够避免局部最优解,并在一定程度上探索全局最优解。
三、Matlab优化算法的应用案例1. 机器学习中的参数调优在机器学习中,模型的性能很大程度上取决于参数的选择。
Matlab提供了优化工具箱,可以帮助用户选择合适的参数以提高模型的性能。
以支持向量机(SVM)为例,通过调整核函数类型、惩罚项系数和软间隔参数等参数,可以提高模型的分类准确度。
matlab优化算法100例
matlab优化算法100例1. 线性规划问题的优化算法:线性规划问题是一类目标函数和约束条件都是线性的优化问题。
Matlab中有很多优化算法可以解决线性规划问题,如单纯形法、内点法等。
下面以单纯形法为例介绍线性规划问题的优化算法。
单纯形法是一种迭代算法,通过不断改变基础解来寻找问题的最优解。
它的基本思想是从一个可行解出发,通过改变基本变量和非基本变量的取值来逐步逼近最优解。
2. 非线性规划问题的优化算法:非线性规划问题是一类目标函数和约束条件至少有一个是非线性的优化问题。
Matlab中有很多优化算法可以解决非线性规划问题,如拟牛顿法、共轭梯度法等。
下面以拟牛顿法为例介绍非线性规划问题的优化算法。
拟牛顿法是一种逐步逼近最优解的算法,通过近似目标函数的二阶导数信息来构造一个二次模型,然后通过求解该二次模型的最优解来更新当前解。
3. 全局优化问题的优化算法:全局优化问题是一类目标函数存在多个局部最优解的优化问题。
Matlab中有很多优化算法可以解决全局优化问题,如遗传算法、模拟退火算法等。
下面以遗传算法为例介绍全局优化问题的优化算法。
遗传算法是一种模拟生物进化过程的优化算法,通过基因编码、选择、交叉和变异等操作来不断迭代演化一组个体,最终找到全局最优解。
4. 多目标优化问题的优化算法:多目标优化问题是一类存在多个目标函数并且目标函数之间存在冲突的优化问题。
Matlab中有很多优化算法可以解决多目标优化问题,如多目标粒子群优化算法、多目标遗传算法等。
下面以多目标粒子群优化算法为例介绍多目标优化问题的优化算法。
多目标粒子群优化算法是一种基于粒子群优化算法的多目标优化算法,通过在粒子的速度更新过程中考虑多个目标函数来实现多目标优化。
5. 其他优化算法:除了上述提到的优化算法,Matlab还提供了很多其他的优化算法,如模拟退火算法、蚁群算法等。
这些算法可以根据具体的问题选择合适的算法进行求解。
综上所述,Matlab提供了丰富的优化算法,可以解决不同类型的优化问题。
最优化方法及其Matlab程序设计
最优化方法及其Matlab程序设计1.最优化方法概述在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证,从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
最优化是每个人,每个单位所希望实现的事情。
对于产品设计者来说,是考虑如何用最少的材料,最大的性能价格比,设计出满足市场需要的产品。
对于企业的管理者来说,则是如何合理、充分使用现有的设备,减少库存,降低能耗,降低成本,以实现企业的最大利润。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型。
即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解。
数学模型建好以后,选择合理的最优化算法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
2.最优化方法(算法)浅析最优化方法求解很大程度上依赖于最优化算法的选择。
这里,对最优化算法做一个简单的分类,并对一些比较常用的典型算法进行解析,旨在加深对一些最优化算法的理解。
最优化算法的分类方法很多,根据不同的分类依据可以得到不同的结果,这里根据优化算法对计算机技术的依赖程度,可以将最优化算法进行一个系统分类:线性规划与整数规划;非线性规划;智能优化方法;变分法与动态规划。
2.1 线性规划与整数规划线性规划在工业、农业、商业、交通运输、军事和科研的各个研究领域有广泛应用。
例如,在资源有限的情况下,如何合理使用人力、物力和资金等资源,以获取最大效益;如何组织生产、合理安排工艺流程或调制产品成分等,使所消耗的资源(人力、设备台时、资金、原始材料等)为最少等。
最优化方法的Matlab实现
最优化方法的Matlab实现Matlab中使用最优化方法可以使用优化工具箱。
在优化工具箱中,有多种最优化算法可供选择,包括线性规划、非线性规划、约束优化等。
下面将详细介绍如何在Matlab中实现最优化方法。
首先,需要建立一个目标函数。
目标函数是最优化问题的核心,它描述了要优化的变量之间的关系。
例如,我们可以定义一个简单的目标函数:```matlabfunction f = objFun(x)f=(x-2)^2+3;end```以上代码定义了一个目标函数`objFun`,它使用了一个变量`x`,并返回了`f`的值。
在这个例子中,目标函数是`(x-2)^2 + 3`。
接下来,需要选择一个最优化算法。
在Matlab中,有多种最优化算法可供选择,如黄金分割法、割线法、牛顿法等。
以下是一个使用黄金分割法的示例:```matlabx0=0;%初始点options = optimset('fminsearch'); % 设定优化选项```除了黄金分割法,还有其他最优化算法可供选择。
例如,可以使用`fminunc`函数调用一个无约束优化算法,或者使用`fmincon`函数调用带约束的优化算法。
对于非线性约束优化问题,想要求解最优解,可以使用`fmincon`函数。
以下是一个使用`fmincon`函数的示例:```matlabx0=[0,0];%初始点A = []; b = []; Aeq = []; beq = []; % 约束条件lb = [-10, -10]; ub = [10, 10]; % 取值范围options = optimoptions('fmincon'); % 设定优化选项```除了优化选项,Matlab中还有多个参数可供调整,例如算法迭代次数、容差等。
可以根据具体问题的复杂性来调整这些参数。
总而言之,Matlab提供了丰富的最优化工具箱,可以灵活地实现不同类型的最优化方法。
最优化算法实验报告(附Matlab程序)
最优化方法(Matlab)实验报告—— Fibonacci 法一、实验目的:用MATLAB 程序实现一维搜索中用Fibonacc 法求解一元单峰函数的极小值问题。
二、实验原理:(一)、构造Fibonacci 数列:设数列{}k F ,满足条件:1、011F F ==2、11k k k F F F +-=+则称数列{}k F 为Fibonacci 数列。
(二)、迭代过程:首先由下面的迭代公式确定出迭代点:111(),1,...,1(),1,...,1n k k k k k n k n k k k k k n k F a b a k n F Fu a b a k n F λ---+--+=+-=-=+-=-易验证,用上述迭代公式进行迭代时,第k 次迭代的区间长度缩短比率恰好为1n kn k F F --+。
故可设迭代次数为n ,因此有 11121211221111223231()()......()()n n n n n n n n nF F F F F F b a b a b a b a b a F F F F F F F ------=-=⨯-==⨯-=- 若设精度为L ,则有第n 次迭代得区间长度 111()n n nb a Lb a LF -≤-≤ ,即就是111()nb a L F -≤,由此便可确定出迭代次数n 。
假设第k 次迭代时已确定出区间 [,]k k a b 以及试探点,[,]k k k k u a b λ∈并且k k u λ<。
计算试探点处的函数值,有以下两种可能: (1) 若()()k k f f u λ>,则令111111111,,()()()k k k kk k k k n k k k k k n ka b b f f F a b a F λλμλμμ++++--++++-=====+-计算 1()k f μ+的值。
(2)()()k k f f u λ≤,则令111121111,,()()()k k k kk k k k n k k k k k n ka ab f f F a b a F μμλμλλ++++--++++-=====+-计算1()k f λ+ 的值。
Matlab最优化编程例子
题目:分别用最速下降法、FR 共轭梯度法、DFP 法和BFGS 法求解问题:22112212min f (x)x 2x x 4x x 3x =-++-取初始点(1)T x (1,1)=,通过Matlab 编程实现求解过程。
公用函数如下:1、function f= fun( X )%所求问题目标函数f=X(1)^2-2*X(1)*X(2)+4*X(2)^2+X(1)-3*X(2); end2、function g= gfun( X )%所求问题目标函数梯度g=[2*X(1)-2*X(2)+1,-2*X(1)+8*X(2)-3]; end3、function He = Hess( X )%所求问题目标函数Hesse 矩阵n=length(X);He=zeros(n,n);He=[2,-2;-2,4];End解法一:最速下降法function [ x,val,k ] = grad( fun,gfun,x0 )%功能:用最速下降法求无约束问题最小值%输入:x0是初始点,fun 和gfun 分别是目标函数和梯度%输出:x 、val 分别是最优点和最优值,k 是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;while (k<maxk)g=feval(gfun,x0);%计算梯度d=-g;%计算搜索方向if (norm(d)<eps)break ;endm=0;mk=0;while (m<20)if (feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break ;endm=m+1;endx0=x0+rho^mk*d;k=k+1;endx=x0;val=feval(fun,x0);end解法二:FR共轭梯度法function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);while(k<maxk)g=feval(gfun,x0);%计算梯度itern=k-(n+1)*floor(k/(n+1));itern=itern+1;%计算搜索方向if(itern==1)d=-g;elsebeta=(g*g')/(g0*g0');d=-g+beta*d0;gd=g'*d;if(gd>=0.0)d=-g;endendif(norm(g)<eps)break;endm=0;mk=0;while(m<20)if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g;d0=d;k=k+1;endx=x0;val=feval(fun,x0);end解法三:DFP法function [ x,val,k ] = dfp( fun,gfun,x0 )%功能:用DFP法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);Hk=inv(feval('Hess',x0));while(k<maxk)gk=feval(gfun,x0);if(norm(gk)<eps)break;enddk=-Hk*gk';dk=dk';m=0;mk=0;while(m<20)if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk) mk=m;break;endm=m+1;end%DFP校正x=x0+rho^mk*dk;sk=x-x0;yk=feval(gfun,x)-gk;if(sk'*yk>0)Hk=Hk-(((Hk*yk')*yk)*Hk)/(yk*Hk*yk')+(sk'*sk)/(sk*yk');endk=k+1;x0=x;endval=feval(fun,x0);end解法四:BFGS法function [ x,val,k ] = bfgs( fun,gfun,x0 )%功能:用BFGS法求无约束问题最小值%输入:x0是初始点,fun和gfun分别是目标函数和梯度%输出:x、val分别是最优点和最优值,k是迭代次数maxk=5000;%最大迭代次数rho=0.5;sigma=0.4;k=0;eps=10e-6;n=length(x0);Bk=eye(n);while(k<maxk)gk=feval(gfun,x0);if(norm(gk)<eps)break;enddk=-Bk*gk';m=0;mk=0;while(m<20)new=sigma*rho^m*gk*dk;old=feval(fun,x0);if(feval(fun,x0+rho^m*dk')<feval(fun,x0)+sigma*rho^m*gk*dk) mk=m;break;endm=m+1;end%BFGS校正x=x0+rho^mk*dk';sk=x-x0;yk=feval(gfun,x)-gk;if(yk'*sk>0)Bk=Bk-(((Bk*sk')*sk)*Bk)/(sk*Bk*sk')+(yk'*yk)/(yk*sk');endk=k+1;x0=x;endval=feval(fun,x0);end。
多目标优化实例和matlab程序
多目标优化实例和m a t l a b程序-CAL-FENGHAI.-(YICAI)-Company One1NSGA-II 算法实例目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。
本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。
一、 数值例子多目标优化问题424221*********422421221211212min (,)10min (,)55..55f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤⎧⎨-≤≤⎩二、 Matlab 文件1. 适应值函数m 文件:function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2;y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);2. 调用gamultiobj 函数,及参数设置:clearclcfitnessfcn=@f; %适应度函数句柄nvars=2; %变量个数lb=[-5,-5]; %下限ub=[5,5]; %上限A=[];b=[]; %线性不等式约束Aeq=[];beq=[]; %线性等式约束options=gaoptimset('paretoFraction',,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto);% 最优个体系数paretoFraction 为;种群大小populationsize 为100,最大进化代数generations 为200,% 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端[x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)3. 计算结果-40-35-30-25-20-15-10-5-505101520253035Objective 1O b j e c t i v e 2Pareto front图1. 实例1对应的Pareto 前沿图从图1可以看出Pareto 前分布较均匀,多样性较好。
MATLAB最优化方法程序
共轭梯度法程序共轭梯度法一.实验目的:(1).熟悉使用共轭梯度法求解无约束非线性规划问题的原理;(2).在掌握原理的基础上熟练运用此方法解决问题;(3).学会利用计算机语言编写程序来辅助解决数学问题;(4).解决问题的同时分析问题,力求达到理论与实践的相统一;(5).编写规范的实验报告.二.实验原理:<算法原理>:共轭梯度法为求解线性方程组而提出。
后来,人们把这种方法用于求解无约束最优化问题,使之成为一种重要的最优化方法。
共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。
根据共轭方向的基本性质,这种方法具有二次终止性。
在各种优化算法中,共轭梯度法是非常重要的一种。
其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
共轭方向无约束最优化方法的核心问题是选择搜索方向.在本次实验中,我们运用基于共轭方向的一种算法—共轭梯度法三.算法流程图:四.实验结果:(1).实验函数f=(3*x1-cos(x2*x3)-1/2)^2+(x1^2-81*(x2+0.1)+sin(x3)+1.06)^2+(exp(-x1*x2)+20*x3+ 1/3*(10*3.14159-3))^2;(2).源程序:syms x1 x2 x3 r;f=(3*x1-cos(x2*x3)-1/2)^2+(x1^2-81*(x2+0.1)+sin(x3)+1.06)^2+(exp(-x1*x2)+20* x3+1/3*(10*3.14159-3))^2;x=[x1,x2,x3];df=jacobian(f,x);df=df.';error=0.000001;x0=[0,0,0]';g1=subs(df,x,x0);k=0;while(norm(g1)>error)if k==0d=-g1;elsebta=g1'*g1/(g0'*g0);d=-g1+bta*d0;endy=subs(f,x,x0+r*d);result=jintuifa(y,r);result2=gold(y,r,result);step=result2;x0=x0+step*d;g0=g1;g1=subs(df,x,x0);d0=d;k=k+1;end;kx0min=subs(f,[x1 x2 x3],x0)(3).实验结果k =26x0 =0.4996-0.0900-0.5259min =1.1496e-018(4).结果分析:由FR法得到的最优解为(0.4996, -0.0900, -0.5259),迭代的次数为32,由于精度的降低(ε= 6101-),实际证明对结果也有一定的影响。
Matlab在最优化问题中的应用举例
在企业生产和日常生活中,人们总是希望用最少的人力、物力、财力和时间去办更多的事,这就是所谓的最优化问题。
线性规划方法是解决最优化问题的有效方法之一,因此受到人们的普遍关注。
在企业生产过程中,生产计划安排直接影响到企业的经济效益,而生产计划本质就是在目标一定时,对于人力、时间和物质资源的优化配置问题。
1。
综述了最优化方法,归纳了最优化闯题中线性规划和非线性规划模型的解法,并给出了相应的matlab求解代码。
2。
提出了基于信息增益率的用电客户指标选择方法,根据信息增益率的大小选择对分类有贡献的指标。
关键词:Matlab,最优化方法,应用举例In enterprise production and daily life, people always hope with the least amount of human, material and financial resources and time to do more things, this is the so-called optimization problem. Linear programming method is to solve the optimal problem, so one of the effective method by people's attention. In enterprise production process, production plan directly affect the enterprise economic benefit, but in essence is the production plan for the target certain human, time and material resources optimization allocation problem.1·Studying the optimization,summing up the solutions ofoptimization problem for both linear and non-linear programming model and proposing the matlabcode.2·Proposing a new way based on information-gain-ratio to choose the powercustomer indices,selecting the indices which are more contributive to theclassification,in order to avoid over learning。
最优化实例和matlab源程序
最优化平时作业一、目标规划1、题目:见书中例题P110例42、解题方法:利用Lingo求解3、具体步骤(1).对应于第一优先等级,建立线性规划问题:model:min=-d1;5*x1+10*x2<=60;x1-2*x2+d1_-d1=0;end运行结果:-d1=0(2)对应于第二优先等级,将-d1=0作为约束条件,建立线性规划问题:min=d2_;5*x1+10*x2<=60;x1-2*x2+d1_-d1=0;4*x1+4*x2+d2_-d2=36;-d1=0;end运行结果:d2=0;(3).对应于第三优先等级,将-d1=0, -d1=0作为约束条件,建立线性规划问题:min=d3_;5*x1+10*x2<=60;x1-2*x2+d1_-d1=0;4*x1+4*x2+d2_-d2=36;6x1+8*x2+d3_-d3=48;-d1=0;d2=0;end运行结果:d3=0;X1 4.800000X2 2.400000二、动态规划之0-1背包问题1、题目:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
2、解题方法与思路:利用java求解,.思想方法是回溯思想3、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化4、java源程序及运行结果BackTrace.java* To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;import java.util.Date;public class BackTrace {/*** @param args*/public static void main(String[] args) {double w[]={2,2,6,5,4};double v[]={6,3,5,4,6};int n=5;double c=10;knapsack(v,w,c);System.out.println(bestp);}//比较两个元素大小的类private static class Element implements Comparable{ int id;double d;private Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}static double c; //背包容量static int n;//物品数static double[]w;//物品重量数组static double[]p; //物品价值数组static double cw;//当前重量static double cp;//当前价值static double bestp; //当前最优值static int [] x;//解static int [] sortX;//排好序之后的解static int [] bestX;//最有解static Date date = null; // @jve:decl-index=0:public static double knapsack(double[]pp,double[]ww,double cc){ c=cc;n=pp.length-1;cw=0.0;cp=0.0;bestp=0.0;Element[]q=new Element[n];//q为单位重量价值数组for(int i=1;i<=n;i++)q[i-1]=new Element(i,pp[i]/ww[i]);MergeSort.mergeSort(q);p=new double[n+1];w=new double[n+1];x=new int[n+1];sortX=new int[n+1];bestX=new int[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];sortX[i]=q[n-i].id;}backtrack(1);//回溯搜索return bestp;}private static void backtrack(int i){if(i>=n){if(cp>bestp){bestp=cp;for(int j=1;j<=n;j++){bestX[j]=x[j];}}return;}//搜索子树if(cw+w[i]<=c){//进入左子树x[sortX[i]]=1;cw+=w[i];cp+=p[i];backtrack(i+1);cw-=w[i];cp-=p[i];}if(bound(i+1)>bestp)x[sortX[i]]=0;backtrack(i+1);//进入右子树}//计算上界private static double bound(int i){double cleft=c-cw;double bound=cp;//以物品重量价值递减顺序装入物品while(i<=n&&w[i]<=cleft){cleft-=w[i];bound+=p[i];i++;}//装满背包if(i<=n)bound+=p[i]/w[i]*cleft;return bound;}public static String getX(){String solution=String.valueOf(bestX[1]);for(int i=2;i<bestX.length;i++){solution+=",";solution+=String.valueOf(bestX[i]);}return solution;}public static double getBestValue(){return bestp;}}三、最短路径问题:给定距离矩阵,求第一点到其它点的最短距离1、题目:给定下列矩阵,求第一点到其余各点的最短路径552525105501020252510010204020100152520150501025405002、解题方法:利用matlab 求解3、具体步骤:源程序及运行结果clear; clc;M=10000;a(1,:)=[0,50,M,40,25,10];a(2,:)=[zeros(1,2),15,20,M,25]; a(3,:)=[zeros(1,3),10,20,M]; a(4,:)=[zeros(1,4),10,25]; a(5,:)=[zeros(1,5),55]; a(6,:)=zeros(1,6); a=a+a';pb(1:length(a))=0;pb(1)=1;d(1:length(a))=M;d(1)=0;temp=1; while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;end运行输出,第一个点到其它各点的最短路径长度,即:d = 0 35 45 35 25 10四、关键路径问题1.题目要求:某工程由下表作业组成,计算出其关键路径。
powell法matlab程序
powell法matlab程序Powell法是一种用于求解无约束最优化问题的迭代优化算法。
它通过逐步旋转坐标轴的方式来寻找函数的最小值点。
在本文中,我们将详细介绍Powell法的原理和应用,并提供MATLAB程序实现。
Powell法的基本思想是通过旋转坐标轴的方式,将多维优化问题转化为一维优化问题。
这种方法通过变换坐标轴,将迭代过程中的每次更新只涉及到一个变量,从而降低了计算的复杂性。
Powell法在某些问题上比前一种单纯形装囊法更加高效。
下面是我们使用MATLAB实现Powell法的步骤:步骤1:定义目标函数首先,我们需要定义目标函数。
目标函数可以是任何连续可导的函数。
在MATLAB中,我们可以通过函数句柄(即指向目标函数的指针)来表示目标函数。
例如,我们可以定义一个简单的目标函数如下:matlabfunction f = myFunction(x)目标函数为x^2 + 2*x + 1f = x.^2 + 2.*x + 1;end步骤2:初始化参数接下来,我们需要初始化Powell法的参数。
这些参数包括初始点的位置和搜索方向。
我们可以选择任意合适的初始点,以及初始搜索方向。
例如,我们可以将初始点的位置设置为(1, 1)。
matlab初始点的位置x0 = [1, 1];初始搜索方向d = [1, 0];步骤3:定义搜索函数我们还需要定义一个搜索函数,用于根据当前位置和搜索方向来计算最佳的步长。
在Powell法中,可以使用一维搜索方法来寻找步长。
这里,我们可以使用黄金分割法(golden section method)来实现。
matlabfunction [alpha, val] = lineSearch(x, d)黄金分割法的参数rho = (sqrt(5) - 1) / 2;epsilon = 1e-6;定义目标函数f = (t) myFunction(x + t.*d);在初始区间上进行黄金分割法搜索a = 0;b = 1;h = b - a;c = a + rho.*h;d = b - rho.*h;while (h > epsilon)if (f(c) < f(d))b = d;elsea = c;endh = b - a;c = a + rho.*h;d = b - rho.*h;endalpha = (a + b) / 2;val = f(alpha);end步骤4:实现Powell法迭代算法现在,我们可以基于上述步骤定义Powell法的主迭代算法。
matlab最优化问题的经典例题
matlab最优化问题的经典例题MATLAB最优化问题的经典例题之一是线性规划问题。
线性规划是一种数学优化方法,用于寻找一组给定线性约束条件下使得目标函数达到最大或最小值的变量值。
假设有以下线性规划问题:最大化目标函数:Z = c1*x1 + c2*x2 + ... + cn*xn在满足约束条件:A*x <= bx >= 0下,求解变量x1, x2, ..., xn的最优解。
使用MATLAB求解该线性规划问题的代码如下:```% 定义目标函数系数向量cc = [c1; c2; ...; cn];% 定义不等式约束条件系数矩阵A和右侧常数向量bA = [A11, A12, ..., A1n;A21, A22, ..., A2n;...,Am1, Am2, ..., Amn];b = [b1; b2; ...; bm];% 定义变量的下界和上界lb = zeros(n, 1); % 下界为0,即 x >= 0ub = Inf(n, 1); % 上界为无穷大,即无上界% 求解线性规划问题[x, fval] = linprog(-c, A, b, [], [], lb, ub);% 输出最优解和最优值disp('最优解:')disp(x)disp('最优值:')disp(-fval)```在上述代码中,我们将目标函数系数向量c、不等式约束条件系数矩阵A和右侧常数向量b、变量的下界和上界lb、ub传递给linprog函数进行求解。
linprog函数返回最优解x和最优值-fval(由于linprog默认求解最小化问题,我们使用-c作为目标函数系数向量,将最大化问题转化为最小化问题)。
通过以上代码,我们可以求解线性规划问题的最优解和最优值,并使用MATLAB进行验证和分析。
这个例题可以帮助我们理解和掌握MATLAB中最优化问题的求解方法。
最优化方法及其Matlab程序设计
最优化方法及其Matlab程序设计1.最优化方法概述在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证,从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
最优化是每个人,每个单位所希望实现的事情。
对于产品设计者来说,是考虑如何用最少的材料,最大的性能价格比,设计出满足市场需要的产品。
对于企业的管理者来说,则是如何合理、充分使用现有的设备,减少库存,降低能耗,降低成本,以实现企业的最大利润。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型。
即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解。
数学模型建好以后,选择合理的最优化算法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
2.最优化方法(算法)浅析最优化方法求解很大程度上依赖于最优化算法的选择。
这里,对最优化算法做一个简单的分类,并对一些比较常用的典型算法进行解析,旨在加深对一些最优化算法的理解。
最优化算法的分类方法很多,根据不同的分类依据可以得到不同的结果,这里根据优化算法对计算机技术的依赖程度,可以将最优化算法进行一个系统分类:线性规划与整数规划;非线性规划;智能优化方法;变分法与动态规划。
2.1 线性规划与整数规划线性规划在工业、农业、商业、交通运输、军事和科研的各个研究领域有广泛应用。
例如,在资源有限的情况下,如何合理使用人力、物力和资金等资源,以获取最大效益;如何组织生产、合理安排工艺流程或调制产品成分等,使所消耗的资源(人力、设备台时、资金、原始材料等)为最少等。
matlab优化算法 100例
matlab优化算法 100例Matlab是一种非常强大的数学软件,其中内置了许多实用的优化算法。
本文将围绕“Matlab优化算法100例”这个话题,分享一些基本的优化算法的应用实例。
第一步:优化函数的定义在使用Matlab优化算法之前,我们首先需要定义一个优化函数。
我们可以使用Matlab中的符号计算工具箱来定义优化函数,或者直接在脚本中定义一个函数。
下面是一个函数的例子:```function f = myfun(x)f = 0.26*(x(1)^2+x(2)^2)-0.48*x(1)*x(2);end```其中,这个函数计算了二次函数$f(x_1,x_2)=0.26(x_1^2+x_2^2)-0.48x_1x_2$ 的值。
这个函数的最小值可以通过优化算法来求解。
第二步:使用Matlab中的优化算法Matlab中提供了许多实用的优化算法,包括:梯度下降法、共轭梯度法、拟牛顿法、遗传算法、粒子群算法等等。
这些算法可以通过调用相关的函数来使用。
这里以fminunc函数为例,展示如何使用Matlab中的优化算法来求解前面定义的函数myfun的最小值。
```[x,fval,exitflag,output] = fminunc(@myfun, [0.3 0.3])```其中,@myfun是一个函数句柄,[0.3 0.3]是参数的初始值。
此函数将返回优化的最小值,以及一些其他的输出。
第三步:分析结果并优化我们可以使用Matlab中的 plot 函数来将优化结果可视化,以便更好地理解问题。
通过这个可视化,我们可以分析结果并进行优化。
```[X,Y]=meshgrid(-10:0.1:10,-10:0.1:10);Z=0.26*(X.^2+Y.^2)-0.48*X.*Y;figurecontour(X,Y,Z,50);hold onplot(x(1), x(2), 'ro')hold off```这里,我们使用 meshgrid 函数生成一个平面,并计算出函数的值。
最优化计算方法及其matlab程序实现
最优化计算方法及其matlab程序实现最优化计算是一种通过寻找最佳解决方案来解决问题的方法。
在许多实际问题中,我们希望找到使某个目标函数达到最大或最小值的变量取值。
最优化计算可以应用于各种领域,如工程、经济、物理等。
在最优化计算中,我们首先需要定义一个目标函数,它描述了我们要优化的问题。
目标函数可以是线性的也可以是非线性的,具体取决于问题的性质。
然后,我们需要确定变量的取值范围和约束条件。
最后,我们使用最优化算法来搜索最佳解。
常用的最优化算法包括梯度下降法、牛顿法、拟牛顿法等。
这些算法基于不同的原理和策略,在不同的问题中表现出不同的性能。
选择合适的最优化算法对于获得高效的求解结果非常重要。
接下来,我们将介绍如何使用Matlab编写程序来实现最优化计算方法。
Matlab是一种功能强大的数值计算和编程环境,它提供了丰富的工具箱和函数来支持最优化计算。
我们需要定义目标函数。
在Matlab中,我们可以使用函数句柄来表示目标函数。
例如,假设我们要最小化一个简单的二次函数f(x) = x^2,我们可以定义一个函数句柄如下:```matlabf = @(x) x^2;```然后,我们可以使用Matlab提供的最优化函数来搜索最佳解。
例如,使用fminsearch函数来实现梯度下降法:```matlabx0 = 1; % 初始值x = fminsearch(f, x0);```在上述代码中,x0是变量的初始值,fminsearch函数将根据梯度下降法来搜索最佳解,并将结果存储在变量x中。
除了梯度下降法,Matlab还提供了其他常用的最优化函数,如fminunc、fmincon等。
这些函数具有不同的功能和参数,可以根据具体的问题选择合适的函数来求解。
除了单变量最优化,Matlab还支持多变量最优化。
在多变量最优化中,目标函数和约束条件可以是多元函数。
我们可以使用Matlab 提供的向量和矩阵来表示多变量的取值和约束条件。
最优化课程设计matlab
作业:1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。
确定货箱的长x 1、宽x 2和高x 3。
试列出问题的数学模型。
解:假设钢板为单位厚度,不考虑钢板焊接或连接耗钢量及相关劳工费用。
设y 为货箱的钢板消耗量,则此问题的数学模型如下:min y= x 1 x 2+2 x 1 x 3+2 x 2 x 3s.t. x 1 x 2 x 3=5x 1>4 x 1 ,x 2 ,x 3>02.将下面的线性规划问题表示为标准型并用单纯形法求解max f=x 1+2x 2+x 3s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化为标准型:首先,将第二个约束条件两边乘以(-1),再分别对三个约束不等式添加非负的松弛变量654,,x x x ,即可化为如下标准型:3212min x x x f ---=⎪⎪⎩⎪⎪⎨⎧=≥=+++=++-=+-+6,5,4,3,2,1,06465222..632153214321i x x x x x x x x x x x x x t s i 列成表格:2 ○1 -1 1 0 0 2 2 -1 5 0 1 0 6 4 1 1 0 0 1 6 -1 -2* -1 0 0 0 0可见此表已具备1、2、3三个特点。
首先从底行中选元素-2,再在第二列三个元素中,由2/1,6/1,6/1最小者决定选第一行第二列的元素1,标以记号,迭代一次得2 1 -1 1 0 0 2 4 0 ④ 1 1 0 8 2 0 2 -1 0 1 43 0 -3* 2 0 0 4再从底行中选元素-34再迭代一次得3 1 0 5/4 1/4 0 4 1 0 1 1/4 1/4 0 2 0 0 0 -3/2 -1/2 1 0 6 0 0 11/4 3/4 0 10此时,所有的检验数均为正,停止迭代,最优解为:()0,0,0,2,4,0*=x ,最优值为:102142*-=⨯-+⨯-=Z ;3. 试用DFP 变尺度法求解下列无约束优化问题。
马昌凤课后习题答案
,
x
(2
)
x(2) 1
x(2) 2
及每个数
[0,1]
,有
x (1)
(1 )x(2)
xx12((11))
(1 (1
) )
x(2) 1
x(2) 2
.
由题设,有
x1(1)
(1 )x1(2)
|
x(1) 2
|
(1 )
|
x(2) 2
||
x2(1)
(1
)
x(2) 2
|.
因此, x(1) (1 )x(2) S ,故 S 是凸集。
证明:利用数学归纳法。当 m 1时,显然成立。假设当 m k 1时命题成立,下证当 m k
时命题也成立。于是
f
(1 x (1)
)
x(k 1) k 1
k
x(k)
)
f
k 1 i 1
i
1
k 1
i
i 1
x(1)
k 1
k 1
i
i 1
x
(k
1)
k
x
(k
)
k 1
i
f
1
k 1
f (xˆ) f (0) f (0)T xˆ 1 xˆT2 f (0)xˆ o( xˆ 2 ). 2
由上面两个式子得
1 xˆT2 f (0)xˆ o( xˆ 2 ) 0. 2 由于 f (x) 是二次函数,所以 2 f (0) A.于是
1 xˆT Axˆ o( xˆ 2 ) 0. 2
x(1) , x(2) Rn ,有
f (x(1) x(2) ) f (x(1) ) f (x(2) ).
证:先证必要性。设正齐次函数 f (x) 为凸函数,则对任意两点 x(1) , x(2) Rn ,必有
最优化方法的Matlab实现【范本模板】
最优化方法的Matlab实现在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解数学模型建好以后,选择合理的最优化方法进行求解.最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
9.1 概述利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。
具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题.另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。
9.1。
1 优化工具箱中的函数优化工具箱中的函数包括下面几类:1.最小化函数表9—1 最小化函数表2.方程求解函数表9—2 方程求解函数表3.最小二乘(曲线拟合)函数表9—3 最小二乘函数表4.实用函数表9—4 实用函数表5.大型方法的演示函数表9-5 大型方法的演示函数表6.中型方法的演示函数表9—6 中型方法的演示函数表9。
1.3 参数设置利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得options优化参数.● optimget函数功能:获得options优化参数。
语法:val = optimget(options,'param’)val = optimget(options,'param’,default)描述:val = optimget(options,’param’)返回优化参数options中指定的参数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、需求分析
对于给定n种物品和一背包。在容量最大值固定的情况下,要求装入的物品价值最大化
4、java源程序及运行结果
BackTrace.java
* To change this template, choose Tools | Template Manager
solution+=",";
最优化平时作业
一、目标规划
1、题目:见书中例题P110例4
2、解题方法:利用Lingo求解
3、具体步骤
(1).对应于第一优先等级,建立线性规划问题:
model:
min=-d1;
5*x1+10*x2<=60;
x1-2*x2+d1_-d1=0;
end
运行结果:-d1=0
(2)对应于第二优先等级,将-d1=0作为约束条件,建立线性规划问题:
public static double knapsack(double[]pp,double[]ww,double cc){
c=cc;
n=pp.length-1;
cw=0.0;
cp=0.0;
bestp=0.0;
Element[]q=new Element[n];
//q为单位重量价值数组
for(int i=1;i<=n;i++)
cleft-=w[i];
bound+=p[i];i++;
}
/Байду номын сангаас装满背包
if(i<=n)
bound+=p[i]/w[i]*cleft;
return bound;
}
public static String getX(){
String solution=String.valueOf(bestX[1]);
for(int i=2;i<bestX.length;i++){
static double cw;//当前重量
static double cp;//当前价值
static double bestp; //当前最优值
static int [] x;//解
static int [] sortX;//排好序之后的解
static int [] bestX;//最有解
static Date date = null; // @jve:decl-index=0:
int id;
double d;
private Element(int idd,double dd){
id=idd;
d=dd;
}
public int compareTo(Object x){
double xd=((Element)x).d;
if(d<xd)return -1;
if(d==xd)return 0;
min=d2_;
5*x1+10*x2<=60;
x1-2*x2+d1_-d1=0;
4*x1+4*x2+d2_-d2=36;
-d1=0;
end
运行结果:d2=0;
(3).对应于第三优先等级,将-d1=0,-d1=0作为约束条件,建立线性规划问题:
min=d3_;
5*x1+10*x2<=60;
x1-2*x2+d1_-d1=0;
p[i]=pp[q[n-i].id];
w[i]=ww[q[n-i].id];
sortX[i]=q[n-i].id;
}
backtrack(1);//回溯搜索
return bestp;
}
private static void backtrack(int i){
if(i>=n){
if(cp>bestp){
return 1;
}
public boolean equals(Object x){
return d==((Element)x).d;
}
}
static double c; //背包容量
static int n;//物品数
static double[]w;//物品重量数组
static double[]p; //物品价值数组
bestp=cp;
for(int j=1;j<=n;j++){
bestX[j]=x[j];
}
}
return;
}
//搜索子树
if(cw+w[i]<=c){
//进入左子树
x[sortX[i]]=1;
cw+=w[i];
cp+=p[i];
backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(bound(i+1)>bestp)
x[sortX[i]]=0;
backtrack(i+1);//进入右子树
}
//计算上界
private static double bound(int i){
double cleft=c-cw;
double bound=cp;
//以物品重量价值递减顺序装入物品
while(i<=n&&w[i]<=cleft){
4*x1+4*x2+d2_-d2=36;
6x1+8*x2+d3_-d3=48;
-d1=0;
d2=0;
end
运行结果:d3=0;
X1 4.800000
X2 2.400000
二、动态规划之0-1背包问题
1、题目:给定n种物品和一背包。物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
* and open the template in the editor.
*/
package sunfa;
import java.util.Date;
public class BackTrace {
/**
* @param args
*/
public static void main(String[] args) {
double w[]={2,2,6,5,4};
double v[]={6,3,5,4,6};
int n=5;
double c=10;
knapsack(v,w,c);
System.out.println(bestp);
}
//比较两个元素大小的类
private static class Element implements Comparable{
q[i-1]=new Element(i,pp[i]/ww[i]);
MergeSort.mergeSort(q);
p=new double[n+1];
w=new double[n+1];
x=new int[n+1];
sortX=new int[n+1];
bestX=new int[n+1];
for(int i=1;i<=n;i++){