高二数学会考小题训练检测23
高二会考模拟试题及答案
高二会考模拟试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的化学元素符号?A. CaB. CuC. NaD. Mg答案:A2. 根据题目分析,下列哪个选项是正确的物理公式?A. F = maB. F = mvC. F = ma^2D. F = m/v答案:A3. 以下哪个历史事件标志着中国封建社会的开始?A. 秦始皇统一六国B. 汉武帝推行郡县制C. 周武王建立西周D. 商汤灭夏答案:A4. 根据题目分析,下列哪个选项是正确的生物分类单位?A. 界B. 门C. 科D. 属答案:A5. 下列哪个选项是正确的地理现象?A. 地球自转导致昼夜更替B. 地球公转导致季节变化C. 月球自转导致潮汐现象D. 太阳活动影响地球气候答案:A6. 根据题目分析,下列哪个选项是正确的数学公式?A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab + b^2答案:A7. 下列哪个选项是正确的英语语法规则?A. 形容词修饰名词B. 副词修饰动词C. 动词修饰形容词D. 名词修饰动词答案:A8. 根据题目分析,下列哪个选项是正确的政治概念?A. 社会主义市场经济B. 资本主义计划经济C. 社会主义计划经济D. 资本主义市场经济答案:A9. 下列哪个选项是正确的计算机操作?A. Ctrl + C 复制B. Ctrl + V 粘贴C. Ctrl + X 剪切D. Ctrl + Z 撤销答案:A10. 根据题目分析,下列哪个选项是正确的文学术语?A. 叙事B. 描写C. 议论D. 说明答案:A二、填空题(每空1分,共10分)1. 根据题目要求,填写下列化学元素的名称:Hg是_______。
答案:汞2. 根据题目要求,填写下列物理公式的名称:P = __________。
山东高二高中数学水平会考带答案解析
山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若,则一定成立的不等式是A.B.C.D.2.等差数列中,若,则等于A.3B.4C.5D.63.在中,a=15,b=10,A=60°,则=A.B.C.D.4.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A.90B.100C.145D.1905.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,等于A. B. C. D.26.不等式的解集为,不等式的解集为,不等式的解集是,那么等于A.-3B.1C.-1D.37.已知两个正数、的等差中项是5,则、的等比中项的最大值为A. 10B. 25 C 50 D. 1008.已知圆的半径为4,为该圆的内接三角形的三边,若,则三角形的面积为A.B.C.D.9.当时,不等式恒成立,则的最大值和最小值分别为A.2,-1B.不存在,2C.2,不存在D.-2,不存在10.已知x、y满足约束条件则目标函数z=(x+1)2+(y-1)2的最大值是A.10B.90C.D.211.已知等比数列满足,且,则当时,A.B.C.D.12.已知方程的四个实根组成以为首项的等差数列,则A.2 C. D.二、填空题1.等差数列的前项和为,若,则2.若关于x的不等式的解集为,则实数a的取值范围是3.设等比数列的公比,前项和为,则4.在中,角的对边分别是,已知,则的形状是三角形.三、解答题1.已知集合,(Ⅰ)当时,求(Ⅱ)若,求实数的取值范围.2.在△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC的面积.3.如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?4.已知点(1,2)是函数的图象上一点,数列的前项和.(Ⅰ)求数列的通项公式(Ⅱ)若,求数列的前项和.5.运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(Ⅰ)求这次行车总费用y关于x的表达式(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值6.已知数列中,,,(Ⅰ)证明数列是等比数列,并求出数列的通项公式(Ⅱ)记,数列的前项和为,求使的的最小值山东高二高中数学水平会考答案及解析一、选择题1.若,则一定成立的不等式是A.B.C.D.【答案】C【解析】本题考查的是不等式的性质。
安徽省合肥市2023-2024学年高二下学期学业水平考试数学模拟卷含答案
普通高中学业水平合格性考试数学(答案在最后)一、选择题:本大题共18小题,每小题3分,满分54分.在每小题给出的四个选项中,只有一项是符合题目要求的1.下列元素与集合的关系中,正确的是()A.*3-∈NB.0∉NC.12∈Z D.R【答案】D 【解析】【分析】由元素与集合的关系即可求解.【详解】由题意*13,0,2-∈∉∉N Z N R .故选:D.2.下列向量关系式中,正确的是()A.MN NM =B.AB AC BC+= C.AB CA BC+= D.MN NP PQ MQ++= 【答案】D 【解析】【分析】由向量加减法的运算规则,验证各选项的结果.【详解】MN NM =-,A 选项错误;BC AC AB=-,B 选项错误;AB CA CA AB CB =+=+,C 选项错误;由向量加法的运算法则,有MN NP PQ MQ ++=,D 选项正确.故选:D.3.已知角α的终边经过点125,1313⎛⎫- ⎪⎝⎭,则tan α=()A.512-B.125-C.1213-D.513【答案】A 【解析】【分析】由三角函数定义即可得解.【详解】由题意5125tan 131312α⎛⎫=÷-=- ⎪⎝⎭.故选:A.4.已知i 为虚数单位,则复数23i i z =-+的虚部为()A.1B.1- C.iD.i-【答案】B 【解析】【分析】由复数四则运算以及虚部的概念即可求解.【详解】由题意2i 3i i 2z =-+=-,所以复数23i i z =-+的虚部为1-.故选:B.5.“21x >”是“1x >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据21x >得到1x >1x <-,从而得到答案.【详解】由21x >,解得1x >或1x <-.所以“21x >”是“1x >”的必要而不充分条件故选:B【点睛】本题主要考查必要不充分条件,同时考查二次不等式的解法,属于简单题.6.已知lg3,lg5x y ==,则用,x y 表示lg45为()A.2xy B.3xyC.2x y+ D.2x y-【答案】C 【解析】【分析】运用对数运算性质计算.【详解】()2lg45lg 53lg 52lg 32x y =⨯=+=+.故选:C.7.已知函数()23f x x x=--,则当0x <时,()f x 有()A .最大值3+ B.最小值3+C.最大值3- D.最小值3-【答案】B 【解析】【分析】由基本不等式即可求解.【详解】由题意当0x <时,()()233f x x x ⎡⎤⎛⎫=+-+-≥+ ⎪⎢⎥⎝⎭⎣⎦,等号成立当且仅当x =.故选:B.8.已知一组样本数据12,,,n x x x 的平均数为3,中位数为4,由这组数据得到新样本数据1y ,2,,n y y ,其中()11,2,3,,i i y x i n =+= ,则12,,,n y y y 的平均数和中位数分别为()A.3,4 B.3,5C.4,4D.4,5【答案】D 【解析】【分析】由平均数的定义及12,,,n x x x 的大小排列顺序与变化后的12,,,n y y y 的大小排列顺序一致,即可求出结果.【详解】由题意知,123n x x x n +++= ,则()()()121211134n n x x x y y y n ny n n n++++++++++==== ,又因为()11,2,3,,i i y x i n =+= ,所以12,,,n x x x 的大小排列顺序与变化后的12,,,n y y y 的大小排列顺序一致,由于12,,,n x x x 的中位数为4,则12,,,n y y y 的中位数为5.故选:D.9.已知函数()()ln 2f x x =-,则下列结论错误的是()A.()30f = B.()f x 的零点为3C.()f x 在()0,∞+上为增函数D.()f x 的定义域为()2,+∞【答案】C 【解析】【分析】由函数()()ln 2f x x =-性质依次判断各选项可得出结果.【详解】()()3ln 32=ln1=0f =-,可知函数()f x 的零点为3,可知A,B 正确;()()ln 2f x x =-中,由20x ->,解得:2x >,故函数的定义域为()2,∞+,且函数在()2,∞+为增函数,故C 错误,D 正确.故选:C10.已知i 为虚数单位,复数z 满足13z ≤≤,则复数z 对应的复平面上的点Z 的集合所表示的图形是()A.正方形面B.一条直线C.圆面D.圆环面【答案】D 【解析】【分析】设i,(,)z a b a b =+∈R ,根据模的定义求出轨迹方程即可得解.【详解】设i,(,)z a b a b =+∈R ,则由13z ≤≤可得13≤≤,即2219a b ≤+≤,所以复数z 对应的点在复平面内表示的图形是圆环面.故选:D.11.已知函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是()A.()f x 的最小正周期为2πB.()f x 的最大值为2C.()f x 的图象关于直线π6x =对称D.()f x 的图象关于坐标原点对称【答案】C 【解析】【分析】根据余弦函数的性质逐一判断即可.【详解】()f x 的最小正周期2ππ2T ==,故A 错误;()f x 的最大值为1,故B 错误;因为πcos 016f ⎛⎫==⎪⎝⎭,所以()f x 的图象关于直线π6x =对称,故C 正确;因为()π10cos 032f ⎛⎫=-=≠ ⎪⎝⎭,所以()f x 的图象不关于坐标原点对称,故D 错误.故选:C .12.某种汽车在水泥路面上的刹车距离(指汽车刹车后,由于惯性往前滑行的距离)S (米)和汽车的刹车前速度x (千米/小时)有如下的关系:211909S x x =-.在一次交通事故中,测得某辆这种汽车的刹车距离为80(米),则这辆汽车在出事故时的速度为()A.90千米/小时B.80千米/小时C.72千米/小时D.70千米/小时【答案】A 【解析】【分析】题意可得,,求解一元二次方程即可.【详解】由题意可得,21180909S x x =-=,化简为21080900x x --⨯=,解得80x =-或90x =,又因为0x ≥,所以90x =.故选:A.13.若π32cos()410α-=,则sin2α=()A.725B.1625C.1625-D.725-【答案】C 【解析】【分析】利用两角差的余弦公式展开,然后平方得到.【详解】由πcos()410α-=得3cos sin 5αα+=,平方得223(cos sin )()5259αα+==,22cos 2sin cos sin 259αααα++=即1sin 2295α+=,得16sin225α=-.故选:C14.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为0.80,乙中靶的概率为0.85,则恰好有一人中靶的概率为()A.0.85B.0.80C.0.70D.0.29【答案】D 【解析】【分析】由对立事件概率、互斥加法以及独立乘法即可求解.【详解】由题意恰好有一人中靶的概率为()()10.800.850.8010.850.170.120.29-⨯+⨯-=+=.故选:D.15.已知函数()log a f x x =与()()0,1xg x aa a =>≠互为反函数.若()ln f x x =的反函数为()g x ,则(2)g =()A.ln 2B.e2 C.2e D.2【答案】C 【解析】【分析】根据题意,得到()x g x e =,代入2x =,即可求解.【详解】由函数()log a f x x =与()()0,1xg x aa a =>≠互为反函数,若()ln f x x =的反函数为()x g x e =,则2(2)e g =.故选:C.16.已知4,a e = 为单位向量,它们的夹角为2π3,则向量a 在向量e 上的投影向量为()A.2eB.2e -C.D.-【答案】B 【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在向量e 上的投影向量为222π41cos 321a e e a e e e e ee e⨯⨯⋅⋅⋅===-;故选:B17.从1,2,3,4,5中任取2个数,设事件A =“2个数都为偶数”,B =“2个数都为奇数”,C =“至少1个数为奇数”,D =“至多1个数为奇数”,则下列结论正确的是()A.A 与B 是互斥事件B.A 与C 是互斥但不对立事件C.B 与D 是互斥但不对立事件D.C 与D 是对立事件【答案】A 【解析】【分析】根据互斥事件和对立事件的定义判断.【详解】根据题意()()()()()()()()()(){}Ω1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5,=(){}()()(){}2,4,1,3,1,5,3,5,A B ==()()()()()()()()(){}1,2,1,3,1,4,1,5,2,3,2,5,3,4,3,5,4,5,C =,()()()()()()(){}1,2,1,4,3,2,3,4,2,5,4,5,2,4,D =则A B ⋂=∅,所以A 与B 是互斥事件,A 正确;,A C A C =∅=Ω ,所以A 与C 是互斥且对立事件,B 错误;,B D B D =∅=Ω ,所以B 与D 是互斥且对立事件,C 错误;()()()()()(){}1,2,1,4,3,2,3,4,2,5,4,5,C D ⋂=所以C 与D 不是对立事件,D 错误.故选:A.18.在三棱锥-P ABC 中,PO ⊥平面ABC ,垂足为O ,且PA PB PC ==,则点O 一定是ABC 的()A.内心B.外心C.重心D.垂心【答案】B 【解析】【分析】根据题意,结合勾股定理,求得OA OB OC ==,即可求得答案.【详解】如图所示,分别连接,,OA OB OC ,因为PO ⊥平面ABC ,可得,,PO OA PO OB PO OC⊥⊥⊥又因为PA PB PC ==,利用勾股定理,可得OA OB OC ==,所以点O 一定是ABC 的外心.故选:B.二、填空题:本大题共4小题,每小题4分,共16分.19.设集合{}()(){}1,2,3,4,140A B x x x ==--=,则A B =ð____________.【答案】{}2,3##{}3,2【解析】【分析】根据补集的定义即可得解.【详解】()(){}{}1401,4B x x x =--==,则{}2,3A B =ð.故答案为:{}2,3.20.设函数()f x 是定义域为R 的奇函数,且()()2f x f x +=,则()4f =____________.【答案】0【解析】【分析】由函数为奇函数可得()00f =,再根据函数的周期性即可得解.【详解】因为函数()f x 是定义域为R 的奇函数,所以()00f =,因为()()2f x f x +=,所以函数()f x 是以2为周期的周期函数,所以()()400f f ==.故答案为:0.21.已知,a b 是两个不共线的向量,若,AB a b AC a b λ=+=-,且AC AB μ=,则λ=____________.【答案】1-【解析】【分析】由平面向量基本定理列出方程组,1μλμ==-即可求解.【详解】由题意()AC a b AB a b a b λμμμμ=-=++== ,且,a b是两个不共线的向量,所以,1μλμ==-,所以1λ=-.故答案为:1-.22.已知ABC 内角A,B,C 的对边分别为a,b,c,设其面积为S,若)2224S b c a =+-,则角A 等于______.【答案】60 【解析】【分析】由已知利用三角形面积公式,同角三角函数基本关系式及余弦定理化简tan A =,结合A 的范A 的值.【详解】由题意,因为)2224S b c a =+-,所以14sin 2cos 2bc A bc A ⋅=,即tan A =,又由000180A <<,所以060A =,故答案为060【点睛】本题主要考查了三角形面积公式,同角三角函数基本关系式及余弦定理,特殊角的三角函数值在解三角形中的综合应用,其中解答中熟记正、余弦定理和三角形的面积公式,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:本大题共3小题,每题10分,满分30分.解答应写出文字说明、证明过程或演算步骤.23.从甲、乙两班某次学业水平模拟考试成绩中各随机抽取8位同学的数学成绩.甲班:78,69,86,58,85,97,85,98乙班:66,78,56,86,79,95,89,99规定考试成绩大于或等于60分为合格.(1)求甲班这8位同学数学成绩的极差,并估计甲班本次数学考试的合格率;(2)估计乙班本次考试数学成绩的平均分,并计算乙班这8名同学数学成绩的方差.【答案】(1)极差为40;87.5%;(2)平均分为81分;方差184.【解析】【分析】(1)根据极差定义计算可得结果,由成绩可知这8名同学中有7人合格,可得合格率为87.5%;(2)根据平均数以及方差的定义计算可得平均分为81分,方差为184.【小问1详解】甲班这8位同学数学成绩的极差为985840-=;因为甲班这8名同学中合格的有7人,所以可以估计甲班本次数学考试的合格率为787.5%8=;【小问2详解】因为乙班这8名同学的数学平均分为5666787986899599818+++++++=,所以可以估计乙班本次考试数学成绩的平均分为81分;乙班这8名同学本次考试数学成绩的方差为2222222221(5681)(6681)(7881)(7981)(8681)(8981)(9581)(9981)8s ⎡⎤=-+-+-+-+-+-+-+-⎣⎦14721848==.24.如图,四棱锥1D ABCD -的底面ABCD 是边长为3的正方形,E 为侧棱1D D 的中点.(1)证明:1//BD 平面ACE ;(2)若1D D ⊥底面ABCD ,且14D D =,求四棱锥1D ABCD -的表面积.【答案】(1)证明见解析(2)36.【解析】【分析】(1)利用直线与平面平行的判定定理容易证出;(2)容易推导出四个侧面都是直角三角形,进而1D ABCD -表面积可求.【小问1详解】如下图,连接BD ,设BD 与AC 相交与点M ,连接EM .因为底面ABCD 是边长为3的正方形,所以M 为BD 中点,又因为E 为侧棱1D D 的中点,所以1//BD EM ,又1BD ⊄平面ACE ,EM ⊂平面ACE ,所以1//BD 平面ACE .【小问2详解】因为1D D ⊥底面ABCD ,AB ⊂平面ABCD ,所以1D D AB ⊥,又AB AD ⊥,11,,DD AD D DD AD ⋂=⊂平面1D AD ,所以AB ⊥平面1D AD ,而1AD ⊂平面1D AD ,所以1AB AD ⊥,同理可证1BC CD ⊥,所以1111,,,D AD D AB D BC D CD △△△△均为直角三角形,则四棱锥1D ABCD -的表面积为()111112S D D AD D D CD D A AB D C BC AB CB =⨯+⨯+⨯+⨯+⨯()212342353362=⨯⨯+⨯⨯+=,所以四棱锥1D ABCD -的表面积为36.25.如图,OABC 为正方形,()()2,0,0,2A C ,点()()2cos ,2sin P θθθ++∈R 为直角坐标平面内的一点,M 为线段AB 的中点,设()f PO PM θ=⋅ .(1)求点B 的坐标;(2)求()fθ的表达式;(3)当()f θ取最大值时,求sin θ的值.【答案】(1)()2,2;(2)()33sin 2cos f θθθ=++;(3)313sin 13θ=.【解析】【分析】(1)由OA CB = 和向量的坐标运算可解;(2)由数量积的坐标运算求解;(3)化简()f θ得()()13sin 3f θθϕ=++,由正弦函数最值求解.【小问1详解】设(),B x y ,因为ABCD 为正方形,所以OA CB = ,又()()2,0,,2OA CB x y ==- ,所以2,2x y ==,所以点B 的坐标为()2,2;【小问2详解】因为M 为线段AB 的中点,所以()2,1M ,因为()()2cos ,2sin ,cos ,1sin PO PM θθθθ=----=--- ,所以()()()()2cos cos 2sin 1sin 33sin 2cos PO PM θθθθθθ⋅=---+----=++ ,所以()33sin 2cos f θθθ=++;【小问3详解】因为()()33sin 2cos 3f θθθθϕ=++=++,其中sinϕϕ==所以当()π2π2k k θϕ+=+∈Z ,即π2π2k θϕ=+-时,()f θ有最大值3+,此时πsin sin 2πcos 213k θϕϕ⎛⎫=+-== ⎪⎝⎭,故当()f θ取最大值3+313sin 13θ=.。
山东高二水平数学会考试卷及答案解析
山东高二水平数学会考试卷及答案解析:___________ ___________ ___________ 班级姓名:分数:题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题条件,条件,则是的().1.p q.充分不必要条件.必要不充分条件充要条件.既不充分又不必要条件A B D【答案】A【解析】,,试题分析:的充分不必要条件.考点:四种条件的判定.已知等差数列的前项和为,满足2.n()A.B.C.D.【答案】D【解析】,又.试题分析:,所以,那么n考点:等差数列的前项和.3.x=0下列函数中,在处的导数不等于零的是().D.A.B.C y=【答案】A【解析】x=01,试题分析:因为,,所以,,所以,在处的导数为故选A。
考点:导数计算。
点评:简单题,利用导数公式加以验证。
4.设,若,则等于()A.e2B.e C.D.ln2【答案】B【解析】试题分析:因为,所以所以,解得考点:本小题主要考查函数的导数计算.点评:导数计算主要依据是导数的四则运算法则,其中乘法和除法运算比较麻烦,要套准公式,仔细计算.5.曲线的直角坐标方程为()A.B.C.D.【答案】B【解析】试题分析:化为考点:极坐标方程点评:极坐标与直角坐标的关系为6.是虚数单位,复数( )A.B.C.D.【答案】A【解析】试题分析:考点:复数运算点评:复数运算中7.关于直线与平面,有下列四个命题:①若,且,则;②若且,则;③若且,则;④若,且,则.其中真命题的序号是()A.①②B.③④C.①④D.②③【答案】D【解析】试题分析:直线m//平面α,直线n//平面β,当α∥β时,直线m,n有可能平行,也有可能异面,所以①不正确;∵,α⊥β,所以,故②正确;据此结合选项知选D.考点:本题主要考查空间直线与平面的位置关系。
点评:熟练掌握空间直线与平面之间各种关系的几何特征是解答本题的关键。
云南高中会考数学试题及答案.doc
2015云南高中会考数学试题及答案选择题(共51分)一、选择题:本大题共17个小题,每小题3分,共51分。
1.已知集合A.{2,5} B.{1,3,4,6} C.{1,4} D.{2,3,5}2.某几何体的正视图与侧视图都是边长为1的正方形,且体积为1,则该几何体的俯视图可以是5.要得到函数的图象,只需将函数的图象6.已知一个算法的流程图如右图所示,则输出的结果是A.3B.11C.43 D.1717.样本数据:2,4,6,8,10的标准差为A.40B.8C. D.8.将一枚质地均匀的骰子抛掷1次,出现的点数为偶数的概率是9.在矩形ABCD中,A.2 B.3C.D.410.在中,A,B,C所对的边长分别是11.如图,在中,D是AB边上的点,且,连结CD。
现随机丢一粒豆子在内,则它落在阴影部分的概率是12.已知数列则这个数列的第四项是13.若函数存在零点,则实数a的取值范围是14.下列直线方程中,不是圆的切线方程的是15.已知函数的奇偶性为A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数16.设,则下列不等式中正确的是17.若正数的取值范围是非选择题(共49分)二、填空题:本大题共5个小题,每小题4分,共20分。
18.19.某校学生高一年级有600人,高二年级有400人,高三年级有200人,现采用分层抽样的方法从这三个年级中抽取学生54人,则从高二年级抽取的学生人数为人。
20.若实数x,y满足约束条件的最小值是。
21.已知某个样本数据的茎叶图如下,则该样本数据的平均数是。
三、解答题:本大题共4个小题,第23、24、25各7分,第26题8分,共29分。
23.已知函数(1)求函数的最小正周期及函数取最小值时x的取值集合;(2)画出函数在区间上的简图。
24.如图,正方体ABCD—A1B1C1D1中,E为DD1的中点。
(1)证明:(2)证明:25.已知圆为坐标原点。
(1)求过圆C的圆心且与直线l垂直的直线m的方程;(2)若直线l与圆C相交于M、N两点,且,求实数a的值。
福建省普通高中2020-2021学年高二学业水平合格性考试(会考)数学试题
A. B.
C. D.
4.若三个数1,2,m成等比数列,则实数 ()
A.8B.4C.3D.2
5.一组数据3,4,5,6,7的中位数是()
A.7B.6C.5D.4
6.函数 的最小值是()
A. B. C.1D.2
7.直径为2的球的表面积是()
故选:D.
【点睛】
本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查推理与运算能力.
12.D
【分析】
观察图形,结合单调性的定义可以得到选项.
【详解】
解:由图形可知:
A:在 上单调递减,所以不正确;
B:在 上单调递增,在 上单调递增,但是在定义域上不单调,所以不真确;
C:在 上单调递减,在 上单调递增,不正确;
D:在 上单调递增,正确;
故选:D
【点睛】
本题考查由图形确定函数的单调性,属于基础题.
13.B
【分析】
画出不等式组 表示的平面区域,根据其形状代入面积公式求解.
【详解】
不等式组 表示的平面区域如图所示阴影部分:
所以 ,
故选:B
【点睛】
本题主要考查不等式组与平面区域及其面积的求法,还考查了数形结合的思想方法,属于基础题.
20.设 的三个内角A,B,C所对的边分别为a,b,c,若 ,则 ________.
三、解答题
21.已知 , 是第一象限角.
(Ⅰ)求 的值;
(Ⅱ)求 的值.
22.甲、乙两人玩投掷骰子游戏,规定每人每次投掷6枚骰子,将掷得的点数和记为该次成绩.进行6轮投掷后,两人的成绩用茎叶图表示,如图.
福建省福州延安中学2022-2023学年高二下学期会考第二次模拟考试数学试题
D.
f
(x)
=
æ çè
1 2
öx ÷ø
,
g
(x)
=
1
x2
15.已知函数
f
(
x)
=
ìï(x +1)2,
í ïî
lgx ,
x £ 0, 若函数 g ( x) = f ( x) - b 有四个不同的零点,则实
x > 0,
数 b 的取值范围为( )
A. ( 0,1]
B.[0,1]
C. (0,1)
D. (1, +¥)
|
x
¹
0} ,所以不是同一
函数.
B 选项, f ( x) = 2 lg x 的定义域是{x | x > 0} , g ( x) = lg x2 的定义域是{x | x ¹ 0} ,所以不是
同一函数.
C 选项, g ( x) = x2 = x = f ( x) ,两个函数定义域、值域、对应关系完全相同,是同一函
对于
C
中,
a b
-1
=
a
b
b
>
0
,故
a b
>1
,所以是正确的;
对于 D 中, a2 - b2 = (a + b)(a - b) > 0 ,则 a2 > b2 ,所以不正确. 故选:C. 6.A 【分析】根据函数的分段点代入求值.
【详解】 f (2) = log3 2 ,因为 log3 2 < log3 3 = 1,所以 f ( f (2)) = 3log3 2 = 2 . 故选:A. 7.A
【详解】设底面半径为
r,侧面展开是半圆,圆心角为
北师大版高二数学选修23测试题及答案
高二数学(选修 2-3 )一、 (本大 共12 小 ,每小 5 分,共 60 分;每小 所 的四个中只有一个 切合 意)1.在 100 件 品中,有 3 件是次品, 从中随意抽取5 件,此中起码有 2 件次品的取法种数( )A . C 32 C 973 B. C 32C 973 + C 33C 972 C . C 1005 - C 13C 974 D . C 1005 - C 9752. C 22 C 32 C 42 LC 102 等于()A .990B.165C.120D. 552303.二 式a 的睁开式的常数 第()3aA . 17B.18C .19D . 204. ( x 21)(2 x 1)9 a 0a 1 ( x 2) a 2 ( x 2) 2 La 11( x 2)11 ,则a 0 a 1 a 2 L a 11 的值为()A . 2B . 1C .1D . 25.从 6 名学生中, 出 4 人分 从事 A 、 B 、 C 、 D 四 不一样的工作,若此中, 甲、乙两人不可以从事工作A , 不一样的 派方案共有( )A .96 种B .180 种C .240 种D .280 种6. 随机 量听从 B (6, 1), P ( =3)的 是()A .5B .32.5.3CD1616887.在某一 中事件 A 出 的概率p , 在 n 次 中 A 出 k 次的概率()A .1- p kB . 1 p k p n k - 1 p k D .C n k 1 p kp n k8.从 1,2,⋯⋯, 9 九个数中,随机抽取3 个不一样的数,3 个数的和偶数的概率是()A.5B.4C.11D.10 9921219.随机变量听从二项散布~ B n, p ,且 E300, D200, 则p等于()A. 2B.1C. 1D. 0 3310.某观察团对全国 10 大城市进行员工人均均匀薪资x 与居民人均花费y进行统计检查 ,y 与x拥有有关关系 , 回归方程y? 1.562 (单位:千元),若某城市居民花费水平为 , 预计该城市花费额占人均薪资收入的百分比为()A. 66%B. %C. %D. 83%111.设随机变量 X ~N(2,4),则 D(X)的值等于 ()2C.1212.设回归直线方程为y,则变量x 增添一个单位时,()?A . y 均匀增添个单位 B.y 均匀增添 2 个单位C . y 均匀减少个单位 D.y 均匀减少 2 个单位二、填空题(本大题共 6 小题,每题 5 分,共 30 分。
江苏高二水平数学会考试卷及答案解析
江苏高二水平数学会考试卷及答案解析班级姓名:分数::___________ ___________ ___________题号一 二 三 总分 得分注意事项:1 .答题前填写好自己的姓名、班级、考号等信息2 .请将答案正确填写在答题卡上评卷人 得分一、选择题1.a b R a b 已知,∈,下列四个条件中,使<成立的必要而不充分的条件是()A |a||b|.< B 2.a <2bC a b 1.<D a b+1.<【答案】D 【解析】试题分析::“<<<<a b ”不能推出“|a||b|”,“|a||b|”也不能推出“a b ”,故选项 A a b是“<”的既不充分也不必要条件;“<a b ”能推出“2a<2b”,“2a<2b”也能推出“”,故选项是“”的充要条a b <B a b <件;“<<<<<a b ”不能推出“a b 1”,“a b 1”能推出“a b ”,故选项C 是“a b ”的充分不必要条件;“<<<<<a b ”能推出“a b+1”,“a b+1”不能推出“a b ”,故选项D 是“a b ”的必要不充分条件; 故选:D.考点:必要条件、充分条件与充要条件的判断.2.64,已知的展开式中,奇数项的二项式系数之和是,则的展开式中的系数是( )A 280. B 280. C 672. D 672.【答案】A 【解析】试题分析:因为的展开式中,奇数项的二项式系数之和是,在二项展开式中,奇数64 项的二项式系数之和与偶数项系数之和相等。
所以,,n=7 ,其展开式中的项是,系数为280. 考点:本题主要考查二项式系数的性质,二项式定理。
点评:中档题,在二项展开式中,奇数项的二项式系数之和与偶数项系数之和相等。
对计算能力要求较高。
3.已知数列{ an }的通项公式为an =2n(n N*),把数列{an}的各项排列成如图所示的三角形数阵:记M(s,t)表示该数阵中第s行的第t个数,则数阵中的偶数2 010对应于()A.M(45,15)B.M(45,25)C.M(46,16)D.M(46,25)【答案】A【解析】试题分析:由数阵的排列规律知,数阵中的前n行共有,当n=44时,共有990项,又数阵中的偶数2 010是数列{an }的第1 005项,且+15="1" 005,因此2010是数阵中第45行的第15个数故选A考点:数列的通项公式点评:解决的关键是对于数阵的数字规律能结合等差数列的通项公式和求和来得到,属于基础题。
11-12学年高二数学水平测试精练(23).pdf
数学基础知识复习 数学水平测试精练 (23) 高考学习网 1.在复平面内,复数对应的点位于 ( )A.第一象限B.第二象限C.第三象限D.第四象限 2.已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于( )A.{x|x<-2}B.{x|x>3}C.{x|-1<x<2}D.{x|2<x<3} 3.根据右边程序框图,当输入10时,输出的是( ) A.14.1 B.19 C.12 D.-30 4.下列四个命题中真命题是 ①“若xy=1,则x、y互为倒数”的逆命题 ②“面积相等的三角形全等”的否命题 ③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题 ④“若A∩B=B,则AB”的逆否命题( )A.①②B.②③C.①②③D.③④ 5.在△ABC中,“A>B”是“cosA<cosB”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.设集合A=R,集合B=正实数集,则从集合A到集合B的映射f只可能是( )A.f:x→y=|x|B.f:x→y=C.f:x→y=3-xD.f:x→y=log2(1+|x|) 7.某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x(x∈N)的关系为y=-x2+12x-25,则每辆客车营运______________年可使其营运年平均利润最大.A.2B.4C.5D.6 8.已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是( )A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>25 9.下列函数中值域为正实数的是( )A.y=-5xB.y=()1-xC.y=D.y=10、类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列 哪些性质,你认为比较恰当的是( )。
①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形, 相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两 条棱的夹角都相等。
人教版数学高二专题训练第二十三套(立体几何)
第二十三套一、选择题.1、已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则 此几何体的外接球的表面积为(C )A .π34B .π38C .π316D .π3322、用单位立方块搭一个几何体,使它的主视图和俯视图 如右图所示,则它的体积的最小值与最大值分别为( C ) A .9与13 B .7与10 C .10与16 D .10与153、已知直线l 、m ,平面βα、,则下列命题中是假命题的是 ( C ) A .若βα//,α⊂l ,则β//l ; B .若βα//,α⊥l ,则β⊥l ;C .若α//l ,α⊂m ,则m l //;D .若βα⊥,l =⋂βα,α⊂m ,l m ⊥,则β⊥m 4、设α、β、r 是互不重合的平面,m ,n 是互不重合的直线,给出四个命题: ①若m ⊥α,m ⊥β,则α∥β ②若α⊥r ,β⊥r ,则α∥β③若m ⊥α,m ∥β,则α⊥β ④若m ∥α,n ⊥α,则m ⊥n 。
其中真命题的个数是( C ) A. 1 B. 2 C. 3 D. 4 提示:①③④为真。
5、下图是一个空间几何体的三视图,根据图中尺寸(单位:cm ),可知几何体的表面积是( A )2cmA.18+B.C.18D.6+提示:是正三棱柱。
二、填空题.6、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为_14π_____提示:球心与长方体的中心重合,直径等于对角线长14,表面积为ππ14)214(42=。
主视图 俯视图2222俯视图侧视图正视图337、半径为R 的半圆卷成一个圆锥,则它的体积为_3243R π_______. 提示:圆锥底面半径为,2R高为R 23,体积为3224323)2(31R R R V ==π。
三、解答题.8、如图,已知四棱锥P ABCD -的底面ABCD 是菱形,PA ⊥平面ABCD , 点F 为PC 的中点。