高中平面解析几何知识点总结(直线、圆、椭圆、曲线)
高中数学中的解析几何知识点总结
高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,主要研究几何图形在坐标系中的性质和关系。
在高中数学中,解析几何是一个重要的学习内容。
本文将对高中数学中的解析几何知识点进行总结,帮助读者更好地理解和掌握相关知识。
一、平面直角坐标系平面直角坐标系是解析几何的基础,用来描述平面上的点和直线。
平面直角坐标系由x轴和y轴组成,它们相交于原点O。
在平面直角坐标系中,每个点都可以用有序数对(x, y)表示,其中x是该点在x轴上的坐标,y是该点在y轴上的坐标。
二、点的位置关系在平面直角坐标系中,可以根据点的坐标确定其位置关系。
1. 同一直线上的点:设A(x₁, y₁)、B(x₂, y₂)和C(x₃, y₃)是平面直角坐标系中的三个点,如果它们满足斜率相等的条件,即 (y₂ - y₁) / (x₂ - x₁) = (y₃ - y₁) / (x₃ - x₁)那么点A、B和C在同一直线上。
2. 垂直关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率互为负倒数,即(y₂ - y₁) / (x₂ - x₁) = -1 / ((y₄ - y₃) / (x₄ - x₃))那么直线AB和CD垂直。
3. 平行关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率相等,即(y₂ - y₁) / (x₂ - x₁) = (y₄ - y₃) / (x₄ - x₃)那么直线AB和CD平行。
三、直线的方程在解析几何中,直线可以用不同的形式表示其方程。
常见的有点斜式、斜截式和一般式。
1. 点斜式:设直线L过坐标系中的点A(x₁, y₁)且斜率为k,那么直线L的点斜式方程为y - y₁ = k(x - x₁)2. 斜截式:设直线L与y轴相交于点B,且直线L的斜率为k,那么直线L的斜截式方程为y = kx + b3. 一般式:设直线L的方程为Ax + By + C = 0,其中A、B、C为常数且A和B不同时为0,那么该直线L的一般式方程为Ax + By + C = 0四、直线的性质在解析几何中,对于两条直线的位置关系,有以下几个重要的性质。
高中平面解析几何知识点总结
高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:⎪⎩⎪⎨⎧+=+===--tn b y tn a x tn b y na x 2121则有令:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:⎪⎪⎩⎪⎪⎨⎧+=+=+====---t n c z t n b y t n a x t nc z nb y na x 321321则有令:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
高中数学平面解析几何知识点总结
平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。
平面解析几何中的曲线方程
平面解析几何中的曲线方程在平面解析几何中,曲线方程是研究曲线形状的重要工具。
通过曲线方程,我们可以了解曲线的特性、性质以及与其他曲线的关系。
本文将介绍平面解析几何中常见的曲线方程及其应用。
一、直线的方程直线是最简单的曲线形式,其方程通常用一次函数表示。
直线的一般方程为:Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
该方程也可以写成斜截式方程y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
二、圆的方程圆是由平面上到一定距离的点构成的曲线。
圆的方程为:(x-a)² +(y-b)² = r²,其中(a, b)为圆心的坐标,r为半径。
三、椭圆的方程椭圆是平面上到两个定点之间的距离之和为常数的点构成的曲线。
椭圆的标准方程为:(x/a)² + (y/b)² = 1,其中a为横轴的半轴长,b为纵轴的半轴长。
四、双曲线的方程双曲线是平面上到两个定点之间的距离之差为常数的点构成的曲线。
双曲线的标准方程有两种形式:(x/a)² - (y/b)² = 1和(y/a)² - (x/b)² = 1,其中a和b分别为双曲线的半轴长。
五、抛物线的方程抛物线是平面上到定点与定直线的距离相等的点构成的曲线。
抛物线的标准方程为:y = ax² + bx + c,其中a、b、c为常数,a ≠ 0。
六、曲线方程的应用曲线方程在数学和工程学中有着广泛的应用。
在几何学中,曲线方程可以帮助我们确定曲线的形状、位置以及与其他曲线的关系。
在物理学中,曲线方程可以描述物体的运动轨迹,帮助我们研究运动规律。
在工程学中,曲线方程可以用于设计建筑物、绘制道路、计算轨迹等。
总结:平面解析几何中的曲线方程是研究曲线形状的重要工具,包括直线、圆、椭圆、双曲线和抛物线等。
通过曲线方程,我们可以了解曲线的特性、性质以及与其他曲线的关系。
高中数学解析几何知识点总结
高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。
平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。
在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。
1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。
常见的坐标系有直角坐标系和极坐标系两种。
直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。
平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。
例如,点A(x,y)表示了点A在坐标系中的位置。
极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。
在极坐标系中,点的坐标表示为(r,θ)。
2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。
当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。
另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。
3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。
在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。
4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。
这些曲线都有各自的方程形式,在解析几何中有着重要的应用。
5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。
高中数学平面解析几何知识点总结
高中数学平面解析几何知识点总结归纳目录第一部分直线与方程知识点总结第二部分圆与方程知识点总结第三部分圆锥曲线知识点总结1.椭圆知识点总结2.双曲线知识点总结3.抛物线知识点总结第一部分直线与方程知识点总结一、直线的方程1、倾斜角定义:直线与x轴正方向所成的角α,α∈[0,π)。
2、倾斜角的斜率:k=tanx(x≠90°),tan是sin比cos。
(1)过点P1(X1,Y1),和点P2(X2,Y2)的直线斜率公式:k=(y2-y1)÷(X2-X1)。
(2)已知直线的一般方程式Ax+By+C=0,则斜率k=-A÷B(B≠0)。
3、直线方程的几种形式斜截式:y=kx+b一般方程式:Ax+By+C=0点斜式:y-y₀=k(x-x0), 不能表示平行于y轴的直线截距式:x/a+y/b=1(a≠0且b≠0),不能表示过原点的直线两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)二、直线的特殊位置关系(以斜截式:y=kx+b举例)直线L1与L2垂直,k1×k2=-1直线L1与L2平行,k1=k2,b1≠b2(垂直和平行这两种情况重点记)直线L1与L2重合,k1=k2,b1=b2直线L1与L2相交,k1≠k2三、点与直线的公式1.中点公式:中点坐标的横坐标=(x1+x2)/ 2,纵坐标=(y1+y2)/ 2。
2.两点之间的距离公式:d = √[(x2 - x1)² + (y2 - y1)²]3.点到直线Ax+By+C=0的距离d公式:4.两条平行直线间的距离公式:若两直线分别为Ax+By+C1=0和Ax+By+C2=0,则距离为|C1-C2|/√ (A²+B²)。
第二部分圆与方程知识点总结一、圆的三种方程(1)圆的标准方程公式:(x-a)²+(y-b)²=r²,圆心:(a,b),半径:r。
平面解析几何初步
平面解析几何初步解析几何是几何学和代数学的交叉领域,它研究平面内的点、线、圆等形状及其相互关系,利用代数方法进行分析和计算。
在平面解析几何中,我们将重点讨论直线、圆和二次曲线及其性质。
本文将介绍平面解析几何的基本概念和常见问题,以及一些解题技巧。
一、直线的方程在平面解析几何中,直线是最基本的几何元素之一。
一条直线可以由其上的两个点确定,我们可以通过计算斜率和截距来表示直线的方程。
直线的方程有多种形式,常见的有点斜式和截距式。
1. 点斜式方程点斜式方程形如 y-y₁ = k(x-x₁),其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。
通过给定一点和斜率,我们可以轻松写出直线的方程。
例如,已知直线上的点 A(2,3) 和斜率 k=2,我们可以得到直线的点斜式方程为 y-3=2(x-2)。
点斜式方程的优点在于直接给出了直线的一般形式,但不适用于垂直于 x 轴的直线。
对于垂直于 x 轴的直线,我们可以使用斜截式。
2. 截距式方程斜截式方程形如 y=mx+b,其中 m 是直线的斜率,b 是直线在 y 轴上的截距。
斜截式方程适用于所有类型的直线,包括垂直于 x 轴的直线。
例如,有一条直线经过点 B(3,4) 且斜率为 1/2,我们可以得到直线的斜截式方程为 y=(1/2)x+2。
二、圆的方程圆是解析几何中的另一个重要概念,它由平面上与固定点的距离等于常数的点构成。
在平面解析几何中,圆的方程一般形式为 (x-a)² + (y-b)² = r²,其中 (a,b) 是圆的圆心坐标,r 是圆的半径。
根据圆的方程,我们可以计算圆心和半径,以及圆上的点。
例如,对于方程 (x-2)² + (y+3)² = 9,我们可以得到圆的圆心坐标为 (2,-3),半径为 3。
利用这些信息,我们可以描绘出圆的几何形状。
三、二次曲线的方程除了直线和圆,二次曲线也是平面解析几何中的重要对象。
高中平面解析几何知识点总结 (1)
高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
高中数学平面解析几何知识点归纳
高中数学平面解析几何知识点归纳高中数学中的平面解析几何知识点,是一个非常重要的数学分支,它是几何学和代数学的结合体,通过坐标系将几何图形与数学函数相联系,以此研究代数与几何的关系。
本文将对高中数学平面解析几何知识点进行归纳和整理。
1. 坐标系坐标系是平面解析几何的基础,无论是平面上的直线、圆、抛物线还是双曲线,都必须通过坐标系进行描述和计算。
坐标系分为直角坐标系和极坐标系两种,其中直角坐标系是更为常见和普遍的。
直角坐标系是按照某一条直线切分的,其中直线被称为坐标轴。
通常我们会使用x轴和y轴作为坐标轴,而每个点的坐标可以表示为(x,y)的形式。
其中,x轴表示横坐标,用x表示;y轴表示纵坐标,用y表示。
在平面直角坐标系中,点(x,y)表示平面中一点到x轴和y轴的距离分别为x和y的点。
2. 直线直线是平面解析几何中最常见的几何图形,它可以用一系列数学公式来表示。
对于直线L,我们可以通过它在x和y轴的截距来表示,设它在x轴上的截距为a,在y轴上的截距为b,则可以表示为y=kx+b。
此外,直线的倾斜角也可以用直线斜率来表示,斜率即为直线L上任意一点的纵坐标与横坐标的比值,也就是k=y/x。
另外,如果知道直线上的一点以及直线的斜率,则可以使用点斜式来表示直线公式,即y-y1=k(x-x1)。
3. 圆圆是平面解析几何中的第二个重要几何图形,它的公式可以表示为(x-a)²+(y-b)²=r²。
其中,a、b为圆心的坐标,r为圆的半径。
除了这种基本的标准式之外,还有其他的几个公式表示圆。
例如,要表示以坐标轴上的点为圆心的圆,则可以使用扩展式,如(x-a)(x+b)+(y-c)(y+d)=r²。
4. 双曲线双曲线也是平面解析几何中的重要几何图形,它的公式可以表示为(x/a)²-(y/b)²=1。
其中,a和b为常数,双曲线交x轴与y轴分别在两个点上,这两个点分别是左、右两个焦点。
高中数学中的解析几何知识点总结
高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,它研究了几何图形在坐标系中的性质和变换规律。
在高中数学学习中,解析几何是一个重要的内容模块。
本文将对高中数学中的解析几何知识点做一总结。
一、直线的方程1.点斜式方程:已知直线上一点P(x1, y1)及其斜率k的情况下,直线的方程可以写为y-y1=k(x-x1)。
2.两点式方程:已知直线上两点P(x1, y1)和Q(x2, y2)的情况下,直线的方程可以写为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
3.斜截式方程:已知直线与y轴的交点为截距b,斜率为k的情况下,直线的方程可以写为y=kx+b。
二、平面坐标系1.点的坐标:平面坐标系中,一个点的位置可以由其横坐标x和纵坐标y确定。
2.距离公式:平面上两个点的距离可以通过距离公式d=sqrt((x2-x1)²+(y2-y1)²)计算得出。
3.中点公式:平面上两个点的中点坐标可以通过中点公式M((x1+x2)/2, (y1+y2)/2)计算得出。
三、直线的性质1.平行与垂直:两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。
2.直线的倾斜角:直线与x轴的倾斜角可以通过斜率的反正切得到。
3.直线的截距:直线与坐标轴的交点称为截距,x轴截距即为直线与x轴的交点的横坐标,y轴截距即为直线与y轴的交点的纵坐标。
四、圆的方程1.标准形式方程:圆的标准方程可以写为(x-a)²+(y-b)²=r²,其中(a, b)为圆心的坐标,r为半径。
2.一般形式方程:圆的一般形式方程可以写为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
五、直线与圆的位置关系1.相切:当直线与圆只有一个交点,且此交点处的切线斜率存在时,直线与圆相切。
2.相离:当直线与圆没有交点时,直线与圆相离。
3.相交:当直线与圆有两个交点时,直线与圆相交。
高中数学解析几何总结非常全
高中数学解析几何总结非常全解析几何是数学中一个非常重要的分支,它凭借着坐标系的引入和解析法的运用,把几何图形的特征用精确的数学语言描述。
本篇文章主要围绕高中数学解析几何的知识点进行总结,旨在帮助读者更好的掌握该学科。
一、平面直角坐标系平面直角坐标系指由二维直角坐标系(x,y) 和坐标平面上给定的一个原点(O) 共同构成的平面。
坐标系的基础知识对解析几何的学习至关重要,因此我们需要掌握如下概念:1. 笛卡尔坐标系平面直角坐标系又称为笛卡尔坐标系,是二维空间中的一种坐标系。
该坐标系中,平面上的任意一点P的坐标(x,y) 是由P点在x轴、y轴上的投影所确定的。
2. 坐标轴平面直角坐标系中的两条坐标轴分别是x轴和y轴,它们相交于坐标系的原点O。
3. 坐标变化在平面直角坐标系中,任意一点P(x,y) 关于x轴、y轴、原点O的对称点分别是P'(x,-y)、P'(-x,y) 和P'(-x,-y)。
二、直线及其方程解析几何中的直线是平面上的一种基本几何元素,由于它们的性质非常重要,因此直线及其方程的知识点也是解析几何中的核心内容。
我们需要掌握以下知识点:1. 直线的方程直线的一般式和斜截式是解析几何中最为常用的两种方程。
(1)直线的一般式:Ax+By+C=0在直线的一般式中,A、B、C 均为实数,其中 A 和 B 不同时为零。
(2)直线的斜截式:y=kx+b在直线的斜截式中,k 为直线的斜率,即斜线的倾斜程度。
斜率为0的直线是水平线,斜率为正数的直线是上升的,斜率为负数的直线是下降的。
2. 直线的截距式直线的截距式比较简单,它是指直线在x、y轴上截距所组成的一种方程形式,可以用来求解直线的截距。
3. 直线之间的关系直线之间的关系有平行、垂直等多种情况,我们需要掌握这些关系的性质和求解方法。
三、圆与圆的方程圆是解析几何中的另一个重要几何元素,它可以用一个点和一个距离来描述。
在本篇文章中,我们需要掌握以下知识点:1. 圆的一般式圆的一般式为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为圆的半径。
平面解析几何基础知识
平面解析几何基础知识平面解析几何是数学中的一个分支,研究平面上点、直线、曲线的性质及它们之间的关系。
它在几何图形的研究和数学问题的解决中起到重要的作用。
本文将介绍平面解析几何的基础知识,包括点、直线、曲线的表示方法和相关性质。
一、点的表示和性质在平面解析几何中,点被表示为坐标形式,通常用有序数对(x, y)表示。
其中,x为横坐标,y为纵坐标。
点的坐标可以用于描述点的位置和与其他点的关系。
点的性质包括:1. 对称性:对于任意点(x, y),其对称点为(-x, -y)。
即点关于原点对称。
2. 距离公式:两点之间的距离可以通过以下公式计算:d = √((x2 - x1)^2 + (y2 - y1)^2),其中(x1, y1)和(x2, y2)分别表示两点的坐标。
二、直线的表示和性质直线是平面解析几何中的重要概念,它可以通过点斜式和一般式表示。
1. 点斜式:设直线经过点P(x1, y1),斜率为k,那么直线的点斜式方程为:y - y1 = k(x - x1),其中k表示直线的斜率。
2. 一般式:直线的一般式方程可以表示为Ax + By + C = 0,其中A、B、C为常数。
直线的性质包括:1. 斜率:斜率表示直线的倾斜程度,即直线上任意两点的纵坐标之差与横坐标之差的比值。
斜率为k的直线与x轴的夹角为arctan(k)。
2. 相互关系:两条直线的位置关系可以通过斜率和截距进行判断。
如果两条直线的斜率相等且截距也相等,则它们重合;若斜率相等但截距不相等,则它们平行;若斜率乘积为-1,则它们垂直。
三、曲线的表示和性质曲线是平面解析几何中的重要概念,常见的曲线有圆、椭圆、双曲线等。
它们可以由方程表示。
1. 圆的方程:设圆的圆心为点C(a, b),半径为r,则圆的方程为:(x - a)^2 + (y - b)^2 = r^2。
2. 椭圆的方程:设椭圆的圆心为点C(a, b),长半轴为a,短半轴为b,则椭圆的方程为:(x - a)^2/a^2 + (y - b)^2/b^2 = 1。
平面解析几何
平面解析几何
101
Contents
目录
01. 基础知识
02. 直线与圆
03. 椭圆与双曲线
04. 多边形与圆
极坐标系与参数方程
Part One
基础知识
平面解析几何的定义
解析几何:研 究几何图形的 代数性质的数
学分支
平面解析几何: 研究平面上点 的坐标、向量、 直线、圆锥曲 线等几何图形
极坐标系与参数方程的应用
曲线的表示:利用极坐标系和参 数方程可以简洁地表示曲线的形
状和位置
曲线的变换:利用极坐标系和参 数方程可以实现曲线的平移、旋
转、缩放等变换
A
B
C
D
曲线的求解:利用极坐标系和参 数方程可以方便地求解曲线的方
程和性质
曲线的拟合:利用极坐标系和参 数方程可以对实验数据进行拟合,
得到曲线的方程和性质
相贯:直线 穿过圆心, 且与圆有两 个交点
Part Three
椭圆与双曲线
椭圆的基本性质
定义:平面内到两个定点 的距离之和为常数的点的 集合
焦点:椭圆有两个焦点, 位于椭圆的长轴上
离心率:椭圆的离心率等 于椭圆的焦点到椭圆中心 的距离除以椭圆的长轴
标准方程:椭圆的标准方 程为x^2/a^2 + y^2/b^2 = 1,其中a和 b分别表示椭圆的长轴和 短轴
感谢您的观看与聆听
101
极坐标系中的点与平面解析几 何中的点之间可以相互转换。
参数方程的基本概念与性质
01
02
03
04
参数方程的定义: 用参数表示的方 程,如x=f(t), y=g(t)
参数方程的性质: 参数方程可以表 示曲线、曲面等 几何图形
2024高考数学平面解析几何知识点
2024高考数学平面解析几何知识点
在2024年高考数学中,平面解析几何是一个重要的知识点,主要包括以下几个部分:
1. 有向线段和直线:了解有向线段和直线的概念,掌握直线的方程式和参数方程,理解直线的倾斜角、截距等概念。
2. 圆:掌握圆的标准方程和一般方程,理解圆心、半径、弦、直径等概念,会求圆的方程和圆心、半径等。
3. 椭圆、双曲线和抛物线:掌握椭圆、双曲线和抛物线的标准方程和性质,理解焦点、准线、离心率等概念,会求这些曲线的方程和相关性质。
4. 参数方程和极坐标:了解参数方程和极坐标的概念,掌握参数方程和极坐标的转换关系,会求参数方程和极坐标的方程。
5. 平面几何的基本概念:理解平面几何中的点、线、面的概念,掌握基本性质和定理,如平行线、垂直线、角等概念和性质。
6. 解析几何的基本方法:掌握解析几何中的基本方法,如向量法、解析法等,理解这些方法的几何意义和代数表示,能够运用这些方法解决一些平面几何问题。
7. 圆锥曲线的应用:理解圆锥曲线的应用,如椭圆用于卫星轨道、双曲线用于光学等,了解圆锥曲线在日常生活和科学研究中的应用。
以上是2024年高考数学平面解析几何的主要知识点,考生需要熟练掌握并能够灵活运用。
同时,也需要注重理解和应用,不要死记硬背。
(解析几何)基础知识点总结
《高中数学解析几何基础知识总结》一、圆1、 定义:平面内与定点距离等于定长的点的集合叫圆2、 圆的方程1)特殊式:222x y r += 圆心(0,0)半径r 2)标准式:222()()x a y b r -+-=3)一般式:220x y Dx Ey F ++++=(2240D E F +->)圆心(,22D E --)4)参数式:cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数)圆心(a ,b )半径为r3、点与圆的位置关系:设点到圆心距离为d ,圆的半径为r点在圆外⇔d>r 点在圆上⇔d=r 点在圆内⇔d<r4、直线与圆的位置关系:直线:0l Ax By C ++= 圆C 222()()x a y b r -+-= 线心距d =相交⇔0>或d<r 相切⇔0=或d=r 相离⇔0<或d>r 5、圆的切线求法1)切点00(,)x y 已知222x y r += 切线2x x y y r +=222()()x a y b r -+-= 切线200()()()()x a x a y b y b r --+--=220x y Dx Ey F ++++= 切线0000022x x y yx x y y DE F ++++++= 满足规律:20x x x →、20y y y →、02x x x +→、02y y y +→2)切线斜率k 已知时,222x y r += 切线y kx =±222()()x a y b r -+-= 切线()y b k x a -=-± 6、圆的切线长:自圆外一点P 00(,)x y 引圆外切线,切点为P ,则20PP x =7、切点弦方程:过圆外一点p 00(,)x y 引圆222x y r +=的两条切线,过切点的直线即切点弦200x x y y r +=(其推到过程逆向思维的运用)8、圆与圆的位置关系:设两圆圆心距离为d ,半径分别为12,r r 1)外离::12d r r >+ 2)外切:12d r r =+ 3)相交:1212r r d r r -<<+ 4)内切:12d r r =- 5)内含:12d r r <-圆与圆位置关系的判定中,不能简单的应用联立方程求根当有两个根时候,肯定两圆相交;当没有根时候,不能确定是外离还是内含;当有且只有一个根时候,也不能确定是外切和内切9、公共弦方程(相交弦):相交两圆1C :221110x y D x E y F ++++=、222222:0C x y D x E y F ++++=公共弦方程121212()()()0D D x E E y F F -++++=10、圆系:具有某些共同性质的圆的集合1)同心圆系:222()()x a y b r -+-=(a ,b 为定值,r 为变量且r>0) 2)等圆系:222()()x a y b r -+-=(a ,b 为变量,r 为定值)3)过直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=的交点的圆系方程:22()0x y Dx Ey F Ax By C λ+++++++=()λθ∈简记为0C l λ+=4)过两圆221111:0C x y D x E y F ++++=,222222:0C x y D x E y F ++++=交点的圆系方程:2222111222()0(1)x y D x E y F x y D x E y F λλ+++++++++=≠-简记为120C C λ+=二、椭圆椭圆:平面内到两定点距离之和等于定长(定长大于两定点间距离)的点的集合1、定义:12122(2)PF PF a a F F +=> 第二定义:(01)PF ce e d a==<< 2、标准方程:22221(0)x y a b a b +=>> 或 22221(0)y x a b a b+=>>;3、参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数)θ几何意义:离心角4、几何性质:(只给出焦点在x 轴上的的椭圆的几何性质) ①、顶点(,0),(0,)a b ±± ②、焦点(,0)c ± ③、离心率(01)ce e a=<< ④准线:2a x c=±(课改后对准线不再要求,但题目中偶尔给出)5、焦点三角形面积:122tan 2PF F Sb θ=⋅(设12F PF θ∠=)(推导过程必须会)6、椭圆面积:S a b π=⋅⋅椭(了解即可)7、直线与椭圆位置关系:相离(0∆<);相交(0∆>);相切(0∆=) 判定方法:直线方程与椭圆方程联立,利用判别式判断根的个数 8、椭圆切线的求法1)切点(00x y )已知时,22221(0)x y a b a b +=>> 切线00221x x y y a b +=22221(0)y x a b a b +=>> 切线00221y y x x a b +=2)切线斜率k 已知时, 22221(0)x y a b a b +=>> 切线y kx =±22221(0)y x a b a b+=>> 切线y kx =±9、焦半径:椭圆上点到焦点的距离22221(0)x y a b a b +=>> 0r a ex =±(左加右减)22221(0)y a a b a b+=>> 0r a ey =±(下加上减)三、双曲线1、定义:122PF PF a -=± 第二定义:(1)PF ce e d a ==>2、标准方程:22221(0,0)x y a b a b-=>>(焦点在x 轴)22221(0,0)y x a b a b -=>>(焦点在y 轴) 参数方程:sec tan x a y b θθ=⋅⎧⎨=⋅⎩(θ为参数) 用法:可设曲线上任一点P (sec ,tan )a b θθ3、几何性质 ① 顶点(,0)a ±② 焦点(,0)c ± 222c a b =+ ③ 离心率ce a=1e > ④ 准线2a x c±⑤ 渐近线 22221(0,0)x y a b a b -=>> by x a=±或22220x y a b -=22221(0,0)y x a b a b -=>> by x a=±或22220y x a b -= 4、特殊双曲线①、等轴双曲线22221x y a a -= e =渐近线y x =±②、双曲线22221x y a b-=的共轭双曲线22221x y a b -=-性质1:双曲线与其共轭双曲线有共同渐近线性质2:双曲线与其共轭双曲线的四个焦点在同一圆上 5、直线与双曲线的位置关系 ① 相离(0∆<);② 相切(0∆=); ③ 相交(0∆>) 判定直线与双曲线位置关系需要与渐近线联系一起 0∆=时可以是相交也可以是相切 6、焦半径公式22221(0,0)x y a b a b-=>> 点P 在右支上 0r ex a =±(左加右减) 点P 在左支上 0()r ex a =-±(左加右减)22221(0,0)y x a b a b-=>> 点P 在上支上 0r ey a =±(下加上减) 点P 在上支上 0()r ey a =-±(下加上减) 7、双曲线切线的求法① 切点P 00(,)x y 已知 22221(0,0)x y a b a b -=>> 切线00221x x y y a b -=22221(0,0)y x a b a b -=>> 切线00221y y x x a b -=② 切线斜率K 已知 22221x y a b -= 222()by kx a k b k a =->22221y x a b -= 222()by kx a b k k a=-<8、焦点三角形面积:122cot2PF F Sb θ=⋅(θ为12F PF ∠)四、抛物线1、定义:平面内与一定点和一定直线的距离相等的点的集合(轨迹)2、几何性质:P 几何意义:焦准距 焦点到准线的距离设为P 标准方程:22(0)y px p => 22(0)y px p =->图 像:范 围: 0x ≥ 0x ≤ 对 称 轴: x 轴 x 轴 顶 点: (0,0) (0,0)焦 点: (,02p ) (,02p-) 离 心 率: 1e = 1e =准 线: 2px =- 2p x =标准方程:22(0)x py p => 22(0)x py p =->图 像:范 围: 0y ≥ 0y ≤ 对 称 轴: y 轴 y 轴 定 点: (0,0) (0,0)焦 点: (0,2p ) (0,)2p - 离 心 率: 1e = 1e =准 线: 2py =- 2p y =3、参数方程222x pt y pt⎧=⎨=⎩(t 为参数方程)⇔22(0)y px p =>4、通径:过焦点且垂直于对称轴的弦椭圆:双曲线通径长22b a抛物线通径长2P5、直线与抛物线的位置关系1)相交(有两个交点或一个交点) 2)相切(有一个交点); 3)相离(没有交点) 6、抛物线切线的求法1)切点P 00(,)x y 已知:22(0)y px p =>的切线;00()y y p x x =+2)切线斜率K 已知:22(0):2p y px p y kx k =>=+22(0):2py px p y kx k=->=-222(0):2pk x py p y kx =>=-222(0):2pk x py p y kx =->=+此类公式填空选择或解答题中(部分)可作公式直接应用五、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB 2121k y y +-。
高中解析几何知识归纳
高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。
以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。
2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。
4. 圆锥曲线:包括椭圆、双曲线和抛物线。
-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。
-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。
-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。
二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。
2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。
3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。
4. 空间几何体:包括立方体、球、锥体、柱体等。
三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。
2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。
3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。
4. 直线与圆的位置关系:直线与圆相交、相切或相离。
5. 圆与圆的位置关系:圆与圆相交、相切或相离。
高中数学平面解析几何知识点归纳
高中数学平面解析几何知识点归纳高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!高中数学平面解析几何知识点平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。
直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。
②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的'集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。
③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。
空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学平面解析几何知识点平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。
解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
平面解析几何基本理论坐标在解析几何当中,平面给出了坐标系,即每个点都有对应的一对实数坐标。
最常见的是笛卡儿坐标系,其中,每个点都有x-坐标对应水平位置,和y-坐标对应垂直位置。
平面解析椭圆知识点总结
平面解析椭圆知识点总结一、椭圆的定义椭圆是平面上一点到两个给定点(焦点)的距离之和与到一个给定点(焦点)的距离之差的比值等于常数的集合。
通俗地讲,可以认为椭圆是一个拉紧的圆,其中有两个焦点,所有点到两个焦点距离之和等于常数。
具体地,设两个焦点为F1(a,0)和F2(-a,0),且2a为椭圆的长轴长度,2b为椭圆的短轴长度,则椭圆的定义方程为:(x^2/a^2) + (y^2/b^2) = 1其中a和b为正实数。
二、椭圆的性质1. 对称性:椭圆关于x轴和y轴对称。
2. 离心率:椭圆的离心率e定义为焦距与长轴之比,即e=c/a,其中c为焦距。
3. 直径:经过椭圆两个焦点的线段为椭圆的长直径,长直径的长度为2a;垂直于长直径,通过椭圆圆心的线段为椭圆的短直径,短直径的长度为2b。
4. 焦点:椭圆的两个焦点为F1(a,0)和F2(-a,0)。
5. 渐近线:椭圆的两条渐近线方程为y=±(b/a)x,其中b/a<1。
三、椭圆的方程椭圆的标准方程为:(x^2/a^2) + (y^2/b^2) = 1其中a和b为椭圆的长半轴和短半轴。
如果椭圆的长轴与x轴平行,则椭圆的标准方程为:(x^2/a^2) + (y^2/b^2) = 1如果椭圆的长轴与y轴平行,则椭圆的标准方程为:(x^2/b^2) + (y^2/a^2) = 1在实际问题中,有时会遇到椭圆的方程不是标准方程的情况,可以通过平移、旋转等方法将其化为标准方程。
四、椭圆的参数方程椭圆的参数方程为:x = a cos t,y = b sin t,其中t为参数,a和b为椭圆的长半轴和短半轴。
五、椭圆的焦点椭圆的焦点是椭圆的两个特殊点,其坐标分别为F1(a,0)和F2(-a,0)。
六、椭圆的离心率椭圆的离心率e定义为焦距与长轴之比,即e=c/a,其中c为焦距。
七、椭圆的直径经过椭圆两个焦点的线段为椭圆的长直径,长直径的长度为2a;垂直于长直径,通过椭圆圆心的线段为椭圆的短直径,短直径的长度为2b。
解析几何知识点总结高中
解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。
解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。
在高中数学的学习中,解析几何是一个重要的知识点。
在本文中,将详细介绍一些高中解析几何的知识点。
1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。
我们可以通过它来描述到两个物体之间的空间位置关系。
下面是二元一次方程的一般式子:ax + by + c = 0。
其中,a、b、和c是常数,x和y是未知数。
在解析几何中,二元一次方程代表一条直线。
该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。
直线的一般式子可以根据两个点或点与斜率之间的关系来确定。
如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。
其中,k为直线的斜率,b为直线的截距。
另一种方法是给定点和斜率的值。
如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。
这种表示形式称为点斜式。
2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。
标准方程如下:(x – a)^2 + (y – b)^2 = r^2。
其中,a和b是圆心的坐标,r是圆的半径。
通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。
该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。
其中,D、E和F是常数。
该表达式描述的圆方程称为一般圆方程。
3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。
在空间几何中,一个点由三个坐标表示。
直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。
空间几何中的一些重要概念包括向量,对称和距离。
向量是大小和方向的量,可以使用两点之间的差值来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中平面解析几何知识点总结(直线、圆、椭圆、曲线)高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:⎪⎩⎪⎨⎧+=+===--tn b y tn a x tn b y na x 2121则有令:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:⎪⎪⎩⎪⎪⎨⎧+=+=+====---t n c z t n b y t n a x t nc z nb y na x 321321则有令:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
二.圆部分1.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . (3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=.(2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是: ① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .2.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+=(其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解) 3.点与圆的位置关系: 点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种① P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.② P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③ P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔.【P 到圆心距离d =4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:圆心到直线距离为d (22B A C Bb Aa d +++=),由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .5.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,dO O =21条公切线外离421⇔⇔+>r r d ;无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .6.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数. 特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D xE E yF F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.7.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线x x =.8. 圆的参数方程:圆方程参数方程源于: 1cos sin 22=+θθ那么 1)()2222=+--Rb y R a x (设:⎪⎪⎪⎩⎪⎪⎪⎨⎧==--θθcos )sin )Rb y R a x (( 得:⎪⎩⎪⎨⎧==++θθcos sin R b y R a x9.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减 即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 10.对称问题: (1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程. (2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1. ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点. 若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程. (3)其他对称:点(a,b)关于x 轴对称:(a,-b); 关于y 轴对称:(-a,b); 关于原点对称:(-a,-b);点(a,b)关于直线y=x 对称:(b,a); 关于y=-x 对称:(-b,-a); 关于y =x+m 对称:(b-m 、a+m); 关于y=-x+m 对称:(-b+m 、-a+m).11.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫⎝⎛++++33321321y y y x x x ,. 12.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α 两条异面线所成的角 ︒≤<︒900α三.椭圆部分1.椭圆定义:① 到两定点距离之和为一常数的平面几何曲线:即∣MO1∣+∣MO2∣=2a② 或定义:任意一条线段,在线段中任取两点(不包括两端点),将线段两端点置于这两点处,用一个钉子将线段绷直旋转一周得到的平面几何曲线即为椭圆。