7.2.2二次根式的性质 (2)

合集下载

二次根式定义性质

二次根式定义性质
掌握二次根式的定义和性质,能够正确地进行二次根式的化简和运算。
学习意义
二次根式是数学中的重要概念,在解决数学问题中经常遇到。掌握二次根式的定义和性质,对于提高学生的数学 素养和解决问题的能力具有重要意义。同时,二次根式也是后续学习其他数学知识的基础,如解二次方程、求函 数的导数等。
02
二次根式基本概念
运算性质
在实数范围内,二次根式可以 进行加减乘除四则运算,但需 要注意运算过程中的定义域和
值域问题。
03
二次根式运算规则
加减运算规则
同类二次根式
只有被开方数相同的二次根式才能直接进行加减 运算。
合并同类项
将同类二次根式的系数相加减,被开方数和根指 数不变。
示例
√2 + 2√2 = 3√2,√3 - √3 = 0。
二次根式定义
根号表达式
形如√a (a≥0)的式子叫做二次根 式。其中,√称为根号,a称为被 开方数。
非负性
在实数范围内,被开方数a必须是 非负数,否则二次根式无意义。
二次根式分类
最简二次根式
被开方数中不含能开得尽方的因数或Байду номын сангаас因式,且根号下不含分母的二次根式 ,称为最简二次根式。
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,则这几个二次根 式称为同类二次根式。
07
总结与展望
学习成果总结
二次根式定义
掌握了二次根式的定义 ,即形如$sqrt{a}$($a geq 0$)的代数式,其 中被开方数$a$是非负 数。
二次根式性质
理解了二次根式的性质 ,包括非负性、乘法定 理、加法定理等,并能 够运用这些性质进行二 次根式的化简和计算。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

二次根式及其性质课件

二次根式及其性质课件

1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;

的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法

二次根式的概念和性质

二次根式的概念和性质

基础知识
1、二次根式的定义:
我们已经知道:每一个正实数有且只有两个平方根,一个记作a,称为a的。

算术平方根;另一个是a
我们把形如a的式子叫作二次根式,根号下的数a叫作被开方数.
由于在实数围,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数围有意义.
2、二次根式的性质
3、二次根式的积的算数平方根的性质
4、最后的计算结果,具有以下特点:
(1)被开方数中不含开得尽方的因数(或因式);
(2)被开方数不含分母.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
注意:①化简二次根式时,最后结果要求被开方数中不含开得尽方的因数.
②化简二次根式时,最后结果要求被开方数不含分母.
③今后在化简二次根式时,可以直接把根号下的每一个平方因子去掉平
方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).题型一、二次根式的概念和条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的性质【例7】计算
【例8】
【例9】【练一练】
4、
5、
6、7、
8、
题型三积的算数平方根的性质【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简【例题精析】
【例15】
【例16】【例17】【例18】
【练一练】
4、
5、6、6、
7、。

7.2二次根式的性质

7.2二次根式的性质

先化成假分数,然后再运用性质。
作业
习题:知识技能。
谢谢
复习回顾
根据算平方根的意义填空:
4 2 __4___; 2 2 __2____;
2
1

1 3

___3_____;
0 2 __0_______;
4 合作学习

2
4 4
是4的算术平方根,根据算术平方根的意 义, 4 是一个平方等于4的非负数,因此有
做一做 计算下面的算式:
1 4 9 ___6_____, 4 9 ___6_____; 2 16 25 ___2_0____, 16 25 ___2_0____;
3 23与 2 3相等吗?为什么?
议一议:
观察上面得到的运算结果,你发现了什么 规律?你能用自己的语言表述吗?
11
3.把下列各式化成最简二次根式:
(1)
108;(2)
45 4
;(3) 75 ;
(4) (7)2 (1)2 。
22
1.商的算术平方根的性质:
a a a 0,b 0
b
b
2.最简二次根式;
3.运用二次根式的性质化简时应该注意:
(1)结果要化成最简二次根式;
(2)被开方数是小数要化成分数,是带分数要
2
1.5 1.5
2 2 5 2 22
2
5 45 20
这里用到了ab2 a2b2这个结论
想一想
填空:
22 _2_____; 0.12 __0_.1____;
2
2 2 3
__3______;
02 _0______;

二次根式的性质是什么

二次根式的性质是什么

二次根式的性质是什么
一般地,形如√a的代数式叫做二次根式。

接下来分享二次根式的性质及运算法则。

二次根式的性质
1.任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是√a,则a的另一个平方根为﹣√a,;最简形式中被开方数不能有分母存在。

2.零的平方根是零。

3.负数的平方根也有两个,它们是共轭的。

4.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

二次根式的加减法
1.同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

2.合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

二次根式的乘除法
二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最简二次根式。

1.乘法运算:两个数的算术平方根的积,等于这两个因式积的算术平方根。

2.除法运算:两个数的算术平方根的商,等于这两个数商的算术平方根。

二次根式化简方法
1.把带分数或小数化成假分数;
2.把开方数分解成质因数或分解因式;
3.把根号内能开得尽方的因式或因数移到根号外;
4.化去根号内的分母,或化去分母中的根号;
5.约分。

二次根式的有关概念和性质

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2024八年级数学下册第7章二次根式7.2二次根式的性质2商的算术平方根的性质习题课件鲁教版五四制

2024八年级数学下册第7章二次根式7.2二次根式的性质2商的算术平方根的性质习题课件鲁教版五四制
【答案】D
14 若最简二次根__.
【点拨】
n-1
∵最简二次根式 2n+1与最简二次根式 4n-m相 等,∴n-1=2,2n+1=4n-m,解得 n=3,m=5,
∴m+n=8.
15 【新考向】观察下列各式:①2 23= 2+23;②3 38= 3+38;③4 145= 4+145;….根据这些等式反映的
的是( )
A. 27 C. a2+4a4
B.
a 2
D. a2-b2
【点拨】 A. 27=3 3,不是最简二次根式;B. a2= 22a,不是
最简二次根式;C. a2+4a4=|a| 1+4a2,不是最简二次根 式;D. a2-b2是最简二次根式.
【答案】D
11 比较大小: A.> C.=
12______12,横线上的符号是( A ) B.< D.无法比较
【点拨】 32= 42×2=4 2.
8 将 13-14化简成最简二次根式为____6_3___.
【点拨】 原式=
112=
336=
3 6.
9 已知 xy>0,化简-y -yx2的结果是(
)
A. x
B. -x
C.- x
D.- -x
【点拨】 由二次根式有意义的条件可得-yx2≥0,∴x≤0.∵xy>0,
规律,若 x 2 0y23= x+2 0y23,则 x2-y=____1____.
【点拨】 由题意可知,若 x 2 0y23= x+2 0y23,则 x=2 023,
y=2 0232-1,∴x2-y=2 0232-(2 0232-1)=1.
16 化简:
(1)23 aabb23; 【解】由题意可知,ab3≥0,ab2>0,故 a>0,b>0,

7.2 二次根式(第2课时)教学设计

7.2 二次根式(第2课时)教学设计

第二章 实数7.二次根式(第2课时)一、学生起点分析在前面,学生已经掌握了实数的概念,实数的运算法则;学会了利用公式:b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0)进行简单的实数四则运算.本课时更多的是反用上面的公式,因此,上一课时知识成为本课时很好的知识基础。

二、教材任务分析二次根式(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第7节内容.本节内容分为3个课时,本课时是第2课时,基于第1课时二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算,经历本节课的学习,学生将对实数的运算,有较全面的了解,同时进一步熟练实数的运算,为今后的学习打下坚实的基础.本节课的教学目标是:1.通过对公式的反向运用,达到化简的目的.学会一种特殊的思考方法.3.在探究、合作活动中,发展学生探究能力和合作意识.4.通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性.三.教学过程设计本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究; 第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第一环节:复习引入内容:复习算术平方根的概念,并提出问题:下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算率解释它吗?点明本节课研究课题 面积8 面积2意图:借助复习,在巩固旧知的同时,导入新课。

第二环节:知识探究1.在上一课时探究的公式的基础上明晰二次根式乘除的运算法则:b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0). 2.提出问题:能否根据该公式将8化成22?例3 计算:(1)326⨯;(2)236⨯;(3)52。

解:(1)略(2)236⨯=236⨯=236⨯=9=3 (3)52==52=5552⨯⨯=510 说明:常常把要被开方数的分子与分母同乘以一个适当的数,使得分母成为一个平方数.第三环节:巩固练习例4 计算:(1)3322⨯(2)5312-⨯;(3)2)15(+;(4))313)(313(-+;(5)3)3112(⨯-;(6)2188+。

《二次根式的性质(第2课时)》教学课件

《二次根式的性质(第2课时)》教学课件
y
如果两个非负数相加和为0,
则这两个非负数都为0。
x 92 和 y 25都是什么数?
解:x 92 0,y 25 0 且x 92 y 25 0
x
y
90 25 0
x 9
解得:
y
25
当x 9, y 25时
x 9 9 3 y 25 25 5
高效上好每节课·快乐上好每天学
5 55
52
5
1 1 7 7 7
(2)
.
7 77 72 7
高效上好每节课·快乐上好每天学
概念形成
2
视察上面的化简结果,2

10 5
、7 7
有什么特点?
等,发现它们
(1)被开方数都不含分母; (2)被开方数中不含能开得尽的方的因数或因式.
满足上述两个条件的二次根式,叫做最简二次根式.
注意:二次根式的化简结果必须是最简二次根式.
(2) 115 49
高效上好每节课·快乐上好每天学
想一想 如何化去 根号内的分母?
把根号内的分子和分母都乘以一个适当 的数或式,使分母变成一个平方数或平方式。
1 2
1 2 22
2 22
2. 2
高效上好每节课·快乐上好每天学
例4.化去下列各式根号内的分母:
(1) 2 5
(2) 1 7
解: (1) 2 25 25 10
课堂小结
1:商的算术平方根的性质:
a a a 0,b 0
b
b
2:最简二次根式
3:运用二次根式的性质化简时应该注意:
(1)结果要化成最简二次根式;
(2)被开方数是小数要化成分数,是带分数要先
化成假分数,然后再运用性质。

第01讲二次根式的性质

第01讲二次根式的性质

第01讲二次根式的性质第1讲二次根式的性质知识导航1.二次根式的概念与被开方数中字母的取值范围;2.二次根式的双重非负性;3.开平方与平方两种运算的关系【板块一】二次根式的概念与基本性质方法技巧一般地,我们把形如(a0)的式子叫做二次根式,”称为二次根号.开平方时,被开方数a的取值范围是a0,二次根式有两个非负性,也叫二次根式的双重非负性,即被开方数a的取值范围是a0,算术平方根的结果0.题型一判断式子是否为二次根式【例1】下列式子中是二次根式的有();;-;;;(x>1);A.2个 B.3个 C.4个 D.5个【分析】形如(a0)的式子叫做二次根式,被开方数a的取值范围是a0;不符合被开方数a的取值范围是a0,是开3次方,为二次根式,故选C.【解答】C题型二二次根式有意义的字母的取值范围【例2】在下列式子:;(x-2)0;中,x不可以取2的是()A.只有 B.只有 C.和 D.和【分析】二次根式中被开方数大于等于零,零指数幂的底数不为零,分母的值不为零.,x-20,则x2;(x-2)0,x-20,则x2;中,x-20,解得x2,故x不可以取2的是和,故选C【解谷】C题型三二次根式的双重非负性【例3】若x,y为实数,y=,则4y-3x的平方根是.【分析】,故只有x2-4=0,即x=±2,又x-2≠0,x=-2,y==-,4y-3x=-1-(-6)=5,故4y-3r的平方根是±.【解答】士.【例4】已知|7-9m|+(n-3)2=9m-7-,求(n-m)2019的值.【分析】非负数有三种呈现形式:绝对值,平方,算术平方根,几个非负数的和一定是非负数,若几个非负数的和为0,则这几个非负数均为0.【解答】+(n-3)2=9m-7-,+(n-3)2+=9m-70,9m-7+(n-3)2+=9m-7,(n-3)2+=0,n-3=0,m-4=0,n=3,m=4,(n-m)2019=(-1)2019=-1.题型四二次根式中的隐含条件的运用【例5】若实数x,y,m适合关系式+=·,求m的值.【分析】由(x+y)-200,20-(x+y)0,所以x+y=20.再利用两个二次根式的和等于0,即每一个被开方数等于0.【解答】x+y-200,20-(x+y)0,x+y=20.+=0,≥0,0,3x+3y-m=0,m=3(x+y)=3×20=60.针对练习11.x取何值时,下列各式有意义(1);(2);-;(4).【解答】(1)x>;(2)x4且x-5;(3)1x≤2;(4)x5且x6.2.代数式++的最小值是()A.0 B.1+ C.1 D.不存在【解答】B.3.方程+=0的解是.【解答】,或4.已知x,y为实数,且满足-(3y-1)=0,则(xy)2019=.【解答】-15.如果x,y,z为实数,且满足++z2-z+=0,求(y+z)x2的值.【解答】|4x-4y+1|++(z-)2=0,又≥0,0,(z-)20,4x-4y+1=0,2y+z=0,z-=0,x=-,y=-,z=,(y+z)x2=(-+)(-)2=.6.若m适合关系式:-=-,求m的值.【解答】由条件得x+y-1160,116-(x+y)0,116≤x+y116,x+y=116,=-,≥0,-0,,+得5(x+y)+18=2m,2m=5×116+18,m=299.【板块二】二次根式的两个基本性质的综合运用方法技巧二次根式的两个性质()2=a(a≥0)和=,可以运用上述两个性质进行有关计算和化简.题型五=的运用【例1】已知0<a<1,化简-=.【分析】a=()2,=,又0<a<1,()2<,即<.原式=-=-=+-(-)=2.【解答】2.【例2】若化简-的结果为2x-5,则x的取值范围是.【分析】根据x的取值化简绝对值和二次根式的性质分析.-=-=2x-5,则-=x-1+x-4,即1-x0,x-40,解得1x≤4.【解答】1x≤4.题型六()2=a(a0)的运用【例3】已知ABC的三边a,b,c满足关系式a+b+c-2-4-6+4=0,试求ABC的周长.【分析】根据式子的结构特点,运用a=()2配方,然后利用非负性解题.【解答】a+b+c-2-4-6+4=0,(a-5)-2+1+(b-4)-4+4+(c-1)-6+9=0,(-1)2+(-2)2+(-3)2=0,a-5=1,b-4=4,c-1=9.a=6,b=8,c=10,ABC的周长为6+8+10=24.题型七二次根式的规律探究【例4】观察分析,探求出规律,然后填空:,2,,2,,,…,(第n个数).【分析】由题意可知,被开方数是2的倍数,由此即可求解=,2=,=,2=,=,第6个数是=2,第n个数是.【解答】2,.【例5】观察下列各式:=2;=3;=4;,请你猜想⑴=,=;(2)计算(请写出推导过程):;(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.【分析】先将被开方数化为假分数,再用二次根式的性质化简.【解答】=5,=6;(2)===14;=(n+1)(n1).题型八求值【例6】已知:x=2-,求代数式x2-4x-6的值.【分析】由x=2-得x-2=-,两边平方可得二次式.【解答】x=2-,x-2=-,(x-2)2=(-)2,x2-4x+4=10,x2-4x=6,x2-4x-6=0.【例7】已知x=2-,那么x4-8x3+16x2-x+1的值是.【分析】由x=2-得出x2-4x-1=0,用x2-4x-1除x4-8x3+16x2-x+1,得出商和余数,利用:被除数=除数×商十余数,将多项式化简,再代值计算.【解答】由x=2-得x-2=-,两边平方,得x2-4x+4=5,x2-4x-1=0,x4-8x3+16x2-x+1=(x2-4x-1)(x2-4x+1)+(-x+2)=2-x=.题型九复合二次根式的化简【例8】先阅读下面的解答过程,然后作答:形如的化简,只要我们找到两个非负数a,b,使a+b=m,ab =n,这样()2+()2=m,(=,那么便有==(a>b).例如:化简.首先把化为,这里m=7,n=12;由于4+3=7,43=12,即()2+()2=7,(=,===2+.由上述例题的方法化简:(1);(2);(3).【分析】由例题所给信息知关键是要找到两个合适的非负数.【解答】(1)==;(2)===-;(3)==(=(-1)=-.====1+.解决问题:(1)在括号内填上适当的数:====________;(2)根据上述思路,试将予以化简.【分析】通过完全平方公式,将被开方数化成平方的形式,再根据二次根式的性质,化去里面的一层根号.【解答】(1)====3+;(2)====5-.针对训练21.a,b,++-a-.a,b在数轴上的位置可得a<0a+b<0-a>0b-<0.-a|-|b -|=-a-a-b+-a+b-=-3a.2.=·,-2+.=·3x+10,2-x0,∴-≤x≤2,x-2+=x-2+3x+1=-(x-2)+(3x+1)=2x+3.++1,试化简代数式:|x-1|--.【解答】∵-x≥0,x-≥0,-x=,y>0+0+1,y>1y-1>,=-=-14.当1<x<5时,化简:-.【解答】原式=-=|x-1|-|x-5|,又∵1<x<5,原式=(x-1)-[-(x-5)]=2x-6.5.若x,y为实数,且y=++,求-的值.【解答】∵1-4x≥0,4x-1≥0,∴1-4x=0,∴x=,∴y=,+=2+=.∴原式=-==.6.已知a为偶数,且=,求-的值.【解答】∵=,∴a-1≥0,3-a>0,∴1≤a<3,又∵a为偶数,∴a=2,又∵-=-,∵a=2,a-3<0,∴原式=a-1-=a-1+=2-1+=.7.对于题目“化简求值:+,其中a=”甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解笞是:+=+=+a-=a=,谁的解答是错误的?为什么?【解答】乙的解答是错误的.∵当a=时,-a>0,∴=-a.8.化简:(1);(2).【解答】(1)原式===;(2)原式===(+1)=+.9.已知a+b+c=2+4+6-14,求a(b+c)+b(c+a)+c(a+b)的值.【解答】依题意得(a+1)-2+1+(b+1)-4+4+(c-2)-6+9=0,∴(-1)2+(-2)2+(-3)2=0,∴=1,=2,=3,∴a=0,b=3,c=11.a(b+c)+b(c+a)+c(a+b)=0+33+33=66.10.利用“≥0”解答下列问题:(1)若++=0,求a,b,c的值;(2)若a+b+c=4+6+2,求a,b,c的值.【解答】(1)∵≥0,≥0,≥0.++==0,=0=0,a=1b=4,c =9;(2a-2+b-4+c-6=0,[()2-2+1]+[()-4+4]+[()-6+9]=0,(-1+(-2)+(-3)=0,(-10,(-2)0,(-3)0.-1=0,-2=0-3=0,a=2,b=8,c=18.11.+=a-2017=__.a-2018≥0,即a≥2018,则原方程可化为|2017-a+=aa-2017+=a=2017a-2018=201720172=2018.2018.。

初三数学专题练习

 初三数学专题练习

清大学习吧中考数学专用资料姓名:学校:专题一:计算综合知识点: 1、二次根式(1)二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。

二次根式的实质是一个非负数数a 的算数平方根。

(2)二次根式的性质:①二次根式的非负性:0≥a ;0≥a 。

0=,则a=0,b=0;0b =,则a=0,b=0;20b =,则a=0,b=0。

②2a =(),语言叙述:一个非负数的算术平方根的平方等于这个非负数③二次根式的乘法法则)0,0(≥≥=⋅b a ab b a )0,0(≥≥=⋅b a ab mn b n a m)0,0(≥≥⋅=b a b a ab④二次根式的除法法则b a ba =).0,0(>≥b a b a n m bn a m =).0,0(>≥b a ba ba=).0,0(>≥b a(3)二次根式的加减①最简二次根式:被开放数不含分母;被开放数中不含开得尽方的因数或因式。

②同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这样的二次根式叫做同类二次根式。

③二次根式的加减:二次根式加减时,可以先将二次根式化为最简的二次根式,再将被开放数相同的根式进行合并。

,2、绝对值(1)⎪⎩⎪⎨⎧=<->=)0(0)0()0(a a a a a a(2)去绝对值①⎪⎩⎪⎨⎧<-=>-=-=+-)()(0)(b a a b b a b a b a b a b a ②⎪⎩⎪⎨⎧<+--=+>++=--=+)()0(0)0(o b a b a b a b a b a b a b a3、负整数幂①),(1*-∈⎪⎭⎫⎝⎛=N b a a a bb② )0,,,(≠∈⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛*-a N m b a a b b a mm4、三角函数5、因式分解(1)公式法:))((22b a b a b a -+=- ()2222b a b ab a +=++()2222b a b ab a -=+-(2)提取公因式法:)(c b a ac ab -=-6、解一元一次方程步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的左边,其他项都移到方程右边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。

初二数学下册《【说课稿】 二次根式的性质》【人教版适用】

初二数学下册《【说课稿】 二次根式的性质》【人教版适用】

人教版八年级数学下册说课稿二次根式的性质一、1、教材的地位及作用“二次根式”是《课程标准》“数与代数”的重要内容。

本章是在前面几章实数的基础上,进一步研究二次根式的概念、性质,和运算。

本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也是以后将要学习的“锐角三角函数”“一元二次方程”和“二次函数”等内容的重要基础。

第一节研究二次根式的概念和性质。

它是学习本章的关键,它也是学习二次根式的化简和运算的依据。

2、教学目标根据大纲的要求和教材结构内容分析,结合八年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:(1)知识技能:使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围及简单计算。

(2)数学思考:使学生理解二次根式被开方数的取值范围的重要性(3)解决问题:培养学生根据条件处理问题的能力及分类讨论问题(4) 情感态度:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,发展学生观察、分析、发现问题的能力,培养学生辩证唯物主义观点3、教学重点难点确定被开方数中字母的取值范围。

2、会利用二次根式的性质做相关计算。

二、 教学活动的本质是一种合作,一种交流。

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。

为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

三、 新课程标准指出:学生是学习的主体。

要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。

本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。

二次根式的概念和性质

二次根式的概念和性质

一、二次根式的概念和性质二次根式1.0a ≥)的式子叫做二次根式.说明:(1)被开方数是正数或0;(20a ≥)表示非负数a 的算术平方根. 2.二次根式的性质:(10; (2)2(0)a a =≥; (3(0)(0)(0)a a a a a a a >⎧⎪==⎨⎪-<⎩;(4)当0a ≥时,2=二、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式. 最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式); (2)被开方数中不含能开得尽方的因数或因式; (3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.三、二次根式的加减 同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式. 二次根式的加减二次根式知识点同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.合并同类二次根式:(a b =+ 分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.0.四、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义来计算.五、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对与二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.六、根式的大小比较 比较大小的方法1.作差法:比较a 、b 的大小,0,0,0,a b a b a b a b >>⎧⎪-==⎨⎪<<⎩2.作商法:比较a 、b 的大小,当0,0a b >>时,可以采用作商法,1,1,1,a b a a b b a b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法 (1)0a b >>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法 (4)分子有理化 (5)倒数法七、二次根式的乘除 二次根式的乘除法=0a ≥,0b ≥).=(0a ≥,0b >). 说明:利用乘除法则时注意a 、b a 、b 都非负,否则不成立.一、 单选题1、(2015中考西城二模)函数2y x=-中,自变量的取值范围是( ) A .2x ≠ B .2x ≥ C .2x > D .2x ≥-【答案】 B【解析】由二次根式有意义的条件可得20x -≥,即2x ≥,故答案为B .2、(2013初二上期末房山区)下列各式中,计算正确的是( ) A .22=B 16=±C .8D .(26=【答案】 A【解析】该题考查的是二次根式的计算.x 例题A,22=,故A正确;B16,故B错误;C,8-,故C错误;D,(212=,故D错误.所以该题的答案是A.3)A.(1a-B.(1a-C.D.(1a-【答案】B【解析】(=-B选项.1a4、(2013初二上期末平谷区)下列二次根式中,最简二次根式是()ABCD【答案】C【解析】该题考查最简二次根式.A =,被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误;BCD 故选C .5、(2012初二下期末人大附中)如果最简二次根式b 那么a 、b 的值分别是( ) A .0a =,2b = B .2a =,0b = C .1a =-,1b = D .1a =,2b =- 【答案】 A【解析】该题考查的是同类二次根式的概念.同类二次根式是被开方数相同的两个最简二次根式. ∴2322b a b b a -=⎧⎨=-+⎩,解得:02a b =⎧⎨=⎩.故选A .6、下列运算中,正确的个数是( )①1251144251=;2=-;③214141161+=+④()442±=-5-A .0个B .1个C .2个D .3个【答案】B【解析】该题考查的是根式的运算.13111212=;=4,;⑤正确,故只有1个是正确的, 所以本题的答案是B .7、( )A .在9.1~9.2之间B .在9.2~9.3之间C .在9.3~9.4之间D .在9.4~9.5之间【答案】 C【解析】9()x x +是小数部分;则有:()2988x +=,即:2187x x +=,得187x ≈,0.38x ≈,9.39.4~之间,故答案为C 选项.8、(2013初一上期末人民大学附属中学)已知正整数a 、b =那么a b -的值是( ) A .2 B .3 C .4 D .5B【解析】该题考查的是根式的性质和运算.方法一:)1==因此可得6,3a b==,故a b-的值是3.方法二:由题知正整数a、b=9a b+-918a bab+=⎧⎨=⎩解得6a=,3b=,故a b-的值是3.故本题答案为B.二、填空题9、(2013初一上期末人民大学附属中学),则3223a ba b+=-____【答案】-18【解析】该题考查非负数的性质.==0.∴43ab=-⎧⎨=-⎩求出321823a ba b+=--.10、实数a、b a的化简结果为______【答案】b-b a该题考查的是代数式化简.由图中可得0a >,0b <,且a b <,则0a b +<a a b a a b a b =++=--+=-.11、=____________=______________. 【答案】25,9 【解析】25==,369+=12、(2013a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=- 解得:1a =±13、(2013.【答案】【解析】该题考查的是二次根式的计算.原式==14、(2013初一上期末人民大学附属中学+=____【答案】【解析】该题考查根式的分母有理化.++=+=三、解答题15、(2014【答案】【解析】本题考察的是根式的计算.==16、(2013初二上期末门头沟区)【答案】【解析】该题考查的是二次根式计算.原式+2=-17、(2013初二上期中C理工附)(1(2)点Q、M之间的距离是_________.(3)点M关于点Q的对称点是__________.(4)若点P、Q、M、所对应的实数分别是p、q、m,q m-+【答案】(1)P、M、Q(2)M Q-(3)2Q M-(4)p m-【解析】该题考察的是实数与数轴.(1<P,M,Q;(2)MQdM Q=-;(3)若数轴上两个点关于某个点对称,则这两个点的平均数为中间的那个点所表示的数,故点M关于点Q的对称点为2Q M-;(4q m-+()22q p m q p q=---+-p m=-18、1()2x yz++,求x、y、z的值.【答案】1,2,3x y z===P MQ【解析】1()2x y z ++得:0x y z ---1(1)1(2)10x y z -+--+--=即:2221)1)1)0++=所以:1,2,3x y z ===19、.【答案】<【解析】1==1=>∴11<- <1、(2015中考平谷一模)函数y =中自变量的取值范围是( )A .1x ≠B .1x >C .1x ≥D .1x ≥-【答案】 B【解析】根据题意可知,10x ->,即1x >.故选B .2、对于所有实数,a b ,下列等式总能成立的是( ) A.2a b =+Ba b + C 22a b+D a b =+【答案】 C【解析】因为220a b +≥22a b +,故答案为C 选项.3、(2011中考大兴一模)函数y =中,自变量x 的取值范围是___________【答案】 2x >-【解析】根据题意可知,只需20x +>,即2x >-即可.随堂练习4、实数P____【答案】1【解析】该题考查的是实数运算.由数轴可得,23p <<, ∴20p ->,30p -<, 23231p p p p -+-=-+-=.5、计算:=⨯12172_________,=--)84)(213(_________, =⨯-03.027.02_________,_____________=.【答案】24;0.18-;5-【解析】=,(24⎛--==⎝,20.090.18-=--⨯=-,4335-⨯=-6、(2013初一上期末人民大学附属中学)化简:2____【答案】43x -12 34p【解析】该题考查根式的化简.212x -+∵由题得120x -≥,12x ≤33x x =-=-.∴原式12343x x x =-+-=-. 故答案为43x -.7、设A B ==A ____B .【答案】 A B >【解析】2A =2B =< ∴22A B< ∴A B >8、(2013初二下期中北京第四中学)已知: 1x =,求223x x +-的值.【答案】 2-【解析】该题考查的是代数式求值.把1x =代入得:原式))21213=+-323=--2=-9、已知:,x y 为实数,且3y ,化简:3y -【答案】1-【解析】 由3y <得:1x =,3y <,所以31634341y y y y y y --+=---=-++-1、(2015中考大兴一模)函数y =x 的取值范围是( ) A .2x ≤且0x ≠ B .2x ≤C .2x <且0x ≠D .0x ≠【答案】 A【解析】根据题意可知,20x -≥,且0x ≠.解得2x ≤,且0x ≠. 2、若A ( )A .24a +B .22a +C .()222a +D .()224a +【答案】 A 【解析】 因为()224A a+24a =+,故答案为A 选项.3、(2015中考西城二模)若2(2)0m ++ 则m n -= .课后作业【答案】 3-【解析】因为2(2)0m +=,所以2m =-,1n =,故3m n -=-.4、在下列二次根式中,最简二次根式有____________________.【答案】【解析】由最简二次根式的定义可知是最简二次根式.5、(2012初二上期末通州区)若最简二次根式a =__________【答案】 4【解析】本题考查的是最简二次根式的定义.∴3530a a -=+≥,解得4a =.6、0,则3223a ba b+=-____【答案】-18【解析】该题考查非负数的性质.000=0=0.∴43a b =-⎧⎨=-⎩求出321823a ba b+=--.7、(2013初二下期中北京第四中学)12.(填“>”、“<”或“=”).【答案】>【解析】该题考查的是二次根式比大小.102==>102->,12>.8、(2013初二下期末清华大学附属中学)01)【答案】 011+=0……5分9、化简:(1(2【答案】(11(2【解析】(11=(2===。

鲁教版数学八年级下册7.2《二次根式的性质》教学设计1

鲁教版数学八年级下册7.2《二次根式的性质》教学设计1

鲁教版数学八年级下册7.2《二次根式的性质》教学设计1一. 教材分析《二次根式的性质》是鲁教版数学八年级下册7.2节的内容,这一节主要让学生掌握二次根式的性质,包括二次根式的乘除运算、性质的证明以及应用。

本节内容是学生进一步学习二次根式的重要基础,也为后续的二次方程、二次函数的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了实数、有理数、无理数等基础知识,对数的运算有一定的了解。

同时,学生也学习了二次方程和一次函数,对二次式有一定的认识。

但是,学生对二次根式的理解还不够深入,需要通过本节内容的学习,进一步掌握二次根式的性质。

三. 教学目标1.理解二次根式的性质,掌握二次根式的乘除运算。

2.能够运用二次根式的性质解决实际问题。

3.培养学生的逻辑思维能力和运算能力。

四. 教学重难点1.二次根式的性质的证明和理解。

2.二次根式的乘除运算的规则和应用。

五. 教学方法采用问题驱动法,引导学生通过自主学习、合作交流,发现和总结二次根式的性质。

同时,结合实例,让学生通过实际问题,运用二次根式的性质解决问题。

六. 教学准备1.PPT课件七. 教学过程1. 导入(5分钟)教师通过一个实际问题,引出二次根式的性质。

例如,已知一根长度为3的直角三角形的斜边长,求该三角形的面积。

让学生思考如何解决这个问题,从而引出二次根式的性质。

2. 呈现(15分钟)教师通过PPT课件,呈现二次根式的性质,包括二次根式的乘除运算规则、性质的证明等。

同时,教师通过讲解,让学生理解二次根式的性质。

3. 操练(15分钟)教师给出一些例题,让学生分组讨论,发现和总结二次根式的性质。

教师引导学生通过自主学习、合作交流,发现和总结二次根式的性质。

4. 巩固(10分钟)教师给出一些练习题,让学生独立完成,巩固对二次根式的性质的理解。

教师可以通过巡查,了解学生的掌握情况,并对学生进行个别指导。

5. 拓展(10分钟)教师通过一些拓展问题,让学生运用二次根式的性质解决问题。

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。

5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。

北师大版初中八年级上册数学:二次根式

北师大版初中八年级上册数学:二次根式

x
例3.化简: (1) 50;(2) 2;(3)2
7
5
问题:
14
(是1)最你简怎二么次发根现式4的5含?有开得尽方的因数的?你怎么判断
7
(2)将二次根式化成最简二次根式时,你有哪些经验与体会,与同伴
交流。
说明:
含有根号的数与一个不含根号的数相乘,一般把不含根号的数写在
前面,并省略去乘号.(1)在对二次根式进行化简时,如果被开方数
(1) 81 64 (2)
25 6 (3)
5 9
(4) 1 3
解:(1) 81 64 81 64 9 8 72
(2) 25 6 25 6 5 6
(3) (4)
5 9
5 5
9
3
1 1 3 3
3
3 3 3
观察例一的化简结果 (关键看被开方数), 想一想有什么共同特 征?
是一个整数,一般先将被开方数写成一个平方数与另外一个数的积的形
式;
(2)当被开方数是带分数时应化为假分数;
(3)二次根式无论是计算还是化简,结果必须化为最简形式.
随堂练习:
化简:
(1) 32; (2) 72; (3) 12; 7
(4)1.5; (5)1 。 5
73 5m2
8 x2 1
做一做:
一、计算下列各式,你能得到什么猜想?Βιβλιοθήκη (1) 4 9 36 6
(2) 4 9
(3)
4 2
9
3
(4)
4 9
2 3
23 6
ab a b (a 0, b 0)
1、积的算术平方根等于积中各因式的算术平方根的积;

二次根式——精选推荐

二次根式——精选推荐

二次根式定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

二次根式即:若,则x叫做a的平方根,记作x=。

其中a叫被开方数。

其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。

被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。

性质:二次根式1.任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是,则a的另一个平方根为﹣;最简形势中被开方数不能有分母存在。

二次根式2.零的平方根是零,即;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

二次根式4.无理数可用有理数形式表示, 如:。

几何意义二次根式1°(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];二次根式2°,都是非负数;当a≥0时,;而中a取值范围是a≥0,中取值范围是全体实数。

二次根式3°c=表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4° 逆用可将根号外的非负因式移到括号内,如二次根式二次根式﹙a>0﹚,﹙a<0﹚二次根式﹙a≥0﹚,﹙a<0﹚二次根式7° 注意:,即具有双重非负性。

算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。

0的算术平方根为0.开平方运算化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。

最简二次根式二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。

运算法则乘除法1.积的算数平方根的性质二次根式(a≥0,b≥0)2. 乘法法则二次根式(a≥0,b≥0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个二次根式如果不是最简二次 根式,那么可以利用二次根式的性 质,把它化成最简二次根式.
练习
3 化简: (1) 2
5 (2) 816 25 (源自) 9 644 (3) 7
45 (5) 169
(6) 12b
2
达标检测
把下列式子化成最简二次根式:
2 (1) 3 9 (4) 2 5 (2) 18 2 (3) 1 3
a b a (a≥0,b>0) b
最简二次根式。
巩固练习
1、化简:
(1) 24 ( 2) 9 125 ( 3) 3 4
2
2
( 4) 29 21 ( 5 ) 4a b c
2 2 2 3
4 a b (6) 4 ( 7) 2 9 8c
2
讨论
计算: 2 4 (1) 9 3 4 16 (2) 25 5
6 (3) 与 7
6 7
有什么发现?
2 3 4 16 25 5
4 9
相等吗?为什么?
根据你发现的规律填空:
一般地,对二次根式,有:
2 2 (1) = 3 3
5 5 (2) = 7 7
a a (a≥0,b>0) b b
3
(5) 12a
(6) 24
探究
下列根式中,哪些是最简二次根式?
12a , 18, x 9 , 5 x y , 27abc,
2 3
×
×

×
×
ab 3 xy 2 2 2 x y, , , 5(a b ) 2 5
2

× √

梳理
a b ab
a b a b
ab a b(a≥0,b≥0)
反过来就可以得到:
a a b b
议一议
如何化去 进行交流. 交流后说一说你的做法.
1 根号内的分母?与同桌 2
例题讲解
例4 化简:
2 (1) 5
1 (2) 7
例3、例4的结果中,被开方数都不含分母, 也不含开的尽方的因数或因式 一般地,被开方数不含分母,也不含能开的 尽方的因数或因式,这样的二次根式叫做最 简二次根式.
即商的算术平方根等于被除式的算术平方 根除以除式的算术平方根.
例题讲解
3 (1) 例3 化简: 25
3 解: (1) 25
45 (2) 169 3 3 5 25
45 (2) 169
45 169
95 13
2
3 5 13
探究
利用
a b
a b
(a≥0,b>0)
它可以对二次根式进行化简.
相关文档
最新文档