1.1 集合与元素

合集下载

高中数学:1.1.1集合的概念

高中数学:1.1.1集合的概念

1.1 集合与集合的表示方法1.1.1 集合的概念1.了解集合的概念. 2.理解元素与集合的关系. 3.掌握集合中元素的特性的应用.1.集合的概念(1)集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).通常用英语大写字母A ,B ,C ,…表示.(2)元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a ,b ,c ,…表示.2.元素与集合的关系 知识点关系 概念记法 读法 元素与集合的关系属于如果a 是集合A 的元素,就说a 属于Aa ∈A“a 属于A ” 不属于 如果a 不是集合A 的元素,就说a 不属于Aa ∉A“a 不属于A ”元素 意义确定性元素与集合的关系是确定的,即给定元素a 和集合A ,a ∈A 与a ∉A 必居其一互异性 集合中的元素互不相同,即a ∈A 且b ∈A 时,必有a ≠b无序性集合中的元素可以任意排列顺序4集合⎩⎨⎧空集:不含任何元素,记作∅非空集合:按含有元素的个数分为⎩⎪⎨⎪⎧有限集:含有有限个元素无限集:含有无限个元素5.常用数集的意义及表示意义名称记法非负整数全体构成的集合自然数集N在自然数集内排除0的集合正整数集N+或N*整数全体构成的集合整数集Z有理数全体构成的集合有理数集Q实数全体构成的集合实数集R1.下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2016届本科生D.满足3x-2>x+3的全体实数答案:A2.设M是所有偶数组成的集合,下列选项正确的是()A.3∈M B.1∈MC.2∈M D.2∉M答案:C3.方程x2-2x+1=0的解集中有________个元素.答案:14.指出下列集合是有限集还是无限集.(1)满足2 011≤x≤2 013的整数构成的集合;(2)平面α内所有直线构成的集合.答案:(1)有限集(2)无限集集合概念的理解判断下列各组对象能否构成一个集合:(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)直角坐标平面内第一象限的一些点.【解】(1)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(2)类似于(1),也能构成集合.(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.判断一组对象构成集合的依据判断一组对象能否构成集合的关键是看是否有明确的判断标准,给定的对象是“确定无疑”的还是“模棱两可”的,如果是“确定无疑”的,就可构成集合;如果是“模棱两可”的,就不能构成集合.下列各组对象能构成集合的有________(填序号).①中国农业银行的所有员工; ②我国的大河流; ③不大于3的所有自然数;④在平面直角坐标系中,和原点距离等于1的点; ⑤未来世界的高科技产品; ⑥所有的好心人.解析:①能,①中的对象是确定的;②不能,“大”无明确标准;③能,不大于3的所有自然数有0、1、2、3,其对象是确定的;④能,在平面直角坐标系中任给一点,可明确地判断是不是“和原点的距离等于1”,故能组成一个集合;⑤不能,“高科技”的标准不能确定;⑥不能,没有一个确定的标准来判断某个人是否是“好心人”.答案:①③④元素与集合的关系(1)下列关系中,正确的有( ) ①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个B .2个C .3个D .4个(2)满足“a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ”,有且只有2个元素的集合A 的个数是( )A .0B .1C .2D .3扫一扫 进入91导学网(www .91daoxue .com )元素与集合的关系【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)因为a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,若a =0,则4-a =4,此时A 满足要求;若a =1,则4-a =3,此时A 满足要求;若a =2,则4-a =2,此时A 含1个元素不满足要求.故有且只有2个元素的集合A 有2个,故选C .【答案】 (1)C (2)C判断元素和集合关系的两种方法(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可. 此时应首先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2解析:选D .因为1∉A ,2∈A ,所以⎩⎪⎨⎪⎧2×1+a ≤0,2×2+a >0即-4<a ≤-2.集合中元素的特性已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 【解】 因为-3∈P ,a 2+4≥4, 所以a -3=-3或2a -1=-3, 解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性; a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性. 综上可知,a 的值为0或-1.由集合中元素的特性求解字母取值(范围)的步骤已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解:若1∈A ,则a =1或a 2=1, 即a =±1. 当a =1时,集合A 有重复元素,不符合互异性, 所以a ≠1; 当a =-1时,集合A 含有两个元素1,-1, 符合互异性. 所以a =-1.1.集合中的元素具有确定性、互异性、无序性三大特性.利用集合中元素的三个特性,一方面可以判断一些对象是否构成集合,另一方面可以解决与集合有关的问题.2.(1)符号“∈”“∉”是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系;(2)a ∈A 与a ∉A 取决于a 是不是集合A 中的元素.根据集合中元素的确定性,对任何a 与A ,在a ∈A 与a ∉A 这两种情况中必有一种且只有一种成立.初学者由于对集合中元素的特性把握不准,而容易忽视集合中元素的互异性致错.1.下列各组对象,能构成集合的是( ) A .平面直角坐标系内x 轴上方的y 轴附近的点 B .平面内两边之和小于第三边的三角形 C .新华书店中有意义的小说 D .π(π=3.141…)的近似值的全体解析:选B .选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为∅,故能构成集合.2.所给下列关系正确的个数是( ) ①-12∈R ;②2∉∅;③0∈N +;④-3∉N .A .1B .2C .3D .4解析:选C .①②④正确,③错误,故选C .3.由“book 中的字母”构成的集合中元素个数为( )A .1B .2C .3D .4解析:选C .“book 中的字母”构成的集合中有b ,o ,k 共3个元素.4.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________.解析:由题意知,m =2或m 2-3m +2=2, 解得m =2或m =0或m =3,经验证, 当m =0或m =2时, 不满足集合中元素的互异性, 当m =3时, 满足题意,故m =3. 答案:3[A 基础达标]1.下列各组对象中能构成集合的是( ) A .2017年中央电视台春节联欢晚会中好看的节目 B .某学校高一年级高个子的学生 C .2的近似值D .2016年全国经济百强县解析:选D .由于集合中的元素是确定的,所以D 中对象可构成集合.2.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的个数为( )A .1B .2C .3D .4解析:选B .13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数, (4)正确.故选B .3.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A .矩形 B .平行四边形 C .菱形D .梯形解析:选D .因为a ,b ,c ,d 为集合A 中的四个元素,故a ,b ,c ,d 均不相同,故选D .4.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A解析:选C .因为-1=3×0-1∈A ,故A 错; -11=3×(-4)+1=3×(-3)-2∉A ,故B 错; -34=3×(-11)-1∈A ,故D 错; 因为k ∈Z ,所以k 2∈Z , 所以3k 2-1∈A ,故C 正确.5.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有( ) A .2个元素 B .3个元素 C .4个元素D .5个元素解析:选A .x 2=|x |,-3x 3=-x . 当x =0时,它们均为0;当x >0时,它们分别为x ,-x ,x ,x ,-x ; 当x <0时,它们分别为x ,-x ,-x ,-x ,-x .通过以上分析,它们最多表示两个不同的数,故集合中元素最多含有2个.6.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 含有三个元素3,4,6,且当a ∈A ,有8-a ∈A ,那么a =________. 解析:若a =3,则8-a =5∉A ,故a ≠3; 若a =4,则8-4=4∈A ,故a =4合适; 若a =6,则8-6=2∉A ,故a ≠6. 答案:48.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a >0且b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2. 即元素的个数为3. 答案:39.由三个数a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,求a 2 017+b 2 017的值.解:由a ,ba ,1组成一个集合,可知a ≠0,且a ≠1.由题意可得⎩⎪⎨⎪⎧a 2=1,a =a +b ,b a =0或⎩⎪⎨⎪⎧a 2=a ,a +b =1,b a =0,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去), 所以a 2 017+b 2 017=(-1)2 017+0=-1.10.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时, 有0=-3,不成立; 当a =2a -1时,有a =1, 此时A 中有两个元素-2,1, 符合题意.综上知a =1.[B 能力提升]11.集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ).则下列选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C .集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,经验证,(3,10)∈B ,故选C .12.已知集合A 中的元素满足ax 2-bx +1=0,又集合A 中只有唯一的一个元素1,则实数a +b 的值为________.解析:当a ≠0时,由题意可知方程ax 2-bx +1=0有两个相等的实数根, 故⎩⎨⎧1+1=--ba,1×1=1a,解得a =1,b =2.故a +b =3.当a =0时,b =1,此时也满足条件, 所以a +b =1, 故a +b 的值为1或3. 答案:1或313.已知集合A 中含有1,0,x 这三个元素. (1)求实数x 的取值范围; (2)若x 2∈A ,求实数x 的值.解:(1)由集合中元素的互异性可知,x 的取值范围为x ≠1,x ≠0的实数.(2)若x 2=0,则x =0,此时三个元素为1,0,0,不符合集合中元素的互异性,舍去. 若x 2=1,则x =±1.当x =1时,集合中元素为1,0,1,舍去; 当x =-1时,集合中元素为1,0,-1,符合题意. 若x 2=x ,则x =0或x =1,不符合元素的互异性, 所以x =-1.14.(选做题)某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为:若x 号同学去,则8-x 号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M ,则有x ∈M ,8-x ∈M . 若只有一个名额,即M 中只有一个元素,必须满足x =8-x ,故x =4,所以应该派学号为4的同学去.(2)若有两个名额,即M 中有且仅有两个不同的元素x 和8-x ,从而全部含有两个元素的集合M 应含有1,7或2,6或3,5.也就是两个名额的分派方法有3种.。

职高1.1.1集合与元素学案

职高1.1.1集合与元素学案

所有正整数组成的集合叫做正整数集,记作 N 或 Ζ + . 所有整数组成的集合叫做整数集,记作 Z . 所有有理数组成的集合叫做有理数集,记作 Q .
强调各个 数集的内 涵和表示 字母
所有实数组成的集合叫做实数集,记作 R . 不含任何元素的集合叫做空集,记作 .例如,方程 x2+1=0 的实数解的集合 里不含有任何元素,所以这个解集就是空集 关系 元素 a 是集合 A 的元素,记作 a A (读作“ a 属于 A”, a 不是集合 A 的元 突出强调 ) 符号规范 素,记作 a A (读作“ a 不属于 A”. )
书写
集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合, 或者不属于这个集合,二者必居其一. *运用知识 强化练习 练习 1.1.1 1.用符号“ ”或“ ”填空: N ,0.5 N ,3 N; (1)−3 (2)1.5 Z ,−5 Z ,3 及时了解 学生知识 Z; (3)−0.2
2ቤተ መጻሕፍቲ ባይዱ
从实际事 例使学生 自然的走 向知识点
启发学生 体会集合 概念
带领学生 理解整体 个体意义 为后续学 习做准备
通过例题 进一步领 会元素确 定性 观察学生 是否理解 知识点
集合类型 比较简单 可以让学
生自己分 不等式 x-2>0 的解组成的集合那样,由无限个元素组成的集合叫做无限集. 像平面上与点 O 的距离为 2 cm 的所有点组成的集合那样,由平面内的点组成 析 的集合叫做平面点集. 由数组成的集合叫做数集.方程的解集与不等式的解集都是数集. 所有自然数组成的集合叫做自然数集,记作 N .
*创设情景 兴趣导入 问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、 薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里? 解决 显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐, 彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐. 归纳 面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸 刀、尺子组成了文具集合. 而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应 集合的元素. *动脑思考 探索新知 概念 由某些确定的对象组成的整体叫做集合, 简称集. 组成集合的对象叫做这个 集合的元素. 如大于 2 并且小于 5 的自然数组成的集合是由哪些元素组成? 表示 一般采用大写英文字母 A , B , C , „表示集合, 小写英文字母 a , b, c, „表示集合 的元素. 拓展 集合中的元素具有下列特点: (1)互异性:一个给定的集合中的元素都是互不相同的; (2)无序性:一个给定的集合中的元素排列无顺序; (3) 确定性:一个给定的集合中的元素必须是确定的. 不能确定的对象, 不能组成集合. 例如, 某班跑得快的同学, 就不能组成集合. 例 1 下列对象能否组成集合: (1)所有小于 10 的自然数; (2)某班个子高的同学; (3)方程 x2 1 0 的所有解; (4)不等式 x 2 0 的所有解. 解 (1) 由于小于 10 的自然数包括 0、1、2、3、4、5、6、7、8、9 十个数,它们 是确定的对象,所以它们可以组成集合. (2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合. (3)方程 x2 1 0 的解是−1 和 1,它们是确定的对象,所以可以组成集合. (4)解不等式 x 2 0 ,得 x 2 ,它们是确定的对象,所以可以组成集合. 类型 由方程的所有解组成的集合叫做这个方程的解集. 由不等式的所有解组成的集合叫做这个不等式的解集. 像方程 x 1 0 的解组成的集合那样, 由有限个元素组成的集合叫做有限集. 像

北师大版中职数学基础模块上册:1.1.1集合与元素(教案)

北师大版中职数学基础模块上册:1.1.1集合与元素(教案)

(4)任意一个正整数,能否被5整除是确定的,所以能被5整除的正整数能组成集合.
解(1)能;(2)不能;(3)能;(4)能.
合作交流
同桌两人,其中一人举出一个集合的例子,另一人
说出这个集合中的两个元素,再交换练习,看谁的正确率高.
完成“合作交流”中问题
活动四:
课堂小结
作业布置
(一)课堂小结
(二)作业布置
完成课本中P4 ——练习1./2./3./4.
活动五:板书设计
1.1.1 集合与元素
一、集合与元素概念及其表示方法练习小结
二、集合与元素关系练习作业
三、集合中元素的特征
活动六:教学反思包括5个方面,教学目标、教学内容、教学实施、教学评价、教学效果。

所谓教学反思,是指。

集合的概念集合与元素

集合的概念集合与元素

动脑思考 探索新知
一、集合与元素 的概念
将某些确定的对象看成一个整体就构成一个集合(简称集).
组成集合的对象叫做这个集合的元素.
观察你的文具盒,什么是集合?什么是元素 ?
.
操作
高教社
动脑思考 探索新知
二、集合的性质
确定性
互异性
无序性
一个给定的集 合中的元. 素必 须是确定的
一个给定的集 合中的元素都 是互不相同的
我们每个人手里都有一把自 学成才的钥匙,这就是:理想、 勤奋、毅力、虚心和科学的方法。
----------华罗庚
开始学习啦!
第一章 集合与充要条件
1.1 集合的概念
1.1.1 集合与元素
高教社
张立艳
【学习目标】理解集合、元素的概念及其关系, 掌握常用数集的字母表示;
• 【学习重点】
• 集合的概念
一个给定的集 合中的元素排 列无顺序
高教社
三、集合与元素表示方法:
一般采用大写英文字母A,B,C…表示集合,小写英文 字母a,b,c… 表示集合的元素.
动脑思考 探索新知
四、元素与集合的关 系
元素与集合
元素a是集合A 的元素,. 记作a∈A, 读作a属于A.
高教社
元素a不是集合A 的元素,
记作a A,
读作a不属于A.
例1 下列对象能否组成集合: (1)所有小于10的自然数; (2)某班个子高的同学; (3)方程x2-1=0的所有解; (4)不等式x-2˃0的所有解. (5)方程x2+1=0的解集
五、集合的分类:
1、有限集:含有有限个元素的集合 2、无限集:含有无限个元素的集合 3、空集:不含任何元素的集合,记作ɸ

护理高职数学(第一册)第一章集合知识梳理

护理高职数学(第一册)第一章集合知识梳理

高职护理1708数学(第一册)概念知识梳理(1)第1章集合§1.1集合与元素1.一般的,有某些确定的对象所组成的整体叫做集合.集合通常用大写英文字母A 、B 、C ,…表示.2.集合中的每个确定的对象叫做这个集合的元素.集合的元素通常用小写英文字母a 、b 、c ,…表示.3.如果a 是集合A 的元素,就说a 属于A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉ A.4.一般的,含有有限个元素的集合,叫做有限集;含有无限个元素的集合,叫做无限集。

5.我们把不含任何元素的集合叫做空集,记作Ø.如方程032=+χ的实数解组成的集合就是空集.6.如果集合中的元素是数,那么这样的集合叫做数集.常用数集及其符号如下表.数集名称自然数集正整数集整数集有理数集实数集符号N N*或N +Z Q R7.(补充)素(质)数、合数概念:“1”既不是素数也不是合数.8.奇(单)数、偶(双)数:偶数+偶数=偶数;奇数+奇数=偶数偶数+奇数=奇数.§1.2集合的表示方法1.一般的,把集合中的元素一一例举出来,写在大括号内,这种表示集合的方法叫做列举法,用列举法表示集合,元素之间要用逗号隔开.2.元素的特性:①确定性;②无序性;③互异性.3.一般的,用集合中元素的共同特征来表示集合的方法叫做描述法.描述法的一般形式为:{x |x 具有的共同特征}.4.不等式的解组成的集合称为不等式的解集。

§1.3集合之间的关系1.我们常用封闭曲线的内部表示集合,这种表示集合的图形叫做维恩(Venn )图.2.没有公共元素有部分公共元素集合A 都是集合B 的元素3.一般的,对于两个集合A 与B ,如果集合A 的任意一个元素都是集合B 的元素(若x ∈A ,则x ∈B ),那么集合A 叫做集合B 的子集,记作A ⊆B 或B ⊇A ,读作“A 包含于B ”或“B 包含A ”.4.根据子集定义,我们可以得出:A ⊆A ,即任何一个集合是它自身的子集.5.对于空集,我们规定:Ø⊆A ,即空集是任何集合的子集.6.N 、Z 、Q 、R 关系维恩图.(R Q Z N ⊆⊆⊆)7.一般的,对于两个集合A 与B ,如果集合A 是集合B 的子集,并且集合B 中至少有一个元素不属于集合A ,那么集合A 叫做集合B 的真子集,记作A ⫋B 或B A ,读作“A 真包含于B ”或“B 真包含A ”.8.空集是任何非空集合的真子集.9.一般的,如果两个集合的元素完全相同,那么我们就说这两个集合相等.集合A 与集合B 相等记作A=B.10.子集个数计算公式:子集个数=2n (n 是子集的个数).§1.4集合的运算1.一般的,给定两个集合A 、B ,由既属于集合A 又属于B 的元素组成的集合,叫做集合A 与集合B 的交集,记作A ∩B ,读作“A 交B ”,(如下图)即A ∩B={x |x ∈A 且x ∈B}.2.对于任意集合A,B,C,有(1)交换律A ∩B=B ∩A ;(2)结合律(A ∩B )∩C=A ∩(B ∩C ).3.一般的,给定两个集合A ,B ,把他们所有的元素合并在一起组成的集合,叫做集合A 与集合B 的并集,记作A ∪B ,读作“A 并B ”.由并集的定义可知,A ∪B 中的元素属于A 或属于B ,即:A ∪B={x |x ∈A 或x ∈B}.4.对于任意集合A,B,C,有(1)交换律A ∪B=B ∪A ;(2)结合律(A ∪B )∪C=A ∪(B ∪C ).5.一般的,如果我们所研究的集合涉及的全部元素都属于集合U ,那么这个集合U 我们叫做全集.如果A 是全集U 的一个子集,由U 中不属于A 的所有元素组成的集合叫做集合A 在全集U 中的补集,记作C U A ,读作“A 在U 中的补集”,即C U A={x |x ∈U 且x ∉A}.A A AB B BAB6.对于全集U 和他的一个子集A ,有(1)A ∩(C U A )=U(2)A ∪(C U A )=Ø(3)C U (C U A )=A.§1.5充要条件1.一般地,若命题“如果p ,那么q ”是正确的,即p ⇒q ,那么我们就说p 是q 的充分条件,或q 是p 的必要条件.2.一般地,若p 是q 的充分条件,又是q 的必要条件,我们就说p 是q 的充分必要条件,简称充要条件,也称p 与q 是等价的,或称p 等价于q ,记作p ⇔q.3.归纳逻辑思维关系.件,既不充分也不必要条④充要条件③必要而不充分条件②充分而不必要条件①q p q p q p q p ⇔⇔⇐⇒,,,第一章集合(补充知识)1.构成集合的元素必须满足三要素:确定性、互异性、无序性。

1.1 集合的概念(答案版)

1.1 集合的概念(答案版)

1.集合与元素 一般地,把研究对象称为元素,通常用小写拉丁字母a,b,c,...表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,...表示。

2.集合的特征(1)集合元素的特征:确定性、互异性、无序性.(2)元素与集合的关系:属于(∈),a∈A ;不属于(),a∈A .(3)自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R.(4)集合的表示方法:自然语言表示法、字母表示法、列举法、描述法、Venn 图图示法.3.集合的基本关系集合与集合:包含关系(子集),或B A ⊆(A 包含于A B ⊇B ,B 含于A ,A>B )(2)子集个数结论:∈含有n 个元素的集合有2n 个子集;∈含有n 个元素的集合有2n -1个真子集;∈含有n 个元素的集合有2n -2个非空真子集.例1:用适当的方法表示下列集合.(1)“BRICS”中所有字母组成的集合;(2)绝对值等于6的数组成的集合;(3)所有三角形组成的集合;(4)直线y =x 上去掉原点的点组成的集合;(5)大于2且小于5的有理数组成的集合;(6)24的所有正因数组成的集合;1.1集合的概念知识讲解典型例题(7)平面直角坐标系内与坐标轴距离相等的点的集合.解:(1)用列举法表示为{B ,R ,I ,C ,S}.(2)因为绝对值等于6的数是±6,所以用列举法表示为{-6,6}.(3)用描述法表示为{x |x 是三角形}或{三角形}.(4)用描述法表示为{(x ,y )|y =x ,x ≠0}.(5)用描述法表示为{x |2<x <5,且x ∈Q }.(6)用列举法表示为{1,2,3,4,6,8,12,24}.(7)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |到y 轴的距离为|x |所以该集合用描述法表示为{(x ,y )||y |=|x |}.例2:下列各组集合中表示同一集合的是( )A .,B .,C .,D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合;对于B ,,,根据集合的无序性,集合表示同一集合;对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,,集合的元素是点,集合不表示同一集合.一、选择题1.下列各组对象中能构成集合的是( C )AB .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品2. 下列命题中正确的是( C ){(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 同步练习∈0与{0}表示同一个集合;∈由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};∈方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};∈集合{x |4<x <5}可以用列举法表示.A .∈和∈B .∈和∈C .∈D .∈和∈解析:选C ∈中的0不是集合,故∈错;由集合中元素的无序性知∈正确;由集合中元素的互异性知∈错;因为集合{x |4<x <5}表示无限集,它不可以用列举法表示,故∈错.3.下列各组中的M 、P 表示同一集合的是( C )∈M ={3,-1},P ={(3,-1)} ∈M ={(3,1)},P ={(1,3)} ∈M ={y |y =x 2-1},P ={t |t =x 2-1}∈M ={y |y =x 2-1},P ={(x ,y )|y =x 2-1}A .∈B .∈C .∈D .∈解析:选C 在∈中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故∈错误;在∈中,M ={(3,1)},P ={(1,3)}表示的不是同一个点,故∈错误;在∈中,M ={y |y =x 2-1}=[-1,+∞),P ={t |t =x 2-1}=[-1,+∞),二者表示同一集合,故∈正确;在∈中,M ={y |y =x 2-1}表示数集,P ={(x ,y )|y =x 2-1}表示一条抛物线上的点的集合,故∈错误,故选C.4.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…用描述法可表示为( ) A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +12n ,n ∈N * B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +3n ,n ∈N *C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n -1n ,n ∈N *D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N * 解析:选D 由3,52,73,94,即31,52,73,94,从中发现规律,x =2n +1n ,n ∈N *,故可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N *. 5.集合{x |x 2-6x +9=0}中的所有元素之和为( )A .0B .3C .6D .9解析:选B ∈{x |x 2-6x +9=0}={3},故元素之和为3.6.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( B )A .1或-1B .1或3C .-1或3D .1,-1或37.已知M ={(x ,y )|2x +3y =10,x ,y ∈N },N ={(x ,y )|4x -3y =1,x ,y ∈R },则( B )A .M 是有限集,N 是有限集B .M 是有限集,N 是无限集C .M 是无限集,N 是无限集D .M 是无限集,N 是有限集解析:选B 因为M ={(x ,y )|2x +3y =10,x ,y ∈N }={(2,2),(5,0)},所以M 为有限集.N ={(x ,y )|4x -3y =1,x ,y ∈R }中有无限多个点满足4x -3y =1,故N 为无限集.8.下列集合中,是空集的是( B )A .B .C .D . {}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y y x x y =-∈R【答案】B 【解析】对于A 选项,,不是空集,对于B 选项,没有实数根,故为空集,对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集.9.集合中的不能取的值的个数是( )A .B .C .D . 【答案】B 【解析】由题意可知,且且,故集合中的不能取的值的个数是个.二、填空题1.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________.【答案】{4,9,16} [由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}.]2. 以下五个写法中:∈{0}∈{0,1,2};∈∈∈{1,2};∈{0,1,2}={2,0,1};∈0∈∈;∈A∩∈=A ,正确的个数有 2 个。

1.1集合与元素

1.1集合与元素

学习内容::集合与元素学习目标:1、通过实例,体会集合的含义;理解集合的有关概念.2、理解集合的构成原则,能根据集合的构成原则,表达和判别集合.3、会用“∈”和“∉”符号表示元素与集合之间的关系.4、知道集合的分类,体会空集的含义.5、知道常用数集的符号表示.重点、难点:集合的基本概念及元素与集合的关系.一.学前预习、体验感悟1.什么叫集合?什么叫元素?2.集合与元素之间的关系用什么符号表示?3.集合可以分成哪几类?这种分类的标准是什么?4.请你写出五个常用数集的符号。

预习疑难摘要:.二.合作探索、建构数学1.你知道中国的“西南三省“是哪个三个省份吗?________________。

2.全世界共有四大洋,它们的名称是什么?_____________。

3.太阳光实际上是有七种单色光组成的,你知道是哪七种吗?_________________。

思考:上述三个问题中,每个问题所涉及的对象是确定的吗?4.你是怎样理解“确定的对象”这个关键词的? 思考:由一些不确定的对象组成的整体能构成集合吗?5.你会用符号“∈”和“∉” 表示元素与集合之间的关系吗?三.合作交流、应用数学1.合作与讨论下列对象能否组成集合?(1) 中国的直辖市;(2) 方程012=-x 的所有解;(3) 大于3的自然数;(4) 著名的科学家。

2.思考与讨论:请你举一些集合的例子,并指出它们的元素有哪些?3.下列对象的全体哪个可以构成集合 ( )A 、本校成绩好的学生B 、本班个子高的同学C 、本班身体好的同学D 、本班所有的女生4.数一数下列每个集合中的元素有多少个?(1)小于10的自然数;(2)不小于10的自然数;(3)我们班上身高在2米以上的同学。

通过上面三个问题的证明,我们得到:__________________,叫做有限集__________________,叫做无限集__________________,叫做空集,记作:___6.用符号“∈”和“∉”填空:(1)0____N;(2)0_____N+;(3)3.5_____Z;(4)2_____Q ;(5)π_____R四.体会交流、总结回顾在本节课中,我们学习了哪四个知识点?。

集合与元素教案

集合与元素教案
思考:班级里高个子女生能组成集合吗?
归纳:不能确定的对象,不能组成集合.
问题2:大于2并且小于5的自然数组成的集合是由哪些元素组成?
元素和集合之间的关系怎样表示呢?
如果a是集合A的元素,就说a属于A,记作a A;如果a不是集合A的元素,就说a不属于A,记作a A
如在上一问中7是不是集合的元素,怎么表示?4呢?
(2)全世界共有四大洋,它们的名称是什么?
(3)太阳光实际上是由七种单色光组成的,你知道是哪七种吗?
解决
学生回答
概念
由某些确定的对象所组成的整体叫做集合.集合通常用大写英文字母A,B,C,……
集合中每个确定的对象叫做这个集合的元素.集合的元素通常用小写英文a,b,c,……
问题1:集合概念里的关键词是哪个?如何理解?
2描述法
例题讲解
例1例2
小结1
小结2
小结3
例3
课后作业:
P3习题1,2
P6习题1,2,3
课堂教学安排
教学过程
主要教学内容及步骤
揭示课题
创设情景
兴趣导入
动脑思考
探索新知
例题讲解
思考交流几点说明强练习归纳总结课后讨论
问题探究
兴趣导入
动脑思考
探索新知
巩固知识
典型例题
运用知识
强化练习
理论升华
整体建构
运用知识
记集合为A,则7 A,4 A
例1下列对象能否组成集合
(1)中国的直辖市;
(2)方程 的所有解;
(3)大于3的自然数;
(4)著名科学家。
解:(1)中国的直辖市分别是北京市,上海市,天津市和重庆市,它们是确定对象,可以组成集合。
(2)(3)(4)略。

湘教版高中数学必修第一册第1章1-1-1第1课时集合与元素课件

湘教版高中数学必修第一册第1章1-1-1第1课时集合与元素课件
以集合中元素的确定性和互异性为切入点,思考求解a值的方法.
[解] 由题意可知,a=1或a2=a, (1)若a=1,则a2=1,这与a2≠1相矛盾,故a≠1. (2)若a2=a,则a=0或a=1(舍去),又当a=0时,A中含有元素1和0, 满足集合中元素的互异性,符合题意. 综上可知,实数a的值为0.
三个元素.]
5
题号
1

2
3
D [由题意可知,a∈R且a∉Q,所以a是无理数.故选D.]
4
5
题号
4.若1∈A,且集合A与集合B相等,则1___∈_____B(填“∈”或 1
“∉”).
2
∈ [由集合相等的定义可知,1∈B.]
3
4
5
5.已知集合A由a2-a+1,|a+1|两个元素构成,若3∈A,则a的 值为___-__1_或__-__4___.
√A.一切很大的数
√B.好心人
题号
√C.漂亮的小女孩
D.不小于3的自然数
1 2
ABC [“很大”“好”“漂亮”等词没有严格的标准,故选项A,3
4
B,C中的元素均不能构成集合.故选ABC.]
5
2.用“book”中的字母构成的集合中元素个数为( )
题号
A.1
B.2
1
√C.3
D.4
2
3
C [由集合中元素的互异性可知,该集合中共有“b”“o”“k” 4
[母题探究] 本例若去掉条件“a∈A”,其他条件不变,求实数a的取值范围. [解] 由集合中元素的互异性可知a2≠1,即a≠±1.
反思领悟 根据集合中元素的基本属性求值的3个步骤
[跟进训练] 3.设集合A中含有三个元素3,x,x2-2x. (1)求实数x应满足的条件; (2)若-2∈A,求实数x的值.

1.1.1集合与元素,集合的表示法

1.1.1集合与元素,集合的表示法
3.空集:一个元素也没有的集合,用 来表示。
思考:
1. 0 ∉ (填∊ 或∉ )
集合的表示法(一)
如何表示下列两个集合呢? (1)小于5的所有自然数组成的集合 (2)我国古代的四大发明组成的集合
思考1:这两个集合的元素有哪些? (1)0,1,2,3,4 (2)活字印刷术,造纸术,指南针,火药
×
(4)A={1,4,8}, B={8,4,1}, A和B表示为同
一集合。

集合的3个特性
1.确定性:集合中的每一个元素都必须是确定。 2.互异性:集合中的任意两个元素互不相同。
3.无序性:集合中的元素排列是无先后顺序的。
常用的数集表示
集合记号 N*或N+ N Z Q R
集合意义 正整数集
非负整数集(自然数集) 整数集 有理数集 实数集
课堂小结
1.集合的有关概念 (集合、元素、属于、不属于)
2.集合的三个特性 (确定性,互异性,无序性)
3.常用数集的定义及记法.
4、集合的分类
(有限集、无限集、 空集 )
5、集合的表示法 (列举法、描述法、文氏图法)
作业布置
超星作业 1.1.1集合与元素 集合的表示法
描述法:利用元素的特征性质来表示集合的方法。
具体方法是:在花括号中画一条竖线,竖线的左侧写上集合的代表元素,并标 出元素的取值范围,竖线的右侧写出元素所具有的特征性质。 例如:小于5的所有实数组成的集合可表示为:
{x∈R|x<5} 或{x|x<5}
思考2:大于7小于18的有理数组成的集合如何表示?
{ x∈Q 7< x<18 }
代表元素
所有元素所共有 的“特征性质”
两种描述法: (1)符号描述法——用数学符号把元素所具有的属性描述出来,如 {x∈R|x<5}

(word完整版)集合知识点汇总与练习,推荐文档

(word完整版)集合知识点汇总与练习,推荐文档

1.1 集合1.1.1 集合的含义与表示一集合与元素1.集合是由元素组成的集合通常用大写字母A、B、C,…表示,元素常用小写字母a、b、c,…表示。

2.集合中元素的属性(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。

(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。

(3)无序性:集合中的元素在描述时没有固定的先后顺序。

3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”。

4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。

二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。

如大于等于2且小于等于8的偶数构成的集合。

(2)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。

注意事项:①元素间用逗号隔开;②元素不能重复;③元素之间不用考虑先后顺序;④元素较多且有规律的集合的表示:{0,1,2,3,…,100}表示不大于100的自然数构成的集合。

(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句力求简明、准确。

1.1.1集合的概念

1.1.1集合的概念

集合中的元素是没有顺序的
4.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
6.集合的表示方法:列举法、描述法和图示法. ⑴ 列举法:就是把集合中的元素一一列举出来,写在
大括号内表示集合的方法.
例如上述⑴、⑷组成的集合可分别表示为
{1,2,3,4,5}与{ x2,3x+2,5y3-x,x2+y2}. 注意:1.用列举法表示集合时,不管元素的排列顺序如
何,只要所列的元素完全相同,它们表达的 就是同一个集合. 2.集合中的元素是没有重复现象的,即任何两个 相同的对象在同一个集合中时,只能算作这个 集合的一个元素.
2.集合的表示:
集合通常用大括号或大写的拉丁字母表示 如{1,2,3,4,5}与{练市中学的高一学生}; 又如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示, 如a、b、c、p、q……
3.集合与元素的关系:
元素对于集合的从属关系
(1)属于(belong to):如果a是集合A的元素,就说a 属于A,记作a∈A (2)不属于(not belong to ):如果a不是集合A的元 素,就说a不属于A,记作aA 说明:“∈”的开口方向,不能把a∈A颠倒过来写
4.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.

(新教材)【人教A版】高一数学《1.1.1集合的含义》

(新教材)【人教A版】高一数学《1.1.1集合的含义》
1 a
【解析】1.选A.A中a=0时,显然不成立. 2.选A.a= + < + =4<5, 所以a∈A. a+1< + 2 +1=35, 4 4 所以a+1∈A,
44
a2=( )2+2 × +( )2=5+2 >5,
所以a22∉A, 2 3 3
6
=
<5,
所1 以 ∈1A.
3 2
第一章 集合与常用逻辑用语 1.1 集合的概念
第1课时 集合的含义
1.元素与集合 (1)元素:把研究对象统称为元素,常用小写的拉丁字母 a,b,c,…表示. (2)集合:一些元素组成的总体,简称集,常用大写拉丁 字母A,B,C,…表示.
(3)集合相等:指构成两个集合的元素是一样的. (4)集合中元素的特性:确定性、互异性和无序性.
【延伸·练】
数集A满足条件:若a∈A,则 ∈A(a≠1).若 ∈A,
求集合中的其他元素. 1 a
1
1 a
3
【解析】因为
1
∈A,所以
1
1 3
=2∈A,所以
1
2
=
3
1 1
1 2
-3∈A,所以1 3=-
1
∈A,所以
3 1
1 2
=ቤተ መጻሕፍቲ ባይዱ
1∈A.故当 1 ∈A
13 2
1 1 3
3
2
时,集合中的其他元素为2,-3,- 1 .
31 22
含有4个元素.其中正确的是 ( ) A.①②④ B.②③ C.③④ D.②④ 【解析】选B.①中的元素不能确定,④中的集合含有3 个元素,②③中的元素是确定的,所以②③能构成集合.

人教版《数学》第一册教案——1.1集合与元素

人教版《数学》第一册教案——1.1集合与元素
-0.2Q; -5Z; R.
答案:1. 是; 不是.2. ; ; ; ; ; .
综合应用
15´
小结:
集合的有关概念(集合、元素、属于、不属于、有限集、无限集、空集)

例3(启发学生回答)由大于2并且小于5的自然数组成的集合是由哪些元素组成?解 由于大于2并且小于5的自然数只有3和4,所以这个集合是由3和4组成.
给出定义

由例题帮助学生理解题
15´
巩固练习
1.下列对象是否能确定一个集合:
全体大于10的自然数;
与1接近的实数.
2.用“ ”、“ ”填空:
-3N; 0.5Z; 3N;
3.元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A.
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作 .
4.集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,
或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复。
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出).
注:1.集合通常用大写的拉丁字母表示,如A、B、C、P、Q、……
元素通常用小写的拉丁字母表示,如a、b、c、p、q、……
2.“∈”的开口方向,不能把a∈A颠倒过来写。
例1 (讲授)判断下列对象是否可以组成集合:
⑴ 某学校数控专业的全体学生;⑵ 的所有实数根;⑶ 不等式 的所有解;
⑷ 平面上与点 的距离为2 cm的所有点.
实例:一个班集体,一个家庭,平面上点的集合等,引入集合的定义

新授内容
1.集合的概念
(1)集合:由某些指定的对象组成的整体形成一个集合。(或集合是由一些事物组成的整体)(2)元素:集合中每个对象叫做这个集合的元素。

1.1.1集合与 元素

1.1.1集合与 元素
(2)A={所有素质好的人},能否表示为集合?
(3)A={2,2,4},表示是否准确?
(4)A={太平洋,大西洋},B={大西洋,太平洋},是否表示为同一集合?
生:在师指导下一一回答上述问题.
师:由以上四个问题可知,
集合元素具有三个特征:
(1)确定性;(2)互异性;(3)无序性.
5、集合的表示方法
(1)列举法:把集合中的元素一一列出来,写在大括号内的表示集合的方法。例:用列举法表示下列集合:①方程x2=x的所有实数根组成的集合。②由1-20以内的所有质数组成的集合。
集合的含义与表示教案
课题
1.1集合的含义与表示
使用教具
课件
教学目标
1、理解集合、元素的概念;
2、掌握集合和元素的符号表示;
3、能正确表示出元素与相关集合的关系;
4、集合中元素的特征;
5、记住数集的概念和常见数集的字母符号;
6、理解集合的几种表示方法。
教学重点
教学难点
重点:集合的基本概念与表示方法;
难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
各组成员分工明确,记录员,发言人,板书人等做好准备工作。
汇总归纳
全班展示
1、答案略
2、(1) 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合.
(2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合.
(3)方程 的解是−1和1,它们是确定的对象,所以可以组成集合.
各组展示讲解过程中,其他所有成员认真倾听,有更好的方法和建议或不同见解,做好补充。
反馈检测
总结拓展
1.元素、集合的定义

1.1.1集合与元素的概念

1.1.1集合与元素的概念
亚洲、欧洲、北美洲、南美洲、南极洲、非洲、大洋洲
一般地,我们把研究对象统称为元素,如(1)中的几个偶数2,4等;
把由元素组成的总体叫做集合(简称为集),如上面左侧的4个集合。
2
2
集合中的元素有什么性质
确定性
对于一个给定的集合,它的元素必须是确定的。
也就是说,对于一个已知的集合来说,某个元素在不在这个集合里
,是确定的,要么在 ,要么不在,不能含糊其辞。
比如“较小的数”就不能构成集合
2
集合中的元素有什么性质
例1
考察下列每组对象,能构成集合的是( D )
A.2 021年全国高考数学试卷中的所有难题
B.中国各地美丽的乡村
C. 3的近似数
D.不小于3的自然数
2
集合中的元素有什么性质
互异性
一个给定的集合当中的元素是互不相同的,即集合中的元素不会重复
3-x
解析
由题意可得,3-x可以为1,2,3,6,且x为自然数,因此x的值为
2,1,0,因此A中元素有2,1,0.
5
随堂练习
2.给出下列说法:
①R中最小的元素是0;②若a∈Z,则 Nhomakorabeaa∉Z;
③若a∈Q,b∈N+,则a+b∈Q.
其中正确的个数为
A.0
解析
B.1

C.2
D.3
实数集中没有最小的元素,故①不正确;
当m=3时,此时集合A中含有3个元素0,2,3,故选B.
5
随堂练习
5.现有下列各组对象:
①著名的数学家;②某校今年在校的所有高个子同学;③不超过30的
所有非负整数;④方程x2-4=0在实数范围内的解;⑤平面直角坐标
系中第一象限内的点.其中能构成集合的是

1.1集合与元素

1.1集合与元素

实数 集 R
练习2. 用符号“ ”或“ ”填空 (1)0 N (2)-3 N (3)3.7 (4)5 N (5) Z (6) 3 (7) 2 R (8)0 R

N Q
三、问题解决
某校举行一年一度的校运动会,比赛项目有 100米、200米、实心球、铁饼、800米、 1500米、3000米、4X100 、三级跳远、立 定跳远、跳高,共11项。 (1)田赛、径赛项目分别有哪些?它们能否 组成集合?如果能组成集合,集合的元素 分别是哪些? (2)个人项目、团体项目分别有哪些?它们 能否组成集合?如果能组成集合,集合的 元素分别是哪些?

解(3)大于3的自然数是确定的对象,可 以组成集合。

解(4)由于判定一个科学家是否著名没有 具体的标准,对象是不确定的,所以不能 组成集合。
练习1.同学们,请你举一些集合的例子,并 指出它们的元素有哪些。老师和其他同学 当评委来评判。 练习2.下列对象能否组成集合? (1)中国古代的四大发明 (2)一个星期七天的名称 (3)本校一年级高个子男生 (4)小于5的自然数
1.1 集合与元素
一.激趣导入
(1)中国的“西南三省”是哪三个省份?
四川省 贵州省 云南省
(2)全世界共有四大洋,它们的名称是什么?
(3)太阳光其实是由七种单色光组成的,你 知道是哪七种吗?
赤、橙、黄、 绿、青、兰、 紫 绚丽ห้องสมุดไป่ตู้七色光
二.探索· (一) 发现
一般地,由某些确定的对象所组成的整体 叫做集合。集合通常用大写字母A、B、 C……表示。 集合中的每个确定的对象叫做这个集合的 元素。集合中的元素通常用小写英文字母 a,b,c,……表示。 如果a是集合A的元素,就说a属于A,记 作 a A ;如果a不是集合A的元素,就说a不 属于A,记作 a A 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的分类
练习2:判断下列语句是否正确。
(1)由2,2,3,3构成一个集合,此集合共有4个元素;
(2)所有三角形构成的集合是无限集;
(3)周长为20 cm 的三角形构成的集合是有限集。
集合的分类
如果一个集合中的元素是数,那么这样的集合叫做数集。 常用数集及其记法:
集合 非负整数集 名称 (自然数集) 符号 N 正整数集 整数集 有理数集 实数集 N* 或 N+ Z Q R
N
; N; Q; R。
集合与元素
六、问题解决 某校举行一年一度的校运动会,比赛项目有100米、200米、 实心球、铁饼、800米、1500米、3000米、4×100米、三级跳远、 立定跳远、跳高,共11项。
(1)田赛、径赛项目分别有哪些?它们能否组成集合? 如果能组成集合,集合的元素分别是哪些? (2)个人项目、团体项目分别有哪些?它们能否组成集合? 如果能组成集合,集合的元素分别是哪些?
自然数集与非负整数集是相同的, 也就是说,自然数集包括数 0。
集合与元素
例题2:用符号“”或“”填空。 , 0___N , -4___N (1)1___N , , -4___Z , , 0___Z (2)1___Z , 0___Q , -4___Q (3)1___Q , , 0___R , -4___R , (4)1___R
北冰洋 大西洋 印度洋
太平洋
集合
问题3: 太阳光实际上是由七种单色光组成,你知道是哪七种?
集合
特征:以上事例都是由某些确定的对象所组成的。
概念:由某些确定的对象所组成的整体叫做集合。 集合的表示:通常用大写的英文字母A,B,C, „„表示。
集合
二、教学活动设计
例题1:下列对象能否组成集合? (1)中国的直辖市; (2)方程x2-1=0的所有解; (3)大于3的自然数; (4)著名科学家; (5)我们班个子比较高的同学;
集合与元素
课堂小结:
(1)集合的有关概念:集合、元素; (2)元素与集合的关系:属于、不属于; (3)集合中元素的特性; (4)集合的分类:有限集、无限集; (5)常用数集的定义及记法。
集合与元素
课后作业: 教材 P 4 、习题1、2


1.1 集合与元素
集合
一、学习情境设计-----探究 作为教师,我肩负教书育人的重任; 作为学生,大家承担着好好学习、报效祖国 的使命。 “物以类聚,人以群分”,那么,我们该如 何用数学语言来表示某一类事物呢?
集合
问题1:你知道江苏省一共有多少个地级市?
集合
问题2: 全世界有四大洋,它们的名称是什么?
0.3___N ; 0.3___Z ; ; 0.3___Q . 0.3___R
分类计数原理
五、总结与强化练习
1、下列对象能否组成集合? (1)中国古代四大发明; (2)一个星期七天的名称; (3)本校一年级高个子男生; (4)小于5的自然数。
集合与元素
2、用符号“”或“”填空。 (1 0 N; (2) -3 (3)3.7 N; (4) 5 (5 )π Z; (6 ) - 3 R; (8) 0 (7 ) 2
集合与元素
三、思考交流 请你举一些集合的例子,并指出它们的元素有哪些?
集合的分类
四、小组讨论---集合的分类
按集合中含元素的多少分类
(1)有限集:含有有限个元素的集合叫做有限集。
(2)无限集:含有无限个元素的集合叫做无限集。
(3)空集:不含任何元素的集合叫做空集。 如:方程x2+3=0的实数解组成的集合就是空集。
集合与元素
元素与集合的关系:
(1)如果 a 是集合A的元素,就说 a 属于 A, 记作 aA,读作“a 属于 A”; (2)如果 a 不是集合 A 的元素,就说 a 不属于 A , 记作 aA,读作“a 不属于 A”.
例如:“大于6的自然数”可以组成一个集合,将其记作集合A, 那么集合A的元素就是7、8、9、10、11、 „„ 因此7 A,5 A。
集合练习1:判断下列语Fra bibliotek能否构成一个集合,并说明理由。
(1) 小于 10 的自然数的全体; (2) 我校环境12高职班所有性格开朗的男生;
(3) 英文的 26 个字母; (4) 非常接近 1 的实数。
元素
问题4:集合中每一个确定的对象叫什么呢? 集合的元素:集合中每个确定的对象叫做集合的元素。
集合的元素表示:通常用小写英文字母a,b,c……表示。
相关文档
最新文档