2008年成人高等学校招生全国统一考试数学试题

合集下载

2008年普通高等学校招生全国统一考试数学卷(山东.理)含详解

2008年普通高等学校招生全国统一考试数学卷(山东.理)含详解

2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:24πS R =,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(012)k k n kn n P k C p p k n -=-=,,,,. 如果事件A B ,互斥,那么()()()P A B P A P B +=+. 如果事件A B ,相互独立,那么()()()P AB P A P B =.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .4解析:本小题主要考查集合子集的概念及交集运算。

集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。

可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )xxA .B .C .D .解析:本小题主要考查复合函数的图像识别。

ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos 1ln cos 0x x ≤⇒≤排除C,选A.4.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为( ) A .3B .2C .1D .1-解:1x +、x a -在数轴上表示点x 到点1-、a 的距离,他们的和()1f x x x a =++-关于1x = 对称,因此点1-、a 关于1x =对称,所以3a =(直接去绝对值化成分段函数求解比较麻烦,如取特殊值解也可以) 5.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A. BC .45-D .45解::3cos()sin sin 62παααα-+=+=,14cos 25αα+=,714sin()sin()cos .6625ππαααα⎫+=-+=-+=-⎪⎪⎝⎭6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=7.在某地的奥运火炬传递活动中,有编号为12318,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )A .151B .168C .1306D .1408解:古典概型问题,基本事件总数为31817163C =⨯⨯。

2008年成人高等学校招生全国统一考试数学(理工农医类)

2008年成人高等学校招生全国统一考试数学(理工农医类)

2008 年成人高等学校招生全国统一考试数 学(理工农医类)一、选择题:本大题共 17 小题,每小题 5 分,共 85分。

在每小题给出的四个选项中, 选出一项符合题目要求的.(1)设集合 { } | ||2 A x x =£ , { } |1 B x x =³- ,则A B =I (A ){ } | ||1 x x £ (B ){ } | ||2 x x £ (C ){ }|12 x x -££ (D ){ }|21 x x -££- (2)函数 cos 3xy = 的最小正周期是(A )6p (B )3p (C )2p(D )3p(3)抛物线 2 4 y x =- 的准线方程为(A ) 2 x =- (B ) 1 x =- (C ) 2 x = (D ) 1 x = (4)设甲: 6 x p=;乙: 1sin 2x = ,则 (A )甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分条件,但不是乙的必要条件 (C )甲不是乙的充分条件,也不是乙的必要条件 (D )甲是乙的充分必要条件 (5)若向量 ( ) ,2 a x = r , ( ) 2,3 b =- r ,且a r //b r,则x =(A ) 43-(B ) 3 - (C )3(D )43(6)下列函数中,为奇函数的是(A ) 3 log y x = (B ) 3 x y = (C ) 23 y x = (D ) 3sin y x=(7)函数 () y f x = 的图象与函数 2 xy = 的图象关于直线 y x = 对称,则 () f x =(A )2x(B ) 2 log (0) x x > (C )2x(D )lg(2) (0)x x > (8)设二次函数 2 y x bx c =++ 的图象过点( ) 1,2 和( ) 2,4 - ,则该函数的解析式为(A ) 2 2 y x x =++ (B ) 2 21 y x x =+- (C ) 2 1233 y x x =++ (D ) 2 1233y x x =+- (9)若 1 a > ,则(A ) 1 2log 0a < (B ) 2 log 0a < (C ) 1a - < (D ) 210a -< (10)已知复数 1 z i =+ ,i 为虚数单位,则 2 z =(A )22i+ (B )2i(C )22i- (D ) 2i- (11)在 ABC D 中,若 1sin 3A = , 30 AB += o, 4 BC = ,则 AB = (A )24(B )63(C )23(D )6(12)过函数 6y x= 图象上一点P 作 x 轴的垂线PQ ,Q 为垂足,O 为坐标原点,则OPQ D 的面积为(A )6(B )3(C )2(D )1(13)已知正方形ABCD ,以A ,C 为焦点,且过B 点的椭圆的离心率为(A ) 2(B )212+ (C )2 2(D )21 2- (14)已知向量 ( ) 2,3,1 a =- r , ( ) 2,0,3 b = r , ( )0,0,2 c = r ,则 ( )a b c += r r r g (A )8 (B )9 (C )13 (D ) 61(15)设某项试验每次成功的概率为 23,则在2次独立重复试验中,都不成功的概率为(A )4 9 (B )1 3(C )2 9 (D )1 9(16)在空间中,下列四个命题中为真命题的一个是(A )平行于同一条直线的两条直线平行 (B )垂直于同一条直线的两条直线平行(C )若a 与b 是异面直线,b 与c 是异面直线,则a 与c 也是异面直线 (D )若直线a //平面a ,直线b //平面a ,则a //b(17)某学生从6门课程中选修3门,其中甲、乙两门课程至少选一门,则不同的选课 方案共有(A )4种(B )12种(C )16种(D )20种二、填空题:本大题共 4 小题,每小题4 分,共16分. (18)曲线 2sin y x = 在点( ) ,0 p 处的切线的斜率为 .(19)设a 是直线 2 y x =-+ 的倾斜角,则a =.(20)一个三棱锥的三个侧面与底面都是等边三角形,则其侧面和底面所成角的余弦 值是.(21)设随机变量x 的分布列为x1 2 3 4 P161 31 31 6则x 的数学期望E x =.三、解答题:本大题共 4 小题,共 49 分.解答应写出推理、演算步骤. (22)(本小题满分 12 分)已知等差数列{ } n a 中, 1 9 a = , 38 0 a a += . (Ⅰ)求数列{ } n a 的通项公式;(Ⅱ)当n 为何值时,数列{ } n a 的前n 项和 n S 取得最大值,并求该最大值.(23)(本小题满分 12 分)如图,塔PO 与地平线AO 垂直,在A 点测得塔顶P 的仰角 45 PAO Ð= o ,沿AO 方向 前进至B 点,测得仰角 60 PBO Ð= o , , A B 相距44m ,求塔高PO . (精确到0.1m )(24)(本小题满分 12 分)已知一个圆的圆心为双曲线 22 1 412x y -= 的右焦点,并且此圆过原点.(Ⅰ)求该圆的方程;(Ⅱ)求直线 3 y x = 被该圆截得的弦长.(25)(本小题满分 13 分) 已知函数 ()2 f x x x =- .(Ⅰ)求函数 () y f x = 的单调区间,并指出它在各单调区间上是增函数还是减函数; (Ⅱ)求函数 () y f x = 在区间[ ] 0,4 上的最大值和最小值.POB A。

2008高考数学全国卷及答案文

2008高考数学全国卷及答案文

2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题1.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD=( )A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B C D .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120 ,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.CDE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.12 16三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =, ∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.AC CD CG AD ==,DG =,EG ==,CE =则222cos 2CG GE CE CGE CG GE +-∠==πarccos CGE ∴∠=-⎝⎭.19.解:(1)122n n n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+ .20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。

2008年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

2008年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式: 样本数据1x ,2x ,,n x 的标准差(n s x x =++-其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= ▲ . 【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒=【答案】102.一个骰子连续投2 次,点数和为4 的概率 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 【答案】1123.11i i+-表示为a bi +(),a b R ∈,则a b +== ▲ . 锥体体积公式 13V Sh =其中S S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 【答案】14.A={()}2137x x x -<-,则AZ 的元素的个数 ▲ .【解析】本小题考查集合的运算和解一元二次不等式.由()}2137x x -<-得2580x x -+<,∵Δ<0,∴集合A 为∅ ,因此A Z 的元素不存在.【答案】05.a ,b 的夹角为120︒,1a =,3b = 则5a b -= ▲ . 【解析】本小题考查向量的线性运算.()2222552510a b a b a a b b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -=7 【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ . 【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯【答案】16π7.算法与统计的题目8.直线12y x b =+是曲线()ln 0y x x =>的一条切线,则实数b = ▲ . 【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.【答案】ln2-19在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P (0,p )在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE 的方程:11110x y c b p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭,请你求OF 的方程: ( ▲ )110x y p a ⎛⎫+-=⎪⎝⎭. 【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填11c b-.事实上,由截距式可得直线AB :1x y b a +=,直线CP :1x y c p += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程. 【答案】11b c- 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10. . . . . . .按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .【解析】本小题考查归纳推理和等差数列求和公式.前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.【答案】262n n -+11.已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 ▲ .【解析】本小题考查二元基本不等式的运用.由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xzxz xz+++≥=,当且仅当x =3z 时取“=”.【答案】312.在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = ▲ . ? ? 【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c=,解得c e a ==.【答案】213.若BC ,则ABC S ∆的最大值 ▲ . ?【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC =x ,则AC, 根据面积公式得ABC S ∆=1sin 2AB BC B = 2222242cos 24AB BC AC x x B AB BC x +-+-==244xx-=,代入上式得ABC S∆==由三角形三边关系有22x x+>+>⎪⎩解得22x <<,故当x =ABC S∆最大值【答案】14.()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = ▲ .【解析】本小题考查函数单调性的综合运用.若x =0,则不论a 取何值,()f x ≥0显然成立;当x >0 即[]1,1x ∈-时,()331f x ax x =-+≥0可化为,2331a x x≥- 设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫==⎪⎝⎭,从而a ≥4; 当x <0 即[)1,0-时,()331f x ax x =-+≥0可化为a ≤2331x x-,()()'4312x g x x -=0> ()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而a ≤4,综上a =4【答案】4二、解答题:解答应写出文字说明,证明过程或演算步骤.15.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为105.(Ⅰ)求tan(αβ+)的值; (Ⅱ)求2αβ+的值.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.由条件的cos 105αβ==,因为α,β为锐角,所以sin α=,sin 105β= 因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)=tan tan 31tan tan αβαβ+=--(Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π16.在四面体ABCD 中,CB= CD, AD ⊥BD ,且E ,F 分别是AB,BD 的中点,求证:(Ⅰ)直线EF ∥面ACD ;(Ⅱ)面EFC ⊥面BCD .【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定. (Ⅰ)∵ E,F 分别是AB,BD 的中点, ∴EF 是△ABD 的中位线,∴EF ∥AD ,∵EF ⊄面ACD ,AD ⊂ 面ACD ,∴直线EF ∥面ACD . (Ⅱ)∵ AD ⊥BD ,EF ∥AD ,∴ EF ⊥BD. ∵CB=CD, F 是BD 的中点,∴CF ⊥BD.又EF CF=F ,∴BD ⊥面EFC .∵BD ⊂面BCD ,∴面EFC ⊥面BCD .17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD 的中点P 处,已知AB=20km, CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为y km .(Ⅰ)按下列要求写出函数关系式:①设∠BAO=θ(rad),将y 表示成θ的函数关系式; ②设OP x =(km) ,将y 表示成x x 的函数关系式. (Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短. 【解析】本小题主要考查函数最值的应用.(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10cos cos AQ OA θθ==, 故 CBPOAD10cos OB θ=,又OP =1010tan θ-10-10ta θ, 所以10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10cos y θθ-=+04πθ⎛⎫<< ⎪⎝⎭②若OP=x (km) ,则OQ =10-x ,所以=所求函数关系式为)010y x x =+<< (Ⅱ)选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----== 令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π,当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10y =+。

2008年普通高等学校招生全国统一考试数学卷山东文含详解

2008年普通高等学校招生全国统一考试数学卷山东文含详解

2008年普通高等学校招生全国统一考试(山东文科数学及答案第I 卷(共60分)参考公式:1锥体的体积公式: V Sh ,其中S 是锥体的底面积,h 是锥体的高.32球的表面积公式: S =4 T R ,其中R 是球的半径. 如果事件 A , B 互斥,那么P (A BHP (A ) P (B ).一、选择题:本大题共 12小题,每小题5分,共 有一项是符合题目要求的.C . 3函数y =1 ncosxi n::: x ::: n的图象是I 2 2丿6.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A . 9 n B . 10 n60分.在每小题给出的四个选项中,只 1.满足 M 三问,a 2, O J , a 4?,且 M Pp. a ,a ,乱:-〔a a 2的集合M 的个数是2. 设z 的共轭复数是Z.z=8 , 则-等于(zC . -1D . _i3. y 二f (x )是幕函数,则函数 f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中, A . 35.设函数 f(x)C . 1D 011 -x 2, x < f 1 ]< 2则fx +x -2,X A1,lf(2)丿15 A .1627 16D . 18俯视图 o L 2 V o丿I 3 v4 .给出命题:若函数真命题的个数是( B . 2的值为(2侧(左)视图2正(主)视图C . 11nD . 12 nx 亠57•不等式 ------- 2》2的解集是()(X-1)2准方程是( )2 2B . (x -2)2 (y -1)2 hx12.已知函数f (x )=log a (2 ,b-1)(a 0, a=1)的图象如图所示,贝U a, b 满足的关系A.(x —3)2 y_7” (n4L rt f rf 10.已知 cos 1sin :- =—\ 3,则 sin l165 I2怎2.34A .B .c .55511•若圆C 的半径为1,圆心在第一象限,且与直线¥的值是2 2C . (x -1) (y -3) =1D . 2(y-1)2 =1B .,3C .D .三,18 .已知a ,△ ABC 的三个内角A, BC 勺对边,向的大小分别为 A ,m L n ,且 acosB bcosA =csin C ,则角 An n A. -6 39.从某项综合能力测试中抽取B .2 n n ~3,6亠 n n … n n C . 一,一D . -3 63 3分数5 4 3 2 1 人数2010303010A . ,3B .4x-3y=0和x 轴相切,则该圆的标是( )A . 0 :: a ' ::b :: 14_1B. 0 < b a :: 1-14D . 0 :: a ::C . 3D .100人的成绩,统计如表,则这100人成绩的标准差为(第H卷(共90分)二、填空题:本大题共 4小题,每小题4分,共16分.2 213.已知圆C: x y -6x -4y • 8 = 0 •以圆C 与坐标轴的交点分别作为双曲线的一个焦则z = 2x y 的最大值为 ______________ . 三、解答题:本大题共 6小题,共74分. 17. (本小题满分12分)已知函数 f (x) = . 3sin(• ■ x ?丨)- cos( x " ■ ) ( 0 ::: • ::: n ,> 0 )为偶函数,且函数ny = f (x)图象的两相邻对称轴间的距离为-.(I)求f I n 的值;8n(n)将函数y = f(x)的图象向右平移个单位后,得到函数y = g(x)的图象,求g(x)的6单调递减区间.18. (本小题满分12分)现有8名奥运会志愿者,其中志愿者 A , A ,, A 3通晓日语,B 1, B 2, B 3通晓俄语,C 1, C 2 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各(I)求A 被选中的概率;点和顶点,则适合上述条件的双曲线的标准方程为 14•执行右边的程序框图,若 p =0.8, 则输出的n 二 ____________ . x15.已知 f (3 ) =4xlog 2 3 233 , 则 f (2) f(4) f (8) ||( f (28)的值等于16.设x , y 满足约束条件x - y +2》0, 』5x-y-10 < 0, x 》0,n = n +1__________ J结束1名,组成一个小组.否.输出n(n)求B1和G不全被选中的概率.19. (本小题满分12分)如图,在四棱锥 P _ ABCD 中,平面PAD _平面ABCD , AB // DC , △ PAD 是等边三 角形,已知 BD=2AD=8,AB=2DC=4.,5 .(I)设M 是PC 上的一点,证明:平面 MBD _平面PAD ; (n)求四棱锥 P - ABCD 的体积.20. (本小题满分12 分) 将数列'a n 』中的所有项按每一行比上一行多一项的规则排成如下数表:a 1a 2 a 3a 4 a5a6a 7 a 8a9a10记表中的第一列数 6, a 2, 34, 37,构成的数列为 Z , ^=^=1. S n 为数列 g 的前n 项和,且满足b S2b:S 2"(n > 2).b n SnSn(I)证明数列1 .... ...................... . •、成等差数列,并求数列bn f 的通项公式;(n)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为4同一个正数•当a 8i时,求上表中第k(k > 3)行所有项的和.9121. (本小题满分12分)设函数f (x)二x 2e x4 ' ax 3 bx 2,已知x ~ -2和x = 1为f (x)的极值点.(I)求a 和b 的值; (n)讨论f (x)的单调性;2 3 2(川)设g(x^-x -x,试比较f (x)与g(x)的大小.322. (本小题满分14分)已知曲线C i:凶+国=1(a Ab >0)所围成的封闭图形的面积为4亦,曲线C i的内切圆半径a b2 5为•记C2为以曲线C i与坐标轴的交点为顶点的椭圆.3(I)求椭圆C2的标准方程;(n)设AB是过椭圆C2中心的任意弦,I是线段AB的垂直平分线. M是I上异于椭圆中心的点.(1)若MO| =》OA ( O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;(2)若M是I与椭圆C2的交点,求△AMB的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题1. B2. D3. A4. C5. A6. D9. B 10. C 11. B 12. A7. D 8. C二、填空题2 2x y ’14. 4 15.2008 16. 1113. 14 121.满足M —0, a2, a s, a/,且M 门”©, a?, a?』的集合M的个数是(B )A . 1B . 2 C. 3 D . 4解析:本小题主要考查集合子集的概念及交集运算。

历年成人高考《数学》真题及答案汇总(高起点)

历年成人高考《数学》真题及答案汇总(高起点)

☆★☆倾情收集☆★☆历年成人高考《数学》真题及答案汇总(高起点)2002年——2011年2002年全国成人高等学校(高起点)招生统一数学(理)试卷和参考答案2003年全国成人高等学校(高起点)招生统一数学(理)试卷及答案2004年全国成人高等学校(高起点)招生统一数学(理)试卷及答案2005年全国成人高考(高起点)数学(理)试卷和参考答案2006年全国成人高考高起点数学(理)真题及答案2007年全国成人高考高起点数学(理)真题及答案2008年(高起点)数学(理)成人高考考试试题及答案2009年成人高等学校招生全国统一考试数 学 (理工农医类)1.答案必须答在答题卡上指定的位置,答在试卷上无效。

2.在本试卷中, tan a 表示角a 的正切, cot a 表示角a 的余切.一、选择题:本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的; 将所选项前的字母填涂在答题卡相应题号的信息点上。

(1)集合A 是不等式310x +≥的解集,集合{}|x1B x =,则集合A ∩B= (A) {}|-11x x ≤ (B) 1|-13x x ⎧⎫≤⎨⎬⎩⎭(C) {}|-11x x ≤ (D) 1|-13x x ⎧⎫≤⎨⎬⎩⎭ (2)设Z=l+2i ,i 为虚数单位,则Z Z +=(A) -2i (B) 2i (C) -2 (D)2(3)函数1(1)1y x x =≠-+的反函数为 (A) 1()y x x R =+∈ (B) 1()x x R -∈(c) 11(0)y x x =+≠ (D) 11(0)y x x=-≠ (4)函数y=log 2(x 2-3x+2)的定义域为(A) {}|x2x (B) {}|x 3x (c) {}|x 1x 2x 或 (D) {}|x 1x - (5)如果04πθ,则(A) cos θ<sin θ (B) sin θ<tan θ(C) tan θ<cos θ (D) cos θ<tan θ(6)下列函数中,在其定义域上为减函数的是 (A )212x y ⎛⎫= ⎪⎝⎭(B )y=2x (C )12x y ⎛⎫= ⎪⎝⎭(D )y=x 2(7)设甲:22a b , 乙:a b ,则(A )甲是乙的必要条件,但不是乙的充分条件(B )甲是乙的充分条件,但不是乙的必要条件(C )甲不是乙的充分条件,也不是乙的必要条件(D )甲是乙的充分必要条件(8)直线x+2y+3=0经过(A )第一、二、三象限 (B )第二、三象限(C )第一、二、四象限 (D )第一、三、四象限(9)若θ为第一象限角,且sin θ-cos θ=0,则sin θ+cosθ=(A (B (C (D (10)正六边形中,由任意三个顶点连线构成的三角形的个数为(A ) 6 (B ) 20 (C ) 120 (D )720(11)向量a=(1,2),b=(-2,1),则a 与b 的夹角为(A )300 (B )450 (C )600 (D )900(12)l 为正方体的一条棱所在的直线,则该正方体各条棱所在的直线中,与l 异面的共有(A )2条 (B )3条 (C )4条 (D )5条(13)若(1+x )n 展开式中的第一、二项系数之和为6,则r=(A )5 (B ) 6 (C ) 7 (D )8(14)过点(1,2)且与直线2x+y-3=0平行的直线方程为(A )2x+y-5=0 (B )2y-x-3=0 (C )2x+y-4=0 (D )2x-y=0(15) x=1+rcos ,y=-1+rcos ,θθ⎧⎨⎩(0r ,θ为参数)与直线x-y=0相切,则r=(A (B (C )2 (D )4(16)若三棱锥的本个侧面都是边长为1的等边三角形,则该三棱锥的高为(A )2 (B )3 (C ) 3(D )12(17)某人打耙,每枪命中目标的概率都是0.9,则4枪中恰有2枪命中目标的概率为(A )0.0486 (B )0.81 (C )0.5 (D )0.0081二、填空题;本大题共4小题,每小题4分,共16分.把答案写在答题卡相应题号后。

2008年高考数学全国一卷试题和答案

2008年高考数学全国一卷试题和答案

2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题 1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .B .C .D .A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .3C D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值;(Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.CDE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅱ)参考答案1. C.2. A .3. A.4. D.5. C.6. B.7.D.8.A.9.D .10.D .11.B12.B.13.答案:9.14. 答案:2.15.答案:38.16.答案:16. 三、17.解:(Ⅰ)由正弦定理得,sinsin ,sin sin CBc b C A c a ==c A CBB C A A b B a )cos sin sin cos sin sin (cos cos ⋅-⋅=-,1cot tan )1cot (tan sin cos cos sin sin cos cos sin )sin(cos sin cos sin +-=⋅+-=⋅+-=B A c B A c B A B A B A B A cB A AB B A 依题设得:.4cot tan .531cot tan )1cot (tan ==+-B A c B A c B A 解得(Ⅱ)由(Ⅰ)得tanA=4tanB,故A 、B 都是锐角,于是tanB>0.,43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B BA B A B A且当tanB=21时,上式取等号。

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3 B.23 C.4 D.13(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 A.-sin x B.sin x C.-cos x D.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b ac ,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么 导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =(Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称. (Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3B.23C.4D.13解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==,又11AA =A1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为 A.sin x - B. sin x C.cos x - D.cos x解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222a c b +-=,则角B 的值为 A.6π B.3πC.6π或56πD.3π或23π解:由222a +c -b得222(a +c -b )= 2ac即cos B 6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48 解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

2008年成人高考试卷(一)

2008年成人高考试卷(一)

华中科技大学远程与继续教育学院2010年网络教育专科入学考试——数学考试时间:120分钟答题须知:答案必须写在答题卡上,否则按零分处理。

一、 判断 (共20题,共20分)1. 集合{a ,b}的所有的子集是{a},{b},{a ,b}() (1分) ( )2. 一元二次不等式x2-x-6<0的解集是{x|-2<x <3}.() (1分) ( )3. “两直线平行,同位角相等”的逆命题一定是真命题() (1分) ( )4. “x 是4的倍数”是“x 是6的倍数”的既不充分也不必要的条件() (1分) ( )5. 函数y=x 与函数y=是同一函数() (1分) ( )6. f(x)=既是减函数,又是奇函数() (1分) ( )7. log3π>log20.8() (1分) ( )8. 终边在x 轴上的角的集合为{β|β=n·180°,n ∈Z}.() (1分) ( )9. sin7°cos37°-cos7°sin37°值为() (1分) ( )10. 已知a 、b 、c 是三个向量,则(a·b)·c=a·(b·c)() (1分) ( )11. 设a ,b ,c ,d 都是不等于0的实数,则a b +b c +c d +d a ≥4() 12.一条直线经过点P (-2,3),倾斜角α=45°,则这条直线方程为x -y +5=0。

() 13. 以二元一次不等式x +y -1>0的解为坐标的点的集合{(x ,y)|x +y -1>0}是在直线x +y -1=0右上方的平面区域()14.已知抛物线的标准方程是y 2=6x ,则它的准线方程x =23 () 15. 动点M 与定点F 的距离和它到定直线的距离的比等于e ,则当0<e <1时,动点M 的轨迹是椭圆,当e=1时,动点M 的轨迹是抛物线,当e >1时,动点M 的轨迹是双曲线.()16. 两个相交平面有不在同一条直线上的三个公共点。

2008年成人高考专升本高等数学真题

2008年成人高考专升本高等数学真题

2008年成人高考专升本高等数学真题浇钢工题库一、填空题1、钢的生产过程主要分为炼钢和浇注两大环节。

2、钢水铸造有两种方法:一是钢锭浇注法,一是连续铸钢法。

3、将高温钢水直接浇注成钢坯的工艺就是连铸铸钢。

4、连铸机按外形可分为立式连铸机、立弯式连铸机、弧形连铸机、椭圆形连铸机、水平连铸机。

我公司目前的 4 机 4 流连铸机是弧形的。

5、钢包回转台由回转部分、固定部分、润滑系统和电控系统组成。

6、中间包是钢包与结晶器之间的中间贮存容器,它有贮钢、稳流、缓冲、分流和分渣的作用,是实现多炉连浇的基础。

7、我厂中间包容量是27吨。

钢水深度为850mm。

8、连铸耐火材料三大件是指:大包套管、塞棒和浸入式水口。

9、塞棒控制是通过塞棒控制机构控制塞棒上下运动,以达到关闭和开启水口调节钢水流量的目的。

10、管式结晶器由铜管、冷却水套、底脚板和足辊等组成。

11、结晶器内腔纵断面的尺寸做成上大下小,形成一个锥度。

12、钢水在结晶器中冷却,若结晶器没有锥度或锥度偏小,就会在坯壳和结晶器之间形成间隙,称气隙。

由于气隙的存在降低了冷却效果,同时由于坯壳过早地脱离了结晶器内壁,在钢水静压力下坯壳会产生鼓肚变形。

13、结晶器倒锥度过大会增加拉坯阻力,结晶器内壁磨损快,寿命短,同时还会形成坯料的凹陷、角裂等缺陷。

14、结晶器振动的目的是为了防止连铸坯在凝固过程中与铜管粘结而发生粘挂拉裂或拉漏事故,以保证拉坯顺利进行。

15、结晶器振动形式有以下几种:同步式、负滑脱式、正弦振动、非正弦振动。

16、负滑脱是指:当结晶器下振速度大于拉坯速度时,铸坯对结晶器的相对运动向上,即逆着拉坯方向运动,这种运动称负滑脱。

17、连铸坯的表面振痕深度与结晶器振动负滑脱时间有关,负滑脱时间越短,振痕深度就越浅。

18、2012年公司挖潜创效目标,质量异议万元产值损失率为小于等于 4 元/万元19、对于二冷区为弧形的连铸机,连铸坯出二冷区必须矫直,否则铸坯无法进行切割、运输、堆垛、以及轧制等后道工序。

2008年高考试题——数学理(全国卷1)(有答案解析)

2008年高考试题——数学理(全国卷1)(有答案解析)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅰ卷参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-= ,,, 一、选择题 1.函数y )A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =A .B .C .D .年级 班别: 姓名: 考场; 考号( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位 9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,, 10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .48第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3CDE AB只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)答案与解析:1.C. 由(1)x x x -≥≥0,0得0x x =≥1,或;2.A.根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图象可知. 3. A.2(),322AD AB AC AD AD AB AC -=-=+= c +b ,1233AD = c +b4. D 222()(21)2(1)0,1a i i a ai i a a i a +=+-=-+->=-5.C .243511014,104,3,10454013595a a a a a d S a d +=+==-==+=-+=由得6. B.2(1)2(1)21,(1),()y x x y x e f x e f x e --=⇒=-==7. D.3212211,,11(1)2x x y y y x x x =+''==+=-=----,2,2a a -==- 8.A . π55cos 2sin(2)sin 2()3612y x x x ππ⎛⎫=+=+=+ ⎪⎝⎭,只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=22111a b +1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n可得cos sin 1a b αα=+11.C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB,棱柱的高13AO a ==(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为113AO AB =. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060长度均为a ,平面ABC 的法向量为111133OA AA AB AC =-- ,11AB AB AA =+211112,33OA AB a OA AB ⋅===则1AB 与底面ABC所成角的正弦值为11113OA AB AO AB ⋅= .12.B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处时,函数2z x y =-有最大值9.14. 答案:2.由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====. 16.答案:16.设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM CH ==11(),22AN AC AB EM AC AE =+=- ,1()()22AN EM AB AC AC AE ⋅=+⋅-= 2故EM AN ,所成角的余弦值16AN EM AN EM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,222222M N ---,则31131(,,(,,2222222AN EM AN EM ==-⋅= 故EM AN ,所成角的余弦值16AN EM AN EM ⋅= .17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥, 则CGE ∠即为所求二面角的平面角.AC CD CG AD ==,DG =,EG ==,CE =222cos 2CG GE CE CGE CG GE +-∠==πarccos CGE ∴∠=-⎝⎭,即二面角C AD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为x =即()f x在3a ⎛--∞ ⎪⎝⎭,递增,33a a ⎛--+ ⎪⎝⎭,递减,⎫+∞⎪⎪⎝⎭递增(2)2313--,且23a>解得:74a ≥20.解:对于乙:0.20.4⨯+.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431bab a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()a y x c b=--,与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-= 将数值代入,有4=解得3b = 故所求得双曲线方程为:221369x y -=. 22. 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数;(Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 22.解析:(Ⅰ)证明:()ln f x x x x =-,()ln f x x '=-,当(01)x ∈,时,()ln 0f x x '=-> 故函数()f x 在区间(01),是增函数;(Ⅱ)证明:(数学归纳法证明)(ⅰ)当1n =时,101a <<,11ln 0a a <211111()ln a f a a a a a ==->由函数()f x 在区间(01),是增函数,且函数()f x 在1x =处连续,则()f x 在区间(01],是增函数,21111()ln 1a f a a a a ==-<,即121a a <<成立;(ⅱ)假设当(*)x k k N =∈时,11k k a a +<<成立,即1101k k a a a +<<<≤ 那么当1n k =+时,由()f x 在区间(01],是增函数,1101k k a a a +<<<≤得1()()(1)k k f a f a f +<<.而1()n n a f a +=,则121(),()k k k k a f a a f a +++==,121k k a a ++<<,也就是说当1n k =+时,11n n a a +<<也成立;根据(ⅰ)、(ⅱ)可得对任意的正整数n ,11n n a a +<<恒成立. (Ⅲ)证明:由()ln f x x x x =-.1()n n a f a +=可得kk k k a a b a b a ln 1--=-+11ln ki i i a b a a ==--∑ 1, 若存在某i k ≤满足i a b ≤,则由⑵知:1k i a b a b +-<-≥02, 若对任意i k ≤都有b a i >,则kk k k a a b a b a ln 1--=-+ 11ln ki i i a b a a ==--∑11ln ki i a b a b ==--∑11()ln ki i a b a b ==--∑b ka b a ln 11--> b ka b a ln 11--≥)(11b a b a --->0=,即1k a b +>成立.。

2008年专升本高数二考试真题及参考答案

2008年专升本高数二考试真题及参考答案

2008年成人高考专升本高等数学二考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题
参考答案:C
第2题
参考答案:C
第3题
参考答案:A
第4题
参考答案:B
第5题
参考答案:D 第6题
参考答案:A 第7题
参考答案:C 第8题
参考答案:B 第9题
参考答案:A 第10题
参考答案:D
二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。

第11题
参考答案:1
第12题
参考答案:2
第13题
参考答案:cos x-xsin x
第14题
参考答案:20x3
第15题
参考答案:(1,1/3) 第16题
参考答案:
第17题
参考答案:x3+ x 第18题
参考答案:2
第19题
参考答案:x2+y2≤1第20题
参考答案:
三、解答题:共70分。

解答应写出推理、演算步骤。

第21题
第22题
第23题
第24题
第25题
第26题
第27题
第28题。

2008年普通高等学校招生全国统一考试(北京卷)、数学(理)(有答案)

2008年普通高等学校招生全国统一考试(北京卷)、数学(理)(有答案)

2008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UAB ð等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤2.若0.52a =,πlog 3b =,22πlog sin 5c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线5.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1CD .96.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-7.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( )A .30B .45C .60D .908.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设B P x =,MN y =,则函数()y f x =的图象大致是( )2008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知2()2a i i -=,其中i 是虚数单位,那么实数a = .10.已知向量a 与b 的夹角为120,且4==a b ,那么(2)+b a b 的值为 .11.若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n = ,其展开式中的常数项为 .(用数字作答)12.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;(1)(1)limx f x f x∆→+∆-=∆ .(用数字作答)A BCD MN P A 1B 1C 1D 113.已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .14.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡--⎤⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩,. ()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.16.(本小题共14分)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.ACBP17.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.18.(本小题共13分) 已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.19.(本小题共14分)已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1. (Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=时,求菱形ABCD 面积的最大值. 20.(本小题共13分)对于每项均是正整数的数列12n A a a a :,,,,定义变换1T ,1T 将数列A 变换成数列1()T A :12111n n a a a ---,,,,. 对于每项均是非负整数的数列12m B b b b :,,,,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2()T B ; 又定义2221212()2(2)m m S B b b mb b b b =+++++++.设0A 是每项均为正整数的有穷数列,令121(())(012)k k A T T A k +==,,,. (Ⅰ)如果数列0A 为5,3,2,写出数列12A A ,;(Ⅱ)对于每项均是正整数的有穷数列A ,证明1(())()S T A S A =;(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K ≥时,1()()k k S A S A +=.2008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B 二、填空题(本大题共6小题,每小题5分,共30分) 9.1- 10.0 11.5 10 12.2 2-13.②14.(12), (3402), 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(Ⅰ)1cos 2()sin 222x f x x ωω-=+11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 16.(共14分)解法一:(Ⅰ)取AB 中点D ,连结PD CD ,. AP BP =, PD AB ∴⊥. AC BC =, CD AB ∴⊥.ABDPPD CD D =, AB ∴⊥平面PCD . PC ⊂平面PCD , PC AB ∴⊥.(Ⅱ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥.又90ACB ∠=,即AC BC ⊥,且ACPC C =,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角.在BCE △中,90BCE ∠=,2BC =,2BE AB ==sin 3BC BEC BE ∴∠==. ∴二面角B AP C --的大小为arcsin(Ⅲ)由(Ⅰ)知AB ⊥平面PCD , ∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H . 平面APB 平面PCD PD =,CH ∴⊥平面APB .CH ∴的长即为点C 到平面APB 的距离. 由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A =,PC ∴⊥平面ABC . CD ⊂平面ABC , PC CD ∴⊥.在Rt PCD △中,12CD AB ==PD PB ==2PC ∴==.23PC CD CH PD ∴==. ACBE P ACBDPH∴点C 到平面APB. 解法二:(Ⅰ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥. AC BC C =,PC ∴⊥平面ABC . AB ⊂平面ABC , PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -. 则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t ,,.PB AB ==2t ∴=,(002)P ,,. 取AP 中点E ,连结BE CE ,.AC PC =,AB BP =,CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角.(011)E ,,,(011)EC =--,,,(211)EB =--,,,cos 26EC EB BEC EC EB∴∠===. ∴二面角B AP C --的大小为. (Ⅲ)AC BC PC ==,C ∴在平面APB 内的射影为正APB △的中心H ,且CH 的长为点C 到平面APB 的距离. 如(Ⅱ)建立空间直角坐标系C xyz -.2BH HE =,∴点H 的坐标为222333⎛⎫⎪⎝⎭,,.y23CH ∴=. ∴点C 到平面APB 的距离为3. 17.(共13分)解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.所以3(1)1(2)P P ξξ==-==,ξ的分布列是18.(共13分)解:242(1)(2)2(1)()(1)x x b x f x x ----'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--. 令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增, 在(1)+∞,上单调递减.当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减.当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.19.(共14分)解:(Ⅰ)由题意得直线BD 的方程为1y x=+. 因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.由2234x y y x n⎧+=⎨=-+⎩,得2246340x nx n -+-=. 因为A C ,在椭圆上,所以212640n ∆=-+>,解得33n -<<. 设A C ,两点坐标分别为1122()()x y x y ,,,, 则1232nx x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122ny y +=. 所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,.由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n =+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=. (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=, 所以AB BC CA ==.所以菱形ABCD 的面积2S AC =. 由(Ⅰ)可得22221212316()()2n AC x x y y -+=-+-=,所以2316)S n n ⎛=-+<< ⎝⎭.所以当0n =时,菱形ABCD 的面积取得最大值 20.(共13分)(Ⅰ)解:0532A :,,, 10()3421T A :,,,, 1210(())4321A T T A =:,,,; 11()43210T A :,,,,, 2211(())4321A T T A =:,,,.(Ⅱ)证明:设每项均是正整数的有穷数列A 为12n a a a ,,,, 则1()T A 为n ,11a -,21a -,,1n a -,从而112(())2[2(1)3(1)(1)(1)]n S T A n a a n a =+-+-+++-222212(1)(1)(1)n n a a a ++-+-++-.又2221212()2(2)n n S A a a na a a a =+++++++,所以1(())()S T A S A -122[23(1)]2()n n n a a a =----+++++2122()n n a a a n +-++++ 2(1)0n n n n =-+++=,故1(())()S T A S A =.(Ⅲ)证明:设A 是每项均为非负整数的数列12n a a a ,,,. 当存在1i j n <≤≤,使得i j a a ≤时,交换数列A 的第i 项与第j 项得到数列B , 则()()2()j i i j S B S A ia ja ia ja -=+--2()()0j i i j a a =--≤. 当存在1m n <≤,使得120m m n a a a ++====时,若记数列12m a a a ,,,为C ,则()()S C S A =.所以2(())()S T A S A ≤. 从而对于任意给定的数列0A ,由121(())(012)k k A T T A k +==,,, 可知11()(())k k S A S T A +≤.又由(Ⅱ)可知1(())()k k S T A S A =,所以1()()k k S A S A +≤. 即对于k ∈N ,要么有1()()k k S A S A +=,要么有1()()1k k S A S A +-≤. 因为()k S A 是大于2的整数,所以经过有限步后,必有12()()()k k k S A S A S A ++===. 即存在正整数K ,当k K ≥时,1()()k k S A S A +=.。

2008年普通高等学校招生全国统一考试文科数学试题及答案-浙江卷

2008年普通高等学校招生全国统一考试文科数学试题及答案-浙江卷

2008年普通高等学校招生全国统一考试(浙江卷)文科数学试卷第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A =(A){}1|-≥x x (B) {}2|≤x x (C) {}20|≤<x x (D) {}21|≤≤-x x(2)函数1)cos (sin 2++=x x y 的最小正周期是(A )2π (B )π (C) 23π (D) 2π (3)已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)已知{a n }是等比数列,a 1=2,a 4=41,则公比q= (A)21- (B)-2 (C)2 (D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a (6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x 4的项的系数是(A )-15 (B )85 (C )-120 (D )274(7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2(D )4 (8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得(A )αα⊂⊂b a , (B )b a ,α⊂∥α(C )αα⊥⊥b a , (D)αα⊥⊂b a ,(10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

2008年成人高考专升本高等数学真题

2008年成人高考专升本高等数学真题

2008年全国成人高考专升本高等数学(一)、高等数学(二)试卷以教育部考试中心颁布的《全国各类成人高等学校招生复习考试大纲》为依据,充分考虑到成人考生不同学习背景的实际情况与成人考生的基本特点,力求贯彻《复习考试大纲》的思想与原则,与前两年试卷相比较,体现出较好地延续性和稳定性。

试卷的题型结构没有变化,仍然是选择题10个小题,共40分,填空题10个小题,共40分,解答题8个小题,共70分。

试卷的知识内容结构基本合理,知识点的分布相对均匀,重点考查高等数学中的基础知识、基本理论、基本技能和基本方法,兼顾考查各种能力,特别是考查考生运用所学过的数学知识和方法,分析问题与解决问题的能力。

试卷适当程度地降低了难度,可以说,2008年成人高考专升本高等数学(一)、(二)的考试实际上是一种达标性质的水平测试,即考查考生是否具有从专科教育毕业后进一步接受本科教育时,应当具备的基本数学知识与数学能力。

试卷主要特点如下:一、试卷知识内容比例基本上与《复习考试大纲》相吻合高等数学(一):极限和连续:共3个小题,计12分,占总分值8%,大纲规定约13%;一元函数微分学:共9个小题,计50分,占总分值33.3%,大纲规定约25%;一元函数积分学:共6个小题,计32分,占总分值21.3%,大纲规定约25%;多元函数微积分学:共6个小题,计30分,占总分值20%,大纲规定约20%;无穷级数:共1个小题,计10分,占总分值6.7%,大纲规定约7%;常微分方程:共3个小题,计16分,占总分值10.7%,大纲规定约10%.高等数学(二):极限和连续:共4个小题,计20分,占总分值13.3%,大纲规定约15%;一元函数微分学:共10个小题,计56分,占总分值37.3%,大纲规定约30%;一元函数积分学:共7个小题,计38分,占总分值25.3%,大纲规定约32%;多元函数微分学:共5个小题,计24分,占总分值16%,大纲规定约15%;概率论初步:共2个小题,计12分,占总分值8%,大纲规定约8%.二、强调基础,突出主线试卷强调考查高等数学中的基础知识、基本理论、基本技能和基本方法,试题所涉及到的都是高等数学中最基本的、最主要的、最突出的知识点,是学完高等数学必须掌握而且极易掌握的知识点。

2008年全国高考文科数学试题及答案-全国1

2008年全国高考文科数学试题及答案-全国1

2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题(08年全国卷一文)1.函数y = )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤(08年全国卷一文)2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .(08年全国卷一文)3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .1(08年全国卷一文)4.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°(08年全国卷一文)5.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +(08年全国卷一文)6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数(08年全国卷一文)7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .243(08年全国卷一文)8.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex(08年全国卷一文)9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位(08年全国卷一文)10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b +≤ D .2211a b+≥1(08年全国卷一文)11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .3C D .23(08年全国卷一文)12.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( ) A .6种 B .12种 C .24种 D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) (08年全国卷一文)13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .(08年全国卷一文)14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .(08年全国卷一理(08年全国卷一文))15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .(08年全国卷一文)16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD△折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(08年全国卷一文)17.(本小题满分12分)(注意:在试题卷上作答无效.........)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .(08年全国卷一文)18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.(08年全国卷一文)19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S .(08年全国卷一文)20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.CDE AB(08年全国卷一文)21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.(08年全国卷一文)22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.1216.2三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+.18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =, ∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.233AC CD CGAD ==,3DG =,EG== CE =则222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭.19.解:(1)122nn n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+.20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。

2008---2012年成人高等学校专升本招生全国统一考试高等数学试题

2008---2012年成人高等学校专升本招生全国统一考试高等数学试题

2008年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上 1.=-+∞→4312x x iml x【答案】:C【解析】:属于极限基本题,分子,分母同除x ,即得32,选C A .41-B. 0C. 32D. 12. 已知)(x f 在1=x 处可导,且3)1(='f ,则0(1)(1)lim h f h f h→+-=A. 0B. 1C. 3D. 6 【答案】:C【解析】:考核导数定义,或用洛必达法则。

选C 3. 设函数='=y nx y 则,1 A.x 1 B. x1- C. x ln D. xe【答案】:A【解析】: 容易题。

据辅导教材51页导数公式(4)得4. 已知)(x f 在区间(∞+∞-,)内为单调减函数,且)(x f >)1(f ,则x 的取值范围是A. (1,-∞-)B. (1,∞-)C. (∞+,1)D. (∞+∞-,) 【答案】:D【解析】: 属概念题,选 D 与)(x f >)1(f 无关5. 设函数=+=dy e y x则,2 A. ()dx e x2+ B. ()dx x e x2+B. ()dx e x1+ D. dx e x【答案】:D【解析】:属于较容易题. 据辅导教材70页微分公式 (1),(4)。

6.⎰=+dx x )1(cosA. C x x ++sinB. C x x ++-sinC. C x x ++cosD. C x x ++-cos 【答案】:A【解析】:属于容易题. 据辅导教材135页微分公式 7.=⎰-dx x 511A. -2B. -1C. 0D. 1 【答案】: C【解析】:容易题. 据”连续奇函数在对称区间上的定积分为0”. 8. 设函数y x z 32+=,则xz∂∂= A. y x 32+ B. x 2 C. 32+x D.23233y x + 【答案】: B【解析】:属于较容易题. 对2x 求导,3y 看作常数即可得B 选项。

2008年普通高等学校招生全国统一考试(北京卷)(数学理)

2008年普通高等学校招生全国统一考试(北京卷)(数学理)

2008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UA B ð等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤2.若0.52a =,πlog 3b =,22πlog sin 5c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线5.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1CD .96.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( ) A .165-B .33-C .30-D .21-7.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30B .45C .60D .908.如图,动点P 在正方体1111ABCD A BC D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )2008年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知2()2a i i -=,其中i 是虚数单位,那么实数a = .10.已知向量a 与b 的夹角为120,且4==a b ,那么(2)+b a b 的值为 .11.若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n = ,其展开式中的常数项为 .(用数字作答)12.如图,函数()f x 的图象是折线段ABC ,其中A BC ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;A BC DMNP A 1B 1C 1D1(1)(1)limx f x f x∆→+∆-=∆ .(用数字作答)13.已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >. 其中能使12()()f x f x >恒成立的条件序号是 .14.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡--⎤⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩,. ()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.16.(本小题共14分)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.ACBP17.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.18.(本小题共13分) 已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.19.(本小题共14分)已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=时,求菱形ABCD 面积的最大值.20.(本小题共13分)对于每项均是正整数的数列12n A a a a :,,,,定义变换1T ,1T 将数列A 变换成数列1()T A :12111n n a a a ---,,,,.对于每项均是非负整数的数列12m B b b b :,,,,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2()T B ; 又定义2221212()2(2)m mS B b b mb b b b =+++++++. 设0A 是每项均为正整数的有穷数列,令121(())(012)k k A T T A k +==,,,. (Ⅰ)如果数列0A 为5,3,2,写出数列12A A ,;(Ⅱ)对于每项均是正整数的有穷数列A ,证明1(())()S T A S A =;(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K ≥时,1()()k k S A S A +=.2008年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分) 1.D2.A3.B4.D5.B6.C7.C8.B二、填空题(本大题共6小题,每小题5分,共30分) 9.1- 10.011.51012.2 2-13.②14.(12), (3402), 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(Ⅰ)1cos 2()22x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 16.(共14分) 解法一:ABDP(Ⅰ)取AB 中点D ,连结PD CD ,.AP BP =,PD AB ∴⊥.AC BC =, CD AB ∴⊥.PD CD D =, AB ∴⊥平面PCD .PC ⊂平面PCD , PC AB ∴⊥.(Ⅱ)AC BC =,AP BP =,APC BPC ∴△≌△.又PC AC ⊥,PC BC ∴⊥.又90ACB ∠=,即AC BC ⊥,且ACPC C =,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,.AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角.在BCE △中,90BCE ∠=,2BC =,BE AB ==,sin BC BEC BE ∴∠==. ∴二面角B AP C --的大小为arcsin 3. (Ⅲ)由(Ⅰ)知AB ⊥平面PCD ,∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H . 平面APB平面PCD PD =,CH ∴⊥平面APB .ABE PABDPHCH ∴的长即为点C 到平面APB 的距离.由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且ABAC A =,PC ∴⊥平面ABC . CD ⊂平面ABC , PC CD ∴⊥.在Rt PCD △中,12CD AB ==PD PB ==2PC ∴=.23PC CD CH PD ∴==. ∴点C 到平面APB 的距离为. 解法二: (Ⅰ)AC BC =,AP BP =,APC BPC ∴△≌△.又PC AC ⊥,PC BC ∴⊥.AC BC C =,PC ∴⊥平面ABC . AB ⊂平面ABC ,PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -.则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t ,,. PB AB ==,2t ∴=,(002)P ,,.取AP 中点E ,连结BE CE ,.AC PC =,AB BP =,CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角.(011)E ,,,(011)EC =--,,,(211)EB =--,,,cos 326EC EB BEC EC EB∴∠===. ∴二面角B AP C --的大小为arccos3. (Ⅲ)AC BC PC ==,C ∴在平面APB 内的射影为正APB △的中心H ,且CH 的长为点C 到平面APB 的距离.如(Ⅱ)建立空间直角坐标系C xyz -.2BH HE =,∴点H 的坐标为222333⎛⎫⎪⎝⎭,,.23CH ∴=∴点C 到平面APB . 17.(共13分)解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.所以3(1)1(2)4P P ξξ==-==,ξ的分布列是18.(共13分)解:242(1)(2)2(1)()(1)x x b x f x x ----'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--. 令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增, 在(1)+∞,上单调递减. 当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减. 19.(共14分)解:(Ⅰ)由题意得直线BD 的方程为1y x =+. 因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.由2234x y y x n⎧+=⎨=-+⎩,得2246340x nx n -+-=. 因为A C ,在椭圆上,所以212640n ∆=-+>,解得n <<. 设A C ,两点坐标分别为1122()()x y x y ,,,,则1232n x x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122ny y +=. 所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,. 由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n =+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=. (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=, 所以AB BC CA ==.所以菱形ABCD的面积2S =. 由(Ⅰ)可得22221212316()()2n AC x x y y -+=-+-=,所以2316)433S n n ⎛=-+-<< ⎝⎭. 所以当0n =时,菱形ABCD的面积取得最大值 20.(共13分) (Ⅰ)解:0532A :,,, 10()3421T A :,,,, 1210(())4321A T T A =:,,,;11()43210T A :,,,,,2211(())4321A T T A =:,,,. (Ⅱ)证明:设每项均是正整数的有穷数列A 为12n a a a ,,,, 则1()T A 为n ,11a -,21a -,,1n a -,从而 112(())2[2(1)3(1)(1)(1)]n S T A n a a n a =+-+-+++-222212(1)(1)(1)n n a a a ++-+-++-. 又2221212()2(2)n n S A a a na a a a =+++++++, 所以1(())()S T A S A - 122[23(1)]2()n n n a a a =----+++++2122()n n a a a n +-++++ 2(1)0n n n n =-+++=,故1(())()S T A S A =.(Ⅲ)证明:设A 是每项均为非负整数的数列12n a a a ,,,. 当存在1i j n <≤≤,使得i j a a ≤时,交换数列A 的第i 项与第j 项得到数列B , 则()()2()j i i j S B S A ia ja ia ja -=+--2()()0j i i j a a =--≤. 当存在1m n <≤,使得120m m n a a a ++====时,若记数列12m a a a ,,,为C , 则()()S C S A =.所以2(())()S T A S A ≤.从而对于任意给定的数列0A ,由121(())(012)k k A T T A k +==,,, 可知11()(())k k S A S T A +≤.又由(Ⅱ)可知1(())()k k S T A S A =,所以1()()k k S A S A +≤. 即对于k ∈N ,要么有1()()k k S A S A +=,要么有1()()1k k S A S A +-≤. 因为()k S A 是大于2的整数,所以经过有限步后,必有12()()()k k k S A S A S A ++===. 即存在正整数K ,当k K ≥时,1()()k k S A S A +=.。

2008年普通高等学校招生全国统一考试数学(理)试题(北京)

2008年普通高等学校招生全国统一考试数学(理)试题(北京)

绝密★使用完毕前2008年普通高等学校校招生全国统一考试 数学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分。

考试时间120分钟。

考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)注意事项:1答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用钢笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

不能答在试卷上。

一、 本题共8小题。

每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集∪=R ,集合A =|x |-2≤x ≤3|,B =|x |x 〈-1或x 〉4|,那么集合A ∩(εv B )等于 (A)|x |-2≤x 〈4| (B )|x |x ≤3或≥4| (C)|x |-2≤x <-1(D)|x | -1≤x ≤3|(2)若a =2a ,b =log,3,c =log,sin 52,则 (A )a >b >c (B)b >a >c (C)c>a>b(D)b >c>a(3)“函数f (x )(x ∈R)存在反函数”是“函数f (x )在R 上为增函数”的 (A)充分而不必要条件 (B )必要而不充分条件 (C)充分必要条件(D )即不充分也不必要条件 (4)若点P 到直线x =-1的距离比它到点(2,0)的烛1,则点P 的轨迹为(A )圆(B )椭圆(C )双曲线(D )抛物线x -y +1≥0,(5)若实数x ,y 满足 x +y ≥0, 则z =3x +y 的最小值是x ≤0,(A)0(B)1(C)3(D)9(6)已知数列|a n |对任意的p,q ∈N m 满足a p+q =a p +a q ,且a P =-6,那么a p +q 等于 (A )-165 (B)-33 (C)-30 (D)-21 (7)过直线y =x 上的一点作圆(x -5)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,综们之间的夹角为 (A )30°(B )45°(C)60°(D)90°(8)如图,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年成人高等学校招生全国统一考试试题
数 学
考生注意:本试题分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,满分150分,考试时
间120分钟.
第Ⅰ卷(选择题,共85分)
一、选择题:本大题共17小题,每小题5分,共85分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A={2,4,6},B={1,2,3},则A∪B=( B ) (A){4} (B){1,2,3,4,6} (C){2,4,6} (D){1,2,3} (2)函数3
cos x
y =的最小正周期是( A ) (A)π6 (B)π3
(C)π2
(D)
3
π (3)=-0
2)3
1(4log ( D ) (A)9 (B)3
(C)2
(D)1
(4)设甲:6
π
=
x ;乙:2
1
sin =
x ,则( B ) (A)甲是乙的必要条件,但不是乙的充分条件。

(B)甲是乙的充分条件,但不是乙的必要条件。

(C)甲不是乙的充分条件,也不是乙的必要条件
(D)甲是乙的充分必要条件。

(5)二次函数222++=x x y 图像的对称轴方程是( A ) (A)1-=x (B)0=x
(C)1=x
(D)2=x
(6)下列函数中,为奇函数的是( D ) (A)x y 3log = (B)x
y 3=
(C)2
3x y =
(D)x y sin 3=
(7)下列函数中,函数值恒大于零的是( B ) (A)2
x y =
(B)x
y 2=
(C)x y 2log =
(D)x y cos =
(8)曲线12
+=x y 与直线kx y =只有一个公共点,则=k ( A )
(A)-2或2 (B)0或4
(C)-1或1 (D)3或7
(9)函数x x y -+=3lg 的定义域是( C ) (A)(0,+∞) (B)(3,+∞)
(C)(0,3]
(D)(-∞,3]
(10)不等式32≤-x 的解集是( D ) (A){15|≥-≤x x x 或}
(B){15|≤≤-x x }
(C){51|≥-≤x x x 或} (D){51|≤≤-x x } (11)若1>a ,则( A ) (A)0log 2
1<a
(B)0log 2<a
(C)01
<-a
(D)012
<-a
(12)某学生从6门课程中选3门课,其中甲课程一定要选修,则不同的选课方案共有( C ) (A)4种
(B)8种
(C)10种
(D)20种
(13)过函数x
y 6
=图像上一点P作x 轴的垂线PQ,Q 为垂足。

O 为坐标原点,则OPQ ∆的面积为( B ) (A)6
(B)3 (C)2
(D)1
(14)过点(1,1)且与直线012=-+y x 垂直的直线方程为( A ) (A)012=--y x (B)032=--y x
(C)032=-+y x
(D)012=+-y x
(15)在等比数列}{n a 中,24,642==a a ,则=6a ( C ) (A)8 (B)24 (C)96 (D)384
(16)5个人排成一行,则甲排在正中间的概率是( C ) (A)
2
1 (B)
5
2 (C)
5
1 (D)
10
1 (17)已知正方形ABCD ,以A ,C 为焦点,且过B 点的椭圆的离心率为( C ) (A)
2 (B)
212+ (C)2
2
(D)
2
1
2-
第Ⅱ卷(非选择题,共65分)
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。

(18)若向量)2,(x a =,)3,2(-=b ,且a ∥b ,则=x - 4/3π ; (19)若α是直线2+-=x y 的倾斜角,则=α 3/4π ;
(20)在△ABC 中,若3
1
sin =
A ,C=150°,BC=4,则AB=___ 6 ; (21)用一仪器对一物体的长度重复测量5次,得结果(单位:cm )如下: 1004,1001,998,999,1003,
则该样本的样本方差为 5.2 cm ²。

三、解答题:本大题共4小题,共49分,解答应写出推理,演算步骤。

(22)(本小题满分12分)
已知等差数列}{n a 中,0,9831=+=a a a (Ⅰ)求数列}(n a 的通项公式;
(Ⅱ)当n 为何值时,数列}{n a 的前n 项和n S 取得最大值,并求该最大值。

解:(1) 设等差数列{a n }的公差为d ,由已知 a 3 +a 8 = 0,得 2a 1+9d=0
又已知a 1=9 所以 d= -2 数列{a n }的通项公式为 a n = 9-2(n -1) 即 a n =11-2n
(2) 数列{a n }的前n 项和
Sn = n/2(9+11-2n )= -n 2 +10n = -(n - 5)2+25 当n = 5时,Sn 取得最大值 25
(23)(本小题满分12分)
如图,塔PO 与地平线AO 垂直,在A 点测得塔顶P 的仰角∠PAO=45°,沿AO 方向前
进至B 点,测得仰角
60=∠PBO ,A ,B 相距44m ,求塔高PO (精确到0.1m )
解:因为∠PAO=45O 所以 PO = AO
又因为∠PBO=60O 所以BO=3/ 3 PO AO - BO = AB PO-3/ 3 PO = 44 解得塔高 PO = 132 / 3-3 ≈ 104.1 (m)
(24)(本小题满分12分)
已知一个圆的圆心为双曲线
112
42
2=-y x 的右焦点,并且此圆过原点。

(Ⅰ)求该圆的方程;
(Ⅱ)求直线x y 3=被该圆截得的弦长。

解:(I )由计算可知曲线的右焦点坐标为(4,0) 所以圆心坐标为(4,0)
因为圆心通过原点,所以圆的半径为4 圆的方程式为(x - 4)2+y 2 = 16 (II )直线x y 3=被圆截得的弦长为a 直线x y 3=的倾斜角为π/ 3 a = 8cos π/ 3 = 4
(25)(本小题满分13分)
已知函数5)(2
4++=mx x x f ,且24)2('=f
(Ⅰ)求m 的值
(Ⅱ)求函数)(x f 在区间[-2,2]上的最大值和最小值 解:(I ) f ' (x)= 4x 3
+ 2mx f ' (2)= 32+4m 由 f ' (2)= 24 解得 m = -2 (II )由(I )知f ' (x)= 4x 3
- 4x
令f ' (x) = 0 解得 x 1=-1 x 2=0 x 3=1
又f (-2)=13 , f (-1)=4 , f (0)=5 , f (2)=13
所以函数f (x )在同区间[-2,2]上的最大值为13,最小值为4。

相关文档
最新文档