北京大学自主招生数学试题及答案
初中数学北大自主招生试卷

一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是()A. -3.5B. -2.3C. -1.8D. -1.62. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)3. 下列方程中,解集为空集的是()A. x^2 - 4 = 0B. x^2 - 2x + 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 2x + 5 = 04. 若等差数列{an}的前n项和为Sn,且S5 = 15,S10 = 50,则数列的公差d是()A. 1B. 2C. 3D. 45. 已知函数f(x) = x^2 - 2x + 1,则f(-1)的值是()A. 0B. 1C. 2D. 3二、填空题(每题5分,共20分)6. 已知数列{an}的通项公式为an = 3n - 2,则a10 = ________。
7. 在直角坐标系中,点P(-3,2)到直线2x - 3y + 6 = 0的距离是 ________。
8. 函数f(x) = x^3 - 3x在x = 0处的导数是 ________。
9. 等比数列{an}的前n项和为Sn,若a1 = 2,q = 3,则S5 = ________。
10. 在△ABC中,∠A = 45°,∠B = 60°,∠C = 75°,则cosA + cosB + cosC = ________。
三、解答题(每题10分,共40分)11. (10分)已知函数f(x) = ax^2 + bx + c,且f(1) = 3,f(2) = 7,f(3) = 11,求a、b、c的值。
12. (10分)已知数列{an}是等差数列,且a1 = 2,公差d = 3,求前n项和Sn的表达式。
13. (10分)在直角坐标系中,已知点A(2,3)和B(-3,-2),求直线AB的方程。
14. (10分)已知函数f(x) = x^2 - 4x + 5,求f(x)在区间[1,3]上的最大值和最小值。
2018年北京大学自主招生数学试题含解析

一、选择题(选对得10分,不选得0分,选错扣5分)1、整数z y x ,,满足1=++zx yz xy ,则()()()222111z y x+++可能取到的值为()A.16900B.17900C.18900D.前三个答案都不对2、在不超过99的正整数中选出50个不同的正整数,已知这50个数中任两个的和都不等于99,也不等于100.这50个数的和可能等于()A.3524B.3624C.3724D.前三个答案都不对3、已知⎥⎦⎤⎢⎣⎡∈2,0 x ,对任意实数a ,函数1cos 2cos 2+-=x a x y 的最小值记为()a g ,则当a 取遍所有实数时,()a g 的最大值为()A.1B.2C.3D.前三个答案都不对4、已知2020210-是n 2的整数倍,则正整数n 的最大值为()A.21B.22C.23D.前三个答案都不对5、在凸四边形ABCD 中,4=BC ,60=∠ADC ,90=∠BAD ,四边形ABCD 的面积等于2ADBC CD AB ⋅+⋅,则CD 的长(精确到小数点后1位)为()A.6.9B.7.1C.7.3D.前三个答案都不对二、填空题(填空题共5小题;请把每小题的正确答案填在横线上,每题10分)6、满足等式2015120151111⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++x x 的整数x 的个数是_______.7、已知[]4,2,,,∈d c b a ,则()()()22222cbdacd ab +++的最大值与最小值的和为_______.8、已知对于任意的实数[]5,1∈x ,22≤++q px x ,不超过22q p +的最大整数是_______.9、设bc a c b x 2222-+=,ca b a c y 2222-+=,ab c b a z 2222-+=,且1=++z y x ,则201520152015z y x ++的值为_______.10、设n A A A ,,,21 都是9元集合{}9,,2,1 的子集,已知i A 为奇数,n i ≤≤1,j i A A 为偶数,n j i ≤≠≤1,则n 的最大值为_______.2018年北京大学自主招生选拔录取考试数学部分参考答案一、选择题1、A解析:()()()()()()()2222111x z z y y x z y x+++=+++.令⎪⎩⎪⎨⎧=+=+=+,13,5,2x z z y y x 解得⎪⎩⎪⎨⎧=-==.8,3,5z y x 经检验,这组解满足题意,此时()()()16900111222=+++z y x .2、D解析:考虑将1,2,⋯,99这99个正整数分成如下50组:(1,99),(2,98),⋯,(47,53),(48,52),(49,51),(50).若选出的50个不同的正整数中没有50,则必有2个数位于(1,99),(2,98),⋯,(47,53),(48,52),(49,51)中的同一组,不合题意.所以这50个不同的正整数中必有50,而(1,99),(2,98),⋯,(47,53),(48,52),(49,51)中,每组有且只有一个数被选中.因为50+49=99,所以(49,51)中选51;因为51+48=99,所以(48,52)中选52;以此类推,可得50,51,52,⋯,98,99是唯一可能的选法.经检验,选50,51,52,⋯,98,99满足题意,此时50+51+⋯+98+99=3725,故选D.3、A解析:令[]1,0cos ∈=x t ,令()122+-=at t t h ,[]1,0∈t 则()()()()⎪⎩⎪⎨⎧>-≤≤-<=1,2210,1012a a a a a a g ,故()a g 的最大值为1(0≤a 时等号成立).4、D解析:1()()()()()1555515151521522102345102020202020++++-++=-=-,而1510+模4余2,155+模4余2,15555234++++为奇数,故正整数n 的最大值为24.5、A解析:设四边形ABCD 的面积为S ,直线AC ,BD 的夹角为θ,则2sin 22sin ADBC CD AB AD BC CD AB BD AC S ⋅+⋅≤⋅⋅+⋅≤⋅⋅=θθ,由题意,2ADBC CD AB S ⋅+⋅=,所以D C B A ,,,四点共圆,且BD AC ⊥.故9.634≈=CD ,选A.二、填空题6、11解析:若x 为正整数,则2015120151111⎪⎭⎫ ⎝⎛+>>⎪⎭⎫⎝⎛++e x x ,若x 为负整数,令()2,≥∈-=*n N n n x ,则1111111-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+n x n x .因为数列()2,1111≥∈⎪⎭⎫ ⎝⎛-+*-n Nn n n 关于n 单调递增,故当且仅当2016-=x 时,有2015120151111⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++x x .7、2541解析:注意到()()()()222222bd ac cd ab c bda -++=++,于是()()()()()()22222222211⎪⎭⎫ ⎝⎛+-+=++++=+++cd ab bd ac bd ac cd ab cd ab c b d a cd ab ,显然当0=-bd ac 时,原式取得最大值为1.接下来考虑cdab bdac +-的最大值.由于1+⋅-=+-cb d ac bd a cd ab bd ac ,令αtan =d a ,βtan =c b ,则问题等价于当⎥⎦⎤⎢⎣⎡∈2arctan ,21arctan ,βα时,求βα-tan 的最大值,显然为4321arctan2arctan tan =⎪⎭⎫ ⎝⎛-.因此原式的最小值为2516.注:可以看做向量()d a ,和()c b ,夹角余弦的平方.8、9解析:注意到q px x y ++=2,[]5,1∈x 满足22≤≤-y ,因此符合题意的二次函数只有两个:762+-=x x y ,762-+-=x x y9、1解析:由1=++z y x ,可得()()()()()()()()()()22222223223322322322322=-------=-+-++-+-=-++-++--+=--++-++-+b a c a c b c b a b a c c b a c b a b a abc c b c a c bc ac b a b a ab abc c c b c a b b a bc a ac ab 所以c b a +=或a c b +=或b a c +=,故1201520152015=++z y x .10、9解析:构造是容易的,取{}i A i =,9,,2,1 =i 即可.用0,1表示集合中的元素是否在子集中,如{}9,5,4,3,11=A ,则记()1,0,0,0,1,1,1,0,11=A ,那么j i j i A A A A =⋅.显然,如果当10≥n 时,必然存在m 个向量线性相关,不妨设()0,,0,02211 =+++m m A A A λλλ,其中()m i Z i ,,2,1 =∈λ,11=λ.此时考虑()m m A A A A λλλ+++⋅ 22111,那么根据题意有11A A ⋅为奇数,而()m i A A i ,,3,21 =⋅为偶数,这样就推出了矛盾.因此所求n 的最大值为9.注:用这个方法,可以得出n 元集合至多有n 个包含奇数个元素的子集,使得这些子集中任意两个的交集均包含偶数个元素.。
2017年北大自主招生数学试题及答案

5
13
)
A. 锐角三角形
B. 钝角三角形
C. 无法确定
D. 前三个答案都不对
答案 A.
5
B.
20 5,
Å3 ã
3
C.
20 , 20
D. 前三个答案都不对
3
解析 C.
13. 正方形 ABCD 与点 P 在同一平面内,已知该正方形的边长为 1 ,且 |P A|2 + |P B|2 = |P C|2 ,则 |P D|
的最大值为( ) √
A. 2 + 22 2 D. 前三个答案都不对
答案 A.
) B. −1.5 D. 前三个答案都不对
19. 动圆与两圆 x2 + y2 = 1 和 x2 + y2 − 6x + 7 = 0 都外切,则动圆的圆心轨迹是( )
A. 双曲线
B. 双曲线的一支
C. 抛物线
D. 前三个答案都不对
答案 B.
4
20.
在
△ABC
中, sin A = 4 , cos B = 4 ,则该三角形是(
√ B. 2 6 D. 前三个答案都不对
答案 D.
6. 已知三角形三条中线长度分别为 9, 12, 15 ,则该三角形面积为( )
A. 64
B. 72
C. 90
D. 前三个答案都不对
答案 B.
7. 已知 x 为实数,使得 2, x, x2 互不相同,且其中有一个数恰为另一个数的 2 倍,则这样的实数 x 的个
3π
ã
的值为(
)
5
5
A.
1 1+ √
5
C.
1+
1 √
北京大学2024年强基计划招生考试数学试题及参考答案

北京大学2024年强基计划招生考试数学试题及参考答案北京大学2024年强基计划招生考试数学试题及参考答案引言:北京大学作为国内一流的高等学府,一直致力于选拔具有学术潜力和创新精神的优秀人才。
为了全面考查学生的数学素养和解决问题的能力,北京大学2024年强基计划招生考试数学试题难度适中,紧扣考试大纲,注重基础知识的掌握和综合运用。
本文将结合参考答案,深入剖析试题特点及解题技巧,为广大考生提供有益的备考启示。
试题特点及解题技巧:1、基础知识考查:试题中涉及到的知识点包括函数、数列、几何、概率与统计、微积分等,考查学生对数学基础知识的掌握程度。
针对这部分内容,考生需要在平时的学习中认真理解概念,熟练运用公式,注重知识点的巩固和拓展。
2、综合能力考查:试题在基础知识的基础上,注重考查学生的数学思维能力和实际应用能力。
例如,解答题中的函数与几何结合的问题,需要考生通过分析题意,挖掘几何与函数的联系,综合运用所学知识解决问题。
3、解题技巧:选择题和填空题在解题方法上可以采用逆推法、特殊值法、排除法等技巧,以简化计算,节省时间。
解答题则要求考生在掌握知识点的基础上,灵活运用各种解题方法,如分析法、综合法、反证法等。
备考建议:1、夯实基础:考生要在掌握基本概念、公式的基础上,注重知识体系的建立,将各个知识点串联起来,形成完整的知识框架。
2、提升综合能力:在备考过程中,要有意识地培养自己的数学思维能力和实际应用能力,注重知识的迁移和运用。
3、解题技巧训练:通过大量练习,熟练掌握各种解题技巧和方法,提高解题速度和准确性。
4、模拟测试:在备考阶段,要进行模拟测试,模拟真实考试环境,提高应试能力和心理素质。
总之,北京大学2024年强基计划招生考试数学试题注重基础知识的掌握和综合运用,要求考生在备考过程中全面复习、查漏补缺,不断提高解题能力和思维能力。
希望本文的解析能为广大考生提供有益的参考和启示,祝愿大家在考试中取得优异的成绩!。
北京大学自主招生强基计划北大自招数学2017

1.已知实数a,b 满足(a 2+4)(b 2+1)=5(2ab-1),求b (a+1a
)。
A.1.5
B.2.5
C.3.5
D.以上答案均不正确
2.在三角形ABC 中,已知sinA=45,cosB=413,则△ABC 为()
A.锐角三角形
B.直角三角形
C.无法确定
D.以上答案均不正确
3.已知x+2x 和x 2+2x 2均为整数,则正实数x 的可能取值有()个
A.1
B.2
C.4
D.以上答案均不正确
4.复数z 满足z+2z 为实数,求|z+i|的最小值()
5.满足√a 2−4√5 =√m -√n 的实数(a,m,n )有()组
6.圆上四点ABCD 逆时针排列,已知AB=1,BC=2,BD=3,∠DBC=∠DBA ,求圆的直径()
A.2√3
B. 2√5
C. 2√7
D.以上答案均不正确
7.已知p 为100以内的质数,且满足p 3+7p 2为完全平方数,求p 的个数()
8.函数∫(x )=x(x+1)(x+2)(x+3)的最小值为()
A.-1.5
B.-1
C.-2
D.以上答案均不正确
9.已知三角形的两条高为10和20,求第三条高的取值范围()
10.已知三角形的三条中线为9,12,15,求三角形的面积() 11.已知,求不大于S 的最大整数()
12.求方程log 4(2x +3x )=log 3(4x -2x )整数解的个数()
13.求(1+cos π5)(1+cos 3π5)的值()
14.设ABCD 是边长为1的正方形,正方形所在平面上的点P 满足|PA|2+|PB|2=|PC|2,求|PD|max ()。
2023年北京大学自主招生考试数学试题及答案详解

北京大学 2023 年优秀中学生寒假学堂数学试题说明:本试题为考生回忆版,共 20 题,每题 5 分,考试时间 60 分钟。
1.设复数,,a b c 满足2223330,3a b c a b c a b c ++=++=++=,则202320232023a b c ++的值为A .0B .3C .2023D .其它三个答案都不对2.方程组2223334,6,10x y z x y z x y z ++=++=++=的解的个数为A .0B .3C .6D .其它三个答案都不对3.设三角形ABC 的三个顶点为复平面上的三点123,,z z z ,满足1231231223310,82i,1510i z z z z z z z z z z z z =++=+++=+,则三角形ABC 内心的复数坐标z 的虚部所在区间为A .(0.0,5) C .(1,2)B .(0,0.5)D .其它三个答案都不对4.若P 是三角形ABC 的外心,0,120PA PB BC C λ++==︒∠,则实数λ的值为B .其它三个答案都不对2A . -1C . −3D .12-5.在四面体ABCD 中,面ABC 与面BCD 成60︒的二面角,顶点A 在BCD 的投影H 是三角形BCD 的垂心,G 是三角形ABC 的重心,若4,AH AB AC ==,则GH 的长度是ABC .其它三个答案都不对D6.过单位正方体1111ABCD A B C D -对角线1BD 做截面,则截面面积的最小值为A.3B.4C .其它三个答案都不对D .627.已知直线l 与双曲线22221(0)x y b a a b-=>>两支分别交于点,P Q ,O 为原点,若OP OQ ⊥,则O 到直线l 的距离为A .abb a-B .2ab b a -C .其它三个答案都不对D8.在三角形ABC 中,444222,,,2(),72AB c AC b BC a a b c c a b A ===++=+∠=︒,则B ∠=A .其它三个答案都不对B .63︒C .45︒D .60︒9.设222121011133520212023S =+++⋅⋅⋅ ,则[]S 的值为A .251B .252C .其它三个答案都不对D .25310.过椭圆22221(0)x y a b a b+=>>左焦点1F 做倾角为60︒的直线l 交椭圆与,A B 两点,若2AF BF =,则椭圆的离心率为A .34B .23C .其它三个答案都不对D .1211.以一个正方体的顶点为顶点构成的棱锥的个数为A .其它三个答案都不对B .104C .106D .10812.已知函数:f →R R 的图像关于点3(,0)4-中心对称且3()(),(1)1,(0)22f x f x f f =-+-==-,则(1)(2)(2022)f f f +++ 的值为A .其它三个答案都不对B .6-C .6D .013.已知数列{}n a 满足12111,1,,2n n n a a a a a n +-===+≥,则2020202320212022a a a a ⋅-⋅的值为A .1-B .1C .2-D .其它三个答案都不对14.对于任意的实数z ,方程组22,231,x ay z xy z z +=⎧⎨=++⎩有实数解(,)x y ,则参数a 的变化范围是A .[4,0)-B .[2,2)-C .其它三个答案都不对D .[0,4)15.以一个给定正2022边形的4个顶点为顶点的梯形称为好梯形,好梯形的个数为A .100910101011⋅⋅B .100810091010⋅⋅C .100010111012⋅⋅D .其它三个答案都不对16.已知圆内接四边形的边长为2,6,4AB BC CD DA ====,则四边形ABCD 的面积为A.B.C.D .其它三个答案都不对17.设π,(0,)2x y ∈,则222211cos sin sin cos x x y y+的最小值为A .8B .10C .9D .其它三个答案都不对18.设=2023,x y =20232023,且y nn n=a x ,x n=b y ,则( )A.∃N ∈ n ∀n >,N a n <b ,n +a b n <∀n > ∀∈n ,n a b C. ++,使得nB.D. 其它三个选项<均不对19.数列{a }n 满足a 012=1,=2,a a =6且+32+1=7n n n n a a a a +5++,记k =(2023)!,则a k −1模 ) B.13179的余数为( A.166C.1D.其它三个选项均不对20.有六件货物,其中两件为次品,其余四件合格,每次从中抽取一件检验后不放回,求恰好需要四次检验就能确定出次品的概率.2023年北京大学优秀中学生寒假学堂数学测试题答案1.解:因为2222()2220a b c a b c ab bc ca ab bc ca ++=+++++⇒++=且3332223()()=1a b c abc a b c a b c ab bc ca abc ++-=++++---⇒从而我们有=001a b c ab bc ca abc ++⎧⎪++=⎨⎪=⎩由韦达定理知,,a b c 是方程310x -=的三个根.由于20231(mod 3)≡,所以202320232023=0a b c a b c ++++=故选择A .2.解:类似于上题,我们可以得到=452x y z xy yx zx xyz ++⎧⎪++=⎨⎪=⎩从而,,x y z 是方程324520t t t -+-=的三个根,注意到322452(1)(2)t t t t t -+-=--从而,,x y z 是1,1,2的一个排列,即原方程组的解有3组,故选择B .3.解:不失一般性,设10z =,则1212+=8+21510z z i z z i=+,从而有23=532z z i=+,不妨设23,z z 对应的点为A 和B ,内心为I ,从而有5,13,8OA OB AB ===且3Im()()OA z OA AB OB r ⋅=++⋅所以105138r =++于是我们有510100.5165169594r <=<<=++++从而选择B 4.解:设AB 的中点为D ,则2PA PB PD +=.由0PA PB PC λ++=,有20PD PC λ+= 所以向量,PD PC共线,又P 是ABC ∆外心,故PA PB PD AB =⇒⊥,从而CD AB ⊥,因为120ACB ∠=,所以120APB ∠=,即四边形APBC 是棱形,于是2PA PB PD PC+== 所以20PD PC PC PC λλ+=+= 所以1λ=-,故选择A .5.设平面AHD 交BC 于F ,则BC DF ⊥,从而BC ADF ⊥面,于是BC AF ⊥,这说明AFH ∠为平面ABC 与平面BCD 成的二面角,即60AFH ∠=.在ABC ∆中,由AB AC =可知BF CF =,从而G 在AF 上且13GF AF =.在直角三角形AHF 中,4AF =,所以FH AF GF ===.在GFH ∆中,由余弦定理可得2221122cos 27GH GF FH GH HF AFH =+-⋅∠=从而9GH ==,故选择B6.解:由对称性,我们只需要考虑截面与面1AD 的交线交线段1AA 于E 的情形.注意到截面面积1112BD A BED F S S S BD d ∆===⋅=四边形其中d 为点E 到线段1BD 的距离.要使得截面面积S 最小,只需要考虑1AA 上的点到1BD 的距离d 最小.取E 为1AA 的中点,易得1OE BD ⊥,且1OE AA ⊥,此时d OE =为异面直线1AA 到1BD 的距离,为d 的最小值且min 122d EF ==.于是截面面积min min 2622S ===故选择D .7.解:不妨设OP m OQ n ==,且POx θ∠=。
北大数学单招试题答案详解

北大数学单招试题答案详解【试题一】题目:证明对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 +\cdots + n^2 = \frac{n(n+1)(2n+1)}{6} \)。
答案详解:首先,我们考虑等式左侧的求和公式,即\( 1^2 + 2^2 + 3^2 +\cdots + n^2 \)。
我们可以通过数学归纳法来证明这个等式。
基础步骤:当\( n = 1 \)时,左边为\( 1^2 = 1 \),右边为\( \frac{1 \cdot 2 \cdot 3}{6} = 1 \),等式成立。
归纳步骤:假设对于某个正整数\( k \),等式成立,即\( 1^2 + 2^2 + 3^2 + \cdots + k^2 = \frac{k(k+1)(2k+1)}{6} \)。
现在我们需要证明当\( n = k + 1 \)时,等式仍然成立。
将\( k + 1 \)代入等式左侧,我们得到:\( 1^2 + 2^2 + 3^2 + \cdots + k^2 + (k+1)^2 \)。
根据归纳假设,我们可以将前\( k \)项的和替换为\( \frac{k(k+1)(2k+1)}{6} \),所以:\( \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \)。
将\( (k+1)^2 \)展开并合并同类项,我们得到:\( \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} =\frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \)。
进一步化简,我们得到:\( \frac{k(k+1)(2k+1) + 6k^2 + 12k + 6}{6} = \frac{(k+1)(2k^2 + 7k + 6)}{6} \)。
最后,我们可以将分子中的\( 2k^2 + 7k + 6 \)重写为\( 2(k+1)^2 + 1 \),得到:\( \frac{(k+1)(2(k+1)^2 + 1)}{6} = \frac{(k+1)(k+2)(2k+3)}{6} \)。
2019北京大自主招生考试数学(网传试题与解析)

综上可知 x 2ab ab
法二:
2
2
考虑到
x2
2ax a2
x2
2bx b2 =
x
2 2
a
a2
2
x
2 2
b
b2 可视为 2
点
P
x,
0
到点
A
2 a, 2
2 2
a
与点
B
2 b, 2
2 2
b ຫໍສະໝຸດ 的距离之和.显然 OA a, OB b , AB a2 b2
A
显然有 PA PB AB ,结合题意,故 PA PB = AB
即 P 在 AB 上。
2a 2b
2a
由 kPA kPB 可得
2 2 a
2 2b
2 2 ax
22
2
O
P‘
P
B
求得 x 2ab ab
2. 复数 z1, z2 满足 z1 3i 2, z2 8 1 ,则由复数 z1 z2 所确定区域的面积是
解析:考虑到 z1 3i z2 8 z1 z2 3i 8 z1 3i z2 8
即1 z1 z2 3i 8 3
5+
2
5 + 5
5 2 62 3 1 2sin2 sin
2 5+ 5 5 5
5
1 5
故 IP 1 5 sin
8.已知数列an 满足: ak1 ak 4k 3k 1, 2, ,求 a2 a2020
解析:
a2 a1 a3 a2 a4 a3 a2019 a2018 a2020 a2019 a1 a2020 41009+4 2019+3=4043
北京大学2024年强基计划笔试数学试题

北京大学2024年强基计划笔试数学试题考试时间 2024年6月30日上午9:00-11:00以下为理科数学试题,共20题.2024ii=1模 7 的余数.1. 求∑�19ii20�2. 求sin36∘−sin3114∘+sin3126∘ .3. 求1,2,…,8的排列的个数,使得排列中没有出现连续的12,23,…,78 .4. 已知数列1,2,2,3,3,3,4,4,4,4,… ,求第 2024 项模 5 的余数.5. 求四元组(aa1,aa2,aa3,aa4)的个数,使得aa ii∈{1,2,3} ,且10<aa1aa2aa3aa4< 20.6. 求(0,2ππ]上方程2cosxx=sin xx的解的个数.7. 求ℝ上方程xx�ee xx4−1−1�+(xx−1)(xx4−1)=0的解的个数.8. 求ℝ上方程xx2−13[xx]+11=0的解的个数.9. 在体积为 1 的正方体内取一个点, 过这个点作三个平行于正方体面的平面,将正方体分为 8 个长方体,求这些小长方体中体积不大于18的长方体个数的最小值.10. 在离心率为√32的椭圆中, FF1,FF2是两个焦点, PP是椭圆上一点,且∠FF1PPFF2=ππ3,|PPFF1|−|PPFF2|=3 ,求SS△PPFF1FF2 .11. 用SS(nn)表示正整数nn的数码和,求满足SS(nn+1)与SS(nn)均为 5 的倍数的nn的最小值.112. 称正整数nn为好数,当它各位数字均不相同,且对于所有正整数mm满足�nn10mm�>0 ,都有�nn10mm�∣nn ,求最大的好数的范围. (选项为(0,1000),(1000,2000),(2000,3000) .)13. 在△AAAAAA中,求cos AA cos AA cos AA的最小值.14. 在△AAAAAA中,若AAAA边上的高为13aa ,求(bb+cc)2bbcc的范围.15. 在△AAAAAA中,若aa=2,bb=√2,cc=2√2,DD在AAAA上,比较AADD2与2DDAA×DDAA的大小.16. 在△AAAAAA中,若OO为形外一点,满足∠AAOOAA=2∠AAAAAA ,线段OOAA与线段OOAA交于DD ,且OOAA=OOAA=3,OODD=2 ,求AADD×AADD .17. 在△AAAAAA中,若DD在AAAA上, AADD平分∠AAAAAA,△AADDAA的内心与△AAAAAA的外心重合,求∠AA .18. 在△AAAAAA中,若DD在AAAA上, AADD平分∠AAAAAA,AAAA=AADD=3,AADD= 2 , 求△AAAAAA的周长.19. 在△AAAAAA中,求2sin AA+sin AA+sin AA的最小值.20.aa1=√2, aa nn+1=[aa nn]+1{aa nn} ,求∑aa kk2024kk=1 .2北京大学2024年强基计划笔试数学试题解析345678。
2020年北京海淀区北京大学自主招生文科数学试卷(暑期学堂)-学生用卷

2020年北京海淀区北京大学自主招生文科数学试卷(暑期学堂)-学
生用卷
一、解答题(本大题共5小题)
1、【来源】 2020年北京海淀区北京大学自主招生文科(暑期学堂)第1题
已知正整数a,b,n满足a!+b!=5n,求a,b,n.
2、【来源】 2020年北京海淀区北京大学自主招生文科(暑期学堂)第1题
证明:双曲线的切线与渐近线的交点与双曲线的两个焦点四点共圆.
3、【来源】 2020年北京海淀区北京大学自主招生文科(暑期学堂)第3题
判断函数f(x)=sinx+sin(√2x)是否为周期函数,如果是,求出最小正周期;如果不是,请说明理由.
4、【来源】 2020年北京海淀区北京大学自主招生文科(暑期学堂)第4题
2020年北京海淀区北京大学自主招生理科(暑期学堂)第2题
在4×4方格表中,将若干格子染成黑色,求每行每列均恰有2个黑色格子的方法数.
5、【来源】 2020年北京海淀区北京大学自主招生文科(暑期学堂)第5题
对于任意的正整数k,证明:存在无穷个正整数n为k的倍数,在十进制条件下,n的最左四位为2020.
1 、【答案】a=1,b=4,n=2.
;
2 、【答案】证明见解析.
;
3 、【答案】不是,证明见解析.
;
4 、【答案】90.
;
5 、【答案】证明见解析.;。
2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案

2019年北京大学自主招生数学试题2019年清华大学自主招生数学试题2019年中国科学技术大学自主招生数学试题4.记3cos(),4cos()36x t y t =+-=++,则22x y +的最大值为__________。
5.设点0(1,0)P ,i OP (i =1,2,3…)绕原点按顺时针旋转θ得到向量i OQ , i Q 关于y 轴对称点记为1 i P +,则2019P 的坐标为__________。
.,且.已知,且9.将△D 1D 2D 3的各中点连线,折成四面体ABCD ,已知12233112,10,8D D D D D D ===,求四面体ABCD 的体积。
10.求证:对于任意的在R 上有仅有一个解0x =11.已知(1)求证:存在多项式()p x ,满足cos (cos )n p θθ=;(2)将()p x 在R [x ]上完全分解。
2019年中国科学技术大学自主招生数学试题参考答案2.B红色曲线为y =sin 2x ,蓝色曲线为y =-cos 3x综上,知:00100110cos sin cos sin 01sin cos sin cos x x x y y y θθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭那么222(,)P x y 满足:200020002cos sin 10sin cos 01x x x x y y y y θθθθ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这也就说明了20,P P 重合。
故2019P 坐标为(cos ,sin )θθ--6.首先将递推公式两侧取倒数,则:112(1)11112(1)n n n n nn x n x x x x ++++=⇔-=+累加,即:21122(1)n n n k k x x n n =-=⇒=+∑裂项求和,则:2019112019*********k k x ==-=∑7.如图所示,我们定义a ~b 表示复数a 和b之间的边11z z -+是纯虚数,表明0~(z-1)与0~(z+1)垂直,进而说明|z~(z-1)|=|0~z|=|z~(z+1)|=1故||1z =,进一步,我们设cos sin z i θθ=+则222222222|3|(cos 2cos 3)(sin 2sin )cos 2cos 96cos 6cos 22cos cos 2sin 2sin 2sin 2sin 116cos 2812cos 8cos 53z z cos θθθθθθθθθθθθθθθθθθ++=++++=++++++++=++=++≥等号成立条件为1cos 3θ=-8.9.简解:由题意,易知四面体ABCD为等腰四面体,将其嵌入长方体后割补法即可图示蓝色边框为等腰四面体,黑色为被嵌入的长方体答案:410.首先,我们定义()()n f x 代表函数()f x 的n 阶导数令0()!kn x k x f x e k ==-∑注意到()()1n x f x e =-在R 上单调递增,故其在R 上仅有一根x =0,从而(1)()1n x f x e x -=--在R 上有最小值,即(1)(1)()(0)0n n f x f --≥=进而2(2)()12n x x f x e x -=---在R 上单调递增以此类推,可知:(2)()n k f x -在R 上单调递增,仅有一根x =0(21)()n k f x --在R 先减后增,且恒为非负实数,且仅有一根x =0综上,不论n 取何值,0()!knx k x f x e k ==-∑在R 上仅有一根x =011.本题考察内容十分清晰,旨在考察Chebyshev 多项式(1)采取归纳法证明,若对于不同的n ,存在满足题设的多项式,则记其为()n p x 首先,当1n =时,存在多项式1()p x x=其次,当2n =时,存在多项式22()21p x x =-我们假定命题在2,1n n --的情形下成立,下面考察n 的情形cos cos[(1)]cos(1)cos sin(1)sin 1cos(1)cos [cos cos(2)]2n n n n n n n θθθθθθθθθθθ=-+=-⋅--⋅=-⋅+--进而有cos 2cos cos(1)cos(2)n n n θθθθ=---即12()2()()n n n p x xp x p x --=-因为12(),()n n p x p x --都是多项式,所以()n p x 也是多项式。
北大初中自主招生数学试卷

一、选择题(每题5分,共25分)1. 下列哪个数是整数?A. √4B. √9C. √16D. √252. 一个长方形的长是8cm,宽是5cm,它的周长是多少?A. 18cmB. 20cmC. 24cmD. 28cm3. 下列哪个数是负数?A. 2B. -3C. 5D. 04. 小明有5个苹果,小红有7个苹果,他们一共有多少个苹果?A. 12B. 15C. 20D. 225. 下列哪个图形是正方形?A. 矩形B. 菱形C. 三角形D. 圆形二、填空题(每题5分,共25分)6. 2的平方根是______。
7. 下列数中,最小的数是______。
8. 一个圆的半径是10cm,它的直径是______cm。
9. 下列算式中,正确的算式是______。
A. 3 + 4 = 7B. 5 - 2 = 3C. 6 × 2 = 12D. 4 ÷ 2 = 210. 小华有20元,他买了一个书包花去了10元,他还剩下______元。
三、解答题(每题10分,共20分)11. (10分)一个数加上它的倒数等于2,求这个数。
12. (10分)一个长方体的长、宽、高分别是4cm、3cm、2cm,求它的体积。
四、应用题(共15分)13. (5分)小明家住在楼层高度为15米的住宅楼,他从一楼走到五楼,他走了多少层楼梯?(每层楼梯高度为3米)14. (5分)一个圆形的面积是50π平方厘米,求这个圆的半径。
15. (5分)小明骑自行车从家出发,向东行驶了8km,然后向北行驶了6km,他现在距离家有多远?(答案需用勾股定理计算)答案:一、选择题1. B2. C3. B4. A5. B二、填空题6. ±27. -38. 209. C10. 10三、解答题11. 解:设这个数为x,则x + 1/x = 2,解得x = 1或x = -1。
12. 解:长方体的体积V = 长×宽×高= 4cm×3cm×2cm = 24cm³。
北大自主招生数学(理)试题答案

1.AB 为单位正五边形边上的点,证明:AB 最长为512+ (25分) 解:(1)首先利用三角形相似求得对角线长为512+;(10分) (2)再证明AB 运动时对角线长是最长的,可分3类; (i )AB 同在一条边时,显然AB ≤1,(ii )AB 在相临边上时,如图1,易证111A B AB AB ≤≤=512+;(15分) (iii) AB 在相对边上时,如图2,只需证明,1AB AB ≤且11A B AB ≤ 先证1AB AB ≤,考虑ABD ∆中,512AB AD +==,11180AB D AB B ∠+∠=︒ 故11,AB D AB B ∠∠︒与中必有一个大于或等于90不妨设1,AB B ∠≥︒90 则1AB AB <,再证11A B AB ≤,又由(ii)知,1B C AB ≤, 在1AB C ∆中,同上可证得:11||A B 至少小于11,AB CB 中的一条即证得:11A B AB ≤综上可得:AB 最长为512+。
(25分) 2.AB 为y=1-x 2上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值。
(25分) 2.如图,只需求CDE S ∆的最小值。
设A 11(,)x y ,B 22(,)x y ,120.0x x <> 则可求得:2y x '=-, 122,2CD CE k x k x =-=-,CD 方程为: 1112(),y y x x x -=-- 21121y x x x ⇒=-++,①令y=0,得:211112x x x +=,即D (211112x x +,0),(5分)AB B 1A 1 ABB 1A 1 DCDC图1图2A B C DE xo y同理可得CE 方程为:22221y x x x =-++②,E (222112x x +,0)(7分)联立①,②解得:C 点坐标为(122x x +,121x x -),(10分) 222211*********11(1)()111||()(1)244CDEC x x x x x x S DE y x x x x x x ∆++--==--=-,(15分) 21122x x x x -≥-,令12(0)x x t t -=>,则S 221(1)2t t +≥,设221(1)()2t g t t += 2222222214(1)(1)(1)(31)()22t t t t t g t t t+-++-'==,令3()0(0)3g t t t '=>⇒=(20分) 此时221(1)2t t +取最小值为839,即1233,33x x =-=时,min 839S =.(25分) 3. 向量OA 与OB 夹角为θ,|OA |=2,|OB |=1,OP =t OA ,OQ=(1-t )OB ,|PQ|在t 0处取得最小值,问当0<t 0<1/5时,夹角θ的取值范围。
北京大学(北约)2010~2014自主招生试题及答案(全)

2014年北京大学自主招生数学试题1. 圆心角为3π的扇形面积为6π,求它围成圆锥的表面积. 2. 将10个人分成3组,一组4人,两组每组3人,共有几种分法. 3. 2()2()(),(1)1,(4)733a b f a f b f f f ++===,求()2014f . 4.2()lg(2)f x x ax a =-+的值域为R ,求a 的取值范围.5. 已知1x y +=-,且,x y 都为负实数,求1xy xy+的取值范围. 6. 22()arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 一、求证:tan3Q ∉二、已知实系数二次函数()f x 与()g x ,()()f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.三、1213,a a a 是等差数列,{}113i j k M a a a i j k =++≤<<≤,问:7160,,23是否同在M 中,并证明你的结论.四、()01,2,,i x i n >=,且11n i i x ==∏,求证1)1)nn i i x =≥∏.答案1.π7; 2.2100; 3.4027)2024(12)(=⇒-=f x x f ; 4.1 00≥≤⇒≥∆a or a ;5.⎪⎭⎫⎢⎣⎡+∞,417;6.2arctan 0)0(-=⇒=C f 一、求证:Q ∉︒3tan解:若Q aab Q a ∈-=︒=⇒∈=︒2126tan 3tan ,Q ab b a c ∈-+=︒=⇒19tan Q bc cb d ∈-+=︒=⇒115tan 52518tan 41518sin 2-=︒⇒-=︒ 于是Q d d ∈-=⇒=-=︒233215tan ,从而矛盾。
二.实系数二次函数)(),(x g x f ,)()(x g x f =和0)()(3=+x g x f 有两重根,)(x f 有两相异根,求证:)(x g 无实数根。
北大自主招生数学试题

北大自主招生数学试题一、下列哪个数列不是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 8, 16, ...C. 10, 8, 6, 4, ...D. -1, 0, 1, 2, ...(答案:B)二、若复数z满足(1+i)z=2i,则z等于?A. 1-iB. 1+iC. -1+i(答案)D. -1-i三、设函数f(x) = x3 - 3x2 + 2,则f(x)的极小值点为?A. x = 0B. x = 1C. x = 2(答案)D. x = 3四、在三角形ABC中,若sinA:sinB = 3:4:5,则cosC的值为?A. 1/5B. -1/5(答案)C. 3/5D. 4/5五、已知向量a = (1, 2),b = (2, 1),则向量a与b的夹角θ的余弦值为?A. √5/5B. 2√5/5(答案)C. 1/√5D. -1/√5六、设集合A = {x | x2 - 5x + 6 = 0},B = {x | x2 - ax + a - 2 = 0},若B是A的子集,则a的取值范围是?A. a = 2或a = 3或a = 5B. a = 3或a = 5(答案)C. a = 2或a = 5D. a = 2或a = 3七、已知圆C的方程为x2 + y2 - 2x - 5 = 0,直线l的方程为2x - y - 1 = 0,则圆心C到直线l的距离为?A. √5B. 2√5/5C. √5/5(答案)D. 3√5/5八、若实数x, y满足约束条件x + y ≤ 2, x - y ≤ 1, x ≥ 0,则z = 2x + y的最大值为?A. 2B. 3C. 4D. 5(答案)九、设函数f(x) = ex - e(-x),则不等式f(x + 2) < f(1 - x)的解集为?A. (-∞, 3/2)B. (-3/2, +∞)(答案)C. (-∞, -1/2)D. (1/2, +∞)十、已知矩阵A = [1 2; 3 4],向量β = [5; 6],若向量α满足Aα = β,则α为?A. [-1; 2]B. [2; -1](答案)C. [1; 1]D. [-2; 1]。
高三清华北大自主招生数学训练题含答案

数学自主招生训练题(2)1.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,2.已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BEBC ,DFDC .若1AE AF,23CE CF,则( )(A )12 (B )23 (C )56 (D )7123.已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<4.已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭5.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%) A . 4.56% B . 13.59% C . 27.18% D . 31.74%6.一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( ) A . ﹣或﹣ B . ﹣或﹣ C . ﹣或﹣ D .﹣或﹣ 7.设函数f (x )=,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[,1]B . [0,1]C .[,+∞)D . [1,+∞)8.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A ) 02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =± 9.若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 .10.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C )满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南方球队总得分为 =189
北方球队总得分为 =21
南方球队内部比赛总得分 =105
北方球队内部比赛总得分 =15
北方胜南方得分=21-15=6
北方球队最高得分=5+6=11
因为11×15=165<189
所以南方球队中至少有一支得分超过11分.
冠军在南方球队中
当x=8时
所有球队总得分为 =300
4 排球单循坏赛 南方球队比北方球队多9支 南方球队总得分是北方球队的9倍 求证 冠军是一支南方球队(胜得1分 败得0分)
解:设北方球队共有x支,则南方球队有x+9支
所有球队总得分为
南方球队总得分为
北方球队总得分为
南方球队内部比赛总得分
北方球队内部比赛总得分
解得:
因为 为整数
x=6或x=8
当x=6时
南方球队总得分为 =270
北方球队总得分为 =30
南方球队内部比赛总得分 =136
北方球队内部比赛总得分 =28
北方胜南方得分=30-28=2
北方球队最高得分=7+2=9
因为9×17=153<270
所以南方球队中至少有一支得分超过9分.
冠军在南方球队中
综上所述,冠军是一支南方球队
5 (理科)O-XYZ坐标系内xoy平面系内 绕y轴旋转一周构成一个不透光立体 在点(1,0,1)设置一光源xoy平面内有一以原点为圆心的圆C被光照到的长度为2π,求C上未被照到的长度。
北京大学自主招生数学试题及答案
1 求证:边长为1的正五边形对角线长为
略解:三角形ABE∽三角形DAE,则:
2.已知六边形AC1BA1CB1中AC1=AB1,BC1=BA1,CA1=CB1,∠A+∠B+∠C=∠A1+∠B1+∠C1,
求证:△ABC面积是六边形AC1BA