必修一数学抽象函数习题精选含问题详解15
高一抽象函数经典习题
抽象函数练习题参考答案第一组1、 若函数()21f x +的定义域为31,2⎛⎫- ⎪⎝⎭,则函数()2log f x 的定义域为________.【答案】1,22⎡⎤⎢⎥⎣⎦2、 若()()11f n f n +=+,n *∈N ,且()12f =,则()100f =________. 【答案】1023、 定义R 上的函数()()()f xy f x f y =+,且()98f =,则f =________.4、 定义在区间()1,1-上的减函数()f x 满足:()()f x f x -=-.若()()2110f a f a -+-<恒成立,则实数a 的取值范围是_________.【答案】(0,5、 已知函数()f x 是定义在()0,+∞上的增函数,对正实数,x y ,都有:()()()f xy f x f y =+成立.则不等式()2log 0f x <的解集是_________.【答案】()1,26、 已知函数()f x 是定义在(],3-∞上的减函数,已知()()222f a t f a t -+-≤对[]1,1t ∈-恒成立,则实数a 的取值范围为________.【答案】⎡⎢⎣⎦7、 已知定义在R 上的单调函数()f x ,存在0x ∈R ,使得12,x x ∀∈R ,总有()()()()0102012f x x x x f x f x f x +=++恒成立,则0x =________.【答案】1第二组8、 函数()f x 对于0x >有意义,且满足条件()21f =,()()()f xy f x f y =+,()f x 是减函数.⑴ 证明:()10f =;⑵ 若()()32f x f x +-≥成立,求x 的取值范围.【答案】⑵ []1,3-.9、 已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+且当0x >,()0f x <,又()12f =-.⑴ 判断()f x 的奇偶性;⑵ 求()f x 在区间[]3,3-上的最大值;⑶ 解关于x 的不等式()()()224f ax f x f ax -<+.【答案】⑴ 奇函数;⑵ 6;⑶ 当0a =时,(),1-∞;当2a =时,()(),11,-∞+∞;当0a <时,2,1a ⎛⎫⎪⎝⎭; 当02a <<时,()2,1,a ⎛⎫-∞+∞ ⎪⎝⎭;当2a >时,()2,1,a ⎛⎫-∞+∞ ⎪⎝⎭.10、 定义在R 上的函数()y f x =满足:① ()00f ≠;② 当0x >时,()1f x >;③ ,a b ∀∈R ,()()()f a b f a f b +=⋅. ⑴ 求证:()01f =;⑵ 求证:对任意的x ∈R ,恒有()0f x >; ⑶ 证明:()f x 是R 上的增函数;⑷ 若()()221f x f x x ⋅->,求x 的取值范围.【答案】⑷ ()0,3.11、 已知函数()f x 的定义域为R 满足:① 任意实数,m n 都有()()()f m n f m f n +=⋅; ② 当0x >时,()01f x <<.⑴ 证明:()01f =,且0x <时()1f x >; ⑵ 证明:()f x 在R 上单调递减; ※⑶ 设()()()(){}22,1A x y f x f y f =⋅>,()(){},21,B x y f ax y a =-+=∈R ,若AB =∅,试确定a 的取值范围.【答案】⑶ ⎡⎣12、 已知函数()f x 的定义域为R ,满足:① 任意实数,m n 都有()()()12f m n f m f n +=+=; ② 102f ⎛⎫= ⎪⎝⎭;③ 当12x >时,()0f x >. ⑴ 求()1f ; ※⑵ 求和()()()()123f f f f n ++++(n *∈N );⑶ 判断函数()f x 的单调性,并证明.【答案】⑴ ()112f =;⑵ 22n ;⑶ 单调递增.13、 函数()f x 的定义域为R ,并满足以下条件:① 对任意x ∈R ,有()0f x >;② 对任意,x y ∈R ,有()()yf xy f x =⎡⎤⎣⎦; ③ 113f ⎛⎫> ⎪⎝⎭.⑴ 求()0f 的值;⑵ 求证:()f x 在R 上是单调减函数;※⑶ 若0a b c >>>且2b ac =,求证:()()()2f a f c f b +>.【答案】⑴ ()01f =.14、 定义在区间()0,+∞上的函数()f x 满足:① ()f x 不恒为零;② 对任何实数,x q ,都有()()q f x qf x =. ⑴ 求证:方程()0f x =有且只有一个实根;⑵ 若1a b c >>>,且a 、b 、c 成等差数列,求证:()()()2f a f c f b ⋅<⎡⎤⎣⎦;⑶ 若()f x 单调递增,且0m n >>时,有()()22m n f m f n f +⎛⎫== ⎪⎝⎭,求证:32m <<【答案】略.15、 已知函数()f x 是定义域为R 的奇函数,且它的图象关于直线1x =对称.⑴ 求()0f 的值;⑵ 证明:()()4f x f x +=;⑶ 若()f x x =(01x <≤),求当x ∈R 时,函数()f x 的解析式,并画出满足条件的函数()f x 至少一个周期的图象.【答案】⑴ ()00f =;⑶ ()4,414124,4143x k k x k f x x k k x k --+⎧=⎨-+-+<<+⎩≤≤,k ∈Z .16、 设函数()f x 在(),-∞+∞上满足()()22f x f x -=+,()()77f x f x -=+,且在闭区间[]0,7上,只有()()130f f ==.⑴ 试判断函数()y f x =的奇偶性;⑵ 试求方程()0f x =在闭区间[]2013,2013-上的根的个数,并证明你的结论.【答案】⑴ 非奇非偶函数;⑵ 806个根.第三组17、 已知定义在()1,1-上的函数()f x 满足:对任意的(),1,1x y ∈-,都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭,⑴ 求()0f 的值;⑵ 求证:函数()f x 是奇函数;⑶ 若当()1,0x ∈-时,有()0f x >,求证:()f x 在()1,1-上是减函数; ※⑷ 写出一个满足已知条件的函数(此问不用写理由).【答案】⑴ ()00f =;⑷()arctan f x x =-或()1log 1axf x x-=+,其中0a >且1a ≠.18、 定义在R 上的函数()f x 对任意实数,a b 都有()()()()2f a b f a b f a f b ++-=⋅成立,且()00f ≠.⑴ 求()0f 的值;⑵ 试判断()f x 的奇偶性;⑶ 若存在常数0c >使02c f ⎛⎫= ⎪⎝⎭,试问()f x 是否为周期函数,请说明理由.【答案】⑴ ()01f =;⑵ 偶函数;⑶ 2c .19、 已知()f x 是定义在R 上的不恒为零的函数,且,a b ∀∈R ,()()()f ab af b b a =+.⑴ 求()0f ,()1f 的值;⑵ 判断()f x 的奇偶性,并证明你的结论; ⑶ 若()22f =,试求12nf ⎛⎫⎪⎝⎭的值. 【答案】⑴ ()00f =,()10f =;⑵ 奇函数;⑶ 122nn n f ⎛⎫=- ⎪⎝⎭.20、 已知定义在R 上的函数()f x 满足:① 值域为()1,1-,且当0x >时,()10f x -<<; ② 对于定义域内任意的实数,x y ,均满足()()()()()1f m f n f m n f m f n ++=+.⑴ 试求()0f 的值;⑵ 判断并证明函数()f x 的奇偶性; ⑶ 判断并证明函数()f x 的单调性.【答案】⑴ ()00f =;⑵ 奇函数;⑶ 单调递减.21、 ()f x 的定义域关于原点对称,且满足①对()f x 定义域D 内的任意两个数1x 、2x (12x x ≠),()()()()()1212211f x f x f x x f x f x +-=-;②()1f a =-,且当0x a <<时,()0f x <. ⑴ 证明:()f x 是奇函数;⑵ 求函数()f x 在()0,4a 上的单调性.【答案】⑵ 单调递增.22、 函数()f x 的定义域为R ,且()f x 不恒等于零.对任意实数m 、n ,总有()()22n m f m f n m f n f ⎛⎫⎛⎫⋅=⋅+⋅⎪ ⎪⎝⎭⎝⎭成立. ⑴ 求()0f 的值;⑵ 求证,对任意实数t ,均有()t f t ⋅≥0;※⑶ 若()01f y =,求所有满足条件的()f x .【答案】⑴ ()00f =;⑵ 取2m t =,2n t =,有()()242tf t f t =0≥,∴()0t f t ⋅≥ ⑶ ()()222442222n n mm mnf m f n m f n f ⎛⎫⎛⎫=⋅⋅⋅+⋅⋅⋅⎪ ⎪⎝⎭⎝⎭∴()()()()22222mnf m f n m f n n f m =+ ()()mf n nf m =取1m =,n x =,有()0f x xy =即为所求.23、 已知函数()f x 的定义域为[)0,+∞,值域为[)0,+∞的子集,且满足下列条件:①对任意的[),0,x y ∈+∞都有()()()f xf y f y f x y ⋅=+⎡⎤⎣⎦; ②()20f =;③当02x <≤时()0f x ≠. ⑴ 求证:当2x ≥时,()0f x =; ⑵ 求()f x 的解析式.【答案】⑴ 取2y =即得;⑵ 当[),0,2x y ∈时,取()2xf y =,有()20f y f y ⎡⎤+=⎢⎥⎢⎥⎣⎦,∴()22y f y +≥,()22f y y -≤ 取2x y +=,有()20f xf x -=⎡⎤⎣⎦,∴()22xf x -≥,即()22f x x-≥ 综上,当02x <≤时()22f x x =-.于是()f x 的解析式为()2,0220,2x f x x x ⎧<⎪=-⎨⎪⎩≤≥.24、 已知函数()f x 的定义域为[]0,1,且同时满足:① 对任意[]0,1x ∈,总有()2f x ≥; ② ()13f =;③ 若10x ≥,2x ≥0且121x x +≤,则有()()()12122f x x f x f x ++-≥. ⑴ 求()0f 的值; ⑵ 求()f x 的最大值;※⑶ 设数列{}n a 的前n 项和为n S ,且满足()132n n S a =--,n *∈N . 求证:()()()121312223n n f a f a f a n -++++-⋅≤. 【答案】⑴ ()02f =;⑵ 3.25、 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:① 对任意的[]0,1x ∈,总有()0f x ≥; ② ()11f =;③ 若10x ≥,20x ≥,121x x +≤,都有()()()1212f x x f x f x ++≥成立. 则称函数()f x 为理想函数.⑴ 若函数()f x 为理想函数,求()0f 的值;⑵ 判断函数()21x g x =-([]0,1x ∈)是否为理想函数,并予以证明;⑶ 若函数()f x 为理想函数,假定[]00,1x ∃∈,使得()[]00,1f x ∈,且()()00f f x x =,求证:()00f x x =.【答案】⑴ ()00f =;⑵ 是.26、 已知函数()f x ,()g x 在R 上有定义,满足:① ,x y ∀∈R ,()()()()()f x y f x g y g x f y -=-; ② ()10f ≠.⑴ 求证:()f x 为奇函数;⑵ 若()()12f f =,求()()11g g +-的值.【答案】⑵ ()()111g g -+=.。
高一必修一数学抽象函数定义域求法专题讲解及专项练习
函数定义域求法总结一、定义域是函数)(x f y =中的自变量x 的范围。
(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1。
(5)x y tan =中2ππ+≠k x 。
(6)0x 中0≠x 二、复合函数的定义域题型一、已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出()][x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
例1、已知函数)(x f 的定义域为[]5,2,函数)3(+x f 的定义域为 。
例2、已知函数)(x f 的定义域为[]4,1,函数)2(x f 的定义域为 。
题型二、已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
例3、已知函数)3(x f 的定义域为[]6,3-,函数)(x f 的定义域为 。
例4、已知函数)23(-x f 的定义域为[]7,4,函数)(x f 的定义域为 。
题型三、已知复合函数()][x g f 的定义域,求()][x h f 的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得)(x f 的定义域,再由)(x f 的定义域求得()][x h f 的定义域。
例5、已知函数)14(-x f 的定义域为[]3,1-,函数)3(+x f 的定义域为 。
例6、已知函数)32(+x f 的定义域为[]8,3,函数)23(+x f 的定义域为 。
题型四、已知)(x f 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。
高一数学之抽象函数专题集锦-含详细解析
高一数学之抽象函数专题集锦一、选择题(本大题共14小题,共70.0分)1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(−2),f(−π),f(3)的大小顺序是( )A.B. C. D.2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =−2对称,若f(−2)=1,则f(x −2)≤1的x 的取值范围是( )A. [−2,2]B. (−∞,−2]∪[2,+∞)C. (−∞,0]∪[4,+∞)D. [0,4]3. 已知函数y =f(x)定义域是[−2,3],则y =f(2x −1)的定义域是( )A. [0,52]B. [−1,4]C. [−12,2]D. [−5,5]4. 函数f(x)在(−∞,+∞)上单调递减,且为奇函数.若f(1)=−1,则满足−1≤f(x −2)≤1的x 的取值范围是( )A. B. C. [0,4] D. [1,3]5. 若定义在R 上的奇函数f(x)在(−∞,0)单调递减,且f(2)=0,则满足xf(x −1)⩾0的x 的取值范围是( )A. [−1,1]∪[3,+∞)B. [−3,−1]∪[0,1]C. [−1,0]∪[1,+∞)D. [−1,0]∪[1,3] 6. 已知f(x)={x 2+4x x ≥0 , 4x −x 2 , x <0若f(2−a 2)>f(a),则实数a 的取值范围是( ) A. (−2 , 1)B. (−1 , 2)C. (−∞ , −1)⋃(2 , +∞)D. (−∞ , −2)⋃(1 , +∞)7. 已知定义在R 上的函数f(x)满足f(2−x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是A. f(−1)<f(0)=f(2)B. f(0)<f(−1)<f(2)C. f(0)=f(2)<f(−1)D. f(−1)<f(0)<f(2)8. 设函数f(x)={x 2−6x +6,x ⩾03x +4,x <0,若互不相等的实数x 1,x 2,x 3满足f(x 1)=f(x 2)=f(x 3),则x 1+x 2+x 3的取值范围是( )A. (113,6]B. (203,263)C. (203,263]D. (113,6) 9. f(x)是定义域在(−2,2)上单调递减的奇函数,当f(2−a)+f(2a −3)<0时,a 的取值范围是( )A. (0,4)B. (0,52)C. (12,52)D. (1,52) 10. 设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+ x 2>0,则f (x 1)+ f (x 2)的值( )A. 恒为负值B. 恒等于零C. 恒为正值D. 无法确定正负11. 已知偶函数f(x)在区间(0,+∞)上单调增加,则f(2x −1)<f(13)的x 取值范围是( ) A. (13,23). B. [13,23) C. (12,23) D. (12,23] 12. 已知函数y =f(x)定义域是[−2,3],则y =f(2x −1)的定义域是( )A. [0,52]B. [−1,4]C. [−12,2]D. [−5,5] 13. 若函数f(x)的定义域是[0,1],则函数f(2x)+f(x +13)的定义域为( )A. [−13,23]B. [−13,12]C. [0,12]D. [0,13] 14. 已知函数f(x)={x 2+4x(x ⩾0)4x −x 2(x <0),若f (2−a 2)>f(a),则实数a 的取值范围是( ) A. (−∞,−1)∪(2,+∞)B. (−1,2)C. (−2,1)D. (−∞,−2)∪(1,+∞)二、填空题(本大题共4小题,共20.0分) 15. 设偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x −1)≤f(1)的x 的取值范围是_____.16. 已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x −1)<f(13)的x 的取值范围是 .17. 奇函数f(x)的定义域为[−5,5],当x ∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是______________.18. 已知f(x)是定义在R 上的偶函数,且f(x +4)=f(x −2).若当x ∈[−3,0]时,f(x)=6−x ,则f(919)=______.三、解答题(本大题共15小题,共180.0分)19. 设函数f(x)是增函数,对于任意x ,y ∈R 都有f(x +y)=f(x)+f(y).(1)求f(0);(2)证明f(x)奇函数;(3)解不等式.20.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1∈D,x2∈D,有f(x1⋅x2)=f(x1)+f(x2).(Ⅰ)求f(1 )的值;(Ⅱ)判断f(x)的奇偶性并证明;(Ⅲ)如果f(4)=1,f(3x+1)+f(2x−6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.21.已知函数f(x)=ax2+bx ,且f(1)=2,f(2)=52.(Ⅰ)确定函数f(x)的解析式,并判断奇偶性;(Ⅱ)用定义证明函数f(x)在区间(−∞,−1)上单调递增;(Ⅲ)求满足f(1+2t2)−f(3+t2)<0的实数t的取值范围.22.定义域为R的单调函数f(x)满足f(x+y)=f(x)+f(y)(x,y∈R),且f(3)=6,(1)求f(0),f(1);(2)判断函数f(x)的奇偶性,并证明;(3)若对于任意x∈[12,3]都有f(kx2)+f(2x−1)<0成立,求实数k的取值范围.23.已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2−2x.(1)写出函数y=f(x)的解析式;(2)若方程f(x)=a恰有3个不同的解,求实数a的取值范围.24.已知函数y=f(x)的定义域为R,对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,证明:(Ⅰ)函数y=f(x)是R上的减函数;(Ⅱ)函数y=f(x)是奇函数.25.已知f(x)是定义在[−1,1]上的奇函数,且f(1)=1,若a,b∈[−1,1],且a+b≠0时,有f(a)+f(b)>0恒成立.a+b(1)用定义证明函数f(x)在[−1,1]上是增函数;)<f(1−x);(2)解不等式:f(x+12(3)若f(x)≤m2−2m+1对所有x∈[−1,1]恒成立,求实数m的取值范围.26.定义域为R的函数f(x)满足,对任意的m,n∈R有f(m+n)=f(m)f(n),且当x>0时,有0<f(x)<1,f(4)=1.16(1)求f(0);(2)证明:f(x)在R上是减函数;f(x2)恒成立,求实数a的取值范围.(3)若x>0时,不等式f(x)f(ax)>14)=1,如果对于0<x<y,都有f(x)> 27.已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(12f(y),(1)求f(1);(2)解不等式f(−x)+f(3−x)≥−2。
高考数学函数专题训练《抽象函数》含答案解析
A. B. C. D.
【答案】B
【解析】根据题意,因为f(x)是定义在 上的偶函数,且在区间(一∞,0]为增函数,
所以函数f(x)在[0,+∞)上为减函数,
由f(3)=0,则不等式f(1﹣2x)>0⇒f(1﹣2x)>f(3)⇒|1﹣2x|<3,
【解析】设 则
∵ ,∴ .所以函数 是R上的减函数,
∵函数 是偶函数,∴函数 ,∴函数关于 对称,
∴ ,原不等式等价为 ,
∴不等式 等价 ,
.∵ 在R上单调递减,∴ .故选B.
12.定义在 上的函数 满足,对任意 ,都有 ,非零实数 , 满足 ,则下列关系式中正确的是()
A. B. C. D.
【答案】D
因为 ,
所以 .故选A.
7.已知 是定义在 上的奇函数,且 ,则函数 的零点个数至少为()
A.3B.4C.5D.6
【答案】C
【解析】 是定义在 上的奇函数, ,且零点关于原点对称,
零点个数为奇数,排除选项 ,又 ,
, ,
, 的零点至少有 个,故选C.
8.定义在 上的函数 满足 , ,则关于 的不等式 的解集为()
A. B.
C. D.
【答案】C
【解析】因为 是定义在 上的函数,对任意两个不相等的正数 ,都有 ,
故 ,∴函数 是 上的减函数,
∵ ,∴ ,∴ .故选C.
5.已知定义在 上的函数 满足 为偶函数,若 在 内单调递减,则下面结论正确的是
A. B.
C. D.
【答案】A
【解析】 , 的周期为6,又 为偶函数,
15.已知定义在 上的偶函数 ,满足 ,且在区间 上是增函数,
抽象函数解题-题型大全(例题-含答案)
高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数(例题-含答案)
抽象函数(例题-含答案)重庆书之香教育CHONG QING *****ON高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号f(x)的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x的代数式,从而求出f(x),这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
x)?2x?1,求f(x). x?1xu2?xu2?u?u,则x??1?解:设∴f(u)?2∴f(x)? x?11?u1?x1?u1?u例1:已知f(2.凑合法:在已知f(g(x))?h(x)的条件下,把h(x)并凑成以g(u)表示的代数式,再利用代换即可求f(x).此解法简洁,还能进一步复习代换法。
例2:已知f(x?)?x?1x31,求f(x) 3x2解:∵f(x?)?(x?)(x?1?1x1x*****)?(x?)((x?)?3)|x?|?|x|??1 又∵x2xxx|x|∴f(x)?x(x2?3)?x3?3x,(|x|≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3.已知f(x)二次实函数,且f(x?1)?f(x?1)?x2+2x+4,求f(x).解:设f(x)=ax?bx?c,则f(x?1)?f(x?1)?a(x?1)2?b(x?1)?c?a(x?1)2?b(x?1)?c2?2(a?c)?413?22?a?,b?1,c?∴=2ax?2bx?2(a?c)?x?2x?4比较系数得?2a?122?2b?2?f(x)?123x?x? 224.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y=f(x)为奇函数,当x0时,f(x)?lg(x?1),求f(x)解:∵f(x)为奇函数,∴f(x)的定义域关于原点对称,故先求x0时的表达式。
抽象函数_题型大全(例题_含答案)
高考抽象函数技巧总结由于函数概念比较抽象.学生对解有关函数记号()f x 的问题感到困难.学好这部分知识.能加深学生对函数概念的理解.更好地掌握函数的性质.培养灵活性;提高解题能力.优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式.从而求出()f x .这也是证某些公式或等式常用的方法.此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下.把()h x 并凑成以()g u 表示的代数式.再利用代换即可求()f x .此解法简洁.还能进一步复习代换法。
例2:已知3311()f x x xx+=+.求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-.(|x |≥1)3.待定系数法:先确定函数类型.设定函数关系式.再由已知条件.定出关系式中的未知系数。
例3. 已知()f x 二次实函数.且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++.则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数.∴()f x 的定义域关于原点对称.故先求x <0时的表达式。
抽象函数题型全归纳及答案
抽象函数题型全归纳及答案抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数常见题型及解法评析如下:一、定义域问题(一)已知的定义域,求的定义域,解法:若的定义域为,则中,从中解得的取值范围即为的定义域.例题1:设函数的定义域为,则(1)函数的定义域为______;(2)函数的定义域为_______解析:(1)由已知有,解得,故的定义域为(2)由已知,得,解得,故的定义域为(二)已知的定义域,求的定义域.解法:若的定义域为,则由确定的范围即为的定义域.例题2:函数的定义域为,则的定义域为_____. 解析:由,得,所以,故填(三)已知的定义域,求的定义域.解法:先由定义域求定义域,再由定义域求得定义域. 例题3:函数定义域是,则的定义域是_______ 解析:先求的定义域,的定义域是,,即的定义域是再求的定义域,,的定义域是(四)运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集.例题4: 函数的定义域是,求的定义域.解析:由已知,有,即函数的定义域由确定函数的定义域是【巩固1】 已知函数的定义域是[1,2],求f (x )的定义域.解析:的定义域是[1,2],是指,所以中的满足从而函数f (x )的定义域是[1,4] 【巩固2】 已知函数的定义域是,求函数的定义域. 解析:的定义域是,意思是凡被f 作用的对象都在中,由此可得所以函数的定义域是【巩固3】f x ()定义域为(0),1,则y f x a f x a a =++-≤()()(||)12定义域是__.解析:因为x a +及x a -均相当于f x ()中的x ,所以010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x aa x a (1)当-≤≤120a 时,则x a a ∈-+(),1; (2)当012<≤a 时,则x a a ∈-(),1 二、解析式问题1. 换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力.例题5: 已知 ()211xf x x =++,求()f x . 解析:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=-2. 凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法.例题6: 已知3311()f x x xx +=+,求()f x 解析:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥,∴23()(3)3f x x x x x =-=-,(|x |≥1) 3. 待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数.例题7: 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解析:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4. 利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例题8: 已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解析:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例题9: ()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解析:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5. 赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式 例题10:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解析:∵()f x 的定义域为N ,取y =1,则有(1)()1f x f x x +=++ ∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈【巩固4】 设函数f x ()存在反函数,g x fx h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --fx 1() D. ---fx 1()解析:要求y h x =()的解析式,实质上就是求y h x =()图象上任一点P x y ()00,的横、纵坐标之间的关系. 点P x y ()00,关于直线y x =-的对称点()--y x 00,适合y f x =-1(),即-=-x g y 00().又g x fx ()()=-1,∴-=-⇒-=-⇒=---x fy y f x y f x 0100000()()(),即h x f x ()()=--,选B.【巩固5】 设对满足的所有实数x ,函数满足,求f(x)的解析式.解析:在中以代换其中x ,得:再在(1)中以代换x ,得化简得:评析:如果把x 和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键.通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略.三、求值问题这类抽象函数一般给出定义域,某些性质及运算式而求特殊值.其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化.或紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解.例题11: 已知定义域为的函数f(x),同时满足下列条件:①;②,求f (3),f (9)的值. 解析:取,得因为,所以又取,得例题12:定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解析:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=,又由f x f x ()[()]+=--44()()(8)(4)()f x f x f x f x f x =-=-∴+=-+=,f x ()是周期为8的周期函数, ∴==f f ()()200000【巩固6】 已知f x ()的定义域为R +,且f x y f x f y ()()()+=+对一切正实数x ,y 都成立,若f ()84=,则f (2)=_______.解析:在条件f x y f x f y ()()()+=+中,令x y ==4,得f f f f ()()()()844244=+==,∴=f ()42又令x y ==2,得f f f (4)(2)(2)=+=2,∴=f (2)1【巩固7】 已知f x ()是定义在R 上的函数,且满足:f x f x f x ()[()]()+-=+211,f ()11997=,求f (2001)的值.解析:紧扣已知条件,并多次使用,发现f x ()是周期函数,显然f x ()≠1,于是f x f x f x ()()()+=+-211,f x f x f x f x f x f x f x f x ()()()()()()()()+=++-+=++--+-=-412121111111所以f x f x f x ()()()+=-+=814,故f x ()是以8为周期的周期函数,从而f f f (2001)()()=⨯+==8250111997 四、值域问题例题13: 设函数f(x)定义于实数集上,对于任意实数x 、y ,总成立,且存在,使得,求函数的值域.解析:令,得,即有或.若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有.由于对任意均成立,因此,对任意,有下面来证明,对任意设存在,使得,则这与上面已证的矛盾,因此,对任意所以评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段.【巩固8】 已知函数f x ()对任意实数x y ,有f x y f x f y ()()()+=+,且当x >0时f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解析:设x x 12<,且x x R 12,∈,则x x 210->,由条件当x >0时,f x ()>0 ,∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111,∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+-又令x y ==0 ,得f ()00= ,∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,五、求参数范围或解不等式这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用.例题14:已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围.解析: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a .(1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立. (2)当32<<a 时,2222120(2)(4)(4)140224a f a f a f a a a a a -<-<⎧⎪-<-=-⇔-<-<⇒<<⎨⎪->-⎩(3)当25<<a 时,2(2)(4)f a f a -<-222021(4)041224a f a a a a a <-<⎧⎪=-⇔<-<⇒<<⎨⎪-<-⎩综上所述,所求a 的取值范围是()()3225,, . 例题15:f x ()是定义在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值范围.解析:: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos对x R ∈恒成立⇔m x m m x x x 2222311254-≤--≥+=--+⎧⎨⎪⎩⎪sin sin cos (sin ) 对x R ∈恒成立,223115214m m m m ⎧-≤-⎪∴≤≤⎨--≥⎪⎩, 【巩固9】 已知函数f x ()是定义在(]-∞,1上的减函数,且对一切实数x ,不等式f k x f k x (sin )(sin )-≥-22恒成立,求k 的值.解析:由单调性,脱去函数记号,得k x k x k xk x k k x 222222221111412-≤-≤-⎧⎨⎪⎩⎪⇔≤+-+≥-⎧⎨⎪⎩⎪sin sin sin sin ()(sin )(2)由题意知(1)(2)两式对一切x R ∈恒成立,则有k x k k x k 2222111412941≤+=-+≥-=⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⇒=-(sin )(sin )min max【巩固10】 已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集.解析:设x x R 12、∈且x x 12<,则x x 210->,∴->f x x ()212,即f x x ()2120-->2211211121()[()]()()2()()()f x f x x x f x x f x f x f x f x ∴=-+=-+->∴>,故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=,22(1)3(22)3(1)22113f f a a f a a a ∴=∴--<=--<∴-<<,,,即因此不等式f a a ()2223--<的解集为{}a a |-<<13.六、单调性问题例题16: 设f(x)定义于实数集上,当时,,且对于任意实数x 、y ,有,求证:在R 上为增函数.证明:在中取,得若,令,则,与矛盾所以,即有当时,;当时,而,所以又当时,,所以对任意,恒有设,则∴,∴在R 上为增函数例题17:已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函是减函数,并证明你的结论.证明:如图所示,易知f x ()在()-∞,0上是增函数,证明如下:任取x x x x 121200<<⇒->->因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以f x f x f x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数.【巩固11】 如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5解析:画出满足题意的示意图1,易知选B.七、 奇偶性问题例题18: 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性. 解析:取得:,所以 又取得:,所以 再取则,即 因为为非零函数,所以为偶函数. 【巩固12】 若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数y f x =()是偶函数.证明:设y f x =()图象上任意一点为P (x y 00,)y f x =()与y f x =-()的图象关于原点对称,∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上,0000()()y f x y f x ∴-=--∴=-,又y f x 00=(),∴-=f x f x ()()00即对于函数定义域上的任意x 都有f x f x ()()-=,所以y f x =()是偶函数.八、 周期性问题几种特殊的抽象函数:具有周期性的抽象函数:函数满足对定义域内任一实数(其中为常数),1. ,则是以为周期的周期函数;2. ,则是以为周期的周期函数;()y f x =x a ()()f x f x a =+()y f x =T a =()()f x a f x +=-()x f 2T a =3. ,则是以为周期的周期函数;4. ,则是以为周期的周期函数;5. ,则是以为周期的周期函数.6. ,则是以为周期的周期函数.7. ,则是以为周期的周期函数.8. 函数满足(),若为奇函数,则其周期为,若为偶函数,则其周期为.9.函数的图象关于直线和都对称,则函数是以为周期的周期函数;10.函数的图象关于两点、都对称,则函数是以为周期的周期函数;11.函数的图象关于和直线都对称,则函数是以为周期的周期函数;例题19: 设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.解析:这同样是没有给出函数表达式的抽象函数,其一般解法是根据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证明: f x f x f x ()()()()=+-+121∴+=+-+f x f x f x ()()()()1232()()12+得f x f x ()()()=-+33()()1f x a f x +=±()x f 2T a =()()f x a f x a +=-()x f 2T a =1()()1()f x f x a f x -+=+()x f 2T a =1()()1()f x f x a f x -+=-+()x f 4T a =1()()1()f x f x a f x ++=-()x f 4T a =()y f x =()()f a x f a x +=-0a >()f x 4T a =()f x 2T a =()y f x =()x R ∈x a =x b =()a b <()f x ()2b a -()y f x =()x R ∈()0,A a y ()0,B b y ()a b <()f x ()2b a -()y f x =()x R ∈()0,A a y x b =()a b <()f x ()4b a -由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对任意x R ∈都成立,因此f x ()是周期函数,且周期为6.例题20: 设函数f x ()的定义域为R ,且对任意的x ,y 有f x y f x y f x f y ()()()()++-=⋅2,并存在正实数c ,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请说明理由.解析:仔细观察分析条件,联想三角公式,就会发现:y x =cos 满足题设条件,且cosπ20=,猜测f x ()是以2c 为周期的周期函数. f x c c f x c c f x c f c f x c f x f x c f x c f x [()][()]()()()()()()()++++-=+=∴+=-∴+=-+=222222202故f x ()是周期函数,2c 是它的一个周期.【巩固13】 设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称.对任意x x 12012,,∈[]都有f x x f x f x ()()()1212+=⋅.证明f (x )是周期函数. 证明:依题设y f x =()关于直线x =1对称,故f x f x x R ()()=-∈2,又由f x ()是偶函数知f x f x x R ()()-=∈,∴-=-∈f x f x x R ()()2,,将上式中-x 以x 代换,得f x f x x R ()()=+∈2,这表明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的实质是f x ()的图象关于直线x =0对称又f x ()的图象关于x =1对称,可得f x ()是周期函数,且2是它的一个周期由此进行一般化推广,我们得到思考一:设f x ()是定义在R 上的偶函数,其图象关于直线x a a =≠()0对称,证明f x ()是周期函数,且2a 是它的一个周期.证明: f x ()关于直线x a =对称.∴=-∈f x f a x x R ()()2,又由f x ()是偶函数知f x f x x R ()()-=∈,,∴-=-∈f x f a x x R ()()2,将上式中-x 以x 代换,得f x f a x x R ()()=+∈2,∴f x ()是R 上的周期函数,且2a 是它的一个周期思考二:设f x ()是定义在R 上的函数,其图象关于直线x a =和x b a b =≠()对称.证明f x ()是周期函数,且2()b a -是它的一个周期.证明: f x ()关于直线x a x b ==和对称()(2)()(2)(2)(2)f x f a x x R f x f b x x R f a x f b x x R ∴=-∈=-∈∴-=-∈,,,,,将上式的-x 以x 代换得f a x f b x x R ()()22+=+∈,∴+-=-+=-+=∈f x b a f x a b f x a a f x x R [()][()][()]()22222,∴f x ()是R 上的周期函数,且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()还是不是周期函数?我们得到思考三:设f x ()是定义在R 上的奇函数,其图象关于直线x =1对称.证明f x ()是周期函数,且4是它的一个周期.,证明: f x ()关于x =1对称,∴=-∈f x f x x R ()()2,又由f x ()是奇函数知()()(2)()f x f x x R f x f x x R -=-∈∴-=--∈,,,将上式的-x 以x 代换,得(2)()f x f x x R +=-∈,(4)[2(2)](2)[()]()f x f x f x f x f x x R ∴+=++=-+=--=∈,∴f x ()是R 上的周期函数,且4是它的一个周期f x ()是奇函数的实质是f x ()的图象关于原点(0,0)中心对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思考四:设f x ()是定义在R 上的函数,其图象关于点M a (),0中心对称,且其图象关于直线x b b a =≠()对称.证明f x ()是周期函数,且4()b a -是它的一个周期.证明: f x ()关于点M a (),0对称,∴-=-∈f a x f x x R ()()2,f x ()关于直线x b =对称,()(2)(2)(2)f x f b x x R f b x f a x x R ∴=-∈∴-=--∈,,,将上式中的-x 以x 代换,得(2)(2)[4()][2(24)][2(24)][2(2)][2(2)]()f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数,且4()b a -是它的一个周期由上我们发现,定义在R 上的函数f x (),其图象若有两条对称轴或一个对称中心和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,定义在R 上的函数f x (),其图象如果有两个对称中心,那么f x ()是否为周期函数呢?经过探索,我们得到思考五:设f x ()是定义在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证明f x ()是周期函数,且2()b a -是它的一个周期.证明: f x ()关于M a N b ()(),,,00对称(2)()(2)()(2)(2)f a x f x x R f b x f x x R f a x f b x x R∴-=-∈-=-∈∴-=-∈,,,, 将上式中的-x 以x 代换,得(2)(2)[2()][2(2)][2(2)]()f a x f b x x R f x b a f b x a f a x a f x x R+=+∈∴+-=+-=+-=∈,, ∴f x ()是周期函数,且2()b a -是它的一个周期九、 对称性问题(1)对称性的概念及常见函数的对称性1、对称性的概念①轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心.2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数;⑨正弦型函数既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数;⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异.⒁绝对值函数:这里主要说的是和两类.前者显然是偶函数,它会关于轴对称;后者是把轴下方的图像对称到轴的上方,是否仍然具备对称性,这也没有一定的结论,例如就没有对称性,而却仍然是轴对称. ⒂形如的图像是双曲线,其两渐近线分别直线 (由分母为零确定)和直线(由分子、分母中的系数确定),对称中心是点.(2)抽像函数的对称性1、函数图像本身的对称性(自对称问题)(1)轴对称①的图像关于直线对称② 的图像关于直线对称. 特别地,函数的图像关于轴对称的充要条件是.sin()y A x ωϕ=+(||)y f x =|()|y f x =y x x |ln |y x =|sin |y x =(0,)ax b y c ad bc cx d+=≠≠+d x c =-a y c =x (,)d a c c-)(x f y =)(x f y =a x =⇔)()(x a f x a f -=+⇔)2()(x a f x f -=⇔)2()(x a f x f +=-)()(x b f x a f -=+⇔)(x f y =22)()(b a x b x a x +=-++=)(x f y =y ()()f x f x =-(2)中心对称①的图像关于点对称.② 的图像关于点对称. 特别地,函数的图像关于原点对称的充要条件是.(3)对称性与周期性之间的联系①若函数既关于直线对称,又关于直线对称,则函数关于无数条直线对称,相邻对称轴的距离为;且函数为周期函数,周期;特别地:若是偶函数,图像又关于直线对称,则是周期为的周期函数;②若函数既关于点对称,又关于点对称,则函数关于无数个点对称,相邻对称中心的距离为;且函数为周期函数,周期; ③若函数既关于直线对称,又关于点对称,则函数关于无数个点和直线对称,相邻对称轴和中心的距离为,相邻对称轴或中心的距离为;且函数为周期函数,周期.特别地:若是奇函数,图像又关于直线对称,则是周期为的周期函数.2、两个函数图像的对称性(互对称问题)(1)函数与图像关于直线对称.(2)函数与图像关于直线对称)(x f y =),(b a ⇔b x a f x a f 2)()(=-++⇔b x a f x f 2)2()(=-+⇔b x a f x f 2)2()(=++-c x b f x a f 2)()(=-++⇔)(x f y =),2(c b a +)(x f y =(0,0)()()0f x f x +-=()f x x a =x b =()a b ≠()f x b a -()f x 2T b a =-)(x f y =x a =()f x 2a ()f x (,0)a (,0)b ()a b ≠()f x b a -()f x 2T b a =-()f x x a =(,0)b ()a b ≠()f x b a -2b a -()f x 4T b a =-)(x f y =x a =()f x a 4)(x a f y +=)(x a f y -=0=x )(x f y =)2(x a f y -=a x =(3)函数与图像关于直线对称(4)函数与图像关于直线对称即直线对称(5)函数与图像关于轴对称. (6)函数与图像关于轴对称.(7)函数与图像关于直线成轴对称.(8)函数与图像关于直线成轴对称.(9)函数与的图像关于直线对称.(10)函数与的图像关于直线对称.(11)函数有反函数,则和的图像关于直线对称.(12)函数与的图像关于点成中心对称.特别地,函数与图像关于原点对称.例题21: 函数满足,求值. 解析:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.根据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x 用代换,得评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a 、b 均为常数,函数对一切实数x 都满足,则函数的图象关于点(a ,b )成中心对称图形.十、 综合问题1) 比较函数值大小利用函数的奇偶性、对称性等性质将自变量转化到函数的单调区间内,然后利用其单调性使问题获解.)(x f y -=)2(x a f y +=a x -=)(x a f y +=)(x b f y -=0)()(=--+x b x a 2a b x -=)(x f y =)(x f y -=x )(x f y =)(x f y -=y )(x f y =()a x f a y -=-x y a +=)(x f y =()x a f y a -=+x y a -=()y f x =()1y f x -=y x =()y f x =()1y f x -=--y x =-()y f x =()y f a x =+()1y f a x -=+y x a =+)(x f y =)2(2x a f b y --=),(b a )(x f y =)(x f y --=例题22: 已知函数f x ()是定义域为R 的偶函数,x <0时,f x ()是增函数,若x 10<,x 20>,且||||x x 12<,则f x f x ()()--12,的大小关系是_______.解析: x x 1200<>,且||||x x 12<,∴<-<⇒-<<001221x x x x又x <0时,f x ()是增函数,∴-<f x f x ()()21f x ()是偶函数,∴-=f x f x ()()11,故f x f x ()()->-122) 讨论方程根的问题例题23: 已知函数f x ()对一切实数x 都满足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.分析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴.又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=.3) 研究函数的图象这类问题只要利用函数图象变换的有关结论,就可获解.例题24: 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称解析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例题25: 若函数f x ()的图象过点(0,1),则f x ()+4的反函数图象必过定点__ 解析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-.【巩固14】 定义在R 上的函数f(x)满足:对任意实数m ,n ,总有,且当x >0时,0<f (x )<1.(1)判断f (x )的单调性;(2)设, ,若,试确定a 的取值范围. 解析:(1)在中,令,得,因为,所以.在中,令因为当时,,所以当时 而,所以又当x =0时,,所以,综上可知,对于任意,均有. 设,则 所以,∴在R 上为减函数.(2)由于函数y =f (x )在R 上为减函数,所以即有,又,由单调性,有由,所以直线与圆面无公共点. 因此有,解得. 【巩固15】 设函数y f x =()定义在R 上,当x >0时,f x ()>1,且对任意m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证明f ()01=;(2)证明:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,满足的条件.解析:(1)令m n ==0得f f f ()()()000=⋅,∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有f m f m f ()()()+=⋅00,与当m n ≠时,f m f n ()()≠矛盾,∴=f ()01.(2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f f x f x ()()()011=⋅-12211111()0()()()()()()f x f x f x x f x f x f x R f x ∴=>=-⋅>∴-,,在上为增函数。
抽象函数经典综合题33例(含详细解答)
抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。
抽象函数问题既是教学中的难点,又是近几年来高考的热点。
本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=n n n ni if6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。
(完整)高一数学抽象函数常见题型
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。
解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (x )的定义域是[1,4]例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。
解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[, 二、求值问题例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。
解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x 得58)3()3()9(-=+=f f f 三、值域问题例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。
解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。
若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。
必修一数学抽象函数习题精选含答案
抽象函数单调性和奇偶性1.抽象函数的图像判断单调性例1.如果奇函数f(x)在区间[3, 7]上是增函数且有最小值为5,那么f (x)在区间[7,3]上是()A.增函数且最小值为5B.增函数且最大值为5C.减函数且最小值为 5D.减函数且最大值为5分析:画出满足题意的示意图,易知选Bo2、抽象函数的图像求不等式的解集例2、已知定义在R上的偶函数f (x)满足f(2) 0,并且f (x)在(,0)上为增函数。
若(a 1)f(a) 0 ,则实数a的取值范围二、抽象函数的单调性和奇偶性1.证明单调性例3.已知函数f(x)= ,且f(x),g(x)定义域都是R,且g(x)>0,g(x) 1g(1) =2,g(x) 是增函数.g(m)g(n) g(m n)(m,n R)求证:f(x)是R上的增函数.解:设X1>X2因为,g(x)是R上的增函数,且g(x)>0。
故g(x 1) > g(x 2) >0 o g(X1)+1 > g(x 2)+1 >0 ,2 22> 2>0g(X2)1 g(xj 1g(x2) 1 g(xj 1>0 o增函数。
2.证明奇偶性例5.已知f(x)的定义域为R,且对任意实数x,y 满足f(xy) f(x) 求证:f(x)是偶函数。
分析:在 f(xy) f (x) f(y)中,令 x y 1,得 f(1) f (1) f (1) f (1) 0 令 x y 1,得 f (1) f( 1) f( 1) f( 1) 0于是 f( x) f( 1 x) f( 1) f (x) f (x),故 f (x)是偶函数。
三、求参数范围这类参数隐含在抽象函数给出的运算式中, 关键是利用函数的奇 偶性和它在定义域内的增减性,去掉“ f ”符号,转化为代数不等式 组求解,但要特别注意函数定义域的作用。
f(x 1)- f(x 2)=皿Jg(xj 1gg) 1 g%) 122=1——2——(1-2)g(xj 1 gg) 1>0 g(xj 1可以推出: f(x 1)>f(x 2),所以 f(x)是 R 上的上为减函数。
抽象函数-题型大全(例题-含答案)
高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号的问题感到困难,学好这部分知识,能加深学()f x 生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量的代数式,从而求出,这也是证某些公式或等式常用的方x ()f x 法,此法解培养学生的灵活性及变形能力。
例1:已知 ,求.(211xf x x =++()f x 解:设,则∴∴1x u x =+1u x u =-2()2111u u f u u u -=+=--2()1x f x x-=-2.凑合法:在已知的条件下,把并凑成以表示的代数式,再利用代换即可求(())()f g x h x =()h x ()g u .此解法简洁,还能进一步复习代换法。
()f x 例2:已知,求3311(f x x xx+=+()f x 解:∵又∵22211111()(1)()((3)f x x x x x xx x x x +=+-+=++-11||||1||x x x x +=+≥∴,(||≥1)23()(3)3f x x x x x =-=-x 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知二次实函数,且+2+4,求.()f x 2(1)(1)f x f x x ++-=x ()f x 解:设=,则()f x 2ax bx c ++22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c++-=+++++-+-+=比较系数得∴22222()24ax bx a c x x +++=++2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩213()22f x x x =++4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知=为奇函数,当 >0时,,求y ()f x x ()lg(1)f x x =+()f x 解:∵为奇函数,∴的定义域关于原点对称,故先求<0时的表达式。
抽象函数精选例题
1第04讲抽象函数一、知识纵横1.抽象函数是指一些没有给出明确解析式的函数,通常用函数性质或函数方程来描述.2.定义域:多为抽象函数()f x 和复合函数定义域互求.3.求值:由函数方程给出的抽象函数通常用赋特殊值法求值.4.单调性抽象函数通常需要用定义法来判断单调性,在比较()1f x 和()2f x 大小时常用作差或作商法.*单调性:设函数的定义域为D ,区间I D ⊆;任取12x x I <∈,(1)若恒满足()()12f x f x <,则称()f x 在I 上是增函数;(2)若恒满足()()12f x f x >,则称()f x 在I 上是减函数.5.奇偶性(1)如果对于函数()y f x =的定义域D 内任意一个x ,都有x D -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数;(2)如果对于函数()y f x =的定义域D 内任意一个x ,都有x D -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.6.对称性中心对称:(1)若()()f x a f x a +=---,则()f x 函数图象关于()0,0对称,()f x 为奇函数;(2)若()()f x a f x a +=--+,则()f x 函数图象关于(),0a 对称,()f x a +为奇函数;轴对称:(1)若()()f x a f x a +=--,则()f x 函数图象关于0x =轴对称,()f x 为偶函数;(2)若()()f x a f x a +=-+,则()f x 函数图象关于x a =轴对称,则有()f x a +为偶函数;7.周期性:对于任意的x D ∈有()()f x T f x +=,则T 为函数()f x 的周期.特别提醒4:抽象函数的要点是函数方程的形式,同号看周期,异号看对称.二、题型突破【题型1抽象函数定义域问题】例1.(1)若()f x 的定义域为[],m n ,且0mn <,0m n +>,则函数()()()g x f x f x =+-的定义域为()A .[],n m -B .[],n n -C .[],m m -D .[],m n -(2)已知函数()2y f x =-的定义域为(]2,4,则函数()y f x =的定义域为________;(3)若函数()f x 的定义域是[]1,1-,则函数()21f x x-的定义域为__________.答案:(1)由题可得0m <、0n >且m n -<,从而()g x 的定义域为[],m m -;(2)由题()f x 的定义域为[)2,0-;(3)由题()21f x -的定义域为[]0,1,从而()21f x x -的定义域为(]0,1.2【题型2抽象函数求值问题】例2.(1)设函数()f x 为定义在R 上的奇函数,()112f =,且满足对任意的实数x ∈R ,有()()()22f x f x f +=+,则()5f =_________;(2)函数()f x 的定义域为D ,若对于任意12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则1138f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭____________;(3)函数()f x 满足:()114f =,()()()()4f x f y f x y f x y =++-,则()2010f =_________;(4)函数()f x 是定义在R 的函数,若对于任意x 恒有()()33f x f x +≤+和()()22f x f x +≥+,且()11f =,则()2005f =_________.答案:(1)()()()()()532221f f f f f =+=+,且()()()112f f f =-+,从而()21f =,代入可得()552f =.(2)由①③可得()11f =,令12x =可知1122f ⎛⎫= ⎪⎝⎭,由②可得当1x =时有1132f ⎛⎫= ⎪⎝⎭,当12x =有1164f ⎛⎫= ⎪⎝⎭,当13x =时1194f ⎛⎫= ⎪⎝⎭,由函数非减可得1184f ⎛⎫= ⎪⎝⎭,从而113384f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.(3)令0x y ==,有()00f =或12,若()00f =,令0y =,则()f x 恒为0,与题目矛盾,从而()102f =,令1y =得()()()11f x f x f x =-++,将x 代为1x +可得()()()12f x f x f x +=++,两式叠加可得()()120f x f x -++=,将x 代为3x +可得()()250f x f x +++=,两式相减可得()()15f x f x -=+,从而可知()()1201002f f ==.(4)由()()33f x f x +≤+可知()()66f x f x +≤+,由()()22f x f x +≥+可知()()66f x f x +≥+,从而()()66f x f x +=+,()()200511f f ==.【题型3抽象函数求解析式】例3.(1)()f x 定义域为R ,若()01f =,且对,x y ∈R 恒有()()()21f x y f x y x y -=--+,则()f x =__________________;(2)()f x 定义域为R ,若()01f =,且对,x y ∈R 恒有()()()()12f xy f x f y f y x +=--+,则()f x =__________________.答案:(1)令0x =,可得()()11f y y y -=--+,从而()()2111f x x x x x =++=++;(2)令1y =,0x =,可得()12f =,令0y =,可得()()111f x x f x =+-=+.【题型4抽象函数单调性问题】3例4.(1)设()f x 是定义在R 上的奇函数,且对任意a 、b ,当0a b +≠,都有()()0f a f b a b +>+;若a b >,试比较()f a 和()f b 的大小.(2)奇函数()f x 在(),0-∞上单调递减,且()20f =,则()()110x f x -+>的解集为________.答案:(1)将b 代为b -可得()()0f a f b a b ->-,从而函数为奇函数,有()()f a f b >;(2)当10x ->时,()10f x +>可以解得()(),31,1x ∈-∞-- ,此时无解;当10x -<时,()10f x +<可以解得()()3,11,x ∈--+∞ ,此时()3,1x ∈--.【题型5抽象函数奇偶性问题】例5.(1)()f x 的定义域为{}|11D x x =-<<,对于任意的,x y D ∈,均有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭,证明:()f x 为奇函数;(2)()f x 的定义域为R ,对于任意的,x y ∈R ,均有()()()()11f x y f x y f x f y ++=-+-,()12f =,判断()f x 的奇偶性.答案:(1)令0x y ==,可得()00f =,令y x =-,可得()()0f x f x +-=,从而为奇函数;(2)令1x y ==,可得()32f =-,令1x =,1y =-,可得()()()()1311f f f f =--,从而()12f -=-,令1x =-,可得()()f y f y -=-,从而()f x 为奇函数.【题型6抽象函数综合性问题】例6.设()f x 的定义域为R ,满足以下条件:(1)对任意,a b ∈R 有()()()f a b f a f b +=+;当0a >时()0f a >;()21f =.求:(1)证明:()f x 是奇函数;(2)证明:()f x 在R 上单调递增;(3)若()()232f x f x +-<,求x 的取值范围.答案:以下四个题皆为函数方程入门问题,注意函数的特殊值和函数的性质.(1)可以解得()00f =,令b a =-可得函数为奇;(2)易证;(3)()42f =,从而()()234f x x f -<,由单调性可得234x x -<,解得()1,4x ∈-.例7.设()f x 的定义域为R ,满足以下条件:对任意,a b ∈R 有()()()f a b f a f b +=⋅,当0a >时,()1f a >,求:(1)求证:()01f =(2)判断()f x 的单调性,并证明;4(3)若()()221f x f x x ->,求x 的取值范围.答案:(1)令0a b ==可得()01f =或0,若()00f =,令0b =有()0f a =,与题目不符,从而()01f =;(2)易证函数为增函数;(3)由题可得()()230f x x f ->,从而230x x ->,解得()0,3x ∈.例8.设()f x 的定义域为{}0D x x =≠,满足以下条件:对任意a ,b D ∈有()()()f a b f a f b ⋅=+,当1x >时,()0f x >;(3)()21f =;求:(1)判断()f x 的奇偶性;(2)判断()f x 在定义域上的单调性,并证明;(3)解不等式:()()23f x f x -->.答案:(1)由题可知()()110f f =-=,从而令1a =-,函数为偶函数;(2)易证函数在()0,+∞单调递增,在(),0-∞上单调递减;(3)可得()83f =,从而不等式可化为()()816f x f x >-,解得1616,22,97x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭.例9.设()f x 的定义域为R ,满足以下条件:对任意a 、b ∈R 都有()()()f ab f a f b =;当01x ≤<时,()01f x ≤<.③()11f -=,()279f =,求:(1)判断()f x 的奇偶性;(2)判断()f x 在()0,+∞上的单调性,并证明;(3)若0a ≥且()1f a +≤,求a 的取值范围.答案:(1)令1a =-可得函数为偶;(2)易证函数在()0,+∞上为增;(3)由题可得()2333f =,从而13a +≤解得[]0,2a ∈.【题型7对称性与周期性综合】例10.(1)函数()f x 的定义域为R ,若()()213f x f x ⋅+=,且()12f =,则()99f =___________;(2)函数()201138f x x ax bx =++-,且()210f -=,则()2f =______________;(3)函数()1f x +是R 上的偶函数,当01x ≤≤时,()1f x x =+,则()1.4f =___________;(4)函数()1f x +是奇函数,()1f x -是偶函数,且()02f =,则()4f =_______;答案:(1)将x 代为2x +,可得()()2413f x f x ++=,从而()()4f x f x =+,则()()139932f f ==;5(2)由题()8f x +为奇函数,从而()()()2828f f +=--+,解得()226f =-;(3)由题可得()()11f x f x +=-+,令0.4x =可得()()1.40.6 1.6f f ==;(4)由()1f x +为奇函数可得()()11f x f x +=--+,由()1f x -为偶函数可得()()11f x f x -=--,将x 代为2x +可得()()13f x f x +=--,从而有()()31f x f x --=-+,从而函数的周期为4,()()402f f ==.三、直通高考例11.(2016上海)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A .和均为真命题B .和均为假命题C .为真命题,为假命题D .为假命题,为真命题答案:D .若()0.1f x x =-,()g x x =,则相加为增函数,用类似的方法可以将f ,g ,h 分为三段,每个函数在其中一段上单调递减,从而①为假命题;由题中三个函数相加可得()2f g h ++为周期为T 的函数,从而f g h ++周期为T ,令f g +周期为T ,从而f g --周期为T ,与f g h ++相加可得h 的周期为T ,同理可得②为真.。
抽象函数+练习(含答案)教师版
抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开.研究抽象函数首先要注意函数的定义域,尤其是在解答抽象函数对应的不等式时,通过抽象函数的单调性转变为自变量的大小关系式,不能忽视自变量的取值范围;其次抽象函数都是依据一类具体函数的性质抽象出来的,如()()()f x y f x f y +=+就是从正比例函数抽象出来的; ()()()f xy f x f y =+根据对数函数的性质抽象出来的; ()()()f x y f x f y +=根据指数函数的性质抽象出来的.因此在解决此类问题可以先类比具体函数的性质研究我们要解答的抽象函数的性质,解答抽象函数问题要注意赋值法的应用,通过赋值可以找到函数的不变性质,这个不变性质往往是解决问题的突破口.抽象函数性质的证明是一种代数推理,要注意推理的严谨性,每一步推理都要有充分的条件,不可以漏掉条件,更不要臆造条件,推理过程层次分明.一、抽象函数的概念抽象函数就是没有给出具体函数解析式的函数。
常见的解题方法有赋值法、换元法、具体化法等。
若()x f 的定义域是[]b a ,,则对()[]x g f 来说,必有()[]b a x g ,∈,从而可以得到函数()[]x g f 的定义域。
若()[]x g f 的定义域是[]b a ,,则[]b a ,应作为函数()x g 的定义域,进而求出()x g 的值域,从而得到函数()x f 的定义域。
总而言之,外层函数的定义域就是内层函数在复合函数的定义域上的值域。
抽象函数的值域和最值问题,一般先根据条件确定函数的单调性,然后再求其值域或最值。
对于选择、填空题也可以利用奇函数在对称区间上具有相同的单调性、偶函数在对称区间上具有相反的单调性等结论来求解。
【例1】函数()x f 对任意实数x 、y ,均满足()()()[]222y f x f y x f +=+,且()01≠f ,则()=2016f【难度】★★【答案】1008【解析】令1=y ,则()()()[]2121f x f x f +=+,即()()()[]2121f x f x f =-+,再令0=x ,1=y ,得()()()[]21201f f f +=,令0==y x ,得()00=f ,故()211=f ,则()()211=-+x f x f ,累加可得()10082016=f【例2】函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是___.【难度】★★【答案】2][2,⋃-【解析】因为log ()22x 2-相当于f x ()中的x ,所以log ()2221x -≤,解得 22<≤x 或-≤<-22x .【例3】已知()211x f x x =++,求()f x . 【难度】★ 【答案】1()1x f x x +=- 【解析】设1x u x =+,则1u x u =-∴1()2111u u f u u u +=+=--∴1()1x f x x+=- 【例4】如果奇函数()x f 在[]7,3上是增函数且有最小值为5,那么()x f 在[]3,7--上是( )A .增函数且有最小值为5-B .增函数且有最大值为5-C .减函数且有最小值为5-D .减函数且有最大值为5-【难度】★★【答案】B【例5】设)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,若函数)()(x g x f +的值域为)3,1[,则)()(x g x f -的值域为 .【难度】★★【答案】]1,3(--【解析】在()()f x g x -代入x -,因为)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,()()[()()]f x g x f x g x ---=-+,所以值域为]1,3(--,因为定义域为关于原点对称,所以值域是一样的,)()(x g x f -值域为]1,3(--【巩固训练】1.定义在R 上的函数()x f 满足()()()xy y f x f y x f 2++=+,()21=f ,则()=-3f【难度】★★【答案】62.已知函数)1(-x f 的定义域为[2,4],求函数)2(x f 的定义域.【难度】★ 【答案】⎥⎦⎤⎢⎣⎡23,213.若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域.【难度】★【答案】]1,1[-.【解析】函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-.4.已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 【难度】★★ 【答案】21()1f x x =-.2()1x g x x =- 【解析】∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f x g x x -+-=--即()f x -1()1g x x =-+……② 显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1x g x x =-5.已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.【难度】★★【答案】[]-42,【解析】设x x 12<且x x R 12,∈,则x x 210->, 由条件当x >0时,f x ()>0∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00= ∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二、抽象函数的性质1、抽象函数的单调性抽象函数单调性的求解与证明一般按照单调性的定义来解决,但由于解析式的缺乏,往往只能对题设条件中的等量关系进行适当的拼与凑,来处理()()21x f x f -与0的大小比较,如将1x 变形成()221x x x +-、221x x x ⋅等。
高中数学必修1 抽象函数 练习题
高中数学必修1 抽象函数〔单调性、奇偶性〕专项笔记整理:陈暄和1.假设221)1(xx x x f +=+,求)(x f 表达式.2.假设ax x x f -+=1)(2,证明当1≥a 时,函数)(x f 在区间],0[+∞上是减函数.3.在区间D 上,如果函数)(x f 为增函数,而函数)(1x f x为减函数,那么称函数)(x f 为“弱增〞函数.函数xx f +-=111)(. 〔1〕判断函数)(x f 在区间〔0,1]上是否为“弱增〞函数;〔2〕设21,x x ∈[0,+∞〕,1x ≠2x ,证明)()(22x f x f -<1221x x -; 〔3〕当x ∈[0,1]时,不等式bx xax -≤+≤-1111恒成立,XX 数b a ,的取值X 围.4.函数)(x f 对任意y x ,∈R ,总有))()(y x f y f x f +=+(,且当x >0时,)(x f <0,)1(-f =32-. (1)求证:)(x f 在R 上是减函数;〔2〕求)(x f 在[-3,3]上的最大值和最小值.5.函数)(x f 对任意y x ,∈R ,总有))()(y x f y f x f +=+(1-,且当x >0时,)(x f >1.(1)求证:)(x f 在R 上是增函数;(2)假设5)4(=f ,解不等式3)23(2<--m m f .6.函数)(x f 定义域为〔0,+∞〕,且)()()·(y f x f y x f +=,当1>x 时,)(x f >0.(1)求)1(f ;(2)求证:)(x f 在定义域上是增函数;(3)假设1)31(-=f ,求满足不等式2)21()(≥--x f x f 的x 的取值X 围.7.)(x f 是定义在[-1,1]上的奇函数,且)(1f =1,假设b a ,∈[-1,1],b a +≠0时,有ba b f a f ++)()(>0成立. (1)判断函数)(x f 在[1-,1]上的单调性,并证明你的结论;(2)解不等式:)11()21(-+x f x f <; (3)假设)(x f ≤122+-am m 对所有的a ∈[-1,1]恒成立,XX 数m 的取值X 围.8.定义max ),(b a =⎩⎨⎧≥ba b b a a <,,,)56,1max()(2-+--=x x x x f ,假设m x f =)(有四个不同的实数解,XX 数m 的取值X 围.9.)(x f 是定义域为R 的偶函数,且)2()2(x f x f -=+,当]2,0[∈x 时,x x x f 2)(2-=,求)5(-f .10.假设函数⎪⎩⎪⎨⎧≤-+--+-=)>0()2()0(1)23()(2x x b x x b x b x f 在R 上为增函数,XX 数b 的取值X 围.11.)(x f 是奇函数,且)()3(x f x f -=+.当]3,0(∈x 时,x x x f 3)(2+=. (1)求证:)6()(+=x f x f ;(2)当]6,3(f解析式.x时,求)(x。