嵩阳一中八年级下数学期中试卷
八年级数学下册期中考试卷及答案【最新】
八年级数学下册期中考试卷及答案【最新】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤52.若实数m、n满足02m-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.74610-⨯B.74.610-⨯C.64.610-⨯D.50.4610-⨯4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.115.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=6.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.247.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩2.先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中2x =.3.己知关于x 的一元二次方程x 2+(2k+3)x+k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若1211x x +=﹣1,求k 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:商品甲乙进价(元/件)60x x售价(元/件)200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a ),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、C7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、k<6且k≠33、204、22.5°5、:略6、32°三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、13xx-+;15.3、(1)k>﹣34;(2)k=3.4、(1)略;(2)4.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w 最小值=3200元。
八年级下册期中考试数学试题有答案
八年级下册期中质量监测试题(卷)数学说明:1.本试卷满分为100分(其中,试题90分,书写与卷面10分).考试时间90分钟.2.书写认真,字迹工整,答题规范,卷面整洁可得10分,否则将酌情给分.一、选择题(下列各题都只有一个最符合题意的答案,请将其字母标号填入题后的括号内.每小题2分,共20分)1.二次根式√3a有意义的条件是()D.a≤0A.a≥3B.a≥0C.a≥132.下列计算正确的是()A.√4+9=√4+√9B.3√2−√2=3C.√14×√7=7√2D.√24÷√3=2√33.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上4.我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾投定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”,“赵爽弦图”是赵爽在注解哪部著作中提到的?()A.《几何原本》B.《九章算术》C.《周髀算经》D.《海岛算经》5.如图,□ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB的长是()A.3B.4C. 5D.2.56.如图,在矩形ABCD中,对角线AC,BD相交于点O,且AB=6,BC=8,则△ABO的周长为()A.16B.18C.20D.227.我们先学习了平行四边形的性质定理和判定定理,再通过平行四边形边角的特殊化获得了特殊的平行四边形——矩形、菱形和正方形.根据它们的特殊性,得到了这些特殊的平行四边形的性质定理和判定定理,这种研究方法主要体现的数学思想是()A.转化B.分类讨论C.数形结合D.由一般到特殊8.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AD=2√3,则菱形AECF 的面积为()A.16√3B.8√3C.4√3D.2√39.如图,正方形ABCD的连长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.610.如图,△ABC称为第1个三角形,它的周长是1,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,以此类推,则第2018个三角形的周长为()A.122019 B.122018C.122017D.122016二、填空题(每小题3分,共18分)11.若y=√x−12+√12−x−6,则xy=.12.若直角三角形的两边长分别为6和8,则斜边的长为.13.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是.14.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根四尺,问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远.问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程.15.已知x−1x =√6,则x+1x的值为.16.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.三、解答题(本大题共6个小题,共52分,解答题应写出文字说明、证明过程或演算步骤)17.计算:(每小题5分,共10分)(1)(6√13−√0.5)−(√18−√27)(2)(2+√5)(2−√5)−(√3−2)218.(6分)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形(拼接后的各部分不能互相重叠,不能留有空隙),要求:画出分割线,并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小明同学的做法是:设新正方形的边长为x(x>0),割补前后图形的面积相等.所以有x2=5,解得x=√5,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小明同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:拼接后的各部分不能互相重叠,不能留有空隙;直接画出图形,不要求写分析过程.)19.(7分)已知,如图,在□ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,与对角线AC交于点O,则线段AC与EF有什么关系?请说明理由.20.(8分)观察下列各式及其验证过程:2√23=√2+23验证: 2√23=√233=√(23−2)+222−1=√2×(22−1)+222−1=√2+233√38=√3+38验证:3√38=√338=√(33−3)+33−1=√3×(32−1)+33−1=√3+38 (1)类比上述两个等式及其验证过程的基本思路,猜想4√415的变形结果,并进行验证; (2)针对上述各式反映的规律,请尝试写出用n (n 为自然数,且n ≥2)表示的等式,并给予证明.21.(9分)如图,某港口P 位于南北方向的海岸线上,甲、乙两艘渔船同时离开港口,各自沿一固定方向航行,若甲船每小时航行12海里,乙船每小时航行16海里,它们离开港口2小时后分别位于点Q 、R 处,且相距40海里,如果知道甲船沿北偏东75°方向航行,你知道乙船沿哪个方向航行吗?请说明理由.22.(12分)综合与探究 问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD 的对角线交于点O ,点O 又是正方形OEFG 的一个顶点(正方形OEFG 的边长足够长),将正方形OEFG 绕点O 做旋转实验,OE 与BC 交于点M ,OG 与DC 交于点N .“兴趣小组”写出的两个数学结论是:S正方形ABCD;①S△OMG+S△ONG=14②BM2+CM2=2OM2.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(2)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(2),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE 与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.。
八年级下期中试卷数学答案【含答案】
八年级下期中试卷数学答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 下列哪个式子是多项式?()A. 2x + 3B. x^2 + 2x + 1C. 5/xD. √x4. 如果一个事件A的概率是0.2,那么事件A不发生的概率是多少?()A. 0.2B. 0.8C. 1D. 05. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形二、判断题1. 两个负数相乘的结果是正数。
()2. 任何一个大于2的偶数都可以表示为两个素数之和。
()3. 一条对角线可以把一个平行四边形分成两个面积相等的三角形。
()4. 互质的两个数的最大公约数是1。
()5. 任何一个正数都有一个正的平方根和一个负的平方根。
()三、填空题1. 如果一个数的平方是36,那么这个数是______。
2. 两个质数相乘得到的数是______。
3. 一个等边三角形的周长是15cm,那么它的边长是______cm。
4. 两个互质的数的最小公倍数是它们的______。
5. 如果一个图形沿着一条直线对折后两部分完全重合,那么这个图形是______。
四、简答题1. 解释什么是质数和合数。
2. 简述勾股定理的内容。
3. 什么是算术平方根?4. 解释概率的意义。
5. 什么是轴对称图形?五、应用题1. 一个长方形的长是10cm,宽是6cm,求这个长方形的面积。
2. 一个等差数列的第一项是3,公差是2,求第10项。
3. 一个正方形的周长是32cm,求这个正方形的面积。
4. 抛掷一个骰子,求出现偶数的概率。
5. 一个圆锥的底面半径是3cm,高是4cm,求这个圆锥的体积。
六、分析题1. 证明:如果一个数的平方是奇数,那么这个数是奇数。
2022-2023年部编版八年级数学下册期中考试卷及答案【完整版】
2022-2023年部编版八年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.若12xyx-=有意义,则x的取值范围是()A.1x2≤且x0≠B.1x2≠C.1x2≤D.x0≠3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.25.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .67.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .2B .4C .3D 1010.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.计算:()()201820195-252+的结果是________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.已知11881,2y x x =-+-+求代数式22x y x y y x y x++-+-的值.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1).△ABD 不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、D5、D6、C7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、(3,7)或(3,-3)324、﹣2<x<25、46、12 xy=⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、1 23、14、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
八年级数学下册期中测试卷题及答案精选全文完整版
八年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=134.(3分)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13或B.13或15C.13D.155.(3分)若平行四边形两个内角的度数比为1:2,则其中较大内角的度数为()A.100°B.120°C.135°D.150°6.(3分)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2B.4C.6D.88.(3分)等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.39.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.510.(3分)将实数按如图方式进行有规律排列,则第19行的第37个数是()A.19B.﹣19C.D.﹣二.填空题(共7小题,每题4分,共28分)11.(4分)若在实数范围内有意义,则x的取值范围是.12.(4分)计算:=.13.(4分)如图,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是.14.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.15.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.16.(4分)规定运算:a☆b=﹣,a※b=+,其中a,b为实数,则(3☆5)(3※5)=.17.(4分)如图,四边形ABCD是菱形,AC=8,DB=6,P、Q分别为AC、AD上的动点,连接DP、PQ,则DP+PQ的最小值为.三.解答题(一)(共3小题,每题6分,共18分)18.(6分)(2﹣3)×19.(6分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.20.(6分)如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE =CF.求证:四边形EBFD是平行四边形.四、解答题(二)(共3小题,每题8分,共24分)21.(8分)已知:x=,y=,求+的值.22.(8分)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.23.(8分)如图,在矩形纸片ABCD中,AB=6,BC=8将矩形纸片ABCD沿对角线BD 折叠,点C落在点E处,BE交AD于点F,连接AE.(1)证明:BF=DF;(2)求AF的值;(3)求△DBF的面积.五、解答题(三)(共2小题,每题10分,共20分)24.(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)25.(10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F 同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,请判断△CEF的形状并说明理由;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=3cm,连接EF,当EF与GH 的夹角为45°,求t的值.参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.【分析】根据最简二次根式的概念判断即可.【解答】解:A、12=3×22,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.B、48=3×42,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.C、符合最简二次根式的定义,故本选项符合题意.D、被开方数中含有分母,它不是最简二次根式,故本选项不符合题意.故选:C.【点评】本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.【分析】根据=|a|,×=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.【点评】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、除法及加减法运算法则.3.【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【解答】解:A、∵a2+b2=c2,∴此三角形是直角三角形,故本选项不符合题意;B、∵∠A+∠B+∠C=180°,∠A=∠B+∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;C、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;D、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;故选:C.【点评】本题考查的是勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.4.【分析】根据在直角三角形中,两个直角边的平方和等于斜边的平方,然后开方即可得出答案.【解答】解:∵一个直角三角形的两直角边的长为12和5,∴第三边的长为=13.故选:C.【点评】此题主要考查了勾股定理,掌握在直角三角形中,两个直角边的平方和等于斜边的平方是解题的关键.5.【分析】设较大内角的度数为2x,较小内角的度数为x,由平行四边形的性质列出等式可求解.【解答】解:∵平行四边形两个内角的度数比为1:2,∴设较大内角的度数为2x,较小内角的度数为x,∵平行四边形的邻角互补,∴2x+x=180°,∴x=60°,∴2x=120°.故选:B.【点评】本题考查了平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.6.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.【解答】解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.【点评】本题考查菱形的判定,答案不唯一.有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.7.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选:B.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,解题的关键是熟练掌握矩形的性质,属于中考常考题型.8.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选:B.【点评】本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.9.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.10.【分析】观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,据此可求得答案.【解答】解:观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,∴第19行有2×19﹣1=37个数,∴第19行的第37个数是19.故选:A.【点评】本题考查了找规律在平方根中的应用,找到题目中数字的排列规律是解题的关键.二.填空题(共7小题,每题4分,共28分)11.【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【解答】解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.【点评】此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.12.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣+=+3.故答案为+3.【点评】本题主要考查二次根式的加减运算,计算时先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.13.【分析】三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍.【解答】解:∵M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴MN=AB,∴AB=2MN=2×20=40(m).故答案为:40m.【点评】本题考查三角形中位线等于第三边的一半的性质,熟记性质是应用性质解决实际问题的关键.14.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为24【点评】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.15.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】本题考查勾股定理,熟练运用勾股定理进行面积的转换是解题关键.16.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=(﹣)×(+)=3﹣5=﹣2,故答案为:﹣2【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.17.【分析】如图作DM⊥AB于M.首先利用面积法求出DM的值,作点Q关于直线AC的对称点Q′,则PQ=PQ′,推出PD+PQ=PD+PQ′,推出当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM;【解答】解:如图作DM⊥AB于M.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=4,OB=OD=3,∴AB==5,∵•AB•DM=•BD•AO,∴DM==,作点Q关于直线AC的对称点Q′,则PQ=PQ′,∴PD+PQ=PD+PQ′,∴当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM=,故答案为.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会利用垂线段最短解决最短问题,学会利用面积法求高,属于中考常考题型.三.解答题(一)(共3小题,每题6分,共18分)18.【分析】观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:原式=(4×=3×=9.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.19.【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【解答】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.【点评】本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.20.【分析】连接BD交AC于点O,根据对角线互相平分的四边形是平行四边形,可证四边形EBFD是平行四边形.【解答】证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形EBFD是平行四边形.【点评】此题主要考查平行四边形的判定,熟练掌握平行四边形的判定是解题的关键.四、解答题(二)(共3小题,每题8分,共24分)21.【分析】利用分母有理化法则分别求出、,计算即可.【解答】解:∵x=,∴===﹣1,∵y=,∴===+1,∴+=﹣1++1=2.【点评】本题考查的是二次根式的化简求值,掌握分母有理化法则是解题的关键.22.【分析】(1)由四边形ABCD是菱形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.(2)利用平行四边形的判定和性质解答即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AO=CO,AB∥CD,∴∠EAO=∠FCO,∠AEO=∠CFO.在△OAE和△OCF中,,∴△AOE≌△COF,∴AE=CF;(2)∵E是AB中点,∴BE=AE=CF.∵BE∥CF,∴四边形BEFC是平行四边形,∵AB=2,∴EF=BC=AB=2.【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.【分析】(1)由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;(2)根据折叠的性质我们可得出AB=ED,∠A=∠E=90°,又有一组对应角,因此就构成了全等三角形判定中的AAS的条件.两三角形就全等,从而设BF为x,解直角三角形ABF可得出答案;(3)由(1)知BF=DF,由(2)知BF的长,再由三角形的面积公式即可得出结论.【解答】证明:(1)由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠BAD=90°,∴AB=DE,BE=AD,在△ABD与△EDB中,,∴△ABD≌△EDB(SSS),∴∠EBD=∠ADB,∴BF=DF;(2)(2)在△ABD与△EDB中,,∴△ABF≌△EDF(AAS).∴AF=EF,设BF=x,则AF=FE=8﹣x,在Rt△AFB中,可得:BF2=AB2+AF2,即x2=62+(8﹣x)2,解得:x=,∴AF=8﹣=;(3)∵由(1)知BF=DF,由(2)知BF=,∴DF=,∴S△DBF=DF•AB=××6=.【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.五、解答题(三)(共2小题,每题10分,共20分)24.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)当∠A=45°,四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.【点评】本题考查了平行四边形的性质和判定,菱形的判定,正方形的判定、直角三角形的性质的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【分析】(1)通过证明△CDE≌△CBF得到CF=CE,∠DCE=∠BCF,则易推知△CEF 是等腰直角三角形;(2)过点E作EN∥AB,交BD于点N,∠END=∠ABD=∠EDN=45°,EN=ED=BF.可证△EMN≌△FMB,则其对应边相等:EM=FM.所以在Rt△AEF中,由勾股定理求得EF的长度,则AM=EF;(3)如图3,连接CE,CF,EF与GH交于P.根据四边形GFCH是平行四边形,则其对边相等:CF=GH=3.所以在Rt△CBF中,由勾股定理得到:BF=3,故t=3.【解答】解:(1)等腰直角三角形.理由如下:如图1,在正方形ABCD中,DC=BC,∠D=∠ABC=90°.依题意得:DE=BF=t.在△CDE与△CBF中,,∴△CDE≌△CBF(SAS),∴CF=CE,∠DCE=∠BCF,∴∠ECF=∠BCF+∠BCE=∠DCE+∠BCE=∠BCD=90°,∴△CEF是等腰直角三角形.(2)如图2,过点E作EN∥AB,交BD于点N,则∠NEM=∠BFM.∴∠END=∠ABD=∠EDN=45°,∴EN=ED=BF.在△EMN与△FMB中,,∴△EMN≌△FMB(AAS),∴EM=FM.∵Rt△AEF中,AE=4,AF=8,∴EF===4,∴AM=EF=2;(3)如图3,连接CE,CF,EF与GH交于P,CE与GH交于点Q.由(1)得∠CFE=45°,又∵∠EPQ=45°,∴GH∥CF,又∵AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=3,在Rt△CBF中,得BF===3,∴t=3.【点评】本题考查了四边形综合题.解题过程中,涉及到了平行四边形的判定与性质,全等三角形的判定与性质以及勾股定理的应用.解答该类题目时,要巧妙的作出辅助线,构建几何模型,利用特殊的四边形的性质(或者全等三角形的性质)得到相关线段间的数量关系,从而解决问题.。
八年级(下)期中考试数学试题(含答案)
八年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,共20.0分)1.下列根式不是最简二次根式的是()A. B. C. D.2.正方形的面积是4,则它的对角线长是()A. 2B.C.D. 43.能判定四边形ABCD为平行四边形的题设是()A. ,B. ,C. ,D. ,4.下列计算正确的是()A. B.C. D.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. B. C. D.6.矩形具有而一般的平行四边形不一定具有的特征()A. 对角相等B. 对角线相等C. 对角线互相平分D. 对边相等7.若=a,=b,则=()A. B. C. D.8.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.9.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A. 34B. 26C.D.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A. 7B. 9C. 10D. 11二、填空题(本大题共8小题,共24.0分)11.若有意义,则x的取值范围是______.12.如图,已知OA=OB,那么数轴上点A所表示的数是______.13.如图,▱ABCD中,AB的长为8,∠DAB的角平分线交CD于E,若DE:EC=3:1,则BC的长为______ .14.计算:= ______ .15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为______.16.如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AC= ______ cm.17.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为______cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共2小题,共20.0分)19.计算:(1)(-4)-(3-2)(2).20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?四、解答题(本大题共4小题,共36.0分)21.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图乙所示的分割线,拼出如图丙所示的新的正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的小正方形,排列形式如图丁,请把它们分割后拼接成一个新的正方形.要求:在图丁中画出分割线,并在图戊的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.22.如图,▱ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.23.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠BOC=120°,AC=6,求:(1)AB的长;(2)矩形ABCD的面积.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)答案和解析1.【答案】D【解析】解:=.故选D根据最简二次根式的判断标准即可得到正确的选项.此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.【答案】C【解析】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.设正方形的对角线为x,然后根据勾股定理列式计算即可得解.本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.3.【答案】B【解析】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.【答案】C【解析】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.5.【答案】C【解析】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.【答案】B解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选:B.举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.本题考查了对矩形的性质和平行四边形的性质的理解和掌握,主要检查学生是否能掌握矩形和平行四边形的性质,此题比较典型,但是一道容易出错的题目.7.【答案】C【解析】解:=====,故ABD错误,C正确.故选C.先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.本题考查了二次根式的性质和化简,注意被开方数是小数的要化成分数计算,且保证分母是完全平分数,根据=|a|进行化简..8.【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选:B.设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.9.【答案】D【解析】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.10.【答案】D【解析】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.11.【答案】x≥【解析】解:要是有意义,则2x-1≥0,解得x≥.故答案为:x≥.根据二次根式的定义可知被开方数必须为非负数,列不等式求解.本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【答案】-【解析】解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是-.故答案为:-.首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是-.本题主要考查了勾股定理的应用,解题的关键在于熟练运用勾股定理并注意根据点的位置以确定数的符号.13.【答案】6【解析】【分析】利用平行四边形的性质,首先证明△ADE是等腰三角形,求出DE即可解决问题.本题考查平行四边形的性质,等腰三角形的判定、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=8,AD=BC,∴∠DEA=∠EAB,∵∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵DE:EC=3:1,∴DE=6,∴BC=AD=DE=6.故答案为6.14.【答案】【解析】【分析】除以一个数相当于乘以这个数的倒数,按照顺序运算.主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.【解答】解:=××=.故答案为.15.【答案】25解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.故答案为25.根据题意仔细观察可得到正方形A,B,C,D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.此题结合正方形的面积公式以及勾股定理发现各正方形的面积之间的关系.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△ABO是等边三角形,∴OA=AB=4cm,∴AC=2OA=8cm,故答案为8.根据等边三角形的性质首先证明△AOB是等边三角形即可解决问题.本题考查矩形的性质、等边三角形的判定等知识,解题的关键是发现△AOB是等边三角形,属于基础题,中考常考题型.17.【答案】8解:∵四边形ABCD是菱形,∴AD=AB=4,∵AE=EB=2,∵DE⊥AB,∴∠AED=90°在Rt△ADE中,DE==2,∴菱形ABCD的面积=AB•DE=4•2=8,故答案为8.利用勾股定理求出DE,根据菱形ABCD的面积=AB•DE计算即可.本题考查菱形的性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.18.【答案】【解析】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.根据所给例子,找到规律,即可解答.本题考查了实数平方根,解决本题的关键是找到规律.19.【答案】解:(1)原式=4--+=3;(2)原式=(2+4)(-2)-(2-2+3)=2(+2)(-2)-(5-2)=2×(2-12)-5+2=-20-5+2=-25+2.【解析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后利用平方差公式和完全平方公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25-x)2,x=10.故:E点应建在距A站10千米处.【解析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.21.【答案】解:如图所示:.【解析】由10个小正方形拼成的一个大正方形面积为10,边长为,由=画分割线.本题考查了作图的运用及设计作图.根据作图前后,图形的面积保持不变,根据矩形及正方形的面积计算公式,设计作图方法.22.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形,∴AE=CF.【解析】由四边形ABCD是平行四边形,可得AF∥CE,又AF=CE,所以四边形AECF是平行四边形.则该平行四边形的对边相等:AE=CF.本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23.【答案】解:(1)∵四边形ABCD是矩形,∴OB=OC,∠ABC=90°,又∵∠BOC=120°,∴∠OBC=∠OCB=30°,∴AB=AC=×6=3;(2)∵AB2+BC2=AC2,∴BC==3,∴矩形ABCD的面积=AB×BC=3×3=9.【解析】(1)根据OB=OC,∠ABC=90°,以及∠BOC=120°,可得出∠OBC=∠OCB=30°,进而得到AB=AC=3;(2)根据勾股定理即可得出BC==3,进而得出矩形ABCD的面积.本题主要考查了矩形的性质以及勾股定理的运用,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.24.【答案】3.5 2【解析】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.八年级下册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.化简16的值为(A)A.4 B.-4 C.±4 D.22.要使二次根式4+x有意义,x的取值范围是(D)A.x≠-4 B.x≥4 C.x≤-4 D.x≥-43.下列各组数中,以a,b,c为边的三角形不是直角三角形的是(C)A.a=2 2,b=2 3,c=2 5 B.a=32,b=2,c=52C.a=6,b=8,c=10 D.a=5,b=12,c=13 4.下列二次根式中,化简后不能与3进行合并的是(C)A.13 B.27 C.32 D.125.顺次连接四边形ABCD各边的中点,若得到的四边形EFGH为菱形,则四边形ABCD一定满足(A)A.对角线AC=BD B.四边形ABCD是平行四边形C.对角线AC⊥BD D.AD∥BC6.下列各式计算正确的是(B)A.3 3-3=3 B.8×2=8×2C.323×4 3=6 3 D.215+2 3= 57.如图,在△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE 的长度是(C)A.5 B.5.5 C.6 D.6.5,第7题图),第9题图),第10题图)8.已知菱形的周长为20,一条对角线长为6,则菱形的面积为(B)A.48 B.24 C.18 D.129.如图,把菱形ABCD沿AH折叠,点B落在BC边上的点E处.若∠BAE=40°,则∠EDC 的大小为(B)A.10°B.15°C.18°D.20°10.如图,点E,G分别是正方形ABCD的边CD,BC上的点,连接AE,AG,分别交对角线BD于点P,Q.若∠EAG=45°,BQ=4,PD=3,则正方形ABCD的边长为(A) A.6 2 B.7 C.7 2 D.5二、填空题(每小题3分,共18分)11.化简:50-72=.12.在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,AB边上的高是______cm.13.计算:(6-2 3)2=.14.如图,点E,F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF的度数为__45°__.,第14题图),第15题图),第16题图)15.如图,在矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为.16.如图,在菱形ABCD中,对角线AC=6,BD=8,点E是边AB的中点,点F,P分别是BC,AC上的动点,则PE+PF的最小值是______.三、解答题(共72分)17.(8分)计算:4 12-1318.【解析】原式=22-2= 2.18.(8分)如图,在▱ABCD中,对角线AC与BD交于点O,经过点O的直线交AB于点E,交CD于点F,连接DE,BF.(1)求证:四边形DEBF是平行四边形;(2)当EF与BD满足条件__EF⊥BD__时,四边形DEBF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,∠DFO=∠OEB,在△DOF和△BOE中.∠FDO=∠EBO,∠DFO=∠BEO,OD=OB,∴△DOF≌△BOE(AAS).∴OE=OF.又∵OD=OB,∴四边形DEBF是平行四边形.19.(8分)计算(7+4 3)(2-3)2-(2+3)(2-3)+3的值.【解析】原式=1-1+3= 3.20.(8分)如图,在▱ABCD中,点E是BC的中点.连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF.求证:四边形ABFC是矩形.【解析】∵四边形ABCD为平行四边形,∴AD=BC,AB∥DC.∴∠ABE=∠ECF.又∵E 为BC的中点,∴BE=CE.在△ABE和△FCE中,∠ABE=∠ECF,BE=CE,∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF.又∵AB∥DC,∴四边形ABFC为平行四边形.∵BC=AD,AF=AD,∴BC=AF.∴四边形ABFC为矩形.21.(8分)如图,在四边形ABCD中,AB=3,BC=4,CD=5,AD=5 2,∠ABC=90°.求对角线BD的长.【解析】连接AC,作DE⊥BC于点E.由勾股定理,得AC=5.由勾股定理逆定理,得△ACD 为直角三角形.易证:△ABC≌△CED,∴AB=CE=3,BC=DE=4.∴BE=7.在Rt△BED中,由勾股定理,得BD=65.22.(10分)如图①,△ACB和△ECD都是等腰直角三角形,其中CA=CB,CE=CD,并且△ACB的顶点A在△ECD的斜边DE上.(1)求证:AE2+AD2=2AC2;(2)如图②,若AE=2,AC=2 5,点F是AD的中点,直接写出CF的长是.【解析】(1)如图,连接BD,∵△DEC与△ABC都是等腰直角三角形,∴∠ECD=∠ACB,∴∠ECA=∠DCB.又∵EC=DC,AC=BC,∴△ECA≌△DCB.∴AE=BD,∠E=∠BDC=45°.∴∠ADB=90°,∴BD2+AD2=AB2,∴AE2+AD2=AB2=2AC2.23.(10分)如图,正方形ABCD中,点E为BC边上一动点,作AF⊥DE分别交DE,DC 于点P,F,连接PC.(1)若点E为BC的中点,求证:点F为DC的中点;(2)若点E为BC的中点,PE=6,PC=4 2,求PF的长;(3)若正方形的边长为4,直接写出PC的最小值为.【解析】(1)易证△ADF≌△DCE,∴DF=CE.∵点E为BC的中点,∴BC=2CE.又∵BC=DC,∴CD=2CE=2DF.∴点F为DC的中点.(2)如图,延长PE到点N,使得EN=PF,连接CN,∵∠AFD=∠DEC,∴∠CFP=∠CEN.又∵E,F分别是BC,DC的中点,∴CE=CF.∵在△CEN和△CFP中,CE=CF,∠CEN=∠CFP,EN=PF,∴△CEN≌△CFP(SAS).∴CN=CP,∠ECN=∠PCF.∵∠PCF+∠BCP=90°,∴∠ECN+∠BCP=∠NCP=90°.∴△NCP是等腰直角三角形.∴PN=PE+NE=PE+PF=2PC,∴PF=2PC-PE=8-6=2.(3)提示:取AD中点M,连接CM,PM,由两点之间线段最短,易得PC≥CM-PM.24.(12分)如图①,在平面直角坐标系中,正方形ABCO的顶点C、A分别在x轴、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H,E,F为顶点作菱形EFGH.(1)当点H坐标为(-2,6)时,求证:四边形EFGH为正方形;(2)若点F坐标为(-5,0),求点G的坐标;(3)如图②,点Q为对角线BO上一动点,D为边OA上一点,DQ⊥CQ,点Q从点B出发,沿BO方向移动.若点Q移动的路径长为3,直接写出CD的中点M移动的路径长为________.图①图②【解析】(1)证明:∵H(-2,6),∴AH =OE =2,∠HAE =∠EOF =90°.∵四边形EFGH 为菱形,∴HE =EF.在Rt △HAE 与Rt △EOF 中,EH =EF ,AH =OE ,∴Rt △HAE ≌Rt △EOF(HL),∴∠FEO =∠EHA ,∵∠EHA +∠HEA =90°∴∠FEO +∠HEA =90°,∴∠HEF =90°,∴四边形EFGH 为正方形.(2)如图①,作GT ⊥直线AB 于点T ,连接HF.∵AB ∥OC ,GH ∥EF ,∴∠THF =∠HFO ,∠GHF =∠HFE.∴∠THG =∠EFO.∵∠T =∠EOF =90°,HG =FE ,∴△GTH ≌△EOF(AAS).∴HT =OF ,GT =OE.∵EF =OF 2+OE 2=29,∴EH =EF =29.AE =6-2=4,∴AH =EH 2-AE 2=13.∴G(-5-13,4).(3)提示:如图②,作QG ⊥BC 于点G ,延长GQ 交AO 于点K.当点Q 在点B 处时,点D 与点A 重合,CD 的中点即为CA 的中点,即对角线的交点P ,则CD 的中点M 移动的路径长为PM 的长.连接QA ,如图所示,△BGQ 是等腰直角三角形,∴AK =BG =22BQ =322.由正方形的对称性,得CQ =QA.易证△CQD 是等腰直角三角形,∴CQ =AQ =QD.∴AD =2AK =3 2.∵点P 是AC 的中点,点M 是CD 的中点,∴PM =12AD =322.最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是A.B.C. ÷D. 3.下列各组数是三角形的三边,不能组成直角三角形的一组数是 A. 3,4,5 B. 6,8,10 C. 1,1,2D.,, 4.点(3,-1)到原点的距离为A .B .3C .1D 5.已知实数x 、y ()210y +=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为EA. 100B.150C.200D. 2507.()21计算的结果为A .28-.10-28-.10-8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为A 1)B .(2,1)C .(2D.(19.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形B .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分)11= .12.在实数范围内分解因式:52-x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分) 17.(本题8分)计算:(1) (2))(8381412---.18.(本题8分)已知:1a =,1b =.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相ABCD第15题图距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1. (1)请直接写出:四边形ABCD 的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长;CBDAABODFCE(2)求证:PC⊥CF.24.(本题12分)已知点E ,F ,M ,N 分别在矩形ABCD 的边DA ,AB ,BC ,CD 上. (1)如图1,若EM 垂直平分BD ,求证:四边形BMDE 是菱形; (2)如图2,若∠MAN=∠NMC=45°,求证:MC 2=ND 2+BM 2;(3)如图3,若四边形EFMN 是平行四边形,AB=4,BC=8,求四边形EFMN 周长的最小值.2017∼2018学年度下学期八年级期中考试数学参考答案1 .A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.D 10.B11.2 12.(x x 13. 14. 40︒ 15.941617.(1)解:原式=2632⨯⨯=. (4分)(2)解:原式=(8分)18.(1) 解:原式)11-=2-. (2分)(2) 解:原式=)11=1. (4分)(3)解:原式2211(8分)19.根据题意,161.58,4 1.56,10.3PQ PR QR =⨯==⨯==(2分)222228610,P QP RQ R +=∴+=.(4分) 90QPR ∴∠=︒.(6分)由"远航"号沿东北方向航行可知,45,45NPQ RPN ∠=︒∴∠=︒.(7分) 答:"海天"号沿西北方向航行.(8分)20.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,(2分)∴∠F =∠E ,∠DCA =∠CAB ,(4分) ∵AB =CD ,FD =BE ,∴CF =AE ,(5分) ∴△COF ≌△AOE ,(7分) ∴OE =OF .(8分)(方法二:连接FA 、CE,证四边形FAEC 是平行四边形,也可.)21 . 解:(1)14.5 (4分)(2)连BD ,设B 到AD 的距离为d ,可求90BCD ∠=︒ , AD ==5分)152B C D S=⨯=(6分) 114.552ABD S h ∆∴=-=(7分) h ∴=(8分)22.解:(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°, ∴DC=AB=6,;(1分)要使△PCD 是等腰三角形,有如下三种情况: ①当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2分)②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3分) ③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =185= ,∴PC=2CQ =365,∴AP=AC-PC=145 .(6分)综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC , 四边形ABCD 是矩形,190,,2BCD OE OD OC ED ∴∠=︒=∴=(7分)在矩形PEFD中,PF DE =,∴12OC PF =,(8分)12OP OF PF ==,OC OP OF ∴==, OCF OFC ∴∠=∠,OCP OPC ∠=∠(9分)又180OPC OFC PCF ∠+∠+∠=︒,22180O C P O C F ∴∠+∠=︒,90PCF ∴∠=︒(10分),ACB ∠=O A 又OM AC ⊥ ②证明:取AB 的中点E ,AC 的中点F ;连接EF,DF ,过P 作PH AQ ⊥于H ,在Rt APH ∆中 2AP t = 30A ∠=︒, AH ∴=又CQ =, AF=CFHF QF ∴=(7分) 又∵D 是PQ 的中点 DF PH ∴PH AC ⊥90ACB ∠=︒PH BC ∴DF BC ∴(8分) ∵E 、F 分别是AB 、AC 的中点 EF BC ∴(9分)∴D 在△ABC 的中位线EF 上.(10分)24.证明:(1)∵EM 垂直平分BD 90EOD MOB ∴∠=∠=︒ OB=OD ∵四边形ABCD 是平行四边形 AD BC ∴ ADB CBD ∴∠=∠ ∴△DOE ≌△BOM ∴OE=OM(2分)又OB=OD EM ⊥BD ∴四边形BMDE 是菱形(3分)(2)延长MN 分别交AB 、AD 的延长线于点E 、F ,作M A F M A E'∠=∠,截取AM AM '=,连接,M N M F '',则有45AFN FND CNM CMN BME E ∠=∠=∠=∠=∠=∠=︒, 45M AN M AF FAN MAE FAN MAN ''∠=∠+∠=∠+∠=︒=∠,又∵AM AM '=AN AN =,MAN ∴∆≌M AN '∆(4分) M N MN '∴=,45MFA E ︒∠=∠= AF AE ∴=又∵AM AM '= MAFMAE '∠=∠MAF '∴∆≌MAE ∆(5分) ∴M F ME '= M FA E '∠=∠ 则90M FN '∠=︒, 在Rt M FN '∆中,222M N FN M F ''=+,(6分)在Rt MBE ∆中,222ME MB =, 在Rt FDN ∆中,222FN DN =, 在Rt MCN ∆中,222MN MC =,2222222M C M N M NB M D N '∴===+,222MC BM DN ∴=+(8分)(3)在矩形ABCD 及四边形EFMN 是平行四边形可证明AF=CN, (9分)如图,延长DC 至N ’,截CN ’=CN,连接FN ’交BC 于M ’,连接MN ’、AC.则有MN ’=MN, 由三角形中两边之和大于第三边易知,无论F 点在什么位置,点M 在M ’处时 FM+MN=FN ’=AC=, (11分) 故四边形EFMN周长的最小值为.(12分)人教版八年级数学下册期中考试试题【含答案】 一.选择(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个正确选项) 1.(4分)要使代数式有意义,则下列关于x 的描述正确的是( ) A .最小值是1B .最大值是1C .最小值是﹣1D .最大值是﹣12.(4分)以下列数组作为三角形的三条边长,其中能构成直角三角形的是( ) A .1,,3B .,,5C .1.5,2,2.5D .,,3.(4分)下列等式成立的是( ) A .=B .3+C .2D .=34.(4分)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB =BC 时,它是菱形B .当AC =BD 时,它是正方形 C .当∠ABC =90°时,它是矩形A D FB N图3C MEN ’ MD.当AC⊥BD时,它是菱形5.(4分)设路程为s(km),速度为v(km/h),时间为t(h),当s=60时,v=,在这个函数关系式中()A.s是常量,t是s的函数B.v是常量,t是v的函数C.t是常量,v是t的函数D.s是常量,t是自变量,v是t的函数6.(4分)如图,平面直角坐标系中,点A是y轴上一点,B(6,0),C是线段AB中点,且OC=5,则点A的坐标是()A.(0,8)B.(8,0)C.(0,10)D.(10,0)7.(4分)已知菱形ABCD的对角线AC与BD交于点O,则下列结论正确的是()A.点O到顶点A的距离大于到顶点B的距离B.点O到顶点A的距离等于到顶点B的距离C.点O到边AB的距离大于到边BC的距离D.点O到边AB的距离等于到边BC的距离8.(4分)如图:正方形ABCD的面积是1,E、F分别是BC、DC的中点,则以EF为边的正方形EFGH的周长是()A.+1B.C.2+1D.29.(4分)厦门的各所初高中学校,都有部分同学骑自行车上下学,骑行安全成为各校安全教育的常规,若骑行速度超过300米/分钟,就超越了安全限度.周六刘明骑自行车到学校自习,当他骑了一段时间后,想到需先选购一本参考书,于是折回刚经过的新华书。
八年级数学下册期中考试卷及答案【各版本】
八年级数学下册期中考试卷及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2C .12-D .12 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .75.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b + D .222a b - 10.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.若n 边形的内角和是它的外角和的2倍,则n =__________.3.使x 2-有意义的x 的取值范围是________.4.如图,▱ABCD 中,AB =3cm ,BC =5cm ,BE 平分∠ABC 交AD 于E 点,CF 平分∠BCD 交AD 于F 点,则EF 的长为________m .5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB=4,则AC 的长是________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y .3.解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩并将解集在数轴上表示.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、C6、D7、D8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、63、x2≥4、15、36、3三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、1 3 23、﹣4≤x<1,数轴表示见解析.4、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1) 2000元;(2) A型车20辆,B型车40辆.。
八年级数学下册期中考试题及完整答案
八年级数学下册期中考试题及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8 cm 2C .10 cm 2D .12 cm 210.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.计算:))201820195-252的结果是________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.6.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行_______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、D6、C7、C8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、752、22()1y x =-+3、52+4、72°5、36、41三、解答题(本大题共6小题,共72分)1、(1)1216,16x x =+=-;(2)3x =是方程的解.2、223、﹣1≤x <2.4、略(2)∠EBC=25°5、(1)略(2)略6、(1)200元和100元(2)至少6件。
八年级数学下册期中试卷(完美版)
八年级数学下册期中试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3 B.-3 C.5 D.-52.若关于x的不等式组721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤73.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.把38a化为最简二次根式,得()A.22a a B.342a C.322a D.24a a5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.67.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为()A .20B .35C .55D .7010.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.若n 边形的内角和是它的外角和的2倍,则n =__________.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图,在ABC中,点D是BC上的点,40BAD ABC︒∠=∠=,将ABD∆沿着AD翻折得到AED,则CDE∠=______°.三、解答题(本大题共6小题,共72分)1.用适当的方法解方程组(1)3322x yx y=-⎧⎨+=⎩(2)353123x yx y-=⎧⎪⎨-=⎪⎩2.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2,b=12.3.解不等式组:3221152x xx x-<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、A5、A6、C7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分) 12、63、14、205、(-2,0)6、20三、解答题(本大题共6小题,共72分)1、(1) 47x y =-⎧⎨=⎩;(2) 831x y ⎧=⎪⎨⎪=⎩2、原式=a b a b -=+3、31x -<<4、(1)略;(2)75.5、(1)2;(2)60︒ ;(3)见详解6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。
八年级数学下册期中考试题及答案【完整】
八年级数学下册期中考试题及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.化简二次根式 )A B C D4是同类二次根式的是( )A B C D 5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .439.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +二、填空题(本大题共6小题,每小题3分,共18分)116________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n=________.5.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.6.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、03、14、255.5、656、15.3三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、112x-;15.3、(1)略(2)1或24、(1)略;(2)10.5、略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
八年级数学下册期中测试卷及答案【完美版】
八年级数学下册期中测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .37.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米10.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.33x x -=-,则x 的取值范围是________.4.如图,在△ABC 中,∠B =46°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =________.5.如图,∠1+∠2+∠3+∠4=______度.6.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =6,BC =8,则EF 的长为______.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322x x x -=--- (2)311x x x-=-2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 13分,求3a-b+c 的平方根.4.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、C5、B6、D7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、()2x x y -2、1或5.3、3x ≤4、67°.5、2806、1三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x =.2.3、3a-b+c 的平方根是±4.4、(1)反比例函数解析式为y=12x ;(2)点B 的坐标为(9,3);(3)△OAP 的面积=5.5、(1)略;(2)∠BOC=100°6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
八年级下期中试卷数学【含答案】
八年级下期中试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a√32. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 已知一组数据的平均数为10,那么这组数据中()A. 至少有一个数等于10B. 至少有一个数不等于10C. 所有数都等于10D. 无法确定4. 在直角坐标系中,点(3, 4)关于y轴的对称点是()A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)5. 下列函数中,哪个函数是增函数?()A. y = -2x + 3B. y = x^2C. y = 3/xD. y = 2x 3二、判断题(每题1分,共5分)1. 任何有理数都可以表示为分数的形式。
()2. 两个负数相乘的结果一定是正数。
()3. 一元二次方程ax^2 + bx + c = 0的解一定是实数。
()4. 在同一平面直角坐标系中,两点的距离等于它们的坐标差的绝对值。
()5. 一次函数的图像是一条直线。
()三、填空题(每题1分,共5分)1. 两个数互为相反数,当且仅当它们的和为______。
2. 若一个数的平方等于9,则这个数是______或______。
3. 一元二次方程x^2 5x + 6 = 0的解为x =______或x =______。
4. 若一组数据的方差为0,则这组数据中每个数都等于______。
5. 在直角坐标系中,点(2, -3)关于原点的对称点是______。
四、简答题(每题2分,共10分)1. 解释有理数和无理数的区别。
2. 什么是一元二次方程?如何求解一元二次方程?3. 什么是一次函数?一次函数的图像有什么特点?4. 解释直角坐标系中,两点之间的距离公式。
5. 什么是数据的平均数和方差?它们分别反映了数据的哪些特征?五、应用题(每题2分,共10分)1. 已知一个正方形的边长为6cm,求它的对角线长。
八年级下册数学期中考试.doc
八年级下册数学期中考试试卷一、选择题(每小题3分,共42分)1•如果代数式「二有意义,那么兀的取值范围是(x - 3A.兀工3 .B. x<32.下列各式计算正确的是(C. x>3A. 8V3-2A/3=6 C. 4>/3x2j2=8>/6B. 5V3+5A/2=10V5 D. 4>/2 4-2^2=2723.已知>/莎是整数,则正整数斤的最小值是(A. 4.B. 5C. 64. (2010湛江)下列二次根式是最简二次根式的是(A. B. 74 C.D. 25.在下列二次根式中,与血能合并的是(B. V106.若J(3^7 = 3 —b,贝ij (A. b>3B. b<37. x = y[m - Vn, y = y[m + 4n ,A. 2\[mB. 2y[nc. 4n D. V27C. b$3 D- bW3 则xy的值是(C. m + n8.(09徐闻)下列计算正确的是( A.边・书=〒 B.边+羽=厉9.下列各组数中,能构成直角三角形的是(D.A: 4, 5, 6 B: b 1, V2 C: 6, 8, 11 D.羽一边=2D: 5, 12, 2311. (2013益阳)如图,在平行四边形ABCD 中,下列结论中错误的是()(A) Z1=Z2(B) ZBAD=ZBCD(C) AB 二 CD(D) AC±BD12. 如图,在菱形ABCD 中,不一定成立的是((A) 四边形ABCD 是平行四边形(B) AC 丄 BD(0 AABD 是等边三角形(D) ZCAB 二 ZCAD13. 下列关于矩形的说法,正确的是()(A) 対角线相等的四边形是矩形(B) 对角线互相平分的四边形是矩形(C)矩形的对角线互相垂直比平分(D) 矩形的对角线相等且互相平分14.如图,菱形ABCD 中,ZB=60° , AB=4,则以AC 为边长的正方形ACEF 的周长为(⑷ 14 (B)15(016 (D)17二、填空题(每小题4分,共32分)yj] Sx 2y 3 (x > 0, y > 0)二 ________________________16. __________________ 比较大小:俪 _ 3; 2^2 71.17. (2013 •吉林中考)计算:VIxVS 二 ____________ .18. (2013 •广东中考)若实数a, b 满足|a+2|+\'b-4二0,则宁二 __________ 19.木工师傅要做一个长方形A : 4A /3 B : V3 C : 2>/3 D :315.化简:存个桌面(填“合格”或"不合格”);20.如图所示,以直角三角形ABC 的三边向外作正方形,其面积分别为 S 】,S?, S3,且 S,=4,S 2= & 则 S3 = _____________21.如图,已知一根长8m 的竹杆在离地3m 处断裂,竹杆顶部抵着地22.如图所示,矩形ABCD 的对角线AC 、BD 相交于点0, CE 〃BD, DE 〃AC, 若AC 二4,则四边形CODE 的周长为 _______ .三、解答题.(本大题共58分)24 (6分)己知:如图,在LJABCD 中,E, F 是对角线BD 上的两点,且BF = DE.求证: AE = CF.25. (8分)如图:面积为48cm 2的正方形四个角是而积为3cm 2的小正方形,现将四个角剪掉, 制作一个无盖的氏方体盒子,求这个长方体盒子的底面边长和体积分别是多 少? □ □26. (8分)如图,边长为2的正方形ABCD 绕点A 逆时针旋转30°到正方形ABCM 求它们的 公共部23.计算题(12分) ①3辰一3点冷屁一歼 ②(2石-3)2 面,此时,顶部距底部有 _______ m ;A分的面积.27. (8分)如图,为修通铁路凿通隧道AC,量出匕A=40° ZB = 50° , AB=5公里,BC=4公里,若每天溺隧道0.3公里,问几天才能把隧道AB 衢通?28. (8分)如图,梯子AB 靠在墙上,梯子的底端A 到墙根0的距离为3m,梯子的顶端&向外 移动到/V,使梯子的底端A ,到墙根0的距离等于4m,同时梯子的顶端B 下降至",求BH 的长(梯子AB 的长为5m )o29. (10分)(2013龙岩)如图,四边形ABCD 是平行四边形,E 、F 是对角线AC 上的两点,Z1二Z2. 求证:(1)AE=CF;(2)四边形EBFD 是平行四边形. C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试卷(共6页) 第1页
八年级数学试卷(共6页)
第2页
嵩阳一中2013--2014学年度下学期期中考试
八 年 级 数 学 试 卷
( 时间:120分钟 总分:100分 )
一、选择题 (每小题3分,共24分) 1.9的值等于( )
A .3
B .-3
C .±3
D .
2在实数范围内有意义,则x 的取值范围是( )
A .2x -≥
B .2x ≠-
C .2x ≥
D .2x ≠
3.下列运算错误的是( )
A
=
B
= C .
D .2
(2=
4.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( ) A .3,4,5a b c === B .4,5,6a b c ===
C .6,8,10a b c ===
D .5,12,13a b c ===
5.如图,以直角三角形三边为边长作正方形,其中两个以直角边为 边长的正方形面积分别为36和64,则正方形A 的面积是( ) A .100 B .144 C .169 D .
10
6n 的最小值是( )
A .4
B .5
C .6
D .2
7.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC=90°时,它是矩形 D .当AC=BD 是,它是正方形
8.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点, 则PB+PE 的最小值是( ) A .8 B .9 C .10 D .12
二、填空题(每小题3分,共18分)
9
= .
10.如图,菱形两条对角线的长分别为6cm ,8cm ,则它的边长为 cm . 11.如图,四边形ABCD 是平行四边形,请你添加 一个适当的条件 ____________,使
ABCD 成为矩形.(只需添加一个即可)
12.如图,在ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点,OE =3cm ,则AD 的长是__________cm .
13.如图,矩形ABCD 的对角线AC,BD 相交于点O,CE ∥BD,DE ∥AC.若AC=4,则四边形CODE 的周长是 .
14.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是 .
三、解答题(每小题5分,共20分)
15.已知22x y =-=(6分)
(1)2
2
2x xy y ++ ; (2)2
2
x y -.
封
线
密
学校
姓名
年 班
座位
O
E D
B
A
第11题图
第12题图
第13题图
第14题图
八年级数学试卷(共6页) 第3页
八年级数学试卷(共6页) 第4页
16.先化简。
再求值:2321
(1)22
x x x x -+-÷
++ 其中
,1x =(5分)
17.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量∠A =
90°,AB =3m ,BC =12m ,CD =13m ,DA =4m ,若每平方米草皮需要200元,问需要投入
多少元?(6分)
18、如图,某人欲横渡..一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB 为多少米? (5分)
19.(6分)如图,在平行四边形ABCD 中,E F 、分别在AD BC 、边上,且AE CF =. 求证:(1)△ABE ≌△CDF ;
(2)四边形BEDF 是平行四边形.
B C
A
八年级数学试卷(共6页)第5页
八年级数学试卷(共6页)第6页20.(7分)在ABCD中,对角线相交于点O,∠1=∠2。
(1)求证:四边形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积。
21.(7分)如图,在ABCD
中,E F,分别为边AB CD
,的中点,连接DE BF BD
,,.
(1)求证:ADE CBF
△≌△.
(2)若AD BD
⊥,则四边形BFDE是什么特殊四边形?请证明你的结论.
22.(8分)如图,ABCD是正方形.G是BC 上的一点,DE⊥AG于E,BF⊥AG于F.
(1)求证:ABF DAE
△≌△
(2)求证:DE EF FB
=+
23.(8分)在四边形ABCD中,AD∥BC,B
∠=90°,AB=8cm,AD=24cm,BC=26cm。
点P从点A
出发,以1cm每秒的速度向点D运动;点Q从点C同时出发,以3cm每秒的速度向点B运动;规定
其中一点到达端点时,另一动点也随之停止,从运动开始,
(1)几秒钟时,四边形PQCD是平行四边形?
(2)几秒钟时,四边形ABQP是矩形?。