非参数检验 PPT课件

合集下载

SPSS第讲非参数检验(共72张PPT)

SPSS第讲非参数检验(共72张PPT)

SPSS应用
Kendall协同系数检验中会计算Friedman检验方 法,得到friedman统计量和相伴概率。如果相伴概
率小于显著性水平,可以认为这10个节目之间没有 显著差异,那么可以认为这5个评委判定标准不一 致,也就是判定结果不一致。
SPSS应用
3.多配对样本的Cochran Q检验
多配对样本的Cochran Q检验也是对多个互 相匹配样本总体分布是否存在显著性差异的统计 检验。不同的是多配对样本的Cochran Q检验所能 处理的数据是二值的(0和1)。其零假设是:样 本来自的多配对总体分布无显著差异。
SPSS应用
单样本K-S检验可以将一个变量的实际频数分
布与正态分布(Normal)、均匀分布(Uniform)、
泊松分布(Poisson)、指数(Exponential)分 布进行比较。其零假设H0为样本来自的总体与指定
的理论分布无显著差异。
SPSS应用
6.2 两配对样本非参数检验
6.2.1 统计学上的定义和计算公式
SPSS应用
两配对样本非参数检验的前提要求两个样本 应是配对的。在应用领域中,主要的配对资料包 括:具有年龄、性别、体重、病况等非处理因素 相同或相似者。首先两个样本的观察数目相同, 其次两样本的观察值顺序不能随意改变。
SPSS应用
SPSS中有以下3种两配对样本非参数检验方 法。
SPSS应用
1验.两配对样本的McNemar变化显著性检
SPSS应用
2.两配对样本的符号(Sign)检验
当两配对样本的观察值不是二值数据时,无法 利用前面一种检验方法,这时可以采用两配对样本
的符号(Sign)检验方法。其零假设为:样本来
自的两配对样本总体的分布无显著差异。

8非参数检验

8非参数检验

②正态近似法:
u | T n0 ( N 1) / 2 | n1n2 ( N 1) / 12
本例u 2.205 0.05/ 2 1.96
N3 N ; 3 3 N N (ti ti )
i
*校正公式(当相同秩次较多时)
uc u c; c
ti为第i个相同秩号的数据个数
假定:两组样本的总体分布形状相同
如果两总体 分布相同
基本思想
两样本来自同一总体 任一组秩和不应太大或太小
T 与平均秩和 n0 (1 N ) / 2 应相差不大
较小例数组的秩和, n1 n2 T min( R1 , R2 ), n1 n2
N n1 n2 n0 min( n1 , n2 )
控制 显效 有效 近控
65 18 30 13 126
107 24 53 24
1-107 108-131 132-184 185-208
54 119.5 158 196.5
编号 1 2
病情 单纯型 单纯型合并肺气肿
疗效 控制 显效
3
4 … 206 207
单纯型合并肺气肿
单纯型 … 单纯型 单纯型合并肺气肿
10 12(12 1) / 4 | R n(n 1) / 4 | u 2.275 n(n 1)(2n 1) / 24 12(12 1)(2 12 1) / 24
查标准正态分布表,得 P 值 校正公式: (当相同秩次个数较多时)
u
| R n(n 1) / 4 | n(n 1)(2n 1) / 24 (ti3 ti ) / 48 10 12(12 1) / 4
第一节 非参数检验的概念

第十讲 非参数检验

第十讲 非参数检验

分析完全随机设计的多样本计量资料时,若多样本观察指标不满足正态性和方差齐性, 不能进行方差分析, 以及多样本观察指标为等级 (有序分类) 资料, 宜采用 Kruskal-Wallis H 秩和检验。
14
第二节秩和检验 —完全随机设计多样本的秩和检验
【例11-4】某医生在研究再生障碍性贫血时, 测得不同程度再生障碍性贫血患者血清中可溶 性CD8抗原水平(U/ml),结果见表11-5,问不 同程度再生障碍性贫血患者血清中可溶性CD8抗 原水平有无差别?
通常规定,当 n1 n2 时,取较小样本的秩和作为检验统计量 T ;当 n1 n2 时,取秩和 较小者作为检验统计量 T 。
9
第二节秩和检验 —成组设计资料的秩和检验

【例11-2】某医院某医生对28例糖尿病早期微血管病 变的患者,按年龄、性别、病程、中医证候评分、生存 质量量表评分、饮食控制等情况,随机分为两组,试验 组采用西药加中药联合治疗方法,对照组采用西药加安 慰剂治疗方法,治疗4周,测定24小时尿蛋白改变量, 结果见表11-3,问该中药对糖尿病患者早期微血管病变 有无疗效?
16
第二节秩和检验 —完全随机设计多样本的秩和检验
【例11-5】探讨中药联合NB-UVB治疗寻常性银 屑病的临床疗效。95例患者分为3组,治疗组35 例给予NB-UVB照射,同时中药浴疗;对照1组33 例予NB-UVB照射,对照2组30例给予中药浴疗。 结果见表11-6,试比较三组疗效是否有差异?
4
第一节 非参数检验简述
表 11-1 参数检验与非参数检验的区别 非参数检验 推断总体分布,如中位数是否相等,是 否符合某种分布 参数检验 推断总体的参数,如算数均数、方 差、率是否相等 已知总体分布:如正态分布、二项 分布、poission 分布

非参数检验综合概述PPT(30张)

非参数检验综合概述PPT(30张)


9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。

10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。

11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。

12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。
多个独立样本的非参数检验
例3 14名新生儿出生体重按其母亲的吸烟习惯分组(A组: 每日吸烟多于20支;B组:每日吸烟少于20支;C组:过去 吸烟而现已戒烟;D组:从不吸烟),具体如下。试问四个 吸烟组出生体重分布是否相同?数据见npc.sav:
A组: 2.7 2.4 2.2 3.4 B组: 2.9 3.2 3.2 C组: 3.3 3.6 3.4 3.4 D组: 3.5 3.6 3.7
两独立样本的非参数检验 (2) 检验统计量
分析结果
给 出 Mann-Whitney U 、 Wilcoxon W 统 计 量 和 Z 值 , 近 似 值 概 率 (Asymp.Sig)和精确概率值(Exact.sig)均小于0.05,结论一致,表明 猫、兔在缺氧条件下的生存时间的差异具有统计学意义,由平均秩次猫 (15.7)、兔(7.96)来看,可以认为缺氧条件下猫的生存时间长于兔。

3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力!

4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落,花谢花开,岂不自在,哪里来的尘埃!

第十讲非参数检验详解

第十讲非参数检验详解

4
第一节 非参数检验简述
表 11-1 参数检验与非参数检验的区别 非参数检验 推断总体分布,如中位数是否相等,是 否符合某种分布 参数检验 推断总体的参数,如算数均数、方 差、率是否相等 已知总体分布:如正态分布、二项 分布、poission 分布
推断目的
总体分布
未知总体分布
检验方法 检验效能
t 检验、 z 检验、 F 分析等
中医药统计学与软件应用
曹治清
成都中医药大学管理学院 数学与统计教研室 czq9771@
第10讲 非参数检验
非参数检验简述
秩和检验
Ridit分析
2
第10讲 非参数检验—引言
假设检验分为参数检验(parametric tests)和 非参数检验(nonparametric tests)。参数检验是 在总体分布形式已知的情况下,用样本指标对 总体分布的参数进行推断的方法。常用的参数 检验方法有t、z、F检验等。非参数检验 (nonparametric tests)是在总体分布未知情况 下,比较总体分布或分布位置是否相同的统计 方法。

T 检验、 H 检验、 M 检验等

非参数检验适用于:
(1)资料的总体分布类型未知或偏态;(2)方差不齐; (3)一端或两端开口的资料;(4)等级资料。
5
第二节秩和检验 ——基本思想
将原始数据转化为秩次,计算各组秩次之和, 比较各组秩和的不同来推断总体分布有无差异。 若比较组之间的秩和接近,则认为各组间没有 差别;反之,如果各组间的秩和相差悬殊,则 认为各组间存在差别。
10
第二节秩和检验 —成组设计资料的秩和检验
表 11-3 糖尿病早期微血管病变患者疗效

《SPSS的非参数检验》PPT课件

《SPSS的非参数检验》PPT课件

精选课件ppt
33
数,计算实际观察频数与期望频数的差距,即:计算
卡方值 – 卡方值较小,则实际频数和期望频数相差较小。如果P
大于a,不能拒绝H0,认为总体分布与已知分布无显著 差异。反之
精选课件ppt
4
一、SPSS单样本非参数检验
(一)总体分布的chi-square检验 (4)基本操作步骤
菜单:analyze->nonparametric test->chi square 选定待检验变量入test variable list 框 确定待检验个案的取值范围(expected range)
(六)案例结果 p203-210
精选课件ppt
22
四、SPSS两配对样本非参数检验
(一)含义
由配对样本数据推断两总体分布是否存在显著 差异。
(二)基本假设
H0:两总体分布无显著差异。
(三)数据要求
两配对的样本数据。
精选课件ppt
23
四、SPSS两配对样本非参数检验
(四)基本方法
1.变化显著性检验(McNemar)
化。系统会作出提示。
案例:7-5 p194使用寿命
精选课件ppt
16
二、SPSS两独立样本非参数检验
(五)基本操作步骤
菜单选项:analyze->nonparametric tests->2 independent sample
选择待检验的变量入test variable list框 选择一种或几种检验方法
将研究对象作为自身的对照者检验其“前后”的变化 是否显著
关心的是发生变化的两格中的频数变化。如果频数变 化相当,则认为无显著变化。
数据要求只能是二分值数据(即0,1)

非参数检验课件

非参数检验课件

13.71
5
19.61
24.37
4.76
6
14.50
92.75
78.25
7
49.63
121.57
71.94
8
44.56
89.76
45.20
编秩次,求秩和 去掉d=0的对子,总的对子数也要相应减去; 用绝对值︱d︳编秩次,如果出现绝对值相等时(ties) ,则将它们的平均秩次值作为他们的秩次;
第二节 单样本资料的符号秩和检验
• 目的:推断样本中位数与已知总体中位数 (常为标准值或大量观察的稳定值)有无 差别,常用于不满足单样本t检验应用条 件的资料;其检验假设是M=M0.
• 例10-2 已知某地正常人尿氟含量的中位 数为2.15mmol/L.今在该地某厂随机抽取 12名工人,测得尿氟含量,结果见表2。 问该工厂的尿氟含量是否高于当地正常人 ?
参数检验方法
• t检验 两独立样本t检验要求:正态、方差相等、个体独立 配对t检验要求:差值正态、个体独立
• 方差分析 完全随机设计方差分析要求:正态、方差相等、个体独 立
参数检验方法
• 两组性别结构是否相同?
• 两组某种不良反应的发生率是否相同?
• 多组发生率是否相同? • 多组构成是否相同?
定性无序分 类资料
未解决的问题
• 疗效用痊愈、显效、有效、无效四级分类法进行 评价时,两组或多组如何比较?
• 对两组患者空腹胰岛素水平进行比较时,有的病 例测量结果为Ins<2.0 或Ins>300,如何处理?
未解决的问题
• 对应于多分类变量(有序) • 非正态分布 • 不完整数据:如,Ins<2.0 或Ins>300 • 正态分布但方差不相等时

多样本的非参数检验课件

多样本的非参数检验课件
它基于等级变量之间的相对大小,通过计算等级相关系数来评估两个变量之间的关 联程度。
弗里德曼等级相关检验在处理有序分类数据时具有较高的实用价值,尤其适用于无 法进行参数检验的情况。
柯尔莫哥洛夫-斯米尔诺夫检验
柯尔莫哥洛夫-斯米尔诺夫检验 是一种非参数统计方法,用于检 验两个独立样本是否来自同一总
体。
缺点
对数据要求高
非参数检验要求数据之间具有相 互独立性,如果数据之间存在相 关性,则检验结果可能不准确。
检验效力较低
相对于参数检验,非参数检验的 检验效力较低,尤其是在样本量 较小的情况下,其检验效力更低。
解释性较差
非参数检验的结果通常只能给出 数据之间的关系是否显著,而不 能给出具体的参数估计或置信区
案例一:不同处理对植物生长的影响
总结词
关联性分析
详细描述
非参数检验还可以用于分析不同处理与植物生长指标之间的关联性。例如,通过Spearman秩相关分析可以确定 植物生长与土壤养分之间的关联程度,为农业生产提供指导。
案例二:不同药物对动物行为的影响
总结词:行为变化
详细描述:在药物研究中,非参数检验可用于分析不同药物对动物行为的影响。例如,可以使用非参 数检验比较不同药物处理组之间动物探索行为、运动能力等指标的差异,以评估药物的安全性和有效 性。
PART 04
非参数检验的优缺点
优点
适用范围广
非参数检验适用于各种类型的数 据,包括定序、定类和定距数据,
甚至对于一些不符合正态分布的 连续数据也可以使用。
稳健性高
非参数检验对数据的分布假设较少, 因此在面对异常值或非正态分布的 数据时,其结果相对稳定。
直观易懂
非参数检验的原理相对简单,其结 果易于解释,不需要复杂的数学背 景也能理解。

非参数假设检验.pptx

非参数假设检验.pptx
取 1。.据9 此,我们可以用参数 的泊1松.9分布来
计算每分钟内通过收费站的汽车为0辆、1辆、2辆、3 辆、4辆或更多的概率。
第12页/共43页
e 各概率乘以观测总数n=100,便得到理论频数 ,具体结果见下表: i ei
计算 2统计量的值:
2 (14.96 10)2 (28.42 26)2 (27.0 35)2
H0 :汽车通过收费站的辆数服从泊松分布; H1 :不服从泊松分布。
观测值分为5组,且有 u0 10,u1 26,u2 35,u4 5
第11页/共43页
回忆泊松分布
P{X x} e x , x 0,1, 2,
x!
其中 为泊松分布的期望值,是未知的,需要用样
本观测值来估计。由于100分钟内观测到190辆汽车, 所以平均每分钟观测到190/100=1.9辆汽车,故
第9页/共43页
计算 2统计量的值:
2 6 (ui ei )2
i1
ei
(27 25)2 (18 25)2 (15 25)2 (24 25)2
25
25
25
25
(36 25)2 (30 25)2 12
25
25
在本例的情况下, 统2 计量的自由度为m-1=6-1=5。
第8页/共43页
解:本例中的观测值以月为组,共分为m=6组,
每 月的销售台数即为观测的频v数i ,观测的总次
数为n=150。现欲检验是否服从(离散的)均匀 分布,即每月的销售量是否为
ei
nPi
150 6
25(台),
Pi
1 6
,i
1,
,6
为此,设
H0 :洗衣机销售量服从均匀分布;
H1 :并不服从均匀分布;

12-非参数检验

12-非参数检验

例1:某地一周内各日患忧郁症的人数分布如表所示,请 检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1
Chi-Square Test Frequencies
周日 1 2 3 4 5 6 7 Total Observed N 31 38 70 80 29 24 31 303 Expected N 33.7 33.7 67.3 67.3 33.7 33.7 33.7 Residual -2.7 4.3 2.7 12.7 目的:检测总体分布
• 正态分布(Normal),均匀分布(uniform),泊松分布(Poisson),指数分 布(Exponential)]
• 适合于连续型数据的分析,检验功能较强。 • AnalyzeNonparametric Tests1-Sample K-Stest distributionok
两配对(小) 样本非参数检验
• Analyzenonparametric test2 related sampleswilcoxon 符号平均秩检验 (类似于两配对样本的t检验)。
多配对样本的非参数检验
• Analyzenonparametric testsk related samples kendall’s W检验
二项分布检验(检验概率值)
• 类似于单一样本T检验; • AnalyzeNonparametric testsBinomial Testtest proportion?ok • Sig>0.05, 接受test proportion?
单样本变量随机性检验(游程检验-Run过程)
• Analyzenonparametric testsRuns test • Sig>0.05,随机分布
检测总体分布?正态分布normal均匀分布uniform泊松分布poisson指数分布exponential?适合于连续型数据的分析检验功能较强
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果此假定不成立或不能确定是否成立, 就应采用秩和检验来分析两样本是否来自同 一总体。
例9.3 对无淋巴细胞转移与有淋巴细胞转移的胃癌患者,观察其 生存时间,问两组患者的生存时间是否不同?
基本思想
混合编秩 分别计算两组的秩和 假定H0成立 任一组秩和不应太大或太小 与平均理论秩和 N(N+1)/4 应相差不大
思考:单样本计量资料当数据不满足正 态性时如何去分析?
例9.2 对28名有轻度牙周疾病的成年人,指导他们实行良好的 口腔卫生习惯,6个月后,牙周情况好转程度依高到低给予分 数+3,+2,+1;牙周情况变差程度依次给予分数-1,-2,-3,没有 变化的给予0分,请对此项指导结果进行评价。
T0.05(23)=73-203
非参数检验 PPT课件
▪ 单样本t检验(正态分布) ▪ 配对样本t检验(差值满足正态分布) ▪ 两独立样本t检验(正态分布、方差齐性) ▪ 完全随机设计方差分析(正态分布、方差齐性) ▪ 随机区组设计方差分析(正态分布) ▪ 等级资料
当上述统计方法所对应的条件不满足,该如何对数据做分析?
非参数检验适用的资料
=0.05。
编秩:混合编序.先在各组内从小到大排队,再将几组统 一编秩:同组相同数据,秩次顺列;不同组相同数据,取 平均秩次。 求秩和:R1,R2、R3、R4 ……
下结论: 当处理组数小于等于3组时,且各组例数小于等于5.查附表 11,确定P值.
当 n 较大时,计算统计量H值, H 近似服从 = k – 1 的 2 分布。故可按 2 分布获得概率 P,作出统计推
本例秩和T1=162,T2=138。
查表 T0.05n1n249 115,取9较小样本量者为统计量, T=162,恰好落在界点外,所以P<0.05,按0.05水准, 拒绝H0,即两组患者的平均生存时间不同。
两组有序变量资料的秩和检验
例9.4 44例健康人与24例慢性气管炎病人痰液嗜酸性细胞数的测量 值如下,问健康人与慢性气管炎病人痰液嗜酸性粒细胞数有无显著 性差别?
多个样本间的多重比较:
无 论 是 对 完 全 随 机 设 计 多 个 样 本 比 较 用 KruskalWallis 秩 和 检 验 , 还 是 对 随 机 化 区 组 设 计 用 Friedman秩和检验,当推断结论为拒绝H0,接受H1 时,与方差分析类似,只能得出各总体分布位置 不同或不全相同的结论,但不能说明任两个总体 分 布 不 同 。 若 要 对检每验 两 个 总 体 分 布 作 出 有 无 不 同 的推断,需要作组间的多重比较。
威尔克逊
例9.1 临床医生研究白癜风病人的IL-6指标在白斑部位与正常部 位有无差异,资料如下:
基本思想
求d
将|d|按大小编秩
求出正、负秩和
如果两 测定结 果相同
H0
正负d个数应相差不多
正秩和与负秩和相差不大
差数的总体中位数为0,即服 从以0为中心的对称分布。
H0:差值的总体中位数为0; H1:差值的总体中位数不为0。
非参数检验的特点
秩和检验思想
▪ 混合编秩----分组求秩和----检验 ▪ 秩次(rank),秩统计量 是指全部观察值按数值大小顺序排列的位序
▪ 秩和(rank sum) 同组秩次相加求和。
配对资料的符号秩和检验
Wilcoxon 配对法
Wilcoxon paired-signed rank test
▪ 检验假设 H0 :A、B两样本来自相同总体(分布相同) H1 :A、B两样本来自不同总体(分布不同,相
互偏离)
=0.05
结论判断
(1) (设n1<n2)当n1<10且n2-n1≤10时,查T界值表(附表9) 判断原则:T 在范围之外,P< ;
T 在范围之内,P>
(2)若当n>50,超出附表9范围,可用正态近似法作z检验。
T=min{T-=91,T+=185}=91
P>0.05,不拒绝H0,即对28名有轻度牙周疾病的成年人, 指导他们实行良好的口腔卫生习惯,6个月后,牙周情 况尚无明显改善。
两组独立样本的秩和检验
Wilcoxon Mann-Whitney test
▪ 两组连续变量资料的秩和检验
对于计量数据,如果资料方差相等,且 服从正态 分布,就可以用t检验比较两样本 均数。
完全随机设计:(1)多个独立样本两两比较的Nemenyi法检验 ; (2)调整检验水准之后的两独立样本秩和检验;
(3)对秩次借用方差分析的两两比较的方法。如LSD_t,SNK法等。 随机区组设计:多个相关样本两两比较的q检验
本章总结
conclusion
单变量常用统计方法总结
例,某地对区级医院2者1250例,患者年龄构成与病情两年间差 别没有统计学意义。观察三项指标分别为疗效、住院日、费用。结果如 下表。
断。
当有相同秩次时,H 需校正:
随机区组设计资料的秩和检验:
随机化区组设计各处理组的观察指标是数值变量资料时且样本来自
正态总体时,可用随机化区组设计方差分析。否则,可用这里介绍 的 Friedman 秩 和 检 验 。 随 机 化 区 组 设 计 的 秩 和 检 验 是 由 M.Friedman在符号检验的基础上提出来的,常称为Friedman检验, 又称M检验。
T2=1785.5
完全随机化设计多组独立样本 的秩和检验
Kruskal—Wallis秩和检验
资料的适用条件
1.计量数据的多样本比较 应用条件:资料不满足正态性或总体 方差不齐
2.有序(等级)数据的多样本比较
例9.5 研究白血病时,测定四组鼠脾DNA含量,试分析 各组DNA含量有无差别?
H0 :各组鼠脾DNA含量的总体分布相同; H1 :各组鼠脾DNA含量的总体分布不同或不全相同。
=0.05。
当n≤25时,查界值表 当n>25时,用u近似
Tn(n1)/40.5 u
n(n1)(2n1)/24
本例秩和T+=33,T-=3。 查表 T0.058 333, 取T=min{T+,T-}较小者为统计量, T=3恰好落在界点上,所以P<0.05,按0.05水准,拒 绝H0,可以认为白斑部位与正常部位的白介素有差异。
相关文档
最新文档