实验与探究 三角形中边与角之间的不等关系 

合集下载

人教版初中数学八年级上册 实验与探究 三角形中边与角之间的不等关系(全国一等奖)

人教版初中数学八年级上册 实验与探究 三角形中边与角之间的不等关系(全国一等奖)

《三角形中边与角之间的不等关系》教学设计一.内容和内容解析1.内容:三角形中边与角之间的不等关系:大边对大角,大角对大边2.内容解析:本节内容是八年级上册数学教科书第十三章《轴对称》这一章章末的“实验与探究”材料。

它是在学生学习了三角形中“等边对等角”和“等角对等边”的性质后提出来的反思:如果三角形的边(角)不相等,那么它们所对的角(边)的大小关系怎样大边所对的角也大吗从“等角对等边”到“大角对大边”,从“等边对等角”到“大边对大角”,至此,教材将三角形中的“相等”与“不等”关系演绎的淋漓尽致。

针对学生的认知水平,课本利用了轴对称的方法来解决问题,借助于轴对称,解决了上述疑问,也获得了添加辅助线证明性质的方法。

在此探索与证明的过程中,体现了转化的思想。

基于以上分析,确定本节课的教学重点,探索并证明三角形中边与角之间的不等关系。

二.目标与目标解析1.目标(1)探索并证明三角形中边与角的不等关系(2)能利用三角形中边与角的不等关系来比较边或角的大小(3)结合上述性子和探索的证明过程,体会轴对称在研究几何问题中的桥梁作用,以及在此过程中作辅助线的方法。

2.目标解析达成目标(1)的标志是学生能借助实验探究发现在一个三角形中边与角之间的不等关系,并能推理论证出来,能正确理解其中的含义,能用数学语言准确表述性质的含义。

达成目标(2)的标志是:学生能解决相关应用问题。

达成目标(3)的标志是:学生获得添加辅助线证明几何题的方法。

三.教学重难点教学重点:三角形中边与角之间的不等关系的探究过程。

教学难点:折纸的无意操作与辅助线的有意添加结合,即如何从实验操作中得到启示,写成几何证明的表达。

教具准备:三角形纸片数张、剪刀、圆规、三角板等。

四.教学过程一、课题引入我们知道,在一个三角形中,如果有两条边相等,那么它们所对的角也相等(等边对等角)。

在一个三角形中,如果两条边不相等,这两条边所对的角是否相等呢二、探究“大边对大角”(一)观察图形,提出猜想观察你手边的不等边三角形纸片,能得到你的猜想吗(在△ABC中,边AC对∠B,边AB对∠C,同学们通过肉眼观察可得到∠C大于∠B,故猜想大边对大角)综上,我们提出猜想:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大(简写成"大边对大角")(二)小组讨论,验证猜想1量角器测量:通过几何画板演示验证2折纸活动:A B CED A B C 我们在探究“等边对等角”时,采用将三角形对折的方式,发现了“等边对等角”,从而利用三角形的全等证明了这些性质。

小学四年级数学《探索与发现(二)三角形边的关系》教案三篇

小学四年级数学《探索与发现(二)三角形边的关系》教案三篇

小学四年级数学《探索与发现(二)三角形边的关系》教案三篇小学四年级数学《探索与发现(二)三角形边的关系》教案范本一教学内容:北师大版小学数学四年级下册第二单元〝三角形边的关系〞.教材分析:《三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学〝空间与图形〞领域中新增添的内容,是在线段.角.顶点.三角形分类等三角形知识学习的基础上的延伸.为今后学习三角形面积和应用提供了重要条件.学生分析:从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:〝两边之和小于第三边的三条线段不能围成三角形〞这一陌生领域.在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉.学生对较抽象的问题无法明白其含义.所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动.需要老师以学生体验过程为主,以感知探索的方法为重,给予指导.教学目标:1.知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题.培养归纳.概括能力和推理能力.2.过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验.3.情感态度价值观:提高学生自主探索和合作交流的能力.激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦.教学准备:多媒体课件.实物投影.小棒若干.教学过程:一.导入1.师:同学们,最近几天咱们一直在围绕哪种图形进行学习? (生:三角形).师:什么是三角形?(生:由三条线段首尾相接围成的平面图行就是三角形.) 师:围成三角形的三条线段是三角形的什么?(生:边.)2.解释课题今天咱们就来共同研究三角形的三条边之间有什么奥秘.二.探究活动1.用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关.①师:刚才咱们说了〝由三条线段首尾相接围成的平面图行就是三角形〞,那么如果用小棒代替线段来围三角形,得用几根小棒?师:是不是只要给你3根小棒你就一定能围成一个三角形?师:怎么验证咱们说得对不对呢?(生:实际动手摆一摆.围一围.)师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆.在动手之前咱们先来一起看一看〝活动要求〞.②课件出示〝活动要求〞.学生自读活动要求,师:清楚活动要求了吗?开始吧!.③学生动手摆一摆并完成活动记录表.④汇报活动结果.师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定.)师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度.)2.进一步探究怎样的3根小棒能摆成三角形.①课件分别演示4组小棒摆三角形的过程.②两根短小棒长度之后小于长小棒时摆不成三角形.出示第3组小棒(2,3,6).师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接.)师:为什么这3根小棒摆不成三角形?(生:小棒太短了.)师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上.)师板书:2+3 6师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?归纳:两根短小棒长度之后小于长小棒时摆不成三角形.③两根短小棒长度之后等于长小棒时摆不成三角形.师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?课件演示.师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合.) 板书:3+3=6师:那么3,5,8这3根小棒能摆成吗?5,6,_呢?师:那么怎样的3根小棒也摆不成三角形呢?归纳:两根短小棒长度之后等于长小棒时也摆不成三角形.④小结师:咱们能不能用一句话概括摆不成三角形的两种情况?生:两根短小棒长度之后小于或等于长小棒时摆不成三角形.⑤探究怎样的3根小棒能摆成三角形.师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?生:两根短小棒长度之后大于长小棒时能摆成三角形.师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想.学生算一算验证猜测.师:那么怎样的3根小棒能摆成三角形?归纳:两根短小棒长度之后大于长小棒时能摆成三角形.3.进一步探究三角形边之间的关系①师:这是咱们摆成三角形的那2组小棒.当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边.)②师:请你算一算,比一比.学生同桌两人交流.个别学生汇报计算结果.③师:那么三角形的三条边之间有什么关系?学生思考.④归纳总结三角形任意两边之和大于第三边.(板书)师:这就是三角形边之间的关系.刚才咱们是从这两个三角形发现的这个结论.现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律.(学生计算验证)三.随堂练习师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律.但学习的最终目的是学以致用.下面陈老师准备了一些习题,敢不敢试一试?1.淘气从家到学校有两条路可以走.从下图中你能看出那条路近吗?用今天所学的知识说说你的理由.《三角形边的关系》教学设计2.完成〝练一练〞1-3四.布置作业练一练.4五.全课小结小学四年级数学《探索与发现(二)三角形边的关系》教案范本二教学目标:1.探索并发现三角形任意两边的和大于第三边.2.在实验过程中,培养学生自主探索合作交流的能力.3.应用发现的结论,来判断指定长度的三条线段,能否组成三角形. 教学重难点:1.探索并发现三角形任意两边之和大于第三边.2.应用发现的结论,来判断指定长度的三条线段,能否组成三角形. 教具准备:直尺.小棒教学过程:课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内.当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的数据,并在填出〝〞〝〞或〝=〞.一.数学活动1.出示一组长短不一的几根小棒,请你挑选几根围成三角形.不重复,你还可以怎么围?通过实验,发现并不是任意三根小棒都可以围成三角形.出示不能围成三角形的情况,你发现了什么?想一想,为什么?2.三角形形路线,从邮局到杏云村,走哪条路最近?为什么?3.是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算.把计算结果填写在第33页的表上.二.运用知识模型1.第1题:下面各组线段能围成三角形吗?2.第2题:组织学生用小棒摆一摆,并填入表中.3.第3题:摆一摆,填一填.4.第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于_厘米即可.鼓励学生尽可能多的得到答案.三.总结通过今天的学习你有什么想法?板书设计:三角形边的关系三角形任意两边的和大于第三边小学四年级数学《探索与发现(二)三角形边的关系》教案范本三教学内容:北师大版小学数学四年级下册第二单元〝三角形边的关系〞.教材分析:《三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学〝空间与图形〞领域中新增添的内容,是在线段.角.顶点.三角形分类等三角形知识学习的基础上的延伸.为今后学习三角形面积和应用提供了重要条件.学生分析:从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:〝两边之和小于第三边的三条线段不能围成三角形〞这一陌生领域.在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉.学生对较抽象的问题无法明白其含义.所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动.需要老师以学生体验过程为主,以感知探索的方法为重,给予指导.教学目标:1.知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题.培养归纳.概括能力和推理能力.2.过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验.3.情感态度价值观:提高学生自主探索和合作交流的能力.激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦.教学准备:多媒体课件.实物投影.小棒若干.教学过程:一.导入1.师:同学们,最近几天咱们一直在围绕哪种图形进行学习? (生:三角形).师:什么是三角形?(生:由三条线段首尾相接围成的平面图行就是三角形.) 师:围成三角形的三条线段是三角形的什么?(生:边.)2.解释课题今天咱们就来共同研究三角形的三条边之间有什么奥秘.二.探究活动1.用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关.①师:刚才咱们说了〝由三条线段首尾相接围成的平面图行就是三角形〞,那么如果用小棒代替线段来围三角形,得用几根小棒?师:是不是只要给你3根小棒你就一定能围成一个三角形?师:怎么验证咱们说得对不对呢?(生:实际动手摆一摆.围一围.)师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆.在动手之前咱们先来一起看一看〝活动要求〞.②课件出示〝活动要求〞.学生自读活动要求,师:清楚活动要求了吗?开始吧!.③学生动手摆一摆并完成活动记录表.④汇报活动结果.师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定.)师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度.)2.进一步探究怎样的3根小棒能摆成三角形.①课件分别演示4组小棒摆三角形的过程.②两根短小棒长度之后小于长小棒时摆不成三角形.出示第3组小棒(2,3,6).师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接.)师:为什么这3根小棒摆不成三角形?(生:小棒太短了.)师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上.)师板书:2+3 6师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?归纳:两根短小棒长度之后小于长小棒时摆不成三角形.③两根短小棒长度之后等于长小棒时摆不成三角形.师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?课件演示.师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合.) 板书:3+3=6师:那么3,5,8这3根小棒能摆成吗?5,6,_呢?师:那么怎样的3根小棒也摆不成三角形呢?归纳:两根短小棒长度之后等于长小棒时也摆不成三角形.④小结师:咱们能不能用一句话概括摆不成三角形的两种情况?生:两根短小棒长度之后小于或等于长小棒时摆不成三角形.⑤探究怎样的3根小棒能摆成三角形.师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?生:两根短小棒长度之后大于长小棒时能摆成三角形.师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想.学生算一算验证猜测.师:那么怎样的3根小棒能摆成三角形?归纳:两根短小棒长度之后大于长小棒时能摆成三角形.3.进一步探究三角形边之间的关系①师:这是咱们摆成三角形的那2组小棒.当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边.)②师:请你算一算,比一比.学生同桌两人交流.个别学生汇报计算结果.③师:那么三角形的三条边之间有什么关系?学生思考.④归纳总结三角形任意两边之和大于第三边.(板书)师:这就是三角形边之间的关系.刚才咱们是从这两个三角形发现的这个结论.现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律.(学生计算验证)三.随堂练习师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律.但学习的最终目的是学以致用.下面陈老师准备了一些习题,敢不敢试一试?1.淘气从家到学校有两条路可以走.从下图中你能看出那条路近吗?用今天所学的知识说说你的理由.《三角形边的关系》教学设计2.完成〝练一练〞1-3四.布置作业练一练.4五.全课小结一元二次方程优秀教案一元二次方程是初中数学的主要内容,在初中代数中占重要地位.学生积极动手.动脑.动小学四年级数学备课教案一堂好的数学课,当然应当生动.有趣,课堂活跃,吸引学生的参与也是重要的.但这仅仅关于七年级上册数学教案范文合集数学是人们对客观世界定性把握和定量刻画逐渐抽象概括.形成方法和理论,并进行广新课标人教版七年级数学教案使学生初步体验到数学是一个充满着观察.实验.归纳.类比和猜测的探索过程.一起看看。

数学人教版八年级上册三角形中的大边对大角问题

数学人教版八年级上册三角形中的大边对大角问题

BC C CCE三角形中的大边对大角的问题湖北省应城市实验初级中学 陈荣教学目标1、知识与技能:通过探究发现,在一个三角形中边角之间的不等关系。

2、过程与方法:通过探究和推理论证,结合图形,发展学生的分析问题和解决问题的能力,通过探索总结形成。

利用图形有翻折等变换是解决几何问题的常见策略。

3、情感态度价值观:通过合作交流,动手操作,让学生体验数学活动的乐趣,激发学生学习几何的兴趣。

教学重点、难点:1、重点:三角形中边与角之间的不等关系,及其探究过程。

2、难点:如何从实验操作中得到启发,写成几何证明表达。

教学过程:(一)回顾等腰三角形,提出问题学习了等腰三角形,我们知道,在一个三角形中,如果两条边相等,那么它们所对的角也相等,反过来,在一个三角形中,如果两个角相等,那么它们所对的边也相等。

(二)引入新课思考:在一个三角形中,如果两条边不相等,那么,它们所对的角是否相等呢?反过来,在一个三角中,如果两个角不相等,那么它们所对的边是否相等呢? 将文字语言改写成几何符号语言。

(三)探究新知已知:如图,在△ABC 中,AB>AC ,求证:∠C>∠B证明:将△ABC 折叠,使边AC 落在AB 上,点C落到AB 上的点D ,折线交BC 于点E , 则∠C=∠ADE ∵∠ADE>∠B ∴∠C >∠B在△ABC 中 ①∵AB=AC ∴∠B=∠C(等边对等角) ②∵∠B=∠C ∴AB=AC (等角对等边) 在△ABC 中 ①如果AB>AC 那么∠B 与∠C 大小如何? ②如果∠C >∠B 那么AB 与AC 大小如何?CCCC结论:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。

简写成“大边对大角”。

表示成:思考:还有其它方法证明吗?结论:在一个三角形中,如果两个角不相等,那么它们所对的边也不相等,大角所对的边较大,简写成“大角对大边”。

表示成:注意:从上面的过程可以看出,在证明不等边关系时,通过轴对称的变换,利用已知的关于边角的知识解决了未知的边角之间不等的问题。

八年级数学上册第十三章等腰三角形《实验与探究三角形中边与角之间的不等关系》

八年级数学上册第十三章等腰三角形《实验与探究三角形中边与角之间的不等关系》

教学设计2024秋季八年级数学上册第十三章等腰三角形《实验与探究三角形中边与角之间的不等关系》一、教学目标(核心素养)1.知识与技能:学生能够理解并掌握三角形中边与角之间的基本不等关系(如大边对大角、小边对小角),并能运用这一关系解决简单问题。

2.数学思维:培养学生的观察、比较、归纳和推理能力,以及从特殊到一般的数学抽象思维能力。

3.问题解决:通过实验操作,提高学生发现问题、分析问题和解决问题的能力。

4.情感态度:激发学生对数学的兴趣,培养严谨的科学态度和探索精神。

二、教学重点•理解并掌握三角形中边与角之间的不等关系。

•能够运用这一关系解决具体问题。

三、教学难点•如何通过实验探究发现三角形中边与角之间的不等关系。

•灵活应用不等关系解决复杂情境下的三角形问题。

四、教学资源•多媒体课件(包含三角形图片、动画演示)。

•实物三角形模型(可调整边长和角度的)。

•实验器材(如尺子、量角器)。

•练习题卡(分层次设计)。

五、教学方法•实验探究法:通过动手操作,让学生亲身体验和发现三角形中边与角之间的不等关系。

•直观演示法:利用多媒体和实物模型直观展示三角形性质。

•讨论交流法:组织学生讨论实验结果,促进思维碰撞。

•归纳总结法:引导学生从实验结果中归纳出一般性的数学结论。

六、教学过程1. 导入新课•情境引入:展示一个形状各异的三角形,引导学生观察并思考:在三角形中,边长和角度之间是否存在某种关系?•提出问题:激发学生兴趣,提出本节课要探究的问题——三角形中边与角之间的不等关系。

2. 新课教学•实验准备:分发实验器材,包括可调整边长和角度的三角形模型。

•实验探究:•步骤一:学生动手调整三角形模型的边长和角度,观察并记录当边长变化时角度的变化情况。

•步骤二:小组讨论,分享观察结果,初步发现大边对大角、小边对小角的规律。

•步骤三:教师利用多媒体展示多个三角形的例子,进一步验证学生的发现。

•理论讲解:结合实验结果,教师讲解三角形中边与角之间的不等关系及其数学原理。

人教版八年级上册数学:实验与探究 三角形中边与角之间的不等关系(公开课课件)

人教版八年级上册数学:实验与探究 三角形中边与角之间的不等关系(公开课课件)

2. 尺规作图,验证猜想.
C
B
结论:在一个三角形中,如果两个角不等,那么它们所对
的边也不等,大角所对的边 大 (简称“ 大角 对 大边 ).
知识应用:
(1)如图,在△ABC中,如果 BC=20cm,AC=16cm,AB=15cm, 则∠A > ∠B > ∠C.
(2)如图,在△ABC中,如果
C
∠A=80°,∠B=60°,∠C=40°, 则. BC > AC > AB.
能力提升:
已知如图,AB=AC,D在BC上,求证:AD < AB.
A
B
DC
课堂小结:
你在本节课的学习中有哪些收获?
1. 等腰三角形: (1)等边对等角; (2)等角对等边.
2.不等边三角形: (1)大边对大角;(2)大角对大边
思考:
1.如果一个三角形中最大的边所对的角是锐角,这个三角 形是锐角三角形吗?为什么? 2.如果一个三角形中最大的边所对的角是钝角,这个三角 形是钝角三角形吗?为什么? 3.直角三角形中,哪一条边最长?为什么?
探究一:大边对大角
(一)观察图形,提出猜想. 在△ABC中,如果BC=15cm,AC=12cm, AB=10cm,同学们通过肉眼观察可得 C 到∠A > ∠B > ∠C.
猜想: 大边 对 大角 .
A B
(二)验证猜想
1. 用量角器测量,猜想结果是否真确?
2. 叠合法:(发现结论是否正确?)
(1)使∠A与∠B的顶点重合,判定BC所对 角∠A与AC所对角∠B的大小关系?
4.如图,在等腰三角形中,AC = AB ,
A
则 ∠B = ∠C ,(简称:等边 对等角 )
5.如图,在等腰三角形中, ∠C=∠B,

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计
3.教师将根据学生的作业完成情况,给予评价和反馈,鼓励学生持续进步。
2.教师给出三角形内角和定理,并通过几何证明来解释这个定理。同时,讲解三角形外角与相邻内角的关系,以及外角和等于360度的性质。
3.教师结合课本例题,讲解如何运用三角形的边角关系解决实际问题,如求三角形的未知边.教师将学生分成小组,每组选择一个实际问题进行讨论,如测量小河对岸两点之间的距离。
2.学生在规定时间内完成练习,教师对学生的答案进行批改,并及时反馈,纠正学生的错误。
3.教师针对共性问题进行讲解,帮助学生巩固所学知识,提高解题能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,用自己的话总结三角形边与角之间的关系、内角和定理以及实际应用。
2.学生分享学习心得,教师给予肯定和鼓励,并强调掌握三角形边角关系对于解决几何问题的重要性。
2.运用问题驱动的教学方法,引导学生主动探究三角形的内角和定理,培养学生的逻辑推理能力。
-教师可以提出问题,如“三角形的内角和是多少度?”“如何证明三角形的内角和为180度?”等,引导学生通过讨论和实验来解决问题。
3.创设丰富的教学情境,将三角形边角关系与生活实际相结合,提高学生的应用能力。
-例如,设计实际测量问题,如测量小河对岸两点之间的距离,让学生运用三角形知识解决问题。
2.将三角形的边角关系应用于解决复杂的几何问题,如计算未知边长、证明线段平行等。
3.学生在小组合作中,如何平衡独立思考与团队合作,避免过分依赖或孤立无援。
(三)教学设想
1.利用直观教具和实际案例导入新课,让学生在观察和操作中感知三角形的边角关系,从而激发学生的学习兴趣。
-例如,通过让学生测量不同三角形的三边长度,引导学生发现边与边之间的关系。

三角形中边与角的不等关系

三角形中边与角的不等关系

积累数学活动经验.
情感与态度:提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学
教学重点
习几何的兴趣,获得解决问题的成功体验. 添加辅助线,将边角之间的不等问题转化为“一个角是另一个角所在三角形的外角”的问题.
教学难点 折纸的无意操作与辅助线的有意添加结合.
教学过程
教学过程
设计意图
2
过 A 作 BC 的垂线,垂足为 D,在 BD 边上截取 DC’,使 DC’=DC,连接 AC’ .
小结:沿角平分线所在直线翻折,使∠B 或∠C 转移位置,利用三角形外角的性 培养学生总结归纳的能
质证明了∠C > ∠B.
力,和评价反思的意识.
证法三: 在边AB上截取AD,使AD=AC,连接CD.
B
② 沿角平分线折叠:作∠BAC 的角平分线
AD,将△ADC 沿 AD 翻折(或将△ADB
沿 AD 翻折).
B
B
D
C
A
A
培养学生的动手操作能 力,为后面证明时添加
辅助线作铺垫.
C'
C' D C
D
C
1
③沿高翻折:作 BC 边的高 AD,将△ADC 沿 AD 翻折(或将△ADB 沿 AD 翻折). 追问:通过折纸,如何说明∠C > ∠B?
不同方法添加辅助线的
A
本质是相同的.
由等边对等角可知∠ADC=∠ACD. 又由三角形中外角的性质知∠ADC=∠B+∠DCB.
D B
C 例题条件中没有角平分
所以∠ADC>∠B, 又因为∠ACB=∠ACD+∠DCB.
线、高等条件,区别于
所以∠ACB>∠ACD 所以∠ACB>∠B.

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计
2.讲解三角形内角和定理,让学生理解三角形内角与外角之间的关系,以及内角和为180度。
3.通过举例和讲解,让学生明白如何运用三角形不等式解决实际问题,如计算三角形中未知边的长度。
4.强调三角形不等式的应用场景,如几何图形的拼接、平面几何的证明等,使学生对新知识有更深入的认识。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论以下问题:
2.采用问题驱动的教学方法,提出具有挑战性的问题,引导学生进行小组讨论和探究。例如,给出一个三角形的两边长度和一个角度,让学生计算第三边的长度范围,激发学生的思考和学习兴趣。
3.设计梯度性的练习题,从基础题入手,逐步增加难度,让学生在不同的题目中巩固和运用所学知识。同时,注重培养学生的解题策略和技巧,提高他们解决问题的能力。
3.培养学生的空间想象力和逻辑思维能力,提高学生对数学美的鉴赏能力。
4.使学生认识到数学知识与现实生活的紧密联系,培养学生的应用意识和实践能力。
5.培养学生严谨、求实的科学态度,提高学生的综合素质。
二、学情分析
八年级学生对几何图形已有一定的认识和了解,具备基本的几何知识和空间想象力。在此基础上,学生对三角形的相关性质和定理已有初步的认识,能够理解和运用三角形的内角和定理。然而,对于三角形中边与角之间的不等关系,学生可能还缺乏深入的理解和实际应用。
沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计
一、教学目标
(一)知识与技能
1.理解并掌握三角形中边与角之间的基本不等关系,即在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
2.能够运用三角形不等式解决实际问题,如计算三角形中未知边的长度。
3.熟练运用三角形的内角和定理,理解并掌握三角形内角与外角之间的关系。

八年级数学上册《三角形中边与角之间的不等关系》教案、教学设计

八年级数学上册《三角形中边与角之间的不等关系》教案、教学设计
1.复习已学知识:简要回顾勾股定理、三角形内角和等基本概念,为新课的学习做好知识铺垫。
2.提出问题:向学生展示一个不等边三角形和一个等腰三角形,提问:“这两个三角形有什么不同?”引导学生关注三角形边与角之间的关系。
3.创设情境:通过一个实际生活中的例子(如测量三角形土地的面积),让学生感受到三角形边角关系在实际问题中的应用,激发他们的学习兴趣。
5.教学资源:
-利用多媒体教学手段,如PPT、动画等,直观展示三角形边角不等关系,提高教学效果。
-结合实际生活中的例子,如建筑、艺术等领域的应用,让学生感受几何知识的实用价值。
-提供丰富的学习资料,如辅导书、网络资源等,方便学生课后复习和拓展。
四、教学内容与过程
(一)导入新课
在这一环节中,我们将通过以下步骤引导学生进入新课的学习:
3.不等关系的应用:结合实际例子,讲解如何运用三角形边角不等关系解决几何问题,如求三角形某一边或角的大小。
(三)学生小组讨论
在这一环节中,我们将组织学生进行以下讨论:
1.分组:将学生分成若干小组,每个小组针对一个或多个问题进行讨论。
2.讨论问题:如“如何判断一个三角形是锐角三角形还是钝角三角形?”“在解决实际问题中,如何运用三角形的边角不等关系?”
-鼓励学生利用网络资源、辅导书等,进行课后自主学习,拓宽知识面。
注意事项:
1.作业量要适中,避免过多增加学生负担。
2.作业难度要适中,既要让学生感到挑战,又要确保他们能够独立完成。
3.教师要及时批改作业,了解学生的学习情况,为下一节课的教学提供参考。
4.鼓励学生在完成作业过程中积极思考、主动提问,培养他们的自主学习能力。
2.提高作业:
-针对学有余力的学生,布置一些拓展性的题目,如求解三角形中某个角或边长的问题,培养学生的几何推理能力和解题技巧。

八年级数学上册听课记录:第十三章等腰三角形《实验与探究三角形中边与角之间的不等关系》

八年级数学上册听课记录:第十三章等腰三角形《实验与探究三角形中边与角之间的不等关系》

新2024秋季八年级人教版数学上册第十三章等腰三角形《实验与探究:三角形中边与角之间的不等关系》听课记录教学目标(核心素养)1.知识与技能:掌握三角形中边与角之间的基本不等关系,即“大边对大角,小边对小角”的原理。

2.过程与方法:通过实验操作、观察分析和逻辑推理,培养学生探究数学问题的能力,以及运用数学知识解决实际问题的能力。

3.情感态度价值观:激发学生对数学探究的兴趣,培养严谨的科学态度和合作学习的精神。

导入教师行为:•展示几组不同形状的三角形图片,引导学生观察并思考:“在这些三角形中,边长与它所对的角之间是否存在某种关系?”•简短介绍本节课的主题:“今天我们将通过实验与探究,来发现三角形中边与角之间的不等关系。

”学生活动:•认真观察图片,尝试寻找边长与角之间的潜在关系。

•听取教师介绍,明确本节课的学习目标。

过程点评:•导入环节通过直观的图片展示和问题引导,有效激发了学生的学习兴趣和探究欲望,为后续的学习活动做好了铺垫。

教学过程教师行为:•实验准备:分发实验材料(如尺子、量角器、不同长度的木棍或纸条),指导学生如何制作简易的三角形模型。

•实验操作:引导学生按照指定边长制作三角形,并使用量角器测量各角的大小。

•观察记录:要求学生记录下每个三角形的边长和对应角的大小,并尝试找出它们之间的关系。

•讨论分析:组织学生分组讨论,分享自己的观察结果,引导学生归纳出“大边对大角,小边对小角”的不等关系。

•理论讲解:结合学生的讨论结果,教师详细讲解三角形中边与角之间不等关系的理论依据。

学生活动:•积极参与实验操作,认真测量并记录数据。

•小组讨论中积极发言,分享自己的观察和思考。

•聆听教师的理论讲解,深化对知识点的理解。

过程点评:•教学过程注重实践操作与理论讲解相结合,通过实验操作让学生亲身体验数学原理的发现过程,增强了学习的趣味性和实效性。

同时,小组讨论和分享环节培养了学生的合作精神和表达能力。

板书设计•标题:实验与探究:三角形中边与角之间的不等关系•实验步骤:•制作三角形模型•测量边长和角的大小•记录数据•观察结果:•示例:边长a>b>c,对应角A>B>C•不等关系:•大边对大角,小边对小角•理论依据:三角形内角和定理及边角关系证明作业布置•完成课后习题,要求通过画图、测量和计算验证三角形中边与角之间的不等关系。

三角形中边与角之间的不等关系例谈

三角形中边与角之间的不等关系例谈

环节3:实验几何发展为论证几何,直观表象过渡到形式 推理
猜测的数学结论需要严格的逻辑证明,教学生回忆文字命 题的完整证明步骤:写出图形语言和几何语言(即作图,写出 已知和求证)。
已知: ∆ABC 中,
,求证: ∠C > ∠B 。
从叠合法(折纸)中我们发现出现了一条新的线(折
线),这为我们的证明提供了思路,于是想到了第一种作辅助
图3
图4
证明思路:如图3,由“等边对等角”可得 ∠ADC = ∠ACD,
由 ∠ACB > ∠ADC 得 ∠ADC > ∠B ,所以 ∠ACD > ∠B 。 图4证明同理。
环节4.总结提升: 1.二种添加辅助线方法的共同点:
作圆弧得等腰,中垂线得等腰;添加辅助线实现“截长”
或“补短”,本质为运用轴对称变换构造全等图形从而获得边
线的方法:作第三边的垂直平分线。
作法1:∆作ABC的垂直平分线。
A E
B
D
C
图1
图2
证明思路:如图1,由垂直平分线性质可得
.再由
“等边对等角”或全等∠可C得> ∠B = ,所以 ∠C > ∠B 。
图2证明同理。
,因为 ∠C > ∠B
但这里学生很容易忽略的一点就是证明的严谨性:点 一
定落在 边上吗?
显然是的。因为
学情分析 “在一个三角形中,大边对大角”这一结论直观感知上是 非常自然和正确的,这易使学生忽略它的证明。八年级学生的 逻辑思维比较活跃,处于迅猛发展期, 动手操作能力较强,但将生活语言和文字语言转化为几何 语言的能力,还有很大的进步空间。因此本节结合学生的动手 折纸操作,观察猜测,逻辑推理出多种证明思路,具有很大的 探究和学习价值,同时多种语言的转化是学生的弱项,所以证 明也有一定的难度。 教学理念 按照皮亚杰认知理论和维果斯基的“最近发展区理论”, 在本节数学教学中,从学生已有知识(轴对称的性质)出发开 展探究活动,调动学生思维的积极性,发展其潜能,在探究辅 助线的多种形成过程中超越自我,进入下一个发展区的发展。 重难点创新突破 笔者从学生已有知识出发,在动手折纸和几何画板动态演 示的平面直观中,让学生实践检验结论并体会折痕即为辅助 线,思考出辅助线实际上就是什么线,由此寻找到辅助线的作 法,从而突破学生的认知难点。再逐步把新知识纳入原有的知 识体系,最终实现了多种辅助线的添加方法。 如何培养学生数学核心素养 章建跃博士在数学核心素养的解读中指出:从数学知识发 生发展过程的合理性、学生思维过程的合理性上加强思考,这 是落实数学核心素养的关键点,要把如何抽象数学对象、如何 发现和提出数学问题,作为教学的关键任务,以实现学生从 “知其然”到“知其所以然”,再到“何由以知其所以然”的 跨越。基于此,笔者以苏格拉底问题串的形式一步步追问辅助 线的形成过程,使学生认识到数学知识有其发展体系,思维形 成有其合理性。

实验与探究 三角形中边与角之间的不等关系 (2)教学设计

实验与探究  三角形中边与角之间的不等关系 (2)教学设计

5.教学过程设计一、温故知新思考1:等腰三角形中的两个底角有什么数量关系?思考2:如果在一个三角形中有两个角相等,那么这个三角形是什么三角形?思考3:在一个一般的三角形中,不相等的边所对的角之间的大小关系是怎样的呢?设计意图:通过问题导学,现场折叠等腰三角形,让学生回顾所学的知识,类比等腰三角形的边角关系进而猜想不等边三角形中的边角关系,自然地过渡到本节课的教学内容,培养学生不断思考问题的能力。

二、探究新知(一)观察图形,提出猜想1让学生课前自己动手制作不等边三角形(统一标上字母,规定:AB>AC)。

2如果AB>AC ,那么∠C与∠B有什么大小关系呢?3猜想大边对大角。

(二)实验探究,验证猜想1.几何画板验证:【资料展示】几何画板展示AB=AC,AB>AC,AB<AC三种情况。

教师提问: AB与AC在变化的过程中,∠C与∠B相应地有什么变化呢?同学们,大家能用自己的语言来归纳一下你的发现吗?学生回答:在一个三角形中,边越大对应的角也越大。

设计意图:通过几何画板的展示和层层设问引导学生一步步探究,进而培养学生总结归纳能力。

2.动手实验:教师提问:要证明“在一个三角形中,大边对大角”,我们已知什么,求证什么?学生回答:已知:在△ABC中,AB>AC,求证:∠C>∠B.教师提问:在这个三角形中,我们要比较这两个角的大小,肯定要把这两个角联系起来。

请同学们回忆一下,以前我们更多地是证明两个角怎么样?学生回答:相等教师提问:在等腰三角形中,要验证两个角是否相等,我们刚刚是怎么做的?【资料展示】几何画板动画演示“等腰三角形的对折”.∴∠C=∠AED∵∠AED>∠B∴∠C>∠B【资料展示】4种方法都准备了微课,学生没有想到的方法可以通过微课进行展示,分享证明方法。

设计意图:选择其中一种方法进行严谨的证明,能够规范数学几何推理的过程,尤其是要注意折纸方法和辅助线的说明之间的对应,将无意识的操作变成有意识的添加辅助线,让学生体验从实验几何过渡到论证几何,学会文字语言、图形语言、符号语言之间的转化。

最新人教版初中八年级上册数学【第十三章 实验与探究 三角形中边与角之间的不等关系】教学课件

最新人教版初中八年级上册数学【第十三章 实验与探究 三角形中边与角之间的不等关系】教学课件
八年级—人教版—数学—第十三章
实验与探究 三角形中边与角之间的不等关系
学习目标:
1. 能利用轴对称的性质进行探究三角形的边角之间的不等关系, 解决边角之间的不等问题;
2. 通过探索体会利用图形的翻折等变换是解决几何问题常见的策略.
学习重点:
添加辅助线,将三角形中边角之间的不等问题进行转化.
温故知新,总结经验
问题一:你还有哪些方法验证你的猜想?
已知:△ABC中,AB>AC,
求证:∠C>∠B.
A
B
C
问题一:你还有哪些方法验证你的猜想?
已知:△ABC中,AB>AC, 求证:∠C>∠B.
截长法
证明:在AB上截取AD,使AD=AC,连结DC.
∵AD=AC,
∴∠1=∠2.
又∵ ∠ACB>∠2,
D1
∴∠ACB>∠1.
1. 作底边BC边上的中线AD
2. 将△ADC中沿中线AD翻折
方法一
问题三:用一张长方形的纸片如何折出一个 等边三角形?
1.准备一张长方形的纸; 2.将纸从中间对折,展开; 3.将其中一个角折到上一步折的对折线上;
4.然后再将纸按图:用一张长方形的纸片如何折出一个 等边三角形?
∵DE垂直平分BC,
∴BE=CE.
E
∴∠B=∠BCE.
∵∠ACB>∠BCE,
∴∠ACB>∠B.
D
探究二
推理认证,证明猜想
已知:△ABC中,AB>AC,
求证:∠C>∠B.
翻折三:沿过点A的垂线翻折 使点C落到BC边上
探究三
推理认证,证明猜想
已知:△ABC中,AB>AC,
求证:∠C>∠B.
证明:过点A作AD⊥BC于D, 在BD边上截取DE=DC,连结AE.

八年级数学上册《与三角形中边与角之间的不等关系》教案、教学设计

八年级数学上册《与三角形中边与角之间的不等关系》教案、教学设计
3.指导:在学生讨论过程中,教师巡回指导,解答学生的疑问。
4.分享:各小组代表分享本组的讨论成果,其他小组进行评价和补充。
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计具有针对性和层次性的练习题。
2.学生独立完成:要求学生在规定时间内独立完成练习题。
3.答疑解难:针对学生在练习中遇到的问题,教师进行解答。
2.提问:请同学们回忆一下,我们已经学过哪些关于三角形的知识?
生:三角形的内角和等于180度,三角形有三条边和三个角。
3.导入:今天我们将进一步学习三角形的边与角之间的不等关系。这种关系在我们解决实际问题中起着重要作用。
(二)讲授新知
1.呈现概念:向学生介绍三角形的两边之和大于第三边、两边之差小于第三边的概念。
师:这是因为三角形的三个角将它的三条边连接在一起,使得任意两边之和必须大于第三边,才能保持三角形的稳定性。
(三)学生小组讨论
1.分组:将学生分成若干小组,每组4-6人。
2.布置任务:请各小组讨论以下问题:
a.举例说明三角形的两边之和大于第三边,两边之差小于第三边的关系;
b.思考这种关系在生活中的应用。
4.培养学生的集体荣誉感和团队合作精神,使他们学会尊重他人、分享成果。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和逻辑思维能力。在此基础上,他们对三角形的性质和不等关系有了一定的了解,但对于边与角之间的不等关系的深入理解和应用仍需加强。学生在学习过程中,对于直观、形象的事物较为敏感,对于抽象、理论性较强的知识则容易产生抵触情绪。因此,在教学过程中,应注重激发学生的兴趣,引导他们通过实际操作和思考,逐步探索和发现三角形边与角之间的不等关系。此外,学生在团队合作中,能够相互启发、互补不足,提高解决问题的能力,因此在教学过程中,要充分重视培养学生的合作意识和沟通能力。

实验与探究 三角形中边与角之间的不等关系 初中八年级上册数学教案教学设计课后反思 人教版

实验与探究  三角形中边与角之间的不等关系 初中八年级上册数学教案教学设计课后反思 人教版

13.3.3 实验与探究三角形中边与角之间的不等关系静海第七中学刘东焕一、内容和内容解析1.探究内容在三角形中,大边对大角,大角对大边.2.内容解析在学习了等腰三角形的性质和判定之后,这个“实验与探究”进一步让学生了解三角形边与角之间的不等关系。

通过实验与探究,一、学生经历"观察→猜想→验证→证明"等一系列活动,发展学生的分析问题和解决问题的能力,并了解解决几何问题的常用方法,二、通过这两个问题的探究,让学生知道利用相等关系解决不等问题的方法。

二、教学目标1、利用轴对称的性质进行探究三角形的边角不等关系,能利用三角形边角相等的知识解决边角之间的不等问题.2、经历"观察→猜想→验证→证明"等一系列活动,发展学生的分析问题和解决问题的能力获得合情推理、归纳推理能力。

3、通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略;积累数学活动经验.三、教学重难点教学重点:添加辅助线,将边角之间的不等问题转化为边角的相等问题解决。

教学难点:折纸的无意操作与辅助线的有意添加结合.四、教学过程设计(一). 温故知新,引入新课我们知道,在一个三角形中,如果有两条边相等,那么它们所对的角也相等.反过来,在一个三角形中,如果两个角相等,那么它们所对的边也相等。

下面这些图形也是我们生活中常见的三角形,它们是不等边三角形。

在这样的三角形中,两条边不相等,同学们仔细观察,猜想一下它们所对的角有怎样的关系?(二). 动手操作,探究新知(二).动手操作,探究新知"大边对大角"1、观察图形,提出猜想(1)让学生观察事先做好的不等边三角形(为了教学方便教师提前布置制作△ABC,且AB>AC).(2)通过观察图形,猜想性质.在⊿ABC 中,边AC 对∠B ,边AB 对∠C ,同学们通过肉眼观察可得到∠C 大于∠B ,故猜想大边对大角.2、动手实验,验证猜想小组合作探究动手实验验证猜想的正确性同学们可能想到如下方法:(1)度量法:准确度量∠B 和∠C 的度数,验证∠C 大于∠B 。

《三角形中边与角之间的不等关系》教学设计

《三角形中边与角之间的不等关系》教学设计

人教版八年级上册第十三章实验与探究《三角形中边与角之间的不等关系》教学设计【教学目标】1.知识与技能:〔1〕通过实验探究发现:在一个三角形中边与角之间的不等关系;〔2〕能利用轴对称的性质进行探究三角形的边角不等关系,能利用三角形边角相等的转化解决边角之间的不等问题.2.过程与方法:通过实验探究和推理论证,开展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略;获得利用截长补短等方法来构造全等三角形的经验.3.情感与态度:提供动手操作的时机,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣,获得解决问题的成功体验.【教学重难点】重点:三角形中边与角之间的不等关系及其探究过程.难点:如何从实验操作中得到启示,写成几何证明的表达.【学情分析】学生在前面已经学习了全等三角形、轴对称以及等腰三角形,对全等三角形、轴对称以及等腰三角形的性质有一定的认识,同时在探究等腰三角形性质的过程中已经有了折纸的经验,所以对于本节课的探究学生应该拥有相应的知识和经验根底.但是,同时学生又普遍缺乏将动手过程转化为几何语言的能力.在教学过程中直接表达出来的难点便是学生很难用几何语言去表达辅助线的做法.【教学内容分析】本节课是新人教版八年级上册第13章的实验与探究内容.在教材的编排上是在学习了全等三角形、轴对称以及等腰三角形之后而设置的.整个探究过程充分利用了轴对称的性质,在动手翻折的过程中得到启发,从而构造全等三角形进行探究.所以本节课既是全等三角形、轴对称等知识的拓展,更是从特殊的等腰三角形性质的折纸探究到一般的不等边三角形折纸探究的思想方法上的拓展.同时本节课的探究过程中的转化思想又为将来解决几何问题提供了重要的经验和方法.因此本节课的教学对学生全面认识几何问题起着积极地作用,对培养学生综合运用几何知识的能力也起着重要的作用.【教学媒体与资源的选择与应用】根据本节课内容的特点,为了更直观、形象的突出重点、突破难点,提高课堂效率,采用以观察发现为主,多媒体演示为辅的教学组织方式,在教学过程中,通过设置一系列学生的折纸活动,几何画板配合演示,创设问题情境,启发学生思考,让学生亲身体验知识的产生、开展和形成的过程.【学具准备】三角形纸片数张、剪刀、三角板、圆规等.【课时安排】一课时【教学过程】活动一、温故知新,铺垫新知1、如图,在△ABC中,∠1=30°,∠2=20°,那么∠3= °,∠1 ∠3〔填“>〞“<〞〕2、如图,在△ABC中,AB=AC,∠B=70°,那么∠C= °3、如图,△ABC中,AB=AC,AD⊥BC,那么BD CD,∠1 ∠2〔填“>〞“<〞“=〞〕第1题图第2题图第3题图【设计意图】复习三角形的外角和等腰三角形的性质,为探究三角形中边与角之间的不等关系做好知识和经验铺垫.活动二、创设情境,引入新知问题1:我们知道,在一个三角形中,如果有两条边相等,那么它们所对的角也相等。

三角形中边与角之间的不等关系--教学设计说明

三角形中边与角之间的不等关系--教学设计说明

《三角形中边与角之间的不等关系》教学设计说明数学本质:在实验探究的基础上得出“大边对大角”的结论,从而继续将实验过程转化为几何证明过程。

地位和作用分析:本节课是新人教版八年级上册第13章的实验与探究内容。

在教材的编排上是紧接着学习了全等三角形、轴对称以及等腰三角形而设置的。

整个探究过程充分利用了轴对称的性质,在动手翻折的过程中得到启发,从而构造全等三角形进行探究。

所以本节课既是全等三角形、轴对称等知识的拓展,更是从特殊的等腰三角形性质的折纸探究到一般的不等边三角形折纸探究的思想方法上的拓展。

同时本节课的探究过程中的转化思想又为将来解决几何问题提供了重要的经验和方法。

因此本节课的教学对学生全面认识几何问题起着积极地作用,对培养学生综合运用几何知识的能力也起着重要的作用。

教学目标分析:(1)知识与技能目标:①通过实验探究发现:在一个三角形中边与角之间的不等关系;②能利用轴对称的性质进行探究三角形的边角不等关系,能利用三角形边角相等的转化解决边角之间的不等问题(2)过程与方法目标:通过实验探究和推理论证,发展学生分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略;获得利用截长补短等方法来构造全等三角形的经验。

(3)情感与价值观目标:提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣,获得解决问题的成功体验。

教学问题诊断:(1)认知基础:学生已经学习过全等三角形、轴对称以及等腰三角形,对全等三角形、轴对称以及等腰三角形的性质有一定的认识,同时在探究等腰三角形性质的过程中已经有了折纸的经验,所以对于本节课的探究学生应该拥有相应的知识和经验基础。

(2)心理特征:八年级学生处于青春期,好动,好表现,求知欲望高,有较强的动手能力,获得外界评价的意识强。

同时学生又缺乏将动手过程转化为几何语言的能力。

从学生的认知基础和心里特征不难看出学生已经拥有了相应的知识基础和探究经验,但同时学生又普遍缺乏将实际的动手验证过程转化为几何证明的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有这样的四根小棒(4cm、6cm、10cm、 12cm)请你任意地取其中的三根,首尾连接, 摆成三角形。
1.有哪几种取法?
2.是不是任意三根都能摆出三角形?若不是,哪些 可以?哪些不可以?
3.用三根什么样的小棒才能拼成三角形呢?你从中 发现了什么?
(1)4cm、6cm、10cm (2)4cm、6cm、12cm (3)4cm、10cm、12cm(4)6cm、10cm、12cm
判断三条线段能否组成三角形,是否一定要 检验三条线段中任何两条的和都大于第三条?根 据你刚才解题经验,有没有更简便的判断方法?
只要满足较小的两条线段之和大于第三条线段, 便可构成三角形;若不满足,则不能构成三角形。
三角形中任意两边的差与第三边有什么关系?
你能根据上面的结论,利用不等式的性质加以说明
吗?
a+b > c
a > c-b,b > c-a
b+ > a b > a-cc,c > a-b
A
c
b
B
a
C
a+c > b
a > b-c,c > b-a
三角形中任何两边的差小于第三边。
1.等腰三角形中周长为18cm, (1)如果腰长是底边长的2倍,求各边的 长; (2)如果一边长为4cm,求另两边的长。
经过实践可知: (1)(2)不可以摆出三角形; (3)(4)可以摆出三角形。
通过验证得到: 三角形中任何两边的和大于第三边。
练一练 下列长度的三条线段能否组成三角形?
为什么?
(1)8,4,3 (2)6,2,5 (3)5,6,10 (4)5,8,3
( 不能 ) (能 ) (能 ) ( 不能 )
思考:
A 3米
B 他只少走
别踩我,我怕疼!
花园里弄不
好就会走出一条
小路来,你能不
5米
能运用今天所学 的知识解释这一
现象?
C 4米
4 步 (1米=2步)
其实我们离 文明很近!
随堂练习 做课后练习。
谢谢
2.一根木棒长为7,另一根木棒长为2,那 么用长度为8的木棒能和它们拼成三角形吗? 长度为11的木棒呢?若能拼成,则第三条 边应在什么范围呢?
考考你
有人说他一步能走3米,你相 信吗?能否用今天学过的知识去解 答呢?
姚明腿长1.28米
答:不能。如果此人一步 能走3米,由三角形三边的关 系得此人两腿长之和要大于3 米,这与实际情况相矛盾,所 以它一步不能走3米。
三角形中的边角关系
三角形中边的关系
观察图形,归纳定义
观三条线段首尾依次相接组 成的图形叫三角形。
顶角


底角 底
底角
不等边三角形 等腰三角形
等边三角形
等边三角形是等腰三角形的特例。
三角形按边长关系,可分为:
三角形
不等边三角形
等腰三角形(等边三角 形是它的特例)
相关文档
最新文档