山东省聊城市中考数学预测试卷(四)(含解析)

合集下载

2024年山东省聊城市中考数学模拟考试试题(含答案)

2024年山东省聊城市中考数学模拟考试试题(含答案)

2024年山东省初中学业水平模拟考试数学试题(总分120分考试时间120分钟)2024.05注意事项:1.答卷前务必将你的姓名、座号和准考证号按要求填写在试卷和答题卡上的相应位置。

2.本试题不分I、II卷,所有答案都写在答题卡上,不要直接在本试卷上答题。

3.必须用0.5毫米黑色签字笔书写在对应的答题卡区域,不得超出规定范围。

一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.的相反数是()A.B.C.D.2.以下山东省各场馆的Logo中属于轴对称图形的是()A.山东博物馆B.山东省图书馆C.山东省科技馆D.山东美术馆3.在《九章算术》中,将底面为直角三角形的直三棱柱叫堑堵.如图是一堑堵,其俯视图为()A.B.C.D.4.下列等式一定成立的是()A.B.C.D.5.“五一”假期,山东省文旅市场火爆,全省接待国内游客约4871.2万人次.数据“4871.2万”用科学记数法表示为()A.B.C.D.6.山东博物馆在2024年5月份举办“走近考古”展览,为公众揭开考古学神秘面纱.现小张同学参观博物馆,343434-4343-11a ab b+=+2a abb b=33a ab b=a a cb b c+=+80.4871210⨯84.871210⨯74.871210⨯44871.210⨯由于参观人数较多,准备从3楼展厅的“走进考古”展览、“山东龙——穿越白垩纪”展览、“考古成果”展览、“非洲野生动物大迁徙”展览4个中随机选择2个进行参观,则正好选择“走进考古”展览和“山东龙——穿越白垩纪”展览的概率是()A. B . C . D .7.请根据学习函数的经验,自主尝试探究表达式为的函数图像与性质,下列说法正确的是()A .图像与y 轴的交点是(0,) B .图像与x 轴有一个交点C .当时, D .y 随x 的增大而减小8.如图,在中,点C 为上的点,.若,且AC 是的内接正n 边形的一边,则n 的值为()A .8B .9C .10D .129.如图,在中,,CD 是中线,过点A 作CD 的垂线,分别交BC 、CD 于点E 、F .若,,则CD 的长为()A .39 B . C .D .19.510.如图,在底面积为,高为20cm 的长方体水槽内放入一个底面积为的圆柱形烧杯,以恒定不变的速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不变,则水槽中水面上升的高度h 与注水时间t 之间的函数图像可能为()16122391623y x =-230x <0y <O AB 2BC AC =120ACB ∠=︒O Rt ABC △90ACB ∠=︒2tan 3CAE ∠=26AE =280cm 216cmA .B .C .D .二、填空题:本题共6小题,每小题3分,共18分.11在实数范围内有意义,则x 的取值范围为________.12.因式分解:________.13.分式方程的解为________.14.如图,在菱形ABCD 中,,,垂足为E .若,则菱形ABCD 的周长为________.15.在测量某物体的重量时,得到如下数据:,,…,.当关于x 的函数取得最小值时,相应的x 值表示该物体重量的估计值.若,,…,的和为24,则该物体重量的估计值为________.16.如图是从原点开始的通道宽度为1的回形图,,反比例函数与该回形图的交点依次记为、、、……,则的坐标为________.24ab a -=213242x x+=--4sin 5B =AE BC ⊥2CE =1a 2a 8a 222128()()()y x a x a x a =-+-++- 1a 2a 8a 1OA =1y x=1B 2B 3B 2024B三、解答题:本题共8小题,共72分.解答应写出文字说明、证明过程演算步骤.17.(本小题满分8分)(1)计算:2)解不等式组:18.(本小题满分8分)山东大樱桃以“北方春果第一枝”而闻名,品种丰富.某水果店计划购进其中的“美早”与“黄水晶”两个品种的樱桃,已知2箱“美早”樱桃的进价与3箱“黄水晶”樱桃的进价之和为280元,且每箱“美早”樱桃的进价比每箱“黄水晶”樱桃的进价贵10元.(1)求每箱“美早”樱桃的进价与每箱“黄水晶”樱桃的进价分别是多少元?(2)水果店欲购进“美早”与“黄水晶”樱桃共50箱,在进货总价不超过3000元的情况下,最多可购进“美早”樱桃多少箱?19.(本小题满分8分)为增进学生对数学文化的了解,某校开展了两次数学文化知识问答活动,从中随机抽取了20名学生两次活动的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下图是将这20名学生的第一次活动成绩作为横坐标,第二次活动成绩作为纵坐标绘制而成.(1)学生甲第一次活动成绩是70分,则该生第二次活动成绩是________分,两次活动的平均成绩为________分;两次活动成绩均达到或高于90分的学生有________个;这20名学生的第一次活动成绩的中位数为________分;(2)请在下图中画一条直线,使得该直线上方的点表示两次活动的平均成绩高于80分.(3)假设全校有1200名学生参加活动,估计两次活动平均成绩不低于80分的学生人数.21()2sin 602-+︒+764,23.x x x x +>⎧⎨-≤⎩20.(本小题满分8分)如图,在中,D 是BC 延长线上一点,且,过点C 作且,连接DE .(1)利用直尺、圆规作出满足条件的点E ,并连接DE (不写作法,保留作图痕迹)(2)证明:.21.(本小题满分9分)如图,为了测量河对岸A 、B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得点A ,B 均在点C 的北偏东方向上,沿正东方向行走105米至观测点D ,测得点A 在点D 的正北方向,点B 在点D 的北偏西方向上.求A 、B 两点间的距离.同学甲:在纸上利用“比例尺”画出相应的图,并测得纸上CD 长度约为21cm ,AB 长度约为20cm ,再求出实际A 、B 两点间的距离.同学乙:通过计算器得到数据:,,,再结合三角函数知识求出A 、B 两点间的距离.请按照同学甲、乙的方法分别计算出A 、B 两点间的距离.22.(本小题满分9分)在平面直角坐标系xOy 中,二次函数()的图像上有两点A (,)、B (,),它的对称轴为直线.ABC △CD AB =CE AB ∥CE BC =A D ∠=∠37︒45︒sin 370.60︒≈cos370.80︒≈tan 370.75︒≈2y ax bx =+0a <1x 1y 2x 2y x t =(1)当该二次函数图像过点(6,0)时.①求t 的值;②当,轴,且到x 轴距离为2,求a 的值;(2)当时,若对于任意,都有成立,直接写出t 的取值范围.23.(本小题满分10分)【实践探究】如图1,在矩形ABCD 中,,,交AB 于点E,则的值是________;【变式探究】如图2,在平行四边形ABCD 中,,,,交AB 于点E ,求的值;【灵活应用】如图3,在矩形ABCD 中,,点E ,F 分别在AD ,BC 上,以EF 为折痕,将四边形ABFE 翻折,使得AB 的对应边恰好经过点D ,交CD 于点I ,过点D 作交AB 于点P .若,且与的面积比为,求的值.24.(本小题满分12分)定义:平面直角坐标系xOy 中,点P (a ,b ),点Q (c ,d ),若,,其中k 为常数,且,则称点Q 是点P 的“k 级变换点”.例如,点(,7)是点(2,3)的“级变换点”.(1)点(1,1)的“3级变换点”是点________;(2)设点Q (p ,q )是点P (1,1)的“k 级变换点”.①M (p ,m )为反比例函数的图像上,当时,判断m ,q 的大小关系:________;②点A 的坐标为(,2),若,求点Q 的坐标;(3)若以(n ,0)为圆心,1为半径的圆上恰有两个点,这两个点的“1级变换点”都在直线上,求n 的取值范围.2024年山东省初中学业水平模拟考试212x x -=AB x ∥101x <<122x x +=120y y >8AB =6BC =DE AC ⊥DE AC90DBC ∠=︒8BD =6BC =DE AC ⊥DE AC8AD =A B ''B F 'DP EF ⊥4A D '=ADP △BPF △16:24DP EF1c ka =+1d kb =-+0k ≠3-2-4y x=0p >3-45QAO ∠=︒5y x =-+数学试题参考答案一、选择题:本题共10小题,每小题3分,共30分.1.B 2.A 3.C 4.B 5.C 6.A 7.C 8.B 9.D 10.B二、填空题:本题共6小题,每小题3分,共18分.11. 12. 13.14.20 15.3 16.(,507)三、解答题:本题共8小题,共72分.17.(1)解:原式(2)解:由①得,;由②得,;∴.18.解:(1)设每箱“美早”樱桃的进价是x 元,每箱“黄水晶”樱桃的进价是y 元,解得答:每箱“美早”樱桃的进价是62元,每箱“黄水晶”樱桃的进价是52元.(2)设购进a 箱“美早”樱桃,则,解得.答:最多可购进“美早”樱桃40箱.19.(1)75,72.5;5;80;(2)如图所示;2x ≤(2)(2)a b b +-52x =150742=++4=+76423x x x x +>⎧⎨-≤⎩①②2x >-3x ≤23x -<≤10,23280,x y x y -=⎧⎨+=⎩62,52.x y =⎧⎨=⎩62(50)523000a a +-⨯≤40a ≤(3)(人),答:估计两次活动平均成绩不低于80分的学生人数有660人.20.(1)如图即为所求.(方法不唯一)(2)证明:∵,∴.在和中,∴,∴.21.同学甲:,则.答:实际A 、B 两点间的距离为100m .同学乙:作,垂足为M .由题意,,,∴,.∴设,,∴,.∴.∴.11120066020⨯=AB CE ∥ABC ECD ∠=∠ABC △DCE △,,,AB DC B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩ABC DCE ≌△△A D ∠=∠2120105AB=100AB =BM CD ⊥37CBM ∠=︒45BDM ∠=︒37CAD ∠=︒tan 0.75CM CBM BM ∠=≈tan 1DM DBM BM∠==3CM k =4BM k =5CB k ==4DM BM k ==347105CD k k k =+==15k =∴.在中,,∴.∴.答:A 、B 两点间的距离为100m .22.(1)①;②时,∵,轴,且到x 轴距离为2,∴A (2,2),B (4,2).∴,解得答:a 的值为.(2)或.23.【实践探究】;【变式探究】作于M ,交AB 的延长线于N ,∴.∵,∴.∴.∴.∴.即.由题意得,,,.∴,.75CB =Rt ACD △sin 0.6CD CAD AC∠=≈1750.6CD AC ==17575100AB =-=0632t +==3t =212x x -=AB x ∥32422b a a b ⎧-=⎪⎨⎪+=⎩1,43.2a b ⎧=-⎪⎪⎨⎪=⎪⎩14-0t ≤1t ≥34DM AB ⊥CN AB ⊥90EDM DEM ∠+∠=︒AC DE ⊥90CAN DEM ∠+∠=︒EDM CAN ∠=∠cos cos EDM CAN ∠=∠DM AN DE AC =DE DM AC AN=10CD AB ===63cos cos 105CBN BCD ∠=∠==84sin sin 105CBN BCD ∠=∠==424655CN =⨯=36810655AN AB BN =+=+⨯=∴.【灵活应用】过点E 作,垂足为Q ,∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.易得,.∴设,,.∴.∴.∴.∴,解得,(舍).∴.由,得.(另解)延长FE 、BA 交于点M ,,则,即.246568175DE AC ==EQ BC ⊥4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AEP B DI '△∽△AEP CFI △∽△3B D k BP '==4B I k '=5DI k =43542CI k k k =+-=-33(42)342CF k k =-⨯=-3852BF CF k =-=+133(5)2422k k ⨯+=12k =2163k =-4310EQ AB k ==+=ADP QEF ∽△△84105DP AD EF EQ ===ADP EMP ∠=∠tan tan ADP EMP ∠=∠AP AE BF AD AM BM ==∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.∵,∴.∴,.设,则.∴.解得,(舍).∴.由,得.24.(1)(4,)(2)①②由题意得,所以点Q 在直线上.设点A 绕坐标原点O 按顺时针方向旋转至点M ,连结AM ,交直线于点Q ,作轴于H ,轴于K .在和中,∴,∴M (2,3).∴:.4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AP AE BF AD AM BM==438BF AM BM==6AM =2BM BF =BP x =641022x x BF +++==1102422x x +⨯=16x =216x =-4610EQ AB ==+=ADP QEF △∽△84105DP AD EF EQ ===2-m q>1,1p k q k =+⎧⎨=-+⎩2y x =-+90︒2y x =-+AH x ⊥MK x ⊥AHO △OKM △,,,AO OM AOH OMK AHO OKM =⎧⎪∠=∠⎨⎪∠=∠⎩AHO OKM ≌△△AM l 11355y x =+联立,得Q (,).(3)若A (,),B (,),则它们的一级变换点(,),(,),∵该两点在上,∴,,即A ,B 两点在上,由直线与圆的位置关系可得,当时,圆与直线相切,∴当时,圆与直线有2个公共点,∴2y x =-+12-521x 1y 2x 2y A '11x +11y -+B '21x +21y -+5y x =-+11115y x -+=--+22115y x -+=--+3y x =-3n =3y x =-33n <<+3y x =-33n -<<。

【最新】山东省聊城市中考数学模拟试卷(含答案)

【最新】山东省聊城市中考数学模拟试卷(含答案)

山东省聊城市中考数学模拟试卷(含答案)(考试时间:120分钟分数:100分)一.选择题(共12小题,每小题3分,满分36分)1.计算的结果是()A.0 B.1 C.﹣1 D.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个4.10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C.D.5.如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A.△ADC∽△CFB B.AD=DFC.=D.=6.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1 B.2 C.3 D.47.某商品的标价为150元,八折销售仍盈利20%,则商品进价为()元.A.100 B.110 C.120 D.1308.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A.小青B.小何C.小夏D.小雨9.已知x a=2,x b=3,则x3a﹣2b等于()A.B.﹣1 C.17 D.7210.解不等式组,该不等式组的最大整数解是()A.3 B.4 C.2 D.﹣3 11.如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为()A.2 B.C.D.12.一次函数y=(k﹣1)x﹣k的大致图象如图所示,关于该次函数,下列说法错误的是()A.k>1B.y随x的增大而增大C.该函数有最小值D.函数图象经过第一、三、四象限二.填空题(共5小题,满分15分,每小题3分)13.计算(+2)(﹣2)的结果是.14.因式分解:x2y﹣4y3=.15.某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x 和y元,根据题意,可列方程组为.16.同一个圆的内接正方形和正三角形的边心距的比为.17.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;三.解答题(共7小题,满分49分)18.已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.19.先化简,再求值:(x﹣2+)÷,其中x=﹣.20.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?21.刘阿姨到超市购买大米,第一次按原价购买,用了90元,几天后,遇上这种大米8折出售,她用120元又买了一些,两次一共购买了40kg.求这种大米的原价.22.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.23.我们定义:有一组邻角相等且对角线相等的凸四边形叫做“邻对等四边形”.概念理解(1)我们们所学过的特殊四边形中的邻对等四边形是;性质探究(2)如图1,在邻对等四边形ABCD中,∠ABC=∠DCB,AC=DB,AB>CD,求证:∠BAC与∠CDB互补;拓展应用(3)如图2,在四边形ABCD中,∠BCD=2∠B,AC=BC=5,AB=6,CD=4.在BC的延长线上是否存在一点E,使得四边形ABED为邻对等四边形?如果存在,求出DE的长;如果不存在,说明理由.24.如图,已知抛物线y=ax2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式.(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交轴BC于点N,求MN的最大值.第26题图(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x 轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P 的坐标.答案一.选择题1.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.【解答】解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.【点评】本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.4.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:这15个人的总成绩10x+5×90=10x+450,除以15可求得平均值为.故选:D.【点评】此题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.5.【分析】依据∠ADC=∠BCD=90°,∠CAD=∠BCF,即可得到△ADC∽△CFB;过D作DM∥BE交AC于N,交AB于M,得出DM垂直平分AF,即可得到DF=DA;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,可得b=a,依据,即可得出=;根据E是CD边的中点,可得CE:AB=1:2,再根据△CEF∽△ABF,即可得到=()2=.【解答】解:∵BE⊥AC,∠ADC=∠BCD=90°,∴∠BCF+∠ACD=∠CAD+∠ACD,∴∠CAD=∠BCF,∴△ADC∽△CFB,故A选项正确;如图,过D作DM∥BE交AC于N,交AB于M,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=DC,∴BM=AM,∴AN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥AF,∴DM垂直平分AF,∴DF=DA,故B选项正确;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,即b=a,∴,∴=,故C选项错误;∵E是CD边的中点,∴CE:AB=1:2,又∵CE∥AB,∴△CEF∽△ABF,∴=()2=,故选D选项正确;故选:C.【点评】本题主要考查了相似三角形的判定和性质,矩形的性质的综合应用,正确的作出辅助线构造平行四边形是解题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形6.【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【解答】解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE﹣CD=3﹣1=2,【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质. 7.【分析】根据(1+利润率)×进价=标价×八折列方程,可得结论.【解答】解:设商品进价为x 元,根据题意得:150×80%=(1+20%)x ,x =100,答:商品进价为100元.故选:A .【点评】本题考查了一元一次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.8.【分析】利用平行四边形的性质、全等三角形的判定和性质,一一判断即可.【解答】解:∵四边形ABCD 是平行四边形,∴OA =OC ,CD ∥AB ,∴∠ECO =∠FAO ,(故小雨的结论正确),在△EOC 和△FOA 中,,∴△EOC ≌△FOA ,∴OE =OF (故小青的结论正确),∴S △EOC =S △AOF ,∴S 四边形AFED =S △ADC =S 平行四边形ABCD ,∴S 四边形AFED =S 四边形FBCE 故小夏的结论正确,∵△EOC ≌△FOA ,∴EC =AF ,∵CD =AB ,∴DE =FB ,DE ∥FB ,∴四边形DFBE 是平行四边形,∵OD =OB ,EO ⊥DB ,∴ED =EB ,∴四边形DFBE 是菱形,无法判断是正方形,故小何的结论错误,【点评】本题考查平行四边形的性质、全等三角形的判定和性质、线段的垂直平分线的性质正方形的判定、菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵x a=2,x b=3,∴x3a﹣2b=(x a)3÷(x b)2=23÷32=.故选:A.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.10.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此可得其最大整数解.【解答】解:解不等式(x﹣1)≤1,得:x≤3,解不等式1﹣x<2,得:x>﹣1,则不等式组的解集为﹣1<x≤3,所以不等式组的最大整数解为3,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.【分析】如图,连接BD,先利用勾股定理逆定理得△ABD是直角三角形,再根据正切函数的定义求解可得.【解答】解:如图所示,连接BD,则BD2=12+12=2、AD2=22+22=8、AB2=12+32=10,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,则tan∠BAC===,故选:B.【点评】本题主要考查解直角三角形,解题的关键是构建直角三角形并掌握勾股定理逆定理、正切函数的定义.12.【分析】根据一次函数的增减性确定有关k的不等式组,求解即可.【解答】解:∵观察图象知:y随x的增大而增大,且交与y轴负半轴,函数图象经过第一、三、四象限,∴,解得:k>1,∵该函数没有最小值,故选:C.【点评】本题考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.二.填空题(共5小题,满分15分,每小题3分)13.【分析】利用平方差公式计算,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣22=3﹣4=﹣1,故答案为:﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.14.【分析】首先提公因式y,再利用平方差进行分解即可.【解答】解:原式=y(x2﹣4y2)=y(x﹣2y)(x+2y).故答案为:y(x﹣2y)(x+2y).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.【分析】设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据:购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元列出方程组求解即可;【解答】解:设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意可得:,故答案为:,【点评】本题主要考查二元一次方程组的应用能力,根据题意准确抓住相等关系是解题的根本和关键.16.【分析】先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【解答】解:设⊙O的半径为R,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案为::1.【点评】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.17.【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.【解答】解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.三.解答题(共7小题,满分49分)18.【分析】根据平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的定义,推知∠DAE+∠ADF=90°,即可得到∠AGD=90°.【解答】证明:∵AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.【点评】本题考查了平行线的性质以及角平分线的定义的运用.解题时注意:两直线平行,同旁内角互补.19.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】设这种大米的原价是每千克x元,根据两次一共购买了40kg列出方程,求解即可.【解答】解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=6.经检验,x=6是原方程的解.答:这种大米的原价是每千克6元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.【分析】(1)根据根的判别式得出不等式,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=2,和已知组成方程组,求出方程组的解,再根据根与系数的关系求出m即可.【解答】解:(1)由题意得:△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1,即实数m的取值范围是m<1;(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.【点评】本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.23.【分析】概念理解(1)根据邻对等四边形的定义可得;性质探究(2)延长CD到点E,使CE=AB,根据“SAS”可证△ABC≌△ECB,可得∠BAC=∠BEC,AC=BE,可得∠BEC=∠BDE=∠BAC,根据平角的性质可得结论;拓展应用(3)存在,在BC的延长线上截取CE=CD=4,连接AE,BD,根据等腰三角形的性质和三角形外角的性质可得∠DEC=∠ABC,根据“SAS”可证△ACE≌△BCD,可得AE =BD,即四边形ABED为邻对等四边形,根据△ABC∽△DEC,可得DE的长.【解答】解:概念理解(1)∵矩形的对角线相等,且邻角相等∴矩形是邻对等四边形(2)如图,由AB>CD,则延长CD到点E,使CE=AB,∵AB=CE,∠ABC=∠ECB,BC=BC,∴△ABC≌△ECB(SAS)∴∠BAC=∠BEC,AC=BE,∵AC=BD∴BD=BE,∴∠BEC=∠BDE=∠BAC,∵∠BDC+∠BDE=180°∴∠BDC+∠BAC=180°即∠BAC与∠CDB互补;拓展应用(3)在BC的延长线上存在一点E,使得四边形ABED为邻对等四边形,如图,在BC的延长线上截取CE=CD=4,连接AE,BD,∵AC=BC,∴∠ABC=∠BAC,∵∠ACE=∠ABC+∠BAC,∴∠ACE=2∠ABC,且∠BCD=2∠ABC,∴∠ACE=∠BCD,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD,∵CD=CE,∴∠DEC=∠EDC,∵∠BCD=∠DEC+∠EDC,∴∠BCD=2∠DEC,且∠BCD=2∠ABC,∴∠DEC=∠ABC,∴四边形ABED为邻对等四边形,∵∠ABC=∠DEC=∠CAB=∠CDE,∴△ABC∽△DEC∴即∴DE=【点评】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,等腰三角形的性质,相似三角形的判定和性质,灵活运用相关的性质定理、综合运用知识是解题的关键.24.【分析】(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.【解答】解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,故直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c得,解得.故抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).【点评】本题考查了二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法.(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键.。

2024年山东省中考数学模拟押题预测卷及答案

2024年山东省中考数学模拟押题预测卷及答案

2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。

第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。

考试时间为120分钟。

2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。

所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。

第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。

2024年聊城市中考数学真题试题及答案

2024年聊城市中考数学真题试题及答案

2024年山东省聊城市中考数学真题试卷一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( ) A. 3B.12C.1- D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( ) A. 30.61910⨯B. 461.910⨯C. 56.1910⨯D. 66.1910⨯4. 下列几何体中,主视图是如图的是( )A. B. C. D.5. 下列运算正确的是( ) A. 437a a a +=B. ()2211a a -=-C. ()2332a ba b =D. ()2212a a a a +=+6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A.19B.29C.13D.239. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A.52B. 3C.72D. 410. 根据以下对话给出下列三个结论①1班学生的最高身高为180cm ①1班学生的最低身高小于150cm ①2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①①B. ①①C. ①①D. ①①①二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________. 14. 如图,ABC ∆是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM ,AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-⎛⎫--⎪⎝⎭(2)先化简,再求值:212139a a a +⎛⎫-÷⎪+-⎝⎭,其中1a =. 18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈) 【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号) ①解直角三角形 ①三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案. 19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题 (1)请补全频数分布直方图(2)所抽取学生的模型设计成绩的中位数是________分(3)请估计全校1000名学生的模型设计成绩不低于80分的人数(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩. 某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下通过计算,甲、乙哪位学生的综合成绩更高?20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系(1)求a ,b 的值,并补全表格(2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 21. 如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线 (2)求图中阴影部分面积.(结果保留π)22. 一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P . ①当30α=︒时,如图3,求证:四边形CNPM 为正方形①当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23. 在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年山东省聊城市中考数学真题试卷答案一、选择题.9. 解:延长DF 和AB ,交于G 点①四边形ABCD 是平行四边形 ①DC AB ∥,DC AB =即DC AG ∥ ①DEC GAE ∽ ①CE DE DCAE GE AG== ①5AC =,1CE =①514AE AC CE =-=-= ①14CE DE DC AE GE AG === 又①EF DE =,14DE DE GE EF FG ==+ ①13EF FG = ①14DC DC AG AB BG ==+,DC AB = ①13DC BG = ①13EF DC FG BG ==①34BG FG AG EG == ①AE BF ∥ ①BGF AGE ∽ ①34BF FG AE EG == ①4AE = ①3BF =. 故选:B .10. 解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b 根据1班班长的对话,得180x ≤,350x a += ①350x a =- ①350180a -≤ 解得170a ≥ 故①,①正确根据2班班长的对话,得140b >,290y b += ①290b y =- ①290140y -> ①150y < 故①正确 故选:D .二、填空题.11. 【答案】()2xy x +12. 【答案】1-(答案不唯一)【解析】解:21215x x +≥⎧⎨-<⎩①②由①得:1x ≥-由①得:3x <①不等式组的解集为:13x -≤<①不等式组的一个整数解为:1-故答案为:1-(答案不唯一).13. 【答案】14【解析】解:①关于x 的方程2420x x m -+=有两个相等的实数根①2242444160b ac m m ∆=-=-⨯⨯=-= 解得:14m =. 故答案为:14. 14. 【答案】40︒【解析】解①连接OB①25ACB ∠=︒①250AOB ACB ∠=∠=︒①OA OB = ①()1180652OAB OBA AOB ∠=∠=︒-∠=︒ ①OA CB ∥①25A OAC CB ∠=︒∠=①40CAB OAB OAC ∠=∠-∠=︒故答案为:40︒.15.【解析】解:如图,过F 作FH AC ⊥于H由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB === ①67.5PQE ∠=︒①67.5AQF ∠=︒①9067.522.5BAP CAP ∠=∠=︒-︒=︒①45FAH ∠=︒①AH FH AF ===①F 到AN16. 【答案】()2,1【解析】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2 经过2次运算后得到点为()42,21÷÷,即为()2,1经过3次运算后得到点为()22,131÷⨯+,即为()1,4……发现规律:点()1,4经过3次运算后还是()1,4①202436742÷=①点()1,4经过2024次运算后得到点()2,1故答案为:()2,1.三、解答题.17. 【答案】(1)3 (2)3a - 2-18. 【答案】(1)A ,P 两点间的距离为89.8米;(2)①19. 【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【小问1详解】解:①510%50÷=,而8090x ≤<有20人①7080x ≤<有502051015---=补全图形如下。

2022届山东省聊城市城区中考数学押题试卷含解析

2022届山东省聊城市城区中考数学押题试卷含解析

2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是62.函数y=4x和y=1x在第一象限内的图象如图,点P是y=4x的图象上一动点,PC⊥x轴于点C,交y=1x的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=13AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④3.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠14.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A.20 B.25 C.30 D.355.如图,已知点P 是双曲线y=2x上的一个动点,连结OP,若将线段OP 绕点O 逆时针旋转90°得到线段OQ,则经过点Q 的双曲线的表达式为()A .y =3xB .y =﹣13xC .y =13xD .y =﹣3x6.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =kx(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .237.如图,在直角坐标系中,等腰直角△ABO 的O 点是坐标原点,A 的坐标是(﹣4,0),直角顶点B 在第二象限,等腰直角△BCD 的C 点在y 轴上移动,我们发现直角顶点D 点随之在一条直线上移动,这条直线的解析式是( )A .y=﹣2x+1B .y=﹣12x+2 C .y=﹣3x ﹣2 D .y=﹣x+28.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .a 2+a 3=a 5C .(a 2)3=a 6D .a 12÷a 6=a 2 9.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .1010.若2x y +=,2xy =-,则y xx y+的值是( )A .2B .﹣2C .4D .﹣411.式子2x 1x 1+-有意义的x 的取值范围是( ) A .1x 2≥-且x≠1 B .x≠1C .1x 2≥-D .1x>2-且x≠1 12.直线AB 、CD 相交于点O ,射线OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是( ) A .相离B .相切C .相交D .不确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AC 、BD 为圆O 的两条垂直的直径,动点P 从圆心O 出发,沿线段线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是( )A .B .C .D .14.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.15.计算:a 6÷a 3=_________. 16.将抛物线y =2x 2平移,使顶点移动到点P (﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____. 17.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 18518x <<x 的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究. 问题背景:在矩形ABCD 中,点E 、F 分别是BC 、AD 上的动点,且BE=DF ,连接EF ,将矩形ABCD 沿EF 折叠,点C 落在点C′处,点D 落在点D′处,射线EC′与射线DA 相交于点M . 猜想与证明:(1)如图1,当EC′与线段AD 交于点M 时,判断△MEF 的形状并证明你的结论; 操作与画图:(2)当点M 与点A 重合时,请在图2中作出此时的折痕EF 和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母); 操作与探究:(3)如图3,当点M 在线段DA 延长线上时,线段C′D'分别与AD ,AB 交于P ,N 两点时,C′E 与AB 交于点Q ,连接MN 并延长MN 交EF 于点O . 求证:MO ⊥EF 且MO 平分EF ;(4)若AB=4,AD=43,在点E 由点B 运动到点C 的过程中,点D'所经过的路径的长为 .20.(6分)如图,直线11y k x b =+与第一象限的一支双曲线my x =交于A 、B 两点,A 在B 的左边. (1)若1b =4,B(3,1),求直线及双曲线的解析式:并直接写出不等式11mk x b x<+的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC 、BC,设直线BC 解析式为y kx b =+;当AC ⊥AB 时,求证:k 为定值.21.(6分)如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE=∠C .求证:AE 与⊙O 相切于点A ;若AE ∥BC ,7,2,求AD 的长.22.(8分)如图,反比例y=4x的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.23.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20 (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?24.(10分)某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y (只)与生产时间x (分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;(2)若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y (只)与生产时间x (分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产. 25.(10分)如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .26.(12分)(1)计算:2201801()(1)4sin60(π1)2-------(2)化简:221a 4a 2a 1a 2a 1a 1---÷++++ 27.(12分)如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB . (1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m .②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.2、C【解析】解:∵A、B是反比函数1yx=上的点,∴S△OBD=S△OAC=12,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是4yx=的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣12﹣12=3,故③正确;连接OP ,212POC OAC S PC S AC∆∆===4,∴AC =14PC ,PA =34PC ,∴PA AC =3,∴AC =13AP ;故④正确; 综上所述,正确的结论有①③④.故选C .点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k 的几何意义是解答此题的关键. 3、D 【解析】试题解析:由题意可知:x-1≠0, x≠1 故选D. 4、B 【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得:ky x=,4007.5%30k =⨯=, ∴30y x=, ∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿. 故选B. 5、D 【解析】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,利用AAS 得到两三角形全等,由全等三角形对应边相等及反比例函数k 的几何意义确定出所求即可. 【详解】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,∵∠POQ=90°, ∴∠QON+∠POM=90°, ∵∠QON+∠OQN=90°, ∴∠POM=∠OQN , 由旋转可得OP=OQ , 在△QON 和△OPM 中,90QNO OMP OQN POMOQ OP ====∠∠︒⎧⎪∠∠⎨⎪⎩, ∴△QON ≌△OPM (AAS ), ∴ON=PM ,QN=OM , 设P (a ,b ),则有Q (-b ,a ),由点P 在y=3x 上,得到ab=3,可得-ab=-3, 则点Q 在y=-3x上.故选D . 【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键. 6、C 【解析】分析:先求出A 点坐标,再根据图形平移的性质得出A 1点的坐标,故可得出反比例函数的解析式,把O 1点的横坐标代入即可得出结论.详解:∵OB =1,AB ⊥OB ,点A 在函数2y x=- (x <0)的图象上, ∴当x =−1时,y =2, ∴A (−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4 (3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.7、D【解析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=1,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=⎧⎨=⎩,解得:12kb=-⎧⎨=⎩.则这条直线解析式为y=﹣x+1.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.8、C【解析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选:C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.9、C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=12 CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BC∥DE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以△CEF的面积=12CF•CE=8;故选:C.点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.10、D【解析】因为()2222x y x xy y +=++,所以()222222228x y x y xy +=+-=-⨯-=,因为22842y x y x x y xy ++===--,故选D.11、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x 1x 1+-在实数范围内有意义,必须12x 10x 1{{x 2x 102x 1+≥≥-⇒⇒≥--≠≠且x 1≠.故选A . 12、A【解析】根据角平分线的性质和点与直线的位置关系解答即可.【详解】解:如图所示;∵OM 平分∠AOD ,以点P 为圆心的圆与直线AB 相离,∴以点P 为圆心的圆与直线CD 相离,故选:A .【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB 逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.14、115°【解析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.15、a1【解析】根据同底数幂相除,底数不变指数相减计算即可【详解】a 6÷a 1=a 6﹣1=a 1.故答案是a 1【点睛】同底数幂的除法运算性质16、y =2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y =2x 2平移,使顶点移到点P (﹣3,1)的位置,所得新抛物线的表达式为y =2(x+3)2+1.故答案为:y =2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17、1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.18、3,1【解析】直接得出23,15,进而得出答案.【详解】解:∵23,1<5,x <<x 的值是:3,1.故答案为:3,1.【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)16 3【解析】(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE,由折叠可得,D'F=DF ,∴BE=D'F ,在△NC'Q 和△NAP 中,∠C'NQ=∠ANP ,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN ,∵∠C'QN=∠BQE ,∠APN=∠D'PF ,∴∠BQE=∠D'PF ,在△BEQ 和△D'FP 中,{BQE DPFBE D F AP C Q∠=∠='=',∴△BEQ ≌△D'FP (AAS ),∴PF=QE ,∵四边形ABCD 是矩形,∴AD=BC ,∴AD ﹣FD=BC ﹣BE ,∴AF=CE ,由折叠可得,C'E=EC ,∴AF=C'E ,∴AP=C'Q ,在△NC'Q 和△NAP 中,{C NQ ANPNC Q NAP AP C Q''∠∠=∠='∠=,∴△NC'P ≌△NAP (AAS ),∴AN=C'N ,在Rt △MC'N 和Rt △MAN 中,{MN MN AN C N==', ∴Rt △MC'N ≌Rt △MAN (HL ),∴∠AMN=∠C'MN ,由折叠可得,∠C'EF=∠CEF ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFE=∠FEC ,∴∠C'EF=∠AFE ,∴ME=MF ,∴△MEF 是等腰三角形,∴MO ⊥EF 且MO 平分EF ;(4)在点E 由点B 运动到点C 的过程中,点D'所经过的路径是以O 为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=2404161803ππ⨯⨯=. 故答案为163π. 【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.20、 (1) 1<x <3或x <0;(2)证明见解析.【解析】(1)将B (3,1)代入m y x=,将B (3,1)代入14y k x =+,即可求出解析式; 再根据图像直接写出不等式11m k x b x +<的解集;(2)过A 作l ∥x 轴,过C 作CG ⊥l 于G ,过B 作BH ⊥l 于H , △AGC ∽△BHA , 设B (m , 3m )、C (n , 3n ),根据对应线段成比例即可得出mn =-9,联立3y kx b y x =+⎧⎪⎨=⎪⎩,得2230k x bx +-=,根据根与系数的关系得39mn k -==-,由此得出13k =为定值. 【详解】解:(1)将B (3,1)代入m y x =, ∴m=3, 3y x=, 将B (3,1)代入14y k x =+,∴1341k +=,11k =-,∴4y x =-+, ∴不等式11m k x b x+<的解集为1<x <3或x <0 (2)过A 作l ∥x 轴,过C 作CG ⊥l 于G ,过B 作BH ⊥l 于H ,则△AGC ∽△BHA ,设B (m ,3m )、C (n , 3n), ∵AG BH CG AH=, ∴331313n m m n--=--, ∴131113m n m n m n-⋅-=--⋅, ∴ 3131m n =-, ∴mn =-9, 联立∴3y kx b y x =+⎧⎪⎨=⎪⎩, ∴2230k x bx +-= ∴39mn k -==-, ∴13k =为定值.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解. 21、(1)证明见解析;(2)AD=214.【解析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:AB AC,FB=12BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴AB AC=,FB=12 BC,∴AB=AC,∵,,∴,,在Rt△ABF中,,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.22、(1)y=x﹣3(2)1【解析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,4n),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程4n-1=1-(n-3),解方程即可.【详解】解:(1)∵反比例y=4x的图象过点A(4,a),∴a=44=1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,4n),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴4n﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.23、0.3 4【解析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【详解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:3 12=14.【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)25,150;(2)y甲=25x(0≤x≤20),()()15010=503501017x xyx x⎧≤≤⎪⎨-<≤⎪⎩乙;(3)x=14,150【解析】解:(1)甲每分钟生产50020=25只;提高生产速度之前乙的生产速度=755=15只/分,故乙在提高生产速度之前已生产了零件:15×10=150只;(2)结合后图象可得:甲:y甲=25x(0≤x≤20);乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,乙:y乙=15x(0≤x≤10),当10<x≤17时,设y 乙=kx +b ,把(10,150)、(17,500),代入可得:10k +b =150,17k +b =500,解得:k =50,b =−350,故y 乙=50x−350(10≤x≤17).综上可得:y 甲=25x (0≤x≤20);()()15010=503501017x x y x x ⎧≤≤⎪⎨-<≤⎪⎩乙; (3)令y 甲=y 乙,得25x =50x−350,解得:x =14,此时y 甲=y 乙=350只,故甲工人还有150只未生产.25、(1)详见解析;(2)详见解析.【解析】(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出∠DAB =∠EAC ,再利用三角形内角和定理求出∠DEB =∠DAB ,即可说明∠EAC =∠DEB .【详解】解:(1)在△ABC 和△ADE 中AB AD AC AE BC DE ⎧⎪⎨⎪⎩=,=,=, ∴△ABC ≌△ADE (SSS );(2)由△ABC ≌△ADE ,则∠D =∠B ,∠DAE =∠BAC .∴∠DAE ﹣∠ABE =∠BAC ﹣∠BAE ,即∠DAB =∠EAC .设AB 和DE 交于点O ,∵∠DOA =BOE ,∠D =∠B ,∴∠DEB =∠DAB .∴∠EAC =∠DEB .【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.26、(1)2-(2)-1;【解析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【详解】(1)2201801()(1)460(1)2sin π-------4141=---=411--=2-(2)2214a 21211a a a a a ---÷++++ =()()222111(1)2a a a a a a +-+-⋅++- =1211a a a +-++ =121a a --+ =()11a a -++=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.27、(1)(1,4)(2)①点M 坐标(﹣12,74)或(﹣32,﹣94);②m 的值为32± 或12± 【解析】(1)利用待定系数法即可解决问题; (2)①根据tan ∠MBA=2233m m MG BG m-++=-,tan ∠BDE=BE DE =12,由∠MBA=∠BDE ,构建方程即可解决问题;②因为点M 、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P 是抛物线的对称轴与x 轴的交点,即OP=1,易证GM=GP ,即|-m 2+2m+3|=|1-m|,解方程即可解决问题.【详解】解:(1)把点B (3,0),C (0,3)代入y=﹣x 2+bx+c ,得到930{3b c c -++==,解得23b c ,∴抛物线的解析式为y=﹣x 2+2x+3,∵y=﹣x 2+2x ﹣1+1+3=﹣(x ﹣1)2+4,∴顶点D 坐标(1,4);(2)①作MG ⊥x 轴于G ,连接BM .则∠MGB=90°,设M (m ,﹣m 2+2m+3),∴MG=|﹣m 2+2m+3|,BG=3﹣m ,∴tan ∠MBA=2233m m MG BG m-++=-,∵DE ⊥x 轴,D (1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0),∴BE=2,∴tan ∠BDE=BEDE =12,∵∠MBA=∠BDE , ∴2233m m m -++-=12,当点M 在x 轴上方时,2233m m m -++- =12,解得m=﹣12或3(舍弃),∴M (﹣12,74),当点M在x轴下方时,2233m mm---=12,解得m=﹣32或m=3(舍弃),∴点M(﹣32,﹣94),综上所述,满足条件的点M坐标(﹣12,74)或(﹣32,﹣94);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得317±,当﹣m2+2m+3=m﹣1时,解得117±,∴满足条件的m的值为3172±或1172±.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

山东省聊城市东阿县2024届中考押题数学预测卷含解析

山东省聊城市东阿县2024届中考押题数学预测卷含解析

山东省聊城市东阿县2024届中考押题数学预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >mx 的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-2.计算a•a 2的结果是( )A .aB .a 2C .2a 2D .a 33.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A .60°B .50°C .40°D .30°4.图为一根圆柱形的空心钢管,它的主视图是( )A .B .C .D .5.已知,如图,AB//CD,∠DCF=100°,则∠AEF 的度数为 ( )A.120°B.110°C.100°D.80°-+的值()6.计算12A.1 B.1-C.3 D.3-7.下列图形不是正方体展开图的是()A.B.C.D.8.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是39.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>010.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.如图,AB是⊙O的直径,点E是BF的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.12.已知⊙O半径为1,A、B在⊙O上,且2AB=,则AB所对的圆周角为__o.13.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.14.△ABC的顶点都在方格纸的格点上,则sin A=_ ▲ .15.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.16.若正六边形的边长为2,则此正六边形的边心距为______.17.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.19.(5分)先化简,再求值:2213242xxx x--⎛⎫÷--⎪--⎝⎭,其中x是满足不等式﹣12(x﹣1)≥12的非负整数解.20.(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.21.(10分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201822.(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.23.(12分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?24.(14分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】根据函数的图象和交点坐标即可求得结果.【题目详解】解:不等式kx+b>mx的解集为:-6<x<0或x>2,故选B.【题目点拨】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.2、D【解题分析】a·a2= a3.故选D.3、C【解题分析】试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.考点:平行线的性质.4、B【解题分析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.5、D【解题分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【题目详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【题目点拨】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6、A【解题分析】根据有理数的加法法则进行计算即可.【题目详解】-+12=1故选:A.【题目点拨】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.7、B【解题分析】由平面图形的折叠及正方体的展开图解题.【题目详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【题目点拨】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.8、C【解题分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【题目详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【题目点拨】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.9、B【解题分析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、B【解题分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【题目详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选B.【题目点拨】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.二、填空题(共7小题,每小题3分,满分21分)112 3π-【解题分析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.【题目详解】解:连接OE,OF、EF,∵DE是切线,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=4sin6023,⨯=∵点E是弧BF的中点,∴∠EAB=∠DAE=30°,∴F,E是半圆弧的三等分点,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=3,∴AD=DE×tan60°=333,⨯=∴S△ADE113333222AD DE=⋅=⨯⨯=∵△FOE和△AEF同底等高,∴△FOE和△AEF面积相等,∴图中阴影部分的面积为:S△ADE﹣S扇形FOE23360π233232260π.3⋅⨯=-=-故答案为332 23π-【题目点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.12、45º或135º【解题分析】试题解析:如图所示,∵OC⊥AB,∴C为AB的中点,即122AC BC AB===在Rt△AOC中,OA=1,2 AC=根据勾股定理得:OC ==即OC =AC , ∴△AOC 为等腰直角三角形,45AOC ∴∠=,同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=,∵∠AOB 与∠ADB 都对AB , 1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135.故答案为45或135.13、1≤a≤1【解题分析】根据y 的取值范围可以求得相应的x 的取值范围.【题目详解】解:∵二次函数y =x 1﹣4x+4=(x ﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x =﹣4222b a -=-=, 把y =0代入解析式可得:x =1,把y =1代入解析式可得:x 1=3,x 1=1,所以函数值y 的取值范围为0≤y≤1时,自变量x 的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【题目点拨】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.14 【解题分析】在直角△ABD 中利用勾股定理求得AD 的长,然后利用正弦的定义求解.【题目详解】在直角△ABD中,BD=1,AB=2,则AD22AB BD+2221+5则sin A=BDAD555.15、70°.【解题分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数. 【题目详解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴1702DEF AED∠=∠=︒,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案为:70【题目点拨】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键. 163.【解题分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【题目详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF ,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF ,∴∠AOB=60°,OA=OB ,∴△AOB 是等边三角形,∴OA=OB=AB=2,∵AB ⊥OM ,∴AM=BM=1,在△OAM 中,由勾股定理得:317、222()2a b a ab b +=++【解题分析】由图形可得:()2222a b a ab b +=++三、解答题(共7小题,满分69分)18、∠DAC=20°.【解题分析】根据角平分线的定义可得∠ABC =2∠ABE ,再根据直角三角形两锐角互余求出∠BAD ,然后根据∠DAC =∠BAC ﹣∠BAD 计算即可得解.【题目详解】∵BE 平分∠ABC ,∴∠ABC =2∠ABE =2×25°=50°.∵AD 是BC 边上的高,∴∠BAD =90°﹣∠ABC =90°﹣50°=40°,∴∠DAC =∠BAC ﹣∠BAD =60°﹣40°=20°.【题目点拨】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键. 19、-12【解题分析】【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x 的值代入化简后的结果进行计算即可.【题目详解】原式=()()()()()()112232222x x x x x x x x ⎡⎤+-+--÷-⎢⎥+---⎣⎦,=()()()()()()112·2211x x x x x x x +--+-+-, =21+-x , ∵﹣12(x ﹣1)≥12, ∴x ﹣1≤﹣1,∴x≤0,非负整数解为0,∴x=0,当x=0时,原式=-12. 【题目点拨】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则. 20、(1)5,20,80;(2)图见解析;(3)35. 【解题分析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【题目详解】(1)调查的总人数为20÷40%=50(人),喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比=10100%50⨯=20%; (3)800×550=80, 所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=123205=. 21、-1【解题分析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【题目详解】解:原式=﹣4+1+1+1=﹣1.【题目点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22、(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解题分析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【题目详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种; (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=.∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1.【题目点拨】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.23、(1) 80、72;(2) 16人;(3) 50人【解题分析】(1) 用步行人数除以其所占的百分比即可得到样本总人数:8÷10%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即m=80⨯25%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360⨯(1-10%-25%-45%)=72o.(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可.(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可.【题目详解】解:(1)样本中的总人数为8÷10%=80人,∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°(2)骑自行车的人数为80×20%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【题目点拨】本题主要考查统计图表和一元一次不等式的应用。

山东聊城市文轩中学2024届中考押题数学预测卷含解析

山东聊城市文轩中学2024届中考押题数学预测卷含解析

山东聊城市文轩中学2024届中考押题数学预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知二次函数y=ax 2+bx+c 的图像经过点(0,m )、(4、m )、(1,n ),若n <m ,则( )A .a >0且4a+b=0B .a <0且4a+b=0C .a >0且2a+b=0D .a <0且2a+b=02.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )A .6.7×106B .6.7×10﹣6C .6.7×105D .0.67×1073.下列计算正确的是( )A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a )•(2a )2=6aD .3a ﹣a =34.下列实数中,有理数是( )A .2B .2.1C .πD .53 5.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )A .B .C .D .6.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为()2 1100x -=B .2890x x ++=化为()2425x += C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭ D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 7.一元二次方程x 2﹣2x =0的根是( )A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=﹣28.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD是平行四边形,AB=3,则AE 的弧长为( )A .2πB .πC .32πD .39.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①abc >0;②2a+b >0;③b 2﹣4ac >0;④a ﹣b+c >0,其中正确的个数是( )A .1B .2C .3D .410.下列运算正确的是( )A .x 2•x 3=x 6B .x 2+x 2=2x 4C .(﹣2x )2=4x 2D .( a +b )2=a 2+b 2二、填空题(共7小题,每小题3分,满分21分)11.计算2×32结果等于_____. 12.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.13.分解因式:2x 2﹣8xy+8y 2= .14.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.15.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(3,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y=-x 2-5x+c 经过点B 、C ,则菱形ABCD 的面积为_______.16.因式分解:3a a -=________.17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB=5,则它的周长等于_____.三、解答题(共7小题,满分69分)18.(10分)(1)计算:2201801()(1)4sin60(π1)2-------(2)化简:221a 4a 2a 1a 2a 1a 1---÷++++ 19.(5分)如图1,AB 为半圆O 的直径,半径的长为4cm ,点C 为半圆上一动点,过点C 作CE ⊥AB ,垂足为点E ,点D 为弧AC 的中点,连接DE ,如果DE=2OE ,求线段AE 的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE 的长度为xcm ,线段DE 的长度为ycm .(当点C 与点A 重合时,AE 的长度为0cm ),对函数y 随自变量x 的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:x/cm0 1 2 3 4 5 6 7 8 y/cm 0 1.6 2.5 3.3 4.0 4.7 5.85.7 当x=6cm 时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE 的长度,填写在表格空白处: (2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE 时,AE 的长度约为 cm .20.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?21.(10分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.22.(10分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?23.(12分)解方程:x2-4x-5=024.(14分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】由图像经过点(0,m )、(4、m )可知对称轴为x=2,由n <m 知x=1时,y 的值小于x=0时y 的值,根据抛物线的对称性可知开口方向,即可知道a 的取值.【题目详解】∵图像经过点(0,m )、(4、m )∴对称轴为x=2, 则-22b a, ∴4a+b=0∵图像经过点(1,n ),且n <m∴抛物线的开口方向向上,∴a >0,故选A.【题目点拨】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.2、A【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:6 700 000=6.7×106, 故选:A【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、A【解题分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【题目详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【题目点拨】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.4、B【解题分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【题目详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、故选B.【题目点拨】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.5、D【解题分析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【题目详解】请在此输入详解!6、B【解题分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【题目详解】解:A 、22990x x --=,2299x x ∴-=,221991x x ∴-+=+,2(1)100x ∴-=,故A 选项正确. B 、2890x x ++=,289x x ∴+=-,2816916x x ∴++=-+,2(4)7x ∴+=,故B 选项错误.C 、22740t t --=,2274t t ∴-=,2722t t ∴-=,274949221616t t ∴-+=+,2781()416t ∴-=,故C 选项正确. D 、23420x x --=,2342x x ∴-=,24233x x ∴-=,244243939x x ∴-+=+,2210()39x ∴-=.故D 选项正确.故选:B .【题目点拨】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7、C【解题分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【题目详解】方程变形得:x (x ﹣1)=0,可得x =0或x ﹣1=0,解得:x 1=0,x 1=1.故选C .【题目点拨】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.8、B【解题分析】∵四边形AECD 是平行四边形,∴AE=CD ,∵AB=BE=CD=3,∴AB=BE=AE ,∴△ABE 是等边三角形,∴∠B=60°,∴AE 的弧长=6023360ππ⨯⨯=. 故选B.9、D【解题分析】 由抛物线的对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【题目详解】①∵抛物线对称轴是y 轴的右侧,∴ab <0,∵与y 轴交于负半轴,∴c <0,∴abc >0,故①正确;②∵a >0,x=﹣2b a<1, ∴﹣b <2a ,∴2a+b >0,故②正确;③∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故③正确;④当x=﹣1时,y >0,∴a ﹣b+c >0,故④正确.故选D .【题目点拨】 本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.10、C【解题分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【题目详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【题目点拨】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】根据二次根式的乘法法则进行计算即可.【题目详解】()2⨯=⨯=⨯=.23223236故答案为:1.【题目点拨】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.12、【解题分析】∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,∴其概率是=.【题目点拨】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、1(x﹣1y)1【解题分析】试题分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案为:1(x﹣1y)1.考点:提公因式法与公式法的综合运用14、1或1【解题分析】由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【题目详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【题目点拨】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.15、20【解题分析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【题目详解】抛物线的对称轴为x=-5 22ba=-.∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,∴点C的横坐标为-1.∵四边形ABCD为菱形,∴AB=BC=AD=1,∴点D的坐标为(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴,∴S菱形ABCD=AD•OB=1×4=3.故答案为3.【题目点拨】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.16、a (a +1)(a -1)【解题分析】先提公因式,再利用公式法进行因式分解即可.【题目详解】解:3a a -=a(a+1)(a-1)故答案为:a (a +1)(a -1)【题目点拨】本题考查了因式分解,先提公因式再利用平方差公式是解题的关键.17、 .【解题分析】分两种情况讨论:①Rt △ABC 中,CD ⊥AB ,CD=12AB=52;②Rt △ABC 中,AC=12BC ,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为【题目详解】由题意可知,存在以下两种情况:(1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a ,则较长的直角边为2a ,由勾股定理可得:222(2)5a a +=,解得:a =∴此时直角三角形的周长为:5+(2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x 、y ,这有题意可得:①2225x y +=,②S △=1155222xy =⨯⨯, ∴③225xy =,由①+③得:22250x xy y ++=,即2()50x y +=,∴x y +=∴此时这个直角三角形的周长为:综上所述,这个半高直角三角形的周长为:5+故答案为5+或【题目点拨】(1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种.三、解答题(共7小题,满分69分)18、(1)2-(2)-1;【解题分析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【题目详解】(1)2201801()(1)460(1)2sin π-------4141=---=411--=2-(2)2214a 21211a a a a a ---÷++++ =()()222111(1)2a a a a a a +-+-⋅++- =1211a a a +-++ =121a a --+ =()11a a -++=-1【题目点拨】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.19、(1)5.3(2)见解析(3)2.5或6.9【解题分析】(1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数.【题目详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y=()()28048248x xx x⎧-+≤≤⎪⎨-≤≤⎪⎩与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE.故答案为2.5或6.9【题目点拨】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.20、(1)(300﹣10x).(2)每本书应涨价5元.【解题分析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.21、(1) 3.4棵、3棵;(2)1.【解题分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【题目详解】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是12233124854613.430⨯+⨯+⨯+⨯+⨯+⨯=(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有73007030⨯=户,故答案为:1.【题目点拨】此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.22、软件升级后每小时生产1个零件.【解题分析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x-=++,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、x1 ="-1," x2 =5【解题分析】根据十字相乘法因式分解解方程即可.24、(1)12;(2)规则是公平的;【解题分析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.。

聊城市重点中学2024届中考数学仿真试卷含解析

聊城市重点中学2024届中考数学仿真试卷含解析

聊城市重点中学2024届中考数学仿真试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分) 1.一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断2.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十 .问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503y y x x ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .15022503y y x x ⎧-=⎪⎪⎨⎪-=⎪⎩3.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( ) AB .C .D .44.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D5.估计26的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--7.如图,A 、B 、C 是⊙O 上的三点,∠BAC =30°,则∠BOC 的大小是( )A .30°B .60°C .90°D .45°8.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近 9.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为( )A .4633π-B .8933π-C 3323π-D .8633π10.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D二、填空题(本大题共6个小题,每小题3分,共18分)11.计算a3÷a2•a的结果等于_____.12.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n13.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若CGGB1k=,则ADAB=(用含k的代数式表示).14.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.15.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.16.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.三、解答题(共8题,共72分)17.(8分)(1)计算:3tan30°+|2﹣3|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣22xy yx-)÷222x yx xy-+,其中x=2,y=2﹣1.18.(8分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M 是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=274,求a的值;(3)若∠BMC=2∠ABM,求MNNB的值.19.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.20.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)21.(8分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°(1)如图2,当△ABO是等边三角形时,求证:OE=12 AB;(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=12 AB;(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,①试探究α、β之间存在的数量关系?②结论“OE=12AB”还成立吗?若成立,请你证明;若不成立,请说明理由.22.(10分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?23.(12分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,3 1.732).24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 组别 分数段 频次 频率 A 60≤x <70 17 0.17 B 70≤x <80 30 a C 80≤x <90 b 0.45 D90≤x <10080.08请根据所给信息,解答以下问题: (1)表中a=______,b=______;(2)请计算扇形统计图中B 组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.参考答案一、选择题(共10小题,每小题3分,共30分) 1、A 【解题分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【题目详解】21,1,14145a b c b ac ==-=-∴∆-=+=∴方程有两个不相等的实数根.故选A. 【题目点拨】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 2、A 【解题分析】设甲的钱数为x ,人数为y ,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x ,y 的二元一次方程组,此题得解. 【题目详解】解:设甲的钱数为x ,乙的钱数为y ,依题意,得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩.故选A . 【题目点拨】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 3、B 【解题分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解. 【题目详解】解:∵圆内接正六边形的边长是1, ∴圆的半径为1. 那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2. ∴圆的内接正方形的边长是. 故选B . 【题目点拨】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答. 4、C【解题分析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C . 5、D 【解题分析】寻找小于26的最大平方数和大于26的最小平方数即可. 【题目详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【题目点拨】本题考查了二次根式的相关定义. 6、D 【解题分析】将各选项的点逐一代入即可判断. 【题目详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象; 当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D . 【题目点拨】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 7、B 【解题分析】【分析】欲求∠BOC ,又已知一圆周角∠BAC ,可利用圆周角与圆心角的关系求解. 【题目详解】∵∠BAC=30°,∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),故选B.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、D【解题分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【题目详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【题目点拨】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.9、D【解题分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【题目详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵BD 的长为43π , ∴6041803R ππ= 解得:R =4,∴AB =AD cos30°=,∴BC =12AB =∴AC BC =6,∴S △ABC =12×BC ×AC =12×6= ∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =260483603ππ⨯=故选:D . 【题目点拨】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键. 10、B 【解题分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【题目详解】1.732≈-,()1.7323 1.268---≈ , ()1.73220.268---≈, ()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近, 故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、a 1【解题分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【题目详解】解:原式=a 3﹣1+1=a 1.故答案为a 1.【题目点拨】本题考查了同底数幂的乘除法,关键是掌握计算法则.12、3n+1.【解题分析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题解析:故剪n 次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.13、1k 2+。

山东省聊城市中考数学预测试卷

山东省聊城市中考数学预测试卷

中考数学预测试卷(二)题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.在-4,2,-1,3,-2这五个数中,最小的数是( )A. B. 2 C. D. 3−4−12.下列图案中既是轴对称又是中心对称图形的是( )A. B. C. D.3.下列运算正确的是( )A. B.a2+a3=a5(−2a2)3=−6a6C. D.(2a+1)(2a−1)=2a2−1(2a3−a2)÷a2=2a−14.如图是由我市某中学楼层间的两个台阶组成的几何体,已知两个台阶的高度和宽度是相同的,据此可判断此几何体的三视图是( )A. B. C. D.5.下列说法中不正确的是( )A. 经过有交通信号灯的路口,遇到红灯是随机事件B. 某妇产医院里,下一个出生的婴儿是女孩是必然事件C. 367人中至少有2人生日公历相同是确定事件()D. 长分别为3,5,9厘米的三条线段不能围成一个三角形是确定事件6.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是( )A. B. C. D. 60∘80∘100∘120∘7.某中学随机抽取了该校50名学生,他们的年龄如表所示: 年龄(单位:岁)1213 14 15 人数12 14 186这50名学生年龄的众数和中位数分别是( )A. 13岁、14岁B. 14岁,14岁C. 14岁,13岁D. 14岁,15岁8.如图,直线y =x +与y =kx -1相交于点P ,点P 的纵坐标为32,则关于x 的不等式x +>kx -1的解集在数轴上表示正确1232的是( )A.B.C.D.9.如图,在矩形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( )A. 3B. 154C. 5D. 15210.如图,在平面直角坐标系中,△ABC 绕某一点P 旋转一定的角度得到△A ′B ′C ′,根据图形变换前后的关系可得点P 的坐标为( )A. B. C. D. (0,1)(1,−1)(0,−1)(1,0)11.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①2a +b <0;②abc >0;③4a -2b +c >0;④a +c >0,其中正确结论的个数为( )A. 4个B. 3个C. 2个D. 1个12.现有一张圆心角为108°,半径为4cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为1cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的面积为( )A. B. C. D. 0.8πcm 2 3.2πcm 24πcm 2 4.8πcm 2二、填空题(本大题共5小题,共15.0分)13.已知关于x 的方程3a +x =-5的解为2,a 的值是______ .x 214.计算:|2-|-的结果是______ .8215.如图,点D 、E 分别为△ABC 的边AB 、AC 的中点,同时,点F 在DE 上,且∠AFB =90°,已知AB =5,BC =8,那么EF 的长为______.16.自2015年以来,我市全民健康活动风生水起,健身设备不断完善,逐步走在全省先进行列,在这样的大环境下,某中学根据自身实际情况,开设了“A :踢毽子,B :篮球,C :跳绳,D ;乒乓球”四项运动项目,且要求每位同学必须选择其中一项,为了了解学生最喜欢哪一项运动项目,学校随机抽取了部分学生进行调查,并将调查结果绘制成了如图所示的统计图,根据统计图,参加调查的学生总最喜欢跳绳运动项目的学生数为______ .17.如图①所示的正三角形纸板的边长为1,周长记为P 1,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边一次剪去一块更小的正三角板(即12其边长为前一块被减掉正三角形纸板边长的)后,得图③,图④,…,记第n 12(n ≥3)块纸板的周长为P n ,则P n -P n -1= ______ (用含n 的代数式表示)三、解答题(本大题共8小题,共69.0分)18.先化简再求值:,其中a =2,b =-1.a 2−b 2a 2−ab ÷(a +2ab +b 2a )19.如图,在▱ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB ,交CB 的延长线于点G ,∠G =90°.求证:四边形DEBF 是菱形.20.一个不透明的口袋里装有分别标有汉字“幸”、“福”、“聊”、“城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“福”的概率为多少?(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成“幸福”或“聊城”的概率.21.新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?22.在徒骇河观景堤坝上有一段斜坡,为了方便游客通行,现准备铺上台阶,某施工队测得斜坡上铅锤的两棵树间水平距离AB=4米,斜坡距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°)(2)若这段斜坡用厚度为15cm的长方体台阶来铺,需要铺几级台阶?(最后一个高不足15cm时,按一个台阶计算)(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)23.如图,反比例函数y =的图象与一次函数y =kx -3的图象在第一象限内相交于点A ,4x 且点A 的横坐标为4.(1)求点A 的坐标及一次函数的解析式;(2)若直线x =2与反比例函数和一次函数的图象分别交于点B 、C ,求线段BC 的长.24.如图,在△ABC 中,∠A =45°,以AB 为直径的⊙O 交于AC 的中点D ,连接CO ,CO的延长线交⊙O 于点E ,过点E 作EF ⊥AB ,垂足为点G .(1)求证:BC 时⊙O 的切线;(2)若AB =2,求线段EF 的长.25.如图,在平面直角坐标系中,矩形OABC的边OA=4,OC=3,且顶点A、C均在坐标轴上,动点M从点A出发,以每秒1个单位长度的速度沿AO向终点O移动;点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x <4)时,过点N作NP⊥BC交BO于点P,连接MP.(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);(2)设△OMP的面积为S,求S与x之间的函数表达式;若存在最大值,求出S 的最大值;(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP是等腰三角形?若存在,求出x的值;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵正数大于负数∴可排除2和3又∵|-4|>|-2|>|-1|∴-4<-2<-1∴最小的数是-4故选A.先根据各数的符号找出其中的负数,再根据其绝对值的大小,找出其中最小的数.本题主要考查了有理数大小的比较,解决问题的关键是掌握:正数大于0,0大于负数,两个负数,绝对值大的反而小.2.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、既是轴对称又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A.a2与a3不能合并,故本项错误;B.(-2a2)3=-8a6,故本项错误;C.(2a+1)(2a-1)=4a2-1,故本项错误;D.(2a3-a2)÷a2=2a-1,本项正确,故选:D.A.根据合并同类项法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据多项式除以单项式判断.本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟练掌握运算法则是解题的关键.4.【答案】A【解析】解:结合分析知A选项符合,故选A.从正面看,是一个正方形,正方形的左上角缺一个角;从左面看,是一个正方形中间多一横;从上面看,也是一个正方形中间多一竖.本题考查了简单组合体的三视图的知识,用到的知识点为:主视图,左视图,俯视图分别为从正面,左面,上面看得到的图形.5.【答案】B【解析】解:A、经过有交通信号灯的路口,遇到红灯是随机事件;故正确;B、某妇产医院里,下一个出生的婴儿是女孩是随机事件;故错误;C、367人中至少有2人生日(公历)相同是必然事件,即是确定事件;故正确;D、长分别为3,5,9厘米的三条线段不能围成一个三角形是不可能事件,即是确定事件;故正确.故选B.直接根据随机事件与确定事件的定义求解即可求得答案.此题考查了随机事件与确定事件的定义.注意不可能事件与必然事件都属于确定事件.6.【答案】C【解析】解:∵QR∥OB,∠AOB=40°,∴∠AQR=∠AOB=40°,∵OP=QP,∴∠PQO=∠AOB=40°,∵∠AQR+∠PQO+∠PQR=180°,∴∠PQR=180°-2∠AQR=100°.故选C由QR∥OB,∠AOB=40°,根据两直线平行,同位角相等,即可求得∠AQR的度数,又由∠AOB的两边OA,OB都为平面反光镜,根据平行线的性质,可得∠OQP=∠AQR=40°,然后又三角形外角的性质,求得∠QPB的度数.此题考查了平行线的性质、三角形外角的性质以及反射的性质.此题难度不大,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.7.【答案】C【解析】解:中位数=(13+13)÷2=13;数据14出现了18次,次数最多,所以众数是14.故选C.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.主要考查了众数,中位数的概念.要掌握这些基本概念才能熟练解题.8.【答案】A【解析】解:把y=代入y=x+,得=x+,解得x=-1.当x>-1时,x+>kx-1,所以关于x的不等式x+>kx-1的解集为x>-1,用数轴表示为:.故选:A.先把y=代入y=x+,得出x=-1,再观察函数图象得到当x>-1时,直线y=x+都在直线y=kx-1的上方,即不等式x+>kx-1的解集为x>-1,然后用数轴表示解集.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.【答案】B【解析】解:设ED=x,则AE=6-x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=3.75,∴ED=3.75.故选:B.首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.10.【答案】B【解析】解:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1).故选:B.根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,熟练掌握网格结构,找出对应点的位置是解题的关键.11.【答案】C【解析】【分析】本题考查的是二次函数的图象与系数的关系有关知识,根据抛物线的开口方向和对称轴判断①;根据抛物线与y轴的交点和对称轴判断②;根据x=-2时,y <0判断③;根据x=±1时,y>0判断④.【解答】解:①∵抛物线开口向下,∴a<0,∵-<1,∴2a+b<0,①正确;②抛物线与y轴交于正半轴,∴c>0,∵->0,a<0,∴b>0,∴abc<0,②错误;③当x=-2时,y<0,∴4a-2b+c<0,③错误;x=±1时,y>0,∴a-b+c>0,a+b+c>0,∴a+c>0,④正确,故选C.12.【答案】A【解析】解:2π=,解得:n=90°,∵扇形彩纸片的圆心角是108°∴剪去的扇形纸片的圆心角为108°-90°=18°.剪去的扇形纸片的圆心角为18°.减去的扇形纸片的面积为=0.8πcm2,故选A.已知扇形底面半径是1cm,就可以知道展开图扇形的弧长是2πcm,根据弧长公式l=nπr÷180得到减去的圆心角的度数,然后根据扇形的面积公式计算.本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.13.【答案】-2【解析】解:把x=2代入方程得:3a+2=1-5,解得:a=-2,故答案为:-2.把x=2代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【答案】-22【解析】解:原式=2-2-=-2,故答案为2.根据绝对值和合并同类二次根式的法则进行计算即可.本题考查了实数的运算,掌握绝对值运算和合并同类项是解题的关键.15.【答案】1.5【解析】解:∵DE是△ABC的中位线,∴DE=BC=4.∵∠AFB=90°,D是AB的中点,∴DF=AB=2.5,∴EF=DE-DF=4-2.5=1.5.故答案为:1.5.利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF=AB.所以由图中线段间的和差关系来求线段EF的长度即可本题考查了三角形的中位线定理的应用,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半,题目比较好,难度适中.16.【答案】40【解析】解:80÷40%=200(人),跳绳运动项目的学生数为200-80-30-50=40(人),故答案为40.先计算总人数,再用总人数减去其他三个项目的人数,即可得出答案.本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.【答案】(1)n−12【解析】解:∵P1=1+1+1=3,P2=1+1+=,P3=1+1+×3=,P4=1+1+×2+×3=,…∴p3-p2=-==()2;P4-P3=-==()3,…则P n-P n-1=()n-1.故答案为:.利用等边三角形的性质(三边相等)求出等边三角形的周长P 1,P 2,P 3,P 4,根据周长相减的结果能找到规律即可求出答案.此题考查图形的变化规律,解答此题的关键是通过观察图形,分析、归纳发现其中的运算规律,并应用规律解决问题.18.【答案】解:原式=÷ (a +b)(a−b)a(a−b)a 2+2ab +b 2a =• a +b a a (a +b )2=,1a+b 当a =2,b =-1时,原式=1.【解析】首先把第一个分式进行化简,计算括号内的式子,然后把除法转化为乘法,进行化简,最后代入数值计算即可.考查了分式的化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.为了降低计算的难度,杜绝繁琐的计算,本题代数式结构简单,化简后的结果简单,计算简单,把考查重点放在化简的规则和方法上.19.【答案】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∵点E 、F 分别是AB 、CD 的中点,∴BE =AB ,DF =CD .1212∴BE =DF ,BE ∥DF ,∴四边形DFBE 是平行四边形,∵∠G =90°,AG ∥BD ,AD ∥BG ,∴四边形AGBD 是矩形,∴∠ADB =90°,在Rt △ADB 中,∵E 为AB 的中点,∴AE =BE =DE ,∴四边形DEBF 是菱形.【解析】根据已知条件证明BE=DF ,BE ∥DF ,从而得出四边形DFBE 是平行四边形,再证明DE=BE ,根据邻边相等的平行四边形是菱形,从而得出结论.本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,正确得出ED=BE 是解题关键.20.【答案】解:(1)∵一个不透明的口袋里装有分别标有汉字“幸”、“福”、“聊”、“城”的四个小球,∴从中任取一个球,球上的汉字刚好是“福”的概率为:; 14(2)画树状图得:∵共有16种不同取法,能满足要求的有4种,∴小颖取出的两个球上汉字恰能组成“幸福”或“聊城”的概率==.41614【解析】(1)由一个不透明的口袋里装有分别标有汉字“幸”、“福”、“聊”、“城”的四个小球,除汉字不同之外,小球没有任何区别,由概率公式求解即可求得答案; (2)首先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“幸福”或“聊城”的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【答案】解:设每台冰箱的定价应为x 元,依题意得,(x−2500)(8+2900−x 50•4)=5000解方程得x 1=x 2=2750,经检验x 1=x 2=2750符合题意.答:每台冰箱的定价应为2750元.【解析】本题主要考查一元二次方程的应用.关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每台的盈利×销售的件数=5000元,即可列方程求解.22.【答案】解:(1)cos ∠ABC =≈0.94,AB BC ∴∠ABC ≈20°,由题意得,∠D =∠ABC ≈20°;(2)EF =DE •sin ∠D =85×0.34=28.9米,28.9×100÷15≈193,答:需要铺193级台阶.【解析】(1)利用余弦的定义求出∠ABC 的度数,根据平行线的性质得到答案; (2)利用正弦的定义求出EF 的长,根据题意计算即可.本题考查的是解直角三角形的应用-坡度坡角问题,熟记锐角三角函数的定义、掌握坡度的概念是解题的关键.23.【答案】解:(1)∵点A (4,m )在反比例函数y =的图象上,4x ∴m ==1,44∴A (4,1),把A (4,1)代入一次函数y =kx -3,得4k -3=1,∴k =1,∴一次函数的解析式为y =x -3;(2)∵直线x =2与反比例和一次函数的图象分别交于点B 、C ,∴当x =2时,y B ==2,42y C =2-3=-1,∴线段BC 的长为|y B -y C |=2-(-1)=3.【解析】(1)由已知先求出m ,得出点A 的坐标,再把A 的坐标代入一次函数y=kx-3求出k 的值即可求出一次函数的解析式.(2)把x=2代入y=和y=x-3,得出点B 和点C 的纵坐标,即可求出线段BC 的长.此题考查的知识点是反比例函数综合应用,解决本题的关键是利用反比例函数求得关键点点A 的坐标,然后利用待定系数法即可求出函数的解析式.24.【答案】(1)证明:连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴BD ⊥AC ,∵AD =CD ,∴AB =BC ,∴∠A =∠ACB =45°,∴∠ABC =90°,∴BC 是⊙O 的切线;(2)解:∵AB =2,∴BO =1,∵AB =BC =2,∴CO ==,BO 2+BC 25∵EF ⊥AB ,BC ⊥AB ,∴EF ∥BC ,∴△EGO ∽△CBO ,∴,EG 2=15∴EG =,255∴EF =2EG =.455【解析】(1)连接BD ,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)根据AB=2,则圆的直径为2,所以半径为1,即OB=OE=1,利用勾股定理求出CO 的长,再通过证明△EGO ∽△CBO 得到关于EG 的比例式可求出EG 的长,进而求出EF 的长.本题考查了切线的判定与性质、相似三角形的判定于性质以及勾股定理的运用,熟练掌握切线的判定和性质是解题的关键.25.【答案】解:(1)∵矩形OABC 中,OA =4,OC =3,∴B 点坐标为(4,3).如图,延长NP ,交OA 于点G ,则PG ∥AB ,OG =CN =x .∵PG ∥AB ,∴△OPG ∽△OBA ,∴=,即=,PG AB OG OA PG 3x 4解得:PG =x ,34∴点P 的坐标为(x ,x );34(2)∵在△OMP 中,OM =4-x ,OM 边上的高为x ,34∴S =(4-x )•x =-x 2+x ,12343832∴S 与x 之间的函数表达式为S =-x 2+x (0<x <4).3832配方,得S =-(x -2)2+,3832∴当x =2时,S 有最大值,最大值为;32(3)存在某一时刻,使△OMP 是等腰三角形.理由如下:①如备用图1,过点P 作PG ⊥AO 于点G ,若PO =PM ,则OG =GM =CN =x ,即3x =4,②如备用图2,过点P 作PG ⊥AO 于点G ,若OP =OM ,CN =x ,则OP =4-x ,由勾股定理,得OB ===5,OC 2+BC 232+42∵NP ∥OC ,∴=,OP OB CNCB 即=,OP 5x 4∴OP =x ,54即x =4-x ,54解得:x =,169③如备用图3,过点P 作PQ ⊥OA ,垂足为Q ,若OM =PM 时,则PM =OM =4-x ,OQ =CN =x ,则MQ =2x -4,在Rt △MPQ 中,PQ 2+QM 2=MP 2,即(x )2+(2x -4)2=(4-x )2,34解得:x =,12857综上所述,当x 的值为秒或秒或秒时,△OMP 是等腰三角形.4316912857【解析】(1)根据矩形OABC 中OA=4,OC=3以及矩形的性质,得出B 点坐标,再由PG ∥AB ,得出△OPG ∽△OBA ,利用相似三角形对应边成比例得出P 点坐标;(2)利用PG 以及OM 的长表示出△OMP 的面积,再根据二次函数的性质求出最大值即可;(3)△OMP 是等腰三角形时,分三种情况:①PO=PM ;②OP=OM ;③OM=PM .画出图形,分别求出即可.此题主要考查了四边形综合题、矩形的性质、相似三角形的判定与性质、二次函数的性质、等腰三角形的性质、勾股定理等知识,综合性较强,难度适中.利用数形结合、分类讨论以及方程思想是解题的关键.。

聊城市2020年中考数学预测试题(四)有答案精析

聊城市2020年中考数学预测试题(四)有答案精析

山东省聊城市2020年中考数学预测试卷(四)(解析版)一、选择题:本大题共12小题,每小题3分1.在﹣,0,﹣2,1,﹣1这五个数中,最大的数和最小的是的和是()A.0 B.﹣C.﹣2 D.﹣12.直线a,b,c,d的位置如图所示,若∠1=∠2=90°,∠3=42°,那么∠4等于()A.130°B.138°C.140°D.142°3.我市某中学为了了解2020年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中司机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是()A.1200名学生B.1200名学生的期末数学成绩C.200名学生D.200名学生的期末数学成绩4.由四个小正方体构成的一个几何体(如下左图),其主视图是()A. B. C. D.5.下列计算中,正确的是()A.2a2+3a2=5a2B.(a﹣b)2=a2﹣b2C.a3•a2=a6D.(﹣2a3)2=8a66.不等式组的解集在数轴上表示为()A. B. C. D.7.下列命题中真命题的个数是()①用四舍五入法对0.05049取近似值为0.050(精确到0.001);②若代数式有意义,则x的取值范围是x≤﹣且x≠﹣2;③任意画一个等边三角形,它是轴对称图形;④月球距离地球表面约为384000000米,这个距离用科学记数法表示为3.84×108米.A.1 B.2 C.3 D.48.为调查聊城市某村开展“要致富,多读书”活动的效果,小红利用周末随机抽查了该村部分村民在一周内的阅读时间,并将结果绘制成如图两幅不完整的统计图,则本次调查的阅读时间的中位数和众数分别为()A.4小时,5小时B.5小时,4小时C.4小时,4小时D.5小时,5小时9.如图是每个面上都有一个汉字的正方体的表面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是()A.我B.爱C.聊D.城10.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早起,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考数据:≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),y与x之间的函数关系如图中折线所示,根据图象得到下列结论,其中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为166km/hD.慢车的速度为125km/h12.如图,对折矩形纸片ABCD,使BC与AD重合,折痕为EF,把纸片展平;再一次折叠纸片,使BC与EF重合,折痕为GH,把纸片展平;再一次折叠纸片,使点A落在GH 上的点N处,并使折痕经过点B,折痕BM交GH于点I.若AB=4cm,则GI的长为()A.cm B.cm C.cm D.cm二、填空题:本大题共5小题,每小题3分,共15分13.一元二次方程x2﹣8x﹣1=0的解为______.14.化简2b2+(a+b)(a﹣b)﹣(a﹣b)2=______.15.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D 到BC的距离为3,则BD=______.16.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0.其中所有正确的结论是______(填写序号)17.在数学活动中,小明为了求+…+的值(结果用n表示),设计如图所示的几何图形,请你利用这个几何图形求+…+的值为______.三、解答题:本大题共8小题,共69分18.解方程组.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.20.已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,在x轴上存在一点M,使MA+MB 最小,求点M的坐标.21.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F 在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.22.某班“2020年联欢会”中,有一个摸奖游戏:有4张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,2张是哭脸,现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现在小芳和小霞分别有一次翻牌机会,若正面是笑脸,则小芳获奖;若正面是哭脸,则小霞获奖,她们获奖的机会相同吗?判断并说明理由.(2)如果小芳、小明都有翻两张牌的机会.翻牌规则:小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.请问他们获奖的机会相等吗?判断并说明理由.23.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?24.(10分)(2020•聊城模拟)如图,AB是⊙O的直径,过圆心O作弦AD的垂线交半⊙O于点E,交AC于点C,使∠BED=∠C.(1)求证:AC是半⊙O的切线;(2)若AC=8,cos∠BED=,求线段AD的长.25.(12分)(2020•杨浦区三模)矩形OABC在平面直角坐标系中的位置如图所示,AC 两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.2020年山东省聊城市中考数学预测试卷(四)参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.在﹣,0,﹣2,1,﹣1这五个数中,最大的数和最小的是的和是()A.0 B.﹣C.﹣2 D.﹣1【考点】实数大小比较.【分析】根据实数的大小比较法则找出最大的数和最小的数,计算即可.【解答】解:﹣2<﹣<﹣1<0<1,∴最大的数是1,最小的数是﹣2,﹣2+1=﹣1,故选:D.2.直线a,b,c,d的位置如图所示,若∠1=∠2=90°,∠3=42°,那么∠4等于()A.130°B.138°C.140°D.142°【考点】平行线的判定与性质.【分析】根据平行线的判定定理得到a∥b,根据平行线的性质求出∠5的度数,根据邻补角的定义计算即可.【解答】解:∵∠1=∠2=90°,∴a∥b,∴∠5=∠3=42°,∴∠4=180°﹣42°=138°,故选:B.3.我市某中学为了了解2020年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中司机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是()A.1200名学生B.1200名学生的期末数学成绩C.200名学生D.200名学生的期末数学成绩【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【解答】解:在这次调查中,样本是:200名学生的期末数学成绩;故选:D.4.由四个小正方体构成的一个几何体(如下左图),其主视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】从正面看到的图叫做主视图.根据图中正方体摆放的位置判定则可.【解答】解:左面可看见一个小正方形,中间可以看见上下各一个,右面只有一个.故选C.5.下列计算中,正确的是()A.2a2+3a2=5a2B.(a﹣b)2=a2﹣b2C.a3•a2=a6D.(﹣2a3)2=8a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】分别利用合并同类项法则以及积的乘方运算法则、同底数幂的乘法运算法则和完全平方公式计算得出答案.【解答】解:A、2a2+3a2=5a2,故此选项正确;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣2a3)2=4a6,故此选项错误;故选:A.6.不等式组的解集在数轴上表示为()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.7.下列命题中真命题的个数是()①用四舍五入法对0.05049取近似值为0.050(精确到0.001);②若代数式有意义,则x的取值范围是x≤﹣且x≠﹣2;③任意画一个等边三角形,它是轴对称图形;④月球距离地球表面约为384000000米,这个距离用科学记数法表示为3.84×108米.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】①利用近似值的表示方法进而得出答案;②直接利用代数式有意义的条件,结合二次根式的性质求出答案;③直接利用等边三角形的性质得出答案;④直接利用科学记数法的表示方法得出答案.【解答】解:①用四舍五入法对0.05049取近似值为0.050(精确到0.001),因为千分位后面的数字是4,不够5,要舍去,于是近似值为0.050,故此选项正确;②代数式有意义,则x的取值范围是x≤且x≠﹣2,故此选项错误;③任意画一个等边三角形,它是轴对称图形,正确;④月球距离地球表面约为384000000米,这个距离用科学记数法表示为3.84×108米,正确.故选:C.8.为调查聊城市某村开展“要致富,多读书”活动的效果,小红利用周末随机抽查了该村部分村民在一周内的阅读时间,并将结果绘制成如图两幅不完整的统计图,则本次调查的阅读时间的中位数和众数分别为()A.4小时,5小时B.5小时,4小时C.4小时,4小时D.5小时,5小时【考点】条形统计图;扇形统计图;中位数;众数.【分析】根据阅读时间为3小时的人数以及百分比求出总人数,再根据总人数以及阅读时间为4小时的百分比求出阅读时间为4小时的男生人数,最后求出阅读时间6小时的男生人数即可解决问题.【解答】解:∵阅读时间达3小时的共10人,占总数的20%,∴总人数=10÷20%=50(人),∵阅读时间为4小时的人数占总人数的32%,∴阅读时间为4小时的人数=50×32%=16(人),∴阅读时间为4小时的男生人数为16﹣8=8(人),∴阅读时间为6小时的人数为50﹣6﹣4﹣8﹣8﹣12﹣3=1(人),∴阅读时间为3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.9.如图是每个面上都有一个汉字的正方体的表面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是()A.我B.爱C.聊D.城【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“丽”是相对面,“爱”与“聊”是相对面,“美”与“城”是相对面.故选D.10.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早起,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考数据:≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米【考点】解直角三角形的应用-仰角俯角问题.【分析】先根据锐角三角函数的定义用tanα与tanβ表示出AB的长,再由tanαtanβ=1即可得出结论.【解答】解:∵BC=10米,BD=25米,∴在Rt△ABC中,AB=BC•tanα=10tanα①,在Rt△ABD中,AB=BD•tanβ=25tanβ②.∵tanαtanβ=1,∴AB2=10tanα•25tanβ=250,∴AB==5≈5×3.162=15.81(米).故选A.11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),y与x之间的函数关系如图中折线所示,根据图象得到下列结论,其中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为166km/hD.慢车的速度为125km/h【考点】一次函数的应用.【分析】由图象可知点B的纵坐标为0,即两车间距离为0,可判断A;B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地的情况;由慢车行驶全程1000km用时12h可得慢车速度,即可判断D;根据相遇时两车行驶路程等于甲、乙两地距离,列方程可得快车速度,即可判断C.【解答】解:点B表示两车出发4h后相遇,故A选项错误;B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用12h 到达甲地,故B选项错误;由图可知,甲、乙两地相距1000km,慢车行驶全程共用12h到达甲地,∴慢车的速度为=83km/h,故D选项错误;设快车速度为xkm/h,则4x+4×83=1000,解得:x=166,即快车速度为166km/h,故C选项正确;故选:C.12.如图,对折矩形纸片ABCD,使BC与AD重合,折痕为EF,把纸片展平;再一次折叠纸片,使BC与EF重合,折痕为GH,把纸片展平;再一次折叠纸片,使点A落在GH 上的点N处,并使折痕经过点B,折痕BM交GH于点I.若AB=4cm,则GI的长为()A.cm B.cm C.cm D.cm【考点】翻折变换(折叠问题).【分析】如图,首先由翻折变换的性质证明BN=BA=4,MN=MA(设为λ);由勾股定理求得BQ=;在直角△MNP中,由勾股定理列出关于λ的方程,求出λ;运用△BGI∽△BAM,列出关于GI的比例式,即可解决问题.【解答】解:如图,分别过点M、N作MP⊥GH、NQ⊥BC于点P、Q;则MP=AG=3,NQ=BG=1,GN=BQ,GP=MA;由题意得:BN=BA=4,MN=MA(设为λ),由勾股定理得:BQ=,∴PN=﹣λ;由勾股定理得:,解得:λ=;由题意得:GI∥AM,∴△BGI∽△BAM,∴,∴GI==,故选D.二、填空题:本大题共5小题,每小题3分,共15分13.一元二次方程x2﹣8x﹣1=0的解为x1=4+,x2=4﹣.【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣8的一半的平方.【解答】解:由原方程,得x2﹣8x=1,配方,得x2﹣8x+42=1+42,即(x﹣4)2=17,开方,得x﹣4=±,解得x1=4+,x2=4﹣.故答案是:x1=4+,x2=4﹣.14.化简2b2+(a+b)(a﹣b)﹣(a﹣b)2=2ab.【考点】整式的混合运算.【分析】原式第二项利用平方差公式化简,最后一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=2b2+a2﹣b2﹣a2+2ab﹣b2=2ab.故答案为:2ab.15.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D 到BC的距离为3,则BD=5.【考点】角平分线的性质.【分析】根据角平分线的性质得到AD=3,由勾股定理求得BD.【解答】解:∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,点D到BC的距离为3,∴AD=3,∵AB=4,∴BD==5.16.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0.其中所有正确的结论是①③(填写序号)【考点】二次函数图象与系数的关系.【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴b+b+c<0,即3b+2c<0,故④错误;故答案为:①③.17.在数学活动中,小明为了求+…+的值(结果用n表示),设计如图所示的几何图形,请你利用这个几何图形求+…+的值为1﹣.【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】根据图形和正方形的面积公式分别求出、+,从中找出规律,得到答案.【解答】解:=1﹣,+=1﹣,…+…+=1﹣,故答案为:1﹣.三、解答题:本大题共8小题,共69分18.解方程组.【考点】解二元一次方程组.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x﹣3③,代入②,得3x+4×(2x﹣3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为.(6分)19.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用网格特点和旋转的性质画出点A、B的对应点A1、B1,则可得到△A2B2C1;由A2和A点坐标可判断△ABC平移的方向与距离,从而写出B2和C2的坐标,然后描点得到△A2B2C2;(2)根据旋转的性质,连结B1B2和A1A2,它们的交点即为P点,然后写出P点坐标.【解答】解:(1)如图,△A1B1C和△A2B2C2为所作;(2)如图,点P为所作,P点坐标为(,﹣1).20.已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,在x轴上存在一点M,使MA+MB 最小,求点M的坐标.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)设出A点的坐标,根据△OAP的面积为1,求出xy的值,得到反比例函数的解析式;(2)作点A关于x轴的对称点A′,连接A′B,交x轴于点M,得到MA+MB最小时,点M的位置,求出直线A′B的解析式,得到它与x轴的交点,即点M的坐标.【解答】解:(1)设A点的坐标为(x,y),则OP=x,PA=y,∵△OAP的面积为1,∴xy=1,xy=2,即k=2,∴反比例函数的解析式为:y=.(2)作点A关于x轴的对称点A′,连接A′B,交x轴于点M,MA+MB最小,点B的横坐标为2,点B的纵坐标为y==1,两个函数图象在第一象限的图象交于A点,2x=,x±1,y=±2,A点的坐标(1,2),A关于x轴的对称点A′(1,﹣2),设直线A′B的解析式为y=kx+b,,解得,直线y=3x﹣5与x轴的交点为(,0),则M点的坐标为(,0).21.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F 在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【考点】菱形的判定;线段垂直平分线的性质;平行四边形的判定.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC ⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.22.某班“2020年联欢会”中,有一个摸奖游戏:有4张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,2张是哭脸,现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现在小芳和小霞分别有一次翻牌机会,若正面是笑脸,则小芳获奖;若正面是哭脸,则小霞获奖,她们获奖的机会相同吗?判断并说明理由.(2)如果小芳、小明都有翻两张牌的机会.翻牌规则:小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.请问他们获奖的机会相等吗?判断并说明理由.【考点】列表法与树状图法;概率公式.【分析】(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)首先根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率,比较即可求得答案.【解答】解:(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴获奖的概率是;(2)他们获奖机会不相等,理由如下:小芳:笑1 笑2 哭1 哭2第一张第二张笑1 笑1,笑1 笑2,笑1 哭1,笑1 哭2,笑1笑2 笑1,笑2 笑2,笑2 哭1,笑2 哭2,笑2哭1 笑1,哭1 笑2,哭1 哭1,哭1 哭2,哭1哭2 笑1,哭2 笑2,哭2 哭1,哭2 哭2,哭2∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,∴P(小芳获奖)==;小明:第一张笑1 笑2 哭1 哭2第二张笑1 笑2,笑1 哭1,笑1 哭2,笑1笑2 笑1,笑2 哭1,笑2 哭2,笑2哭1 笑1,哭1 笑2,哭1 哭2,哭1哭2 笑1,哭2 笑2,哭2 哭1,哭2∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,∴P(小明获奖)==,∵P(小芳获奖)≠P(小明获奖),∴他们获奖的机会不相等.23.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)设动漫公司第一次购x套玩具,那么第二次购进2x套玩具,根据第二次比第一次每套进价多了10元,可列方程求解.(2)根据利润=售价﹣进价,根据且全部售完后总利润率不低于20%,这个不等量关系可列方程求解.【解答】解:(1)设动漫公司第一次购x套玩具,由题意得:=10,解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套.(2)设每套玩具的售价y元,由题意得:≥20%,解这个不等式,y≥200答:每套玩具的售价至少是200元.24.(10分)(2020•聊城模拟)如图,AB是⊙O的直径,过圆心O作弦AD的垂线交半⊙O于点E,交AC于点C,使∠BED=∠C.(1)求证:AC是半⊙O的切线;(2)若AC=8,cos∠BED=,求线段AD的长.【考点】切线的判定;解直角三角形.【分析】(1)根据OC⊥AD,可得∠AOC+∠2=90°,然后根据∠BED=∠C,证明∠AOC+∠C=90°,据此即可证得C是圆O的切线;(2)在直角△AOC中利用三角函数和勾股定理求得OC和OA的长度,然后利用三角形的面积公式求得AF的长,再根据垂径定理求解.【解答】解:(1)AC与圆O相切.证明如下:∵OC⊥AD,∴∠AOC+∠2=90°∵∠C=∠BED=∠2,∴∠AOC+∠C=90°,即∠CAO=90°,∴AC与⊙O相切;(2)∵∠BED=∠C,∴直角△AOC中,cosC==cos∠BED=,∴OC===10,∴AO===6,又∵S△AOC=AC•OA=OC•AF,∴AF===,∵OC⊥AD,∴AC=2AF=.25.(12分)(2020•杨浦区三模)矩形OABC在平面直角坐标系中的位置如图所示,AC 两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.【考点】二次函数综合题.【分析】(1)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案.(2)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案.(3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况.【解答】解:(1)∵四边形OABC为矩形,C(0,3)∴BC∥OA,点D的纵坐标为3.∵直线与BC边相交于点D,∴.∴x=2,故点D的坐标为(2,3)(2)∵若抛物线y=ax2+bx经过A(6,0)、D(2,3)两点,∴解得:∴抛物线的解析式为.(3)∵抛物线的对称轴为x=3,设对称轴x=3与x轴交于点P1,∴BA∥MP1,∴∠BAD=∠AMP1.①∵∠AP1M=∠ABD=90°,∴△ABD∽△MP1A.∴P1(3,0).②当∠MAP2=∠ABD=90°时,△ABD∽△MAP2.∴∠AP2M=∠ADB∵AP1=AB,∠AP1P2=∠ABD=90°,∴△AP1P2≌△ABD∴P1P2=BD=4.∵点P2在第四象限,∴P2(3,﹣4).答:符合条件的点P有两个,P1(3,0)、P2(3,﹣4).。

山东省聊城市2019-2020学年中考数学考前模拟卷(4)含解析

山东省聊城市2019-2020学年中考数学考前模拟卷(4)含解析

山东省聊城市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( )A .﹣3B .0C .6D .92.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32πB .83πC .6πD .以上答案都不对3.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下4.如图,AB//CD ,130∠=o ,则2∠的大小是( )A .30oB .120oC .130oD .150o5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .6.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+1603)C.1603米D.360米7.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6yx=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.25-B.121-C.15-D.124-8.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°9.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C10.如图,四边形ABCD内接于⊙O,F是¶CD上一点,且¶¶DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A .45°B .50°C .55°D .60°11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .612.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A .9πB .10πC .11πD .12π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A 在反比例函数y=k x(x >0)的图像上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使CD=2AD ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E ,若△ABC 的面积为6,则k 的值为________.14.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.15.如图,点A在反比例函数y=3x(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.16.下面是“利用直角三角形作矩形”尺规作图的过程.已知:如图1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如图2,(1)分别以点A、C为圆心,大于12AC同样长为半径作弧,两弧交于点E、F;(2)作直线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD.∴四边形ABCD就是所求作的矩形.老师说,“小明的作法正确.”请回答,小明作图的依据是:__________________________________________________.17.如图,在△ABC 中,AB=AC,BC=8. Oe是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则tan ABC的值为_____________.18.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD 的面积为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD 中,AD =4,点E 在边AD 上,连接CE ,以CE 为边向右上方作正方形CEFG ,作FH ⊥AD ,垂足为H ,连接AF.(1)求证:FH =ED ;(2)当AE 为何值时,△AEF 的面积最大?20.(6分)已知:如图,AB 为⊙O 的直径,C 是BA 延长线上一点,CP 切⊙O 于P ,弦PD ⊥AB 于E ,过点B 作BQ ⊥CP 于Q ,交⊙O 于H ,(1)如图1,求证:PQ =PE ;(2)如图2,G 是圆上一点,∠GAB =30°,连接AG 交PD 于F ,连接BF ,若tan ∠BFE =33,求∠C 的度数;(3)如图3,在(2)的条件下,PD =63,连接QC 交BC 于点M ,求QM 的长.21.(6分)已知:如图,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG=EF.(1)求证:四边形ABED 是菱形;(2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED .22.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点.请画出平移后的△DEF .连接AD 、CF ,则这两条线段之间的关系是________.23.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________;(2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.24.(10分)如图,已知∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 与BD 相交于点O .求证:EC=ED .25.(10分)如图,在四边形ABCD 中,AB=BC=1,3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).26.(12分)计算:sin30°•tan60°+cos30cot45cos60︒-︒︒..27.(12分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.2.D【解析】【分析】从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=()603616103603π⨯-=π. 故选D .【点睛】本题的关键是理解出,线段AB 扫过的图形面积为一个环形.3.C【解析】分析:本题可设玻璃球的体积为x ,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x ,则有33001804300180x x -⎧⎨-⎩<> 解得30<x <1.故一颗玻璃球的体积在30cm 3以上,1cm 3以下.故选C .点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.4.D【解析】【分析】依据AB//CD ,即可得到1CEF 30∠∠==o ,再根据2CEF 180∠∠+=o ,即可得到218030150∠=-=o o o .【详解】解:如图,AB//CD Q ,1CEF 30∠∠∴==o ,又2CEF 180∠∠+=o Q ,218030150∠∴=-=o o o ,故选:D .【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等.5.B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B .考点:简单组合体的三视图.6.C【解析】【分析】过点A 作AD ⊥BC 于点D.根据三角函数关系求出BD 、CD 的长,进而可求出BC 的长.【详解】如图所示,过点A 作AD ⊥BC 于点D.在Rt △ABD 中,∠BAD =30°,AD =120m ,BD =AD∙tan30°=120×3403; 在Rt △ADC 中,∠DAC =60°,CD =AD∙tan60°=120×3=1203∴BC =BD +DC =40312031603+=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值. 7.B【解析】【分析】根据矩形的性质得到,CB ∥x 轴,AB ∥y 轴,于是得到D 、E 坐标,根据勾股定理得到ED ,连接BB′,交ED 于F ,过B′作B′G ⊥BC 于G ,根据轴对称的性质得到BF=B′F ,BB′⊥ED 求得BB′,设EG=x ,根据勾股定理即可得到结论.【详解】解:∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴.∵点B 坐标为(6,1),∴D 的横坐标为6,E 的纵坐标为1.∵D ,E 在反比例函数6y x =的图象上, ∴D (6,1),E (32,1), ∴BE=6﹣32=92,BD=1﹣1=3, ∴22BE BD +3132.连接BB′,交ED 于F ,过B′作B′G ⊥BC 于G . ∵B ,B′关于ED 对称,∴BF=B′F ,BB′⊥ED ,∴BF•ED=BE•BD 3132BF=3×92, ∴13∴13. 设EG=x ,则BG=92﹣x . ∵BB′2﹣BG 2=B′G 2=EB′2﹣GE 2, ∴222299()()()2213x x --=-,∴x=45 26,∴EG=45 26,∴CG=42 13,∴B′G=54 13,∴B′(4213,﹣213),∴k=1 21 .故选B.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.8.A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.9.A【解析】【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.10.B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵»»,∠BAC=25°,DF BC∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.11.C【解析】【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.12.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】连结BD,利用三角形面积公式得到S△ADB=13S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【详解】连结BD,如图,∵DC=2AD,∴S△ADB=12S△BDC=13S△BAC=13×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.4.8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.15.1.【解析】【分析】根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.【详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,3m),作AE⊥x轴于点E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴APAO=OEEA,即3aa=3mm,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=10,∴正方形OABC的面积=OA2=1.故答案为1.【点睛】本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90°的平行四边形为矩形【解析】【分析】先利用作法判定OA=OC,OD=OB,则根据平行四边形的判定方法判断四边形ABCD为平行四边形,然后根据矩形的判定方法判断四边形ABCD为矩形.解:由作法得EF垂直平分AC,则OA=OC,而OD=OB,所以四边形ABCD为平行四边形,而∠ABC=90°,所以四边形ABCD为矩形.故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90°的平行四边形为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.2【解析】【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.试题解析:如图,作AD⊥BC,垂足为D,连接OB,∵AB=AC,∴BD=CD=12BC=12×8=4,∴AD垂直平分BC,∴AD过圆心O,在Rt△OBD中,OD=222254OB BD-=-=3,∴AD=AO+OD=8,在Rt△ABD中,tan∠ABC=84ADBD==2,故答案为2.【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.18.6【分析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=12AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=12AB,由AP2-PB2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=12CD·PD可得.【详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB ,∴AD=BD=CD=12 AB,∵AP2-PB2=48 ,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48, ∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=12CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)AE=2时,△AEF的面积最大.【解析】【分析】(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,,∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=AE·FH=a(4-a)=-(a-2)2+2,∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.20.(1)证明见解析(2)30°919【解析】试题分析:(1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得3x,在Rt△BEF中,由tan∠BFE=33BE=33x,从而可得AB=43x,则OP=OA=23x,结合3x可得3x,这样即可得到sin∠OPE=12 OEOP,由此可得∠OPE=30°,则∠C=30°;(3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ 为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=33Rt△EPO 中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG 中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=33BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=319,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,连接OP,PB,∵CP切⊙O于P,∴OP ⊥CP 于点P ,又∵BQ ⊥CP 于点Q ,∴OP ∥BQ ,∴∠OPB=∠QBP ,∵OP=OB ,∴∠OPB=∠OBP ,∴∠QBP=∠OBP ,又∵PE ⊥AB 于点E ,∴PQ=PE ;(2)如下图2,连接OP ,∵CP 切⊙O 于P ,∴90OPC OPQ ∠=∠=︒∴90C COP ∠+∠=︒∵PD ⊥AB∴ 90PEO AEF BEF ∠=∠=∠=︒∴90EPO COP ∠+∠=︒∴C EPO ∠=∠在Rt FEA ∆中,∠GAB=30°∴设EF=x ,则tan303AE EF x =÷︒=在Rt FEB ∆中,tan ∠3∴·tan 33BE EF BFE x =∠= ∴43AB AE BE x =+= ∴23AO PO x == ∴3EO AO AE x =-=∴在Rt ∆PEO 中, 1sin 2EO EPO PO ∠== ∴C EPO ∠=∠=30°;(3)如下图3,连接BG ,过点O 作OK HB ⊥于K ,又BQ ⊥CP ,∴90OPQ Q OKQ ∠=∠=∠=︒,∴四边形POKQ 为矩形,∴QK=PO,OK//CQ ,∴C KOB ∠=∠=30°,∵⊙O 中PD ⊥AB 于E ,3,AB 为⊙O 的直径,∴PE= 123 根据(2)得30EPO ∠=︒,在Rt ∆EPO 中,cos PE EPO PO ∠=, ∴cos 33cos306PO PE EPO =÷∠=︒=,∴OB=QK=PO=6,∴在Rt KOB ∆中,sin KB KOB OB ∠=, ∴01sin30632KB OB =⋅=⨯=, ∴QB=9,在△ABG 中,AB 为⊙O 的直径,∴∠AGB=90°,∵∠BAG=30°,∴BG=6,∠ABG=60°, 过点G 作GN ⊥QB 交QB 的延长线于点N ,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos ∠GBQ=3,GN=BQ·sin ∠GBQ=33∴QN=QB+BN=12,∴在Rt △QGN 中,2212(33)319+=,∵∠ABG=∠CBQ=60°,∴BM 是△BQG 的角平分线,∴QM :GM=QB :GB=9:6,∴QM=9919319155⨯=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ 、BG 的长及∠CBQ=∠ABG=60°;(2)再过点G 作GN ⊥QB 并交QB 的延长线于点N ,解出BN 和GN 的长,这样即可在Rt △QGN 中求得QG 的长,最后在△BQG 中“由角平分线分线段成比例定理”即可列出比例式求得QM 的长了.21. (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形.再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EF AB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠=o ,90AFE o ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论. 详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CF AD CA =. 同理 EF CF AB CA= . 得:FG AD =EF AB∵FG EF =,∴AD AB =.∴四边形ABED 是菱形.(2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE . 得90DHE ∠=o .同理90AFE o ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE .∴EH DE EF AE =. ∴21·2AE EF ED =.点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.22.见解析【解析】(1)如图:(2)连接AD 、CF ,则这两条线段之间的关系是AD =CF ,且AD ∥CF .23.(1)1(3,3)A -,1(4,1)B -,1(0,2)C -;(2)作图见解析,面积71724π=+,172l =. 【解析】【分析】(1)由ABC ∆在平面直角坐标系中的位置可得A 、B 、C 的坐标,根据关于原点对称的点的坐标特点即可得1A 、1B 、1C 的坐标;(2)由旋转的性质可画出旋转后图形22A BC ∆,利用面积的和差计算出22∆A BC S ,然后根据扇形的面积公式求出2扇形CBC S ,利用ABC ∆旋转过程中扫过的面积222S A BC CBC S S ∆+=扇形进行计算即可.再利用弧长公式求出点C 所经过的路径长.【详解】解:(1)由ABC ∆在平面直角坐标系中的位置可得: (3,3)-A ,(4,1)B -,(0,2)C ,∵111A B C ∆与ABC ∆关于原点对称,∴1(3,3)A -,1(4,1)B -,1(0,2)C -(2)如图所示,22A BC ∆即为所求,∵(4,1)B -,(0,2)C , ∴22(40)(12)17=--+-=BC∴2扇形CBC S 2290(17)1734604πππ⋅⨯===BC , ∵22∆A BC S 1117421213142222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴ABC ∆在旋转过程中所扫过的面积: 222扇形∆+=A BC CBC S S S 71724π=+ 点C 所经过的路径:9017171802π==l . 【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.24.见解析【解析】【分析】由∠1=∠2,可得∠BED=∠AEC ,根据利用ASA 可判定△BED ≌△AEC ,然后根据全等三角形的性质即可得证.【详解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED ,即∠BED=∠AEC ,在△BED 和△AEC 中,,∴△BED ≌△AEC (ASA ),∴ED=EC .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.25.(1)135BAD ∠=︒;(2)212ABC ADC ABCD S S S ∆∆+=+=四边形 【解析】【分析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【详解】解:(1)连接AC ,如图所示:∵AB=BC=1,∠B=90°∴=又∵AD=1,∴ AD 2+AC 2=3 CD 22=3即CD 2=AD 2+AC 2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC 和△ADC 是Rt △,∴S 四边形ABCD =S △ABC +S △ADC =1×1×12×12=122+ . 【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.262- 【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=1122122--. 27.(1)抛物线解析式为22725()326y x =--,顶点为;(2)274()252S x =--+,1<x <1;(3)①四边形OEAF 是菱形;②不存在,理由见解析【解析】【分析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A 、B 两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA 面积的2倍,因此可根据E 点的横坐标,用抛物线的解析式求出E 点的纵坐标,那么E 点纵坐标的绝对值即为△OAE 的高,由此可根据三角形的面积公式得出△AOE 的面积与x 的函数关系式进而可得出S 与x 的函数关系式.(3)①将S=24代入S ,x 的函数关系式中求出x 的值,即可得出E 点的坐标和OE ,OA 的长;如果平行四边形OEAF 是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF 是否为菱形.②如果四边形OEAF 是正方形,那么三角形OEA 应该是等腰直角三角形,即E 点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E 点.【详解】(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+. 把A 、B 两点坐标代入上式,得227(6)0,2{7(0) 4.2a k a k -+=-+=解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即-y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF Y 的对角线, ∴2172264()2522OAE S S OA y y x ==⨯⨯⋅=-=--+V . 因为抛物线与x 轴的两个交点是(1,0)的(1,0),所以,自变量x 的 取值范围是1<x <1.(3)①根据题意,当S = 24时,即274()25242x --+=. 化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4).点E 1(3,-4)满足OE = AE ,所以OEAF Y 是菱形;点E 2(4,-4)不满足OE = AE ,所以OEAF Y 不是菱形.②当OA ⊥EF ,且OA = EF 时,OEAF Y 是正方形,此时点E 的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF Y 为正方形.。

初中数学山东省聊城市中考模拟数学考试卷含答案(Word版).docx

初中数学山东省聊城市中考模拟数学考试卷含答案(Word版).docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx 题评卷人得分(每空xx 分,共xx分)试题1:的立方根是()A. B. C. D.试题2:在中,,那么的值是()A. B. C. D.试题3:下列计算错误的是()A. B. C. D.试题4:如图,中,,要判定四边形是菱形,还需要添加的条件是()A. B. C. D.平分[来试题5:纽约、悉尼与北京的时差如下表(整数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京6月15日23时,悉尼、纽约的时间发别是()A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时 D.6月15日21时;6月16日12时试题6:如图是由若跟个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()试题7:如果关于的分式方程时出现增根,那么的值为()A. B. C. D.试题8:计算的结果为()A.5 B. C. D.试题9:如图是由8个全等的矩形组成的大正方形,线段AB的端点都在校矩形的顶点上,如果点P是某个校矩形的顶点,连接,那么使为等腰直角三角形的点的个数是()A.个 B.个 C.个 D.个试题10:will满足顾客的需求,某商场将奶糖,酥心糖和水果糖合称什锦糖出售,已知奶糖的售价为每千克40元,酥心糖每千克20元,水果糖为每千克15元,混合后什锦糖的售价为每千克()A.25元 B.28.5 元 C.29元 D.34.5元试题11:如图,将绕点顺时针旋转,使点落在边上点处,此时,点的对应点,恰好落在的延长线上,下列结论错误的是()2A. B. C. D.平分试题12:端午节前夕,在东昌湖矩形的第七届全面健身运动会龙舟比赛中,甲乙两队500米的赛道上,所划行的路程与事件之前的函数关系式如图所示,下列说法错误的是()A.乙队比甲队提前025min到达终点B.档乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟块40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255m/min试题13:因式分解:.试题14:已知圆锥形工件的底面直径是,母线长为,其侧面展开图的圆心角的度数为.试题15:不等式组的解集是.试题16:如图任意选择一对有序整数,其中,每一对这样的有序整整数对被选择的可能性是相等的,那么关于的方程有两个相等的实数根的概率.试题17:如图,在平面直角坐标系中,直线的函数表达式为,点的坐标为,以为圆心,为半径画圆,交直线于点,角轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,按此坐法进行下去,其中的长为.试题18:先化简,再求值:,其中试题19:如图, 求证:试题20:为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题;(1)八年级三班共有多少同学?(2)条形统计图中(3)扇形统计图中,试计算植树2颗的人数所对应的扇形圆心角的度数.试题21:耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图①),数学兴趣小组的小亮同学在塔上观景点处,利用测角仪测得运河两岸上的两点的俯角分别为,并测得塔底点到点的距离为米(在同一直线上,如图②)求运河两岸的两点的距离(精确到1米)(参考数据:)试题22:在推进城乡义务教育均衡发展工作中,我是某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生电脑和教师用笔记本电脑,其中乡镇中学更新学生用电脑台和教师用笔记本电脑台,共花费万元,乡镇中学更新学生用电脑台和教师用笔记本电脑台,共花费万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少元?(2)经统计,全部乡镇中学需购进的教师用笔记本电脑台数比购进的学生用电脑台数的少台,在两种型号电脑的总费用不超过预算万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?试题23:如图,分别位于反比例函数在第一象限图象上的两点与原点在同一直线上,且.(1)求反比例函数的表达式;(2)过点作轴的平行线交的图象于点,连接,求的面积.试题24:如图,是的外接圆,点在边上,的平分线交于点,连接,过点作的平行线,与的延长线相交于点.(1)求证:是的切线;(2)求证:;(3)当时,求线段的长.[w~试题25:如图,已知抛物线与轴交于点,与轴交于点,点是线段上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点的坐标;(2)当点移动抛物线的什么位置时,使得,求出此时点的坐标;(3)点从点出发沿线段上方的抛物线向终点移动,在移动的过程中,点的横坐标以每秒1个单位长度的速度变动,与此同时点以每秒1个单位长度的速度沿向终点移动,点移动到各自终点时停止,当两个动点移动秒时,求四边形的面积关于的函数表达式,并求为何值时,有最大值,最大值是多少?[来[www.z%^*z~step.co#m]试题1答案:A试题2答案:B试题3答案:C试题4答案:D试题5答案:A试题6答案:C试题7答案:D试题8答案:A试题9答案: B试题10答案: C试题11答案: C试题12答案: D试题13答案:试题14答案:试题15答案:试题16答案:试题17答案:试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:。

山东省聊城市2019-2020学年中考数学四月模拟试卷含解析

山东省聊城市2019-2020学年中考数学四月模拟试卷含解析

山东省聊城市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A .3B .4C .2D .12.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )A .B .C .D .3.若矩形的长和宽是方程x 2-7x+12=0的两根,则矩形的对角线长度为( )A .5B .7C .8D .104.计算327-的值为( )A .26-B .-4C .23-D .-25.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π6.如果t>0,那么a+t 与a 的大小关系是( )A .a+t>aB .a+t<aC .a+t≥aD .不能确定7.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .8.定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题9.能说明命题“对于任何实数a ,|a|>﹣a”是假命题的一个反例可以是( )A .a =﹣2B .a =13C .a =1D .a =210.二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB.一次函数y=ax +c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>011.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab12.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B 在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣12x+2 C.y=﹣3x﹣2 D.y=﹣x+2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.14.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=______15.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.16.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.17.因式分解:4ax2﹣4ay2=_____.18.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.20.(6分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法写出所有可能出现的结果;(2)求两次取出的小球上的数字之和为奇数的概率P.21.(6分)如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.22.(8分)如图,抛物线y=12x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD 为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.23.(8分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?24.(10分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.25.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?26.(12分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=(用含a,b的代数式表示);若b=3,tan∠DCE=13,求a的值.27.(12分) (1)计算:(a -b)2-a(a -2b);(2)解方程:23x =3x.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用抛物线的对称性可确定A 点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x 轴有2个交点可对②进行判断;由抛物线开口向下得到a >0,再利用对称轴方程得到b=2a >0,则可对③进行判断;利用x=-1时,y <0,即a-b+c <0和a >0可对④进行判断.【详解】∵抛物线的对称轴为直线x=-1,点B 的坐标为(1,0),∴A (-3,0),∴AB=1-(-3)=4,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线开口向下,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∴ab >0,所以③错误;∵x=-1时,y <0,∴a-b+c <0,而a >0,∴a(a-b+c)<0,所以④正确.故选A.【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.2.A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.A【解析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长=.故选A.4.C【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】原式故选C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.5.B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选B6.A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.7.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.8.C【解析】试题分析:(1)根据二次函数y=ax 2+bx 的性质a 、b 同号对称轴在y 轴左侧,a 、b 异号对称轴在y 轴右侧即可判断.(2)根据“派生函数”y=ax 2+bx ,x=0时,y=0,经过原点,不能得出结论.(1)∵P (a ,b )在y=上, ∴a 和b 同号,所以对称轴在y 轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax 2+bx , ∴x=0时,y=0,∴所有“派生函数”为y=ax 2+bx 经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型9.A【解析】【分析】将各选项中所给a 的值代入命题“对于任意实数a ,a a >- ”中验证即可作出判断.【详解】(1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ;(2)当13a =时,11 33a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ; (3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ;(4)当2a =2?2a a ,=-=-a a >-, ∴当2a =“对于任意实数a ,a a >- ”是假命题,故不能D ; 故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键. 10.D【解析】解:A .由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,由x=﹣1,得出2b a-=﹣1,故b >0,b=2a ,则b >a >c ,故此选项错误; B .∵a >0,c <0,∴一次函数y=ax+c 的图象经一、三、四象限,故此选项错误;C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c >0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;故选D.点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.11.B【解析】【分析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2•a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.12.D【解析】【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D 的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=1,。

2024年山东省聊城市中考数学模拟押题预测试题

2024年山东省聊城市中考数学模拟押题预测试题

2024年山东省聊城市中考数学模拟押题预测试题一、单选题1.计算2024202512()2⨯-的结果为( )A .2-B .2C .12-D .122.下列食品标识中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.一个由长方体截去一部分后得到的几何体如图水平放置,其左视图是( )A .B .C .D .4.下列运算正确的是( ) A .235a a a += B .()42828a a =C .222734a b a b a b -=D .222()a b a b --=-5.一副直角三角板如图放置,点C 在FD 的延长线上,AB //CF ,∠F =∠ACB =90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°6.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800km ,乘坐高铁列车比普通快车能提前8h 到达,已知高铁列车的平均行驶速度是普通快车的2倍,设普通快车的平均行驶速度为km /h x ,根据题意所列出的方程为( ) A .2800280028x x ⨯=+ B .2800228008x x ⨯=+ C .2800280082x x-= D .2800280082x x-= 7.某校举行以《大国重器》为主题的演讲比赛,其中一个环节是即兴演讲,该环节共有三个题目,由电脑随机给每位参赛选手派发一个题目,选手根据题目对应的内容进行90秒演讲.小亮和小敏都参加了即兴演讲,则电脑给他们派发的是同一个题目的概率是( ) A .13B .16C .14D .128.如图是著名画家达•芬奇的名画《蒙娜丽莎》.画中的脸部被包在矩形ABCD 内,点E 是AB 的黄金分割点,BE AE >,若2AB =,则FC 长为( )A 1+B 1-C .3D 2-9.如图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点F 的坐标为( )A .20,3⎛⎫ ⎪⎝⎭B .(0,1)C .(0,2)D .30,2⎛⎫ ⎪⎝⎭10.设二次函数的图象与一次函数()20y dx e d =+≠图象交于点()1,0x ,若函数12y y y =+;()()()112120,y a x x x x a x x =--≠≠的图象与x 轴仅有一个交点,则( )A .()12a x x d -=B .()12a x x d -=-C .()12a x x d +=D .()12a x x d +=-二、填空题11.已知113a b +=,则2322a ab ba ab b-+-+的值是.12.学习圆锥有关知识的时候,李老师要求每个同学都做一个圆锥模型,小华用家里的旧纸板做了一个高为3cm ,母线长为5cm 的圆锥模型,则此圆锥的侧面积为2cm .(用含π的代数式表示)13.已知近视眼镜的度数y (度)与镜片焦距x (m )满足的关系式为y =100x,则当近视眼镜为200度时,镜片焦距为.14.如图,AB 是O e 的直径,点E ,C 在O e 上,点A 是»EC 的中点,过点A 画O e 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为15.在平面直角坐标系xOy 中,将函数33y x =+的图象向上平移5个单位长度,平移后的图象与x 轴、y 轴分别交于A ,B 两点,则AOB V 的面积为.16.如图1,点P 从ABC V 的顶点A 出发,沿A B C →→匀速运动到点C ,图2是点P 运动时,线段AP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC V 的面积为 .三、解答题 17.解答下列各题(1)1113-⎛⎫- ⎪⎝⎭(2)解不等式组()312232132x x x x ⎧-≤-⎪⎨+++>⎪⎩,并将其解集在数轴上表示出来.18.某中学为保障广大师生卫生健康,欲从商场购进一批免洗手消毒液和84消毒液.如果购买30瓶免洗手消毒液和60瓶84消毒液,共需花费360元,如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费500元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有商品均打九折;方案二,购买10瓶免洗手消毒液送5瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,若只能选择一种方案购买,请向学校选择哪种方案更节约钱?节约多少钱?19.某中学积极推进校园文学创作,倡导每名学生每学期向校报编辑部至少投1篇稿件.学期末,学校对七、八年级的学生投稿情况进行调查. 【数据的收集与整理】分别从两个年级随机抽取相同数量的学生,统计每人在本学期投稿的篇数,制作了频数分布表.【数据的描述与分析】(1)求扇形统计图中圆心角n 的度数,并通过计算补全条形统计图.(2)根据频数分布表分别计算相关统计量:请直接写出x = ______,y = ______; 【数据的应用与评价】(3)从中位数、众数、平均数中,任选一个统计量,对七、八年级学生的投稿情况进行比较,并做出评价.20.如图,ABCD Y 中,E 为CD 边上一点,F 为AB 延长线上一点,且DE BF =.过F 作FG AE ∥,交CB 的延长线于点G .(1)求证:ADE GBF △≌△;(2)当BE BC =时,判断四边形AGFE 的形状,并说明理由.21.某校数学实践活动小组要测量校园内一棵古树的高度,王朵同学带领甲、乙、丙三位小组成员进行此项实践活动.如图,某一时刻,古树AB 在太阳光下的影子末端落在地面上的点C 处,甲同学在点C 处竖立一根2.5米高的标杆CP ,同一时刻标杆CP 在太阳光下的影子末端落在地面上的点D 处,乙同学测得标杆的影长CD 为2米,丙同学站在距离C 点13米远的点E 处,他的眼睛在点F 处,观察得知,树顶A 的仰角21AFG ∠=︒,已知丙同学的眼睛到地面的距离 1.6EF =米,点B C D E 、、、在同一水平直线上,,,AB BE PC BE FE BE ⊥⊥⊥,图中所有的点都在同一平面内;(1)请你在图中画出点D 的位置(不写画法,保留画图痕迹)(2)请你根据上述甲、乙、丙三位同学的测量数据,计算这棵古树的高度AB . 【参考数据:sin210.36,cos210.93,tan210.38︒≈︒≈︒≈】22.如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O e 交AC 于点F ,D 为BC 的中点,直线DF 与直线AB 交于点E .(1)求证:DF 为O e 的切线; (2)若3CD =,3tan 4DAB ∠=,求EF 的长. 23.如图,已知抛物线 ²23y ax ax =-+与x 轴交于点 ()1,0A -和点B ,与y 轴交于点C ,连接AC ,过B 、C 两点作直线.(1)求此抛物线的函数表达式.(2)将直线BC 向下平移(0)m m >个单位长度,交抛物线于B '、C '两点,在直线B C ''上方的抛物线上是否存在定点D ,无论m 取何值时,都是点D 到直线B C ''的距离最大.若存在,请求出点D 的坐标;若不存在,请说明理由.(3)若点P 是抛物线上一动点,且满足45PBC ACO ∠+∠=︒,请直接写出点P 的坐标. 24.综合与实践折纸是一项有趣的活动,在折纸过程中,我们通过研究图形的性质可以发展空间观念,在思考问题的过程中建立几何直观.在一次综合实践课上,小丽尝试将手中的矩形纸片进行折叠.如图1,在矩形纸片ABCD 中,6,10AB AD ==,折叠纸片使点A 落在点A '处,并使折痕经过点B ,得到折痕BP ,把纸片展开,连接,A B A P ''.【问题解决】(1)如图2,连接PC ,在折叠过程中,当点A '恰好落在线段PC 上时,则tan A BC '∠=,AP =. (2)如图3,连接BD ,将矩形纸片ABCD 折叠,使得点C 的对应点C 落在对角线BD 上,并使折痕经过点D ,得到折痕DQ ,再把纸片展开,连接C Q '.当点A '也落在对角线BD 上时,试判断四边形BPDQ 的形状,并说明理由. 【拓展延伸】(3)如图4,延长BA '交线段CD 的延长线于点Q ,交线段AD 于点M .当M D Q △的三边中有两边长之比为1:2时,请直接写出AP 的长.。

山东省聊城市中考数学四模试卷

山东省聊城市中考数学四模试卷

山东省聊城市中考数学四模试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)有理数,,,,,中,其中等于1的个数有()。

A . 3个B . 4个C . 5个D . 6个2. (2分)若(a-3)(a+5)=a2+ma+n,则m、n的值分别为()A . -3,5B . 2,-15C . -2,-15D . 2,153. (2分)神州7号运行1小时的行程约28 600 000m,用科学记数法可表示为()A . 0.286×108mB . 2.86×107mC . 28.6×106mD . 2.86×105m4. (2分)在平面直角坐标系中,点P(2,﹣7)位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)已知:直线l1∥l2 ,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A . 30°B . 35°C . 40°D . 45°6. (2分)已知样本数据1、2、4、3、5,下列说法错误的是()A . 平均数是3B . 中位数是4C . 极差是4D . 方差是27. (2分)△ABC的一边长为5,另两边分别是方程x2﹣6x+m=0的两根,则m的取值范围是()A . m>B . <m≤9C . ≤m≤9D . m≤8. (2分)矩形具有而菱形不一定具有的性质是()A . 两组对边分别平行B . 对角线相等C . 对角线互相平分D . 两组对角分别相等9. (2分)已知函数和 ,它们在同一平面直角坐标系内的图象大致是().A .B .C .D .10. (2分)如图,在平面直角坐标系中,二次函数y=ax2+mc(a≠0)的图像经过正方形ABOC的三个顶点,且ac=-2,则m的值为()A . 1B . -1C . 2D . -2二、填空题: (共8题;共8分)11. (1分)分式的值为0,则x的值为________.12. (1分)(2019·广州模拟) 分解因式: =________.13. (1分)(2017·石狮模拟) 已知函数满足下列两个条件:①x>0时,y随x的增大而增大;②它的图象经过点(1,2).请写出一个符合上述条件的函数的表达式________.14. (1分)(2011·绍兴) 若点A(1,y1)、B(2,y2)是双曲线y= 上的点,则y1________y2(填“>”,“<”或“=”).15. (1分) (2018九上·拱墅期末) 如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB为4.2米,则该隧道最高点距离地面________米.16. (1分)某几何体的三视图如图所示,则其表面积为________.17. (1分)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是________度.18. (1分)(2018·南宁模拟) 在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为________.三、解答题: (共8题;共81分)19. (10分)计算:(1)﹣ +(2)sin245°﹣ + (﹣2006)0+6tan30°.20. (10分) (2016九下·海口开学考) 化简与计算(1)(﹣2)0+()﹣1+4cos30°﹣|﹣ |.(2)先化简,再求值:÷(﹣a﹣2),其中a= ﹣3.21. (10分)(2018·江油模拟) 如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与反比例函数y2= (k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4 ,cos∠ACH= .(1)求该反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使三角形PAC是等腰三角形?若存在,请求出P点坐标;不存在,请说明理由.22. (5分) (2017八下·民勤期末) 在平面直角坐标系中,△ABO的三个顶点坐标分别为:A(2,3)、B(3,1)、O(0,0).(Ⅰ)将△ABO向左平移4个单位,画出平移后的△A1B1O1 .(Ⅱ)将点O为对称中心°,画出与△ABO成中心对称的△A2B2O.此时四边形ABA2B2的形状?(Ⅲ)在平面上是否存在点D,使得以A、B、O、D为顶点的四边形是平行四边形,若存在请直接写出符合条件的所有点的坐标;若不存在,请说明理由23. (15分) (2019七下·卫辉期中) 某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24. (10分)(2019·喀什模拟) 已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.(1)从口袋中随机取出一个球(不放回),接着再取出一个球,请用树形图或列表的方法求取出的两个都是黄色球的概率;(2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多1,且从口袋中取出一个黄色球的概率为,请问小明又放入该口袋中红色球和黄色球各多少个?25. (6分) (2018八下·太原期中) 如图1,已知射线AP是∠MAN的角平分线,点B为射线AP上的一点且AB=10,过点B分别作BC⊥AM于点C,作BD⊥AN于点D,BC=6.(1)在图1中连接CD交AB于点O.求证:AB垂直平分CD;(2)从A,B两题中任选一题作答,我选择________题A.将图1中的△ABC沿射线AP的方向平移得到△ABC,点A、B、C的对应点分别为A′、B′、C′.若平移后点B的对应点B′的位置如图2,连接DB′.①请在图2中画出此时的△A′B′C′,并在图中标注相应的字母;②若图2中的DB′∥A′C′,写出平移的距离.B.将图1中的△ABC沿射线AP的方向平移得到△A′B′C′,点A、B、C的对应点分别为A′、B′、C′.①在△A′B′C′平移的过程中,若点C′与点D的连线恰好经过点B,请在图3中画出此时的△A′B′C′,并在图中标注相应的字母;②如图3,点C′与点D的连线恰好经过点B,写出此时平移的距离.26. (15分)(2017·环翠模拟) 综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共8题;共81分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、26-1、26-2、。

2024年山东聊城市中考数学押题模拟预测试题

2024年山东聊城市中考数学押题模拟预测试题

2024年山东聊城市中考数学押题模拟预测试题一、单选题1.计算()2024202340.753⎛⎫⨯ ⎪⎝⎭的结果是( ) A .2024 B .34 C .43 D .12.剪纸艺术是中国优秀的传统文化.在下列剪纸图案中,是中心对称图形的是( ) A . B . C . D . 3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( ).A .84610⨯B .84.610⨯C .94.610⨯D .104.610⨯ 4.如图,俯视图是( )A .B .C .D . 5.下列计算正确的是( )A .2=3a a a ⋅B .352()a a =C .333()ab a b =D .632a a a ÷= 6.如图,直线a b P ,ABC V 的顶点C 在直线b 上,直线a 交AB 于点E , 交AC 于点F ,若1150∠=︒,48ABC ∠=︒,则2∠的度数是( )A .18︒B .20︒C .28︒D .30︒7.某中学八年级举行15km 春季远足活动,两小组匀速前进,第一小组的步行速度是第二小组的1.2倍,第一小组比第二小组早0.7h 到达目的地,求两个小组的步行速度.若设第二小组的步行速度为km /h x ,则可列出方程为( )A .15150.71.2x x-= B .15150.71.2x x -= C .15150.71.2x x += D .15150.71.2x x =- 8.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A 、B 恰好分别落在函数()10y x x =-<,()90y x x=>的图象上,则AO BO 的值为( )A .13BCD 9.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AB 与从轮子底部到拉杆顶部的高度CD 之比是黄金比,已知80cm CD =,则AB 的长度是( )A .20)cmB .(80-C .40)cmD .(120-10.如图,在平面直角坐标系中,边长为2的等边三角形AOP 在第二象限,OA 与x 轴重合,将AOP V 绕点O 顺时针旋转60°,得到11AOP V ,再作11AOP V 关于原点O 的中心对称图形,得到22A OP V ,再将22A OP V 绕点O 顺时针旋转60°,得到33A OP V ,再作33A OP V 关于原点O 的中心对称图形,得到44A OP V ,以此类推……,则点2024P 的坐标是( )A .(B .(1,-C .()2,0D .()2,0-二、填空题11.已知2x y +=,5xy =-,则y x x y+=. 12.现有一个圆心角为120︒的扇形纸片,用它恰好围成一个圆雉(接缝忽略不计),底面半径为2cm .该扇形的半径为cm .13.某水果种植基地通过网红带货的形式出售一批黄桃.如图,线段AB 反映了黄桃的日销售量y (kg )与销售单价x (元/kg )之间的函数关系,已知1kg 的黄桃的种植成本是4元.如果某天该网络平台黄桃的售价为9元/kg ,那么该天销售黄桃所获得的利润是 元.14.如图,在O e 中,AB 是O e 的直径,C ,D 是O e 上的点,如果27∠=︒CDB ,那么CBA ∠的度数为.15.如图,在ABC V 中,10AB =,6BC =,8AC =,点P 为线段AB 上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作PM AC ⊥于点M ,作PN BC ⊥于点N ,连结MN ,线段MN 的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为.16.如图,A e 的圆心A 的坐标是()3,0,半径为1,在直角坐标系中,P为直线y =上的动点,过P 作A e 的切线,切点为Q ,则切线长PQ 的最小值是 .三、解答题17.(1112cos301tan602-⎛⎫︒---︒ ⎪⎝⎭ (2)解不等式组()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩. 18.垃圾分类齐参与,美好生活共创建.为巩固创文成果,某社区计划购买甲,乙两种型号的垃圾桶.已知每个甲型垃圾桶比每个乙型垃圾桶少40元,且300元购买甲型垃圾桶的数量与500元购买乙型垃圾桶的数量相同.(1)求甲、乙两种型号的垃圾桶的单价;(2)若需购买甲,乙两种型号的垃圾桶共100个,总费用不超过8500元,至少需购买甲型垃圾桶多少个?19.某校利用“阳光体育大课间”对学校足球队全员进行定点射门训练,每人踢五次,训练结束后,把结果制成了如图1,2所示不完整的折线统计图和扇形统计图.(1)“进球3次”所在扇形的圆心角是;请补充完整折线统计图;(2)若有一名新队员加入足球队,经过五次定点射门后,把进球的结果与原进球结果组成一组新数据,发现平均数变小,求此队员进球的最大值;(3)在此次定点射门训练中进球5次的队员中有2名女生. 学校想从进球5次的队员中选2人参加比赛,请通过列表或树形图的方法求参加比赛的队员是一男一女的概率.20.如图,在ABCD Y 中,BE AD ⊥于点E ,BF CD ⊥于点F ,AC 与BE 、BF 分别交于点G ,H .(1)求证:BAE BCF ∽V V(2)若BG BH =,求证四边形ABCD 是菱形21.“为了安全,请勿超速”.如图,一条公路建成通车,在某路段MN 上限速60千米小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达点B 行驶了5秒,已知60CBN ∠=︒,200BC =米,AC =(1)请求出观测点C 到公路MN 的距离;(2)此车超速了吗?请说明理由.173≈≈.)22.如图,ABC V 中,10AB BC ==,以AB 为直径的O e 交AC 于点D ,过点D 分别作DE AB ⊥于点E ,DF BC ⊥于点F ,延长DE 交O e 于点G ,延长CF 分别交DG 于点H ,交O e 于点M .(1)求证:DF 是O e 的切线;(2)若1tan 2A =,求GH ,HM 的长. 23.如图,抛物线2y x bx c =++与x 轴交于点()1,0A -、B ,与y 轴交于点()0,4C -.(1)求该抛物线的解析式;(2)如图1,点D 是线段OC 上的动点,连接AD 、BD ,若点A 关于BD 的对称点恰好在该抛物线的对称轴上,求点D 的坐标;(3)如图2,动点P 在直线BC 下方的抛物线上,过点P 作PE BC ⊥于点E ,交线段AC 于点F ,过点F 作FG x ⊥轴于点G ,求FG 的最大值.24.王老师在组织同学们进行第一轮数学总复习时,对苏科版八年级下册数学教材第94页第19题进行了重新的探究,请你和王老师一起完成如下的问题探究:问题初探:(1)如图1,在正方形ABCD 中,点E 、F 分别在边BC CD 、上,且AE BF ⊥,垂足为M .那么AE 与BF 相等吗?直接判断:AE _____BF (填“=”或“≠”);问题迁移:(2)如图2,在正方形ABCD 中,点E 、F 、G 分别在边BC 、CD 和DA 上,且GE BF ⊥,垂足为M .那么GE 与BF 相等吗?证明你的结论;问题延伸:(3)王老师将图2的四边形CDGE 沿GE 翻折得四边形PQGE ,如图3,点P 是点C 的对应点,点Q 是点D 的对应点,已知正方形ABCD 的边长为9,3CF =.①若线段PQ 恰好经过点B ,如图4,求AG 的长.②在图3中,连接BQ ,求线段BQ 的最小值.。

2023年山东省聊城市中考模拟数学试题(四)(无答案)

2023年山东省聊城市中考模拟数学试题(四)(无答案)

二0二三年聊城市初中学生学业水平考试数学模拟试题(四)亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站。

请你在答题之前,一定要仔细阅读以下说明:1.试题由选择题和非选择题两部分组成,共6页。

选择题36分,非选择题84分,共120分。

考试时间120分钟。

2.将姓名、考场号、座号、考号填写在试题和答题卡指定的位置。

3.试题答案全部写在答题卡上,完全按照答题卡中的“注意事项”答题。

4.考试结束,答题卡和试题一并交回。

愿你放松心情,积极思维,充分发挥,争取交一份圆满的答卷。

选择题(共36分)一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.9的平方根是( )A .3±B .3C .3D .3±2.在下列的新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.如图所示的几何体由七个大小完全相同的正方体组成,则其左视图是( )A .B .C .D .4.小明从2022年举办的世界电信和信息社会日大会上获悉,目前我国建成5G 基站近160万个,成为全球首个基于独立组网模式规模建设5G 网络的国家,请将数据“160万”用科学记数法表示出来( )A .51610⨯B .61.610⨯C .70.1610⨯D .71.610⨯ 5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C 在直尺的一边上,若129∠=︒,则2∠的度数是( )A .39︒B .51︒C .61︒D .71︒6.某校为了调查该校九年级学生平均每天的睡眠时间,在全校随机抽取了40名学生进行调查,并将收集到的学生平均每天睡眠时间进行了统计,统计情况如下表: 睡眠时间/小时 5 5.5 6 6.5 7 7.5 8 8.5 人数/人 1 1 2 8 12 95 2 请根据统计数据判断下列说法中,不正确的是( )A .众数是7B .中位数是7.5C .样本为40名学生平均每天的睡眠时间D .样本容量是40 7.若关于x ,y 的二元一次方程20ax by +-=的两个解分别是5,3x y =⎧⎨=⎩或1,3.x y =-⎧⎨=-⎩则,a b 的值是( ) A .1,0a b == B .1,1a b ==- C .1,1a b =-= D .1,2a b ==8.下列说法中,①使得3b -+有意义的b 的取值范围是3b ≤;②不等式两边同时乘(或除以)同一个正数,不等号的方向不变;③12x y =-⎧⎨=-⎩,是方程23x y -=的唯一解;④不等式组235324x x +<⎧⎨-≤⎩,的解集为1x <.正确的有( )A .3个B .2个C .1个D .0个9.如图,将ABC △绕点C 旋转60︒得到A B C ''△,已知10,6AC BC ==,则线段AB 扫过的图形面积为( )A .10πB .163πC .313πD .323π 10.随着初中学业水平考试的临近,某校九年级连续四个月开展了学科知识模拟测试,并将测试成绩整理,绘制了如图所示的统计图(四次参加模拟考试的学生人数不变),下列四个结论正确的是( )A .第4月测试成绩“优秀”的学生人数达到100人B .第4月增长的“优秀”人数比第2月增长的“优秀”人数多C .从第1月到第4月,测试成绩“优秀”的学生人数增长最多的是第4月D .从第1月到第4月,测试成绩“优秀”的学生人数在总人数中的占比逐渐增长11.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =,并与x 轴交于,A B 两点,若5OA OB =,则下列结论中正确的是( )A .0abc <B .22()0a c b +-=C .940a c +<D .若m 为任意实数,则224am bm b a +-≤12.如图,在直角坐标系中,点,A B 的坐标力()()0,3,2,0A B -,将ABO △绕点O 按顺时针旋转得到11A B O △,若1AB OB ⊥,则点1A 的坐标为( )A .2545,55⎛⎫ ⎪⎝⎭B .4525,55⎛⎫ ⎪⎝⎭C .613913,1313⎛⎫ ⎪⎝⎭D .913613,1313⎛⎫ ⎪⎝⎭非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.1321sin 45(2)8--+︒-+=______.14.已知:[]x 表示不超过x 的最大整数,例:[][]3.83, 1.22=-=-,现定义:{}[]x x x =-,例 :{}[]1.9 1.9 1.90.9=-=,则{}{}{}4.5 2.32--+-=______.15.如图所示,随机闭合开关123K ,K ,K 中的两个,则能让灯泡2L 发光的概率为______.16.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC △处的点A '处,折痕为DE .如果,,A CEA BDA αβγ∠=∠='∠=',那么,,αβγ之间的关系为______.17.如图,以ABC △的三边为边在BC 上方分别作等边ACD ABE BCF △、△、△,且点A 在BCF △内部.给出以下结论:①四边形ADFE 是平行四边形;②当130BAC ∠=︒时,四边形ADFE 是矩形;③当AB AC =时,四边形ADFE 是菱形;④当AB AC =,且150BAC ∠=︒时,四边形ADFE 是正方形.其中正确结论有______(填上所有正确结论的序号).三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.(本题满分7分)先化简,再求值:221241,0,2,3,4442x x x x x x x x -+⎛⎫⎛⎫-÷-=⎪ ⎪-+-⎝⎭⎝⎭,选择合适的x 的值代入计算.19.(本题满分8分)随着科技的发展,我们迎来了大数据云计算时代,支付方式的转型不仅让大家生活更便捷,而且也改变着人们的消费观念.为了更好地满足顾客的支付需求,我市某商场随机抽取了若干名顾客的支付情况,进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)求出本次调查参与的人数,并将条形统计图补充完整;(2)若某假期该商场有3000人进行购物支付;估计有______人会选择“刷脸或现金”这种支付方式;(3)若甲、乙两人在购物时,选择“刷脸或现金”“刷卡”“支付宝”“微信”(分别用A 、B 、C 、D 表示)付款的可能性相同.请通过列表或画树状图的方法,求两人在购物时,用同一种付款方式的概率.20.(本题满分8分)如图,在ABC △中,点,D E 分别为,BC AC 的中点,连接AD ,过点C 作AD 的平行线,交DE 的延长线于点F ,连接AF .(1)求证:AED CEF △≌△;(2)对ABC △添加一个条件,使四边形ADCF 为菱形,并加以证明.21.(本题满分8分)“满筐圆实骊珠滑,入口甘香冰玉寒”,提子是一种甘甜爽口的水果,富含维生素C ,深受大家喜爱、某水果超市为了解两种提子市场销售情况,购进了一批数量相等的“青提”和“红提”供客户对比品尝,其中购买“青提”用了480元,购买“红提”用了360元,已知每千克“青提”的进价比每千克“红提”的进价多3元.(1)求每千克“红提”和“青提”进价各是多少元.(2)若该水果商城决定再次购买同种“红提”和“青提”共40千克,且再次购买的费用不超过450元,且每种提子进价保持不变,若“红提”的销售单价为13元,“青提”的销售单价为18元,则该水果超市应如何进货,使得第二批的“红提”和“青提”售完后获得利润最大?最大利润是多少?22.(本题满分8分)舍利宝塔算立在临清市城北大运河东岸,与通州燃灯塔、扬州文峰塔、杭州六和塔并称“运河四大名塔”(如图1),周日数学兴趣小组的李华同学在塔上观景点P 处,利用测角仪测得运河两岸上的,A B 两点的俯角分别为22°,37°,并测得塔底点C 到点B 的距离为153米(,,A B C 在同一直线上,如图2),求运河两岸的,A B 两点的距离.(精确到1米,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin220.37︒≈,cos220.93︒≈,tan220.40︒≈)图1 图223.(本题满分8分)如图,反比例函数(0)k y x x=>的图象经过点()3,1,矩形ABCD 的边BC 在x 轴上,E 是矩形ABCD 对角线的交点,且,A E 两点都在反比例函数(0)k y x x=>的图象上,点E 的横坐标为m .(1)求反比例函数的表达式;(2)求点A 的横坐标(用含m 的式子表示);(3)若反比例函数(0)k y x x=>的图象与矩形ABCD 的边CD 6,求ABD ∠的度数. 24.(本题满分10分)如图,CE 是O 的直径,点D 在O 上,AD 与O 相交于点,90C A ∠=︒,连接BC ,且BC 平分ACE ∠.(1)求证:AB 是O 的切线; (2)已知O 的面积为25,3AB AC π=,求切线AB 的长.25.(本题满分12分)如图,抛物线2y x bx c =++与x 轴交于,A B 两点(点A 在点B 的左侧),点A 的坐标为()1,0-,与y 轴交于点()0,3C -,直线:23CD y x =-与x 轴交于点D .动点M 在抛物线上运动,过点M 作MP x ⊥轴,垂足为点P ,交直线CD 于点N .(1)求抛物线的表达式;(2)当点P 在线段OD 上时,CDM △的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点M 在运动过程中,能否使以,,C N M 为顶点的三角形是以NM 为腰的等腰直角三角形?若存在,请直接写出点M 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省聊城市2016年中考数学预测试卷(四)一、选择题:本大题共12小题,每小题3分1.在﹣,0,﹣2,1,﹣1这五个数中,最大的数和最小的是的和是()A.0 B.﹣C.﹣2 D.﹣12.直线a,b,c,d的位置如图所示,若∠1=∠2=90°,∠3=42°,那么∠4等于()A.130°B.138°C.140°D.142°3.我市某中学为了了解2015年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中司机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是()A.1200名学生B.1200名学生的期末数学成绩C.200名学生D.200名学生的期末数学成绩4.由四个小正方体构成的一个几何体(如下左图),其主视图是()A. B.C. D.5.下列计算中,正确的是()A.2a2+3a2=5a2B.(a﹣b)2=a2﹣b2C.a3•a2=a6D.(﹣2a3)2=8a66.不等式组的解集在数轴上表示为()A.B.C.D.7.下列命题中真命题的个数是()①用四舍五入法对0.05049取近似值为0.050(精确到0.001);②若代数式有意义,则x的取值范围是x≤﹣且x≠﹣2;③任意画一个等边三角形,它是轴对称图形;④月球距离地球表面约为384000000米,这个距离用科学记数法表示为3.84×108米.A.1 B.2 C.3 D.48.为调查聊城市某村开展“要致富,多读书”活动的效果,小红利用周末随机抽查了该村部分村民在一周内的阅读时间,并将结果绘制成如图两幅不完整的统计图,则本次调查的阅读时间的中位数和众数分别为()A.4小时,5小时B.5小时,4小时C.4小时,4小时D.5小时,5小时9.如图是每个面上都有一个汉字的正方体的表面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是()A.我B.爱C.聊D.城10.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早起,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考数据:≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),y与x之间的函数关系如图中折线所示,根据图象得到下列结论,其中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为166km/hD.慢车的速度为125km/h12.如图,对折矩形纸片ABCD,使BC与AD重合,折痕为EF,把纸片展平;再一次折叠纸片,使BC与EF重合,折痕为GH,把纸片展平;再一次折叠纸片,使点A落在GH上的点N 处,并使折痕经过点B,折痕BM交GH于点I.若AB=4cm,则GI的长为()A. cm B. cm C. cm D. cm二、填空题:本大题共5小题,每小题3分,共15分13.一元二次方程x2﹣8x﹣1=0的解为______.14.化简2b2+(a+b)(a﹣b)﹣(a﹣b)2=______.15.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D到BC 的距离为3,则BD=______.16.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0.其中所有正确的结论是______(填写序号)17.在数学活动中,小明为了求+…+的值(结果用n表示),设计如图所示的几何图形,请你利用这个几何图形求+…+的值为______.三、解答题:本大题共8小题,共69分18.解方程组.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.20.已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,在x轴上存在一点M,使MA+MB最小,求点M的坐标.21.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.22.某班“2016年联欢会”中,有一个摸奖游戏:有4张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,2张是哭脸,现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现在小芳和小霞分别有一次翻牌机会,若正面是笑脸,则小芳获奖;若正面是哭脸,则小霞获奖,她们获奖的机会相同吗?判断并说明理由.(2)如果小芳、小明都有翻两张牌的机会.翻牌规则:小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.请问他们获奖的机会相等吗?判断并说明理由.23.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?24.(10分)(2016•聊城模拟)如图,AB是⊙O的直径,过圆心O作弦AD的垂线交半⊙O 于点E,交AC于点C,使∠BED=∠C.(1)求证:AC是半⊙O的切线;(2)若AC=8,cos∠BED=,求线段AD的长.25.(12分)(2015•杨浦区三模)矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M 为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.2016年山东省聊城市中考数学预测试卷(四)参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.在﹣,0,﹣2,1,﹣1这五个数中,最大的数和最小的是的和是()A.0 B.﹣C.﹣2 D.﹣1【考点】实数大小比较.【分析】根据实数的大小比较法则找出最大的数和最小的数,计算即可.【解答】解:﹣2<﹣<﹣1<0<1,∴最大的数是1,最小的数是﹣2,﹣2+1=﹣1,故选:D.2.直线a,b,c,d的位置如图所示,若∠1=∠2=90°,∠3=42°,那么∠4等于()A.130°B.138°C.140°D.142°【考点】平行线的判定与性质.【分析】根据平行线的判定定理得到a∥b,根据平行线的性质求出∠5的度数,根据邻补角的定义计算即可.【解答】解:∵∠1=∠2=90°,∴a∥b,∴∠5=∠3=42°,∴∠4=180°﹣42°=138°,故选:B.3.我市某中学为了了解2015年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中司机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是()A.1200名学生B.1200名学生的期末数学成绩C.200名学生D.200名学生的期末数学成绩【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【解答】解:在这次调查中,样本是:200名学生的期末数学成绩;故选:D.4.由四个小正方体构成的一个几何体(如下左图),其主视图是()A. B.C. D.【考点】简单组合体的三视图.【分析】从正面看到的图叫做主视图.根据图中正方体摆放的位置判定则可.【解答】解:左面可看见一个小正方形,中间可以看见上下各一个,右面只有一个.故选C.5.下列计算中,正确的是()A.2a2+3a2=5a2B.(a﹣b)2=a2﹣b2C.a3•a2=a6D.(﹣2a3)2=8a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】分别利用合并同类项法则以及积的乘方运算法则、同底数幂的乘法运算法则和完全平方公式计算得出答案.【解答】解:A、2a2+3a2=5a2,故此选项正确;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣2a3)2=4a6,故此选项错误;故选:A.6.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.7.下列命题中真命题的个数是()①用四舍五入法对0.05049取近似值为0.050(精确到0.001);②若代数式有意义,则x的取值范围是x≤﹣且x≠﹣2;③任意画一个等边三角形,它是轴对称图形;④月球距离地球表面约为384000000米,这个距离用科学记数法表示为3.84×108米.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】①利用近似值的表示方法进而得出答案;②直接利用代数式有意义的条件,结合二次根式的性质求出答案;③直接利用等边三角形的性质得出答案;④直接利用科学记数法的表示方法得出答案.【解答】解:①用四舍五入法对0.05049取近似值为0.050(精确到0.001),因为千分位后面的数字是4,不够5,要舍去,于是近似值为0.050,故此选项正确;②代数式有意义,则x的取值范围是x≤且x≠﹣2,故此选项错误;③任意画一个等边三角形,它是轴对称图形,正确;④月球距离地球表面约为384000000米,这个距离用科学记数法表示为3.84×108米,正确.故选:C.8.为调查聊城市某村开展“要致富,多读书”活动的效果,小红利用周末随机抽查了该村部分村民在一周内的阅读时间,并将结果绘制成如图两幅不完整的统计图,则本次调查的阅读时间的中位数和众数分别为()A.4小时,5小时B.5小时,4小时C.4小时,4小时D.5小时,5小时【考点】条形统计图;扇形统计图;中位数;众数.【分析】根据阅读时间为3小时的人数以及百分比求出总人数,再根据总人数以及阅读时间为 4小时的百分比求出阅读时间为4小时的男生人数,最后求出阅读时间6小时的男生人数即可解决问题.【解答】解:∵阅读时间达3小时的共10人,占总数的20%,∴总人数=10÷20%=50(人),∵阅读时间为4小时的人数占总人数的32%,∴阅读时间为4小时的人数=50×32%=16(人),∴阅读时间为4小时的男生人数为16﹣8=8(人),∴阅读时间为6小时的人数为50﹣6﹣4﹣8﹣8﹣12﹣3=1(人),∴阅读时间为3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.9.如图是每个面上都有一个汉字的正方体的表面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是()A.我B.爱C.聊D.城【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“丽”是相对面,“爱”与“聊”是相对面,“美”与“城”是相对面.故选D.10.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早起,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考数据:≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米【考点】解直角三角形的应用-仰角俯角问题.【分析】先根据锐角三角函数的定义用tanα与tanβ表示出AB的长,再由tanαtanβ=1即可得出结论.【解答】解:∵BC=10米,BD=25米,∴在Rt△ABC中,AB=BC•tanα=10tanα①,在Rt△ABD中,AB=BD•tanβ=25tanβ②.∵tanαtanβ=1,∴AB2=10tanα•25tanβ=250,∴AB==5≈5×3.162=15.81(米).故选A.11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),y与x之间的函数关系如图中折线所示,根据图象得到下列结论,其中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为166km/hD.慢车的速度为125km/h【考点】一次函数的应用.【分析】由图象可知点B的纵坐标为0,即两车间距离为0,可判断A;B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地的情况;由慢车行驶全程1000km用时12h可得慢车速度,即可判断D;根据相遇时两车行驶路程等于甲、乙两地距离,列方程可得快车速度,即可判断C.【解答】解:点B表示两车出发4h后相遇,故A选项错误;B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用12h 到达甲地,故B选项错误;由图可知,甲、乙两地相距1000km,慢车行驶全程共用12h到达甲地,∴慢车的速度为=83km/h,故D选项错误;设快车速度为xkm/h,则4x+4×83=1000,解得:x=166,即快车速度为166km/h,故C选项正确;故选:C.12.如图,对折矩形纸片ABCD,使BC与AD重合,折痕为EF,把纸片展平;再一次折叠纸片,使BC与EF重合,折痕为GH,把纸片展平;再一次折叠纸片,使点A落在GH上的点N 处,并使折痕经过点B,折痕BM交GH于点I.若AB=4cm,则GI的长为()A. cm B. cm C. cm D. cm【考点】翻折变换(折叠问题).【分析】如图,首先由翻折变换的性质证明BN=BA=4,MN=MA(设为λ);由勾股定理求得BQ=;在直角△MNP中,由勾股定理列出关于λ的方程,求出λ;运用△BGI∽△BAM,列出关于GI的比例式,即可解决问题.【解答】解:如图,分别过点M、N作MP⊥GH、NQ⊥BC于点P、Q;则MP=AG=3,NQ=BG=1,GN=BQ,GP=MA;由题意得:BN=BA=4,MN=MA(设为λ),由勾股定理得:BQ=,∴PN=﹣λ;由勾股定理得:,解得:λ=;由题意得:GI∥AM,∴△BGI∽△BAM,∴,∴GI==,故选D.二、填空题:本大题共5小题,每小题3分,共15分13.一元二次方程x2﹣8x﹣1=0的解为x1=4+,x2=4﹣.【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣8的一半的平方.【解答】解:由原方程,得x2﹣8x=1,配方,得x2﹣8x+42=1+42,即(x﹣4)2=17,开方,得x﹣4=±,解得x1=4+,x2=4﹣.故答案是:x1=4+,x2=4﹣.14.化简2b2+(a+b)(a﹣b)﹣(a﹣b)2= 2ab .【考点】整式的混合运算.【分析】原式第二项利用平方差公式化简,最后一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=2b2+a2﹣b2﹣a2+2ab﹣b2=2ab.故答案为:2ab.15.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D到BC 的距离为3,则BD= 5 .【考点】角平分线的性质.【分析】根据角平分线的性质得到AD=3,由勾股定理求得BD.【解答】解:∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,点D到BC的距离为3,∴AD=3,∵AB=4,∴BD==5.16.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0.其中所有正确的结论是①③(填写序号)【考点】二次函数图象与系数的关系.【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴b+b+c<0,即3b+2c<0,故④错误;故答案为:①③.17.在数学活动中,小明为了求+…+的值(结果用n表示),设计如图所示的几何图形,请你利用这个几何图形求+…+的值为1﹣.【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】根据图形和正方形的面积公式分别求出、+,从中找出规律,得到答案.【解答】解: =1﹣,+=1﹣,…+…+=1﹣,故答案为:1﹣.三、解答题:本大题共8小题,共69分18.解方程组.【考点】解二元一次方程组.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x﹣3③,代入②,得3x+4×(2x﹣3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为.(6分)19.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用网格特点和旋转的性质画出点A、B的对应点A1、B1,则可得到△A2B2C1;由A2和A点坐标可判断△ABC平移的方向与距离,从而写出B2和C2的坐标,然后描点得到△A2B2C2;(2)根据旋转的性质,连结B1B2和A1A2,它们的交点即为P点,然后写出P点坐标.【解答】解:(1)如图,△A1B1C和△A2B2C2为所作;(2)如图,点P为所作,P点坐标为(,﹣1).20.已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,在x轴上存在一点M,使MA+MB最小,求点M的坐标.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)设出A点的坐标,根据△OAP的面积为1,求出xy的值,得到反比例函数的解析式;(2)作点A关于x轴的对称点A′,连接A′B,交x轴于点M,得到MA+MB最小时,点M 的位置,求出直线A′B的解析式,得到它与x轴的交点,即点M的坐标.【解答】解:(1)设A点的坐标为(x,y),则OP=x,PA=y,∵△OAP的面积为1,∴ xy=1,xy=2,即k=2,∴反比例函数的解析式为:y=.(2)作点A关于x轴的对称点A′,连接A′B,交x轴于点M,MA+MB最小,点B的横坐标为2,点B的纵坐标为y==1,两个函数图象在第一象限的图象交于A点,2x=,x±1,y=±2,A点的坐标(1,2),A关于x轴的对称点A′(1,﹣2),设直线A′B的解析式为y=kx+b,,解得,直线y=3x﹣5与x轴的交点为(,0),则M点的坐标为(,0).21.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【考点】菱形的判定;线段垂直平分线的性质;平行四边形的判定.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.22.某班“2016年联欢会”中,有一个摸奖游戏:有4张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,2张是哭脸,现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现在小芳和小霞分别有一次翻牌机会,若正面是笑脸,则小芳获奖;若正面是哭脸,则小霞获奖,她们获奖的机会相同吗?判断并说明理由.(2)如果小芳、小明都有翻两张牌的机会.翻牌规则:小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.请问他们获奖的机会相等吗?判断并说明理由.【考点】列表法与树状图法;概率公式.【分析】(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)首先根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率,比较即可求得答案.【解答】解:(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴获奖的概率是;(2)他们获奖机会不相等,理由如下:小芳:第一张笑1 笑2 哭1 哭2第二张笑1 笑1,笑1 笑2,笑1 哭1,笑1 哭2,笑1笑2 笑1,笑2 笑2,笑2 哭1,笑2 哭2,笑2哭1 笑1,哭1 笑2,哭1 哭1,哭1 哭2,哭1哭2 笑1,哭2 笑2,哭2 哭1,哭2 哭2,哭2∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,∴P(小芳获奖)==;小明:第一张笑1 笑2 哭1 哭2第二张笑1 笑2,笑1 哭1,笑1 哭2,笑1笑2 笑1,笑2 哭1,笑2 哭2,笑2哭1 笑1,哭1 笑2,哭1 哭2,哭1哭2 笑1,哭2 笑2,哭2 哭1,哭2∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,∴P(小明获奖)==,∵P(小芳获奖)≠P(小明获奖),∴他们获奖的机会不相等.23.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)设动漫公司第一次购x套玩具,那么第二次购进2x套玩具,根据第二次比第一次每套进价多了10元,可列方程求解.(2)根据利润=售价﹣进价,根据且全部售完后总利润率不低于20%,这个不等量关系可列方程求解.【解答】解:(1)设动漫公司第一次购x套玩具,由题意得:=10,解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套.(2)设每套玩具的售价y元,由题意得:≥20%,解这个不等式,y≥200答:每套玩具的售价至少是200元.24.(10分)(2016•聊城模拟)如图,AB是⊙O的直径,过圆心O作弦AD的垂线交半⊙O 于点E,交AC于点C,使∠BED=∠C.(1)求证:AC是半⊙O的切线;(2)若AC=8,cos∠BED=,求线段AD的长.【考点】切线的判定;解直角三角形.【分析】(1)根据OC⊥AD,可得∠AOC+∠2=90°,然后根据∠BED=∠C,证明∠AOC+∠C=90°,据此即可证得C是圆O的切线;(2)在直角△AOC中利用三角函数和勾股定理求得OC和OA的长度,然后利用三角形的面积公式求得AF的长,再根据垂径定理求解.【解答】解:(1)AC与圆O相切.证明如下:∵OC⊥AD,∴∠AOC+∠2=90°∵∠C=∠BED=∠2,∴∠AOC+∠C=90°,即∠CAO=90°,∴AC与⊙O相切;(2)∵∠BED=∠C,∴直角△AOC中,cosC==cos∠BED=,∴OC===10,∴AO===6,又∵S△AOC=AC•OA=OC•AF,∴AF===,∵OC⊥AD,∴AC=2AF=.25.(12分)(2015•杨浦区三模)矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M 为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.【考点】二次函数综合题.【分析】(1)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案.(2)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案.(3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况.【解答】解:(1)∵四边形OABC为矩形,C(0,3)∴BC∥OA,点D的纵坐标为3.∵直线与BC边相交于点D,∴.∴x=2,故点D的坐标为(2,3)(2)∵若抛物线y=ax2+bx经过A(6,0)、D(2,3)两点,∴解得:∴抛物线的解析式为.(3)∵抛物线的对称轴为x=3,设对称轴x=3与x轴交于点P1,∴BA∥MP1,∴∠BAD=∠AMP1.①∵∠AP1M=∠ABD=90°,∴△ABD∽△MP1A.∴P1(3,0).②当∠MAP2=∠ABD=90°时,△ABD∽△MAP2.∴∠AP2M=∠ADB∵AP1=AB,∠AP1P2=∠ABD=90°,∴△AP1P2≌△ABD∴P1P2=BD=4.∵点P2在第四象限,∴P2(3,﹣4).答:符合条件的点P有两个,P1(3,0)、P2(3,﹣4).。

相关文档
最新文档