2018届高三上学期期末考试数学(文)试题(xx县附答案)

合集下载

福建省福州市2018届高三上学期期末考试数学(文)试卷及答案

福建省福州市2018届高三上学期期末考试数学(文)试卷及答案

福州市2018届高三上学期期末考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合()(){}610A x x x =-+<,{}10B x x =->,则A B ⋂=( ) A .()1,6- B .()1,1- C .()1,6 D .∅2.若复数11az i=++为纯虚数,则实数( ) A .2- B .1- C .1 D .23.已知()()1,2,1,1a b ==-r r ,2c a b =-r r r,则c =r ( )A .24sin 15cos15︒-︒︒= ( )A .12B C .1 D5.已知双曲线C 的两个焦点12,F F 都在x 若点M 在C 上,且12MF MF ⊥,M C 的方程为( )A .22148x y -= B .22148y x -= C .2212y x -= D .2212x y -=6.已知圆柱的高为2表面积等于( ) A .4π B .163π C .323π D .16π 7. 如图的程序框图的算法思路源于我国古代著名的《孙子剩余定理》.图中的(),Mod N m n =表示正整数N 除以正整数m 后的余数为n ,例如()10,31Mod =.执行该程序框图,则输出的i 等于( )A .23B .38C .44D .58 8. 将函数2sin cos y x x =+的图象向右平移12个周期后,所得图象对应的函数为( ) A .sin 2cos y x x =- B .2sin cos y x x =- C .sin 2cos y x x =-+ D .2sin cos y x x =--9.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为( )A .24223+B .22243+C .263+.842+10.已知函数()22log ,0,41,0.x x a x f x x -+>⎧⎪=⎨-≤⎪⎩若()3f a =,则()2f a -=( )A .1516-B .3C . 6364-或3D .1516-或311.过椭圆()2222:10x y C a ba b =>>+的右焦点作x 轴的垂线,交C 于,A B 两点,直线l 过C 的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,则C 的离心率的取值范围是( )A .⎛ ⎝⎦B .⎫⎪⎪⎣⎭C .⎛ ⎝⎦D .⎫⎪⎪⎣⎭12.已知函数()2x x f x e e -=+,若关于x 的不等式()()20f x af x -≤⎡⎤⎣⎦恰有3个整数解,则实数a 的最小值为( )A .1B .2eC .21e +D .331e e+第Ⅱ卷(共90分)13、 填空题(每题5分,满分20分,将答案填在答题纸上)13. 某商店随机将三幅分别印有福州三宝(脱胎漆器、角梳、纸伞)的宣传画并排贴在同一面墙上,则角梳与纸伞的宣传画相邻的概率是 .14.曲线3222y x x x =-+在1x =处的切线方程为 .15.ABC ∆的内角,,A B C 的对边分别为,,a b c )cos cos ,60a C c A b B -==︒,则A 的大小为 .16.某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.已知生产一把椅子需要木工4个工作时,漆工2个工作时;生产一张桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1500元,生产一张桌子的利润为2000元.该厂每个月木工最多完成8000个工作时、漆工最多完成1300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是 元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 前n 项和为n S ,且21n n S a =-. (1)证明数列{}n a 是等比数列;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .18.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92. (1)请你列出抽到的10个样本的评分数据; (2)计算所抽到的10个样本的均值x 和方差2s ;(3)在(2)条件下,若用户的满意度评分在(),x s x s -+之间,则满意度等级为“A 级”.试应用样本估计总体的思想,估计该地区满意度等级为“A 级”的用户所占的百分比是多少?(精确到0.1%) 参考数据:30 5.48,33 5.74,35 5.92≈≈≈.19.如图,在四棱锥E ABCD -中,//,90AB CD ABC ∠=︒,224CD AB CE ===,点F 为棱DE 的中点.(1)证明://AF 平面BCE ;(2)若4,120,25BC BCE DE =∠=︒=,求三棱锥B CEF -的体积.20.抛物线2:24C y x x a =-+与两坐标轴有三个交点,其中与y 轴的交点为P . (1)若点() 14,()Q x y x <<在C 上,求直线PQ 斜率的取值范围; (2)证明:经过这三个交点的圆E 过定点.21.已知函数()()ln f x e x ax a R =-∈. (1)讨论()f x 的单调性;(2)当a e =时,证明:()20x xf x e ex -+≤.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线cos ,:sin x t C y αα=⎧⎨=⎩(α为参数,0t >).在以O 为极点,x 轴正半轴为极轴的极坐标系中,直线:cos 4l πρθ⎛⎫- ⎪⎝⎭.(1)若l 与曲线C 没有公共点,求t 的取值范围;(2)若曲线C 上存在点到l t 的值. 23.选修4-5:不等式选讲 设函数()1,f x x x R =-∈.(1)求不等式()()31f x f x ≤--的解集;(2)已知关于x 的不等式()()1f x f x x a ≤+--的解集为M ,若31,2M ⎛⎫⊆ ⎪⎝⎭,求 实数a 的取值范围.参考答案一、选择题1-5: CABDC 6-10: DADAA 11、12:AC二、填空题13.2314. y x = 15. 75︒ 16. 2100000 三、解答题17. 解:(1)当1n =时,11121a S a ==-,所以11a =, 当2n ≥时,()()112121n n n n n a S S a a --=-=---, 所以12n n a a -=,所以数列{}n a 是以11a =为首项,以2为公比的等比数列. (2)由(1)知,12n n a -=, 所以()1212n n b n -=-,所以()()22113252232212n n n T n n --=+⨯+⨯++-⋅+-⋅L (1) ()()2121232232212n n n T n n -=⨯+⨯++-⋅+-⋅L (2)(1)-(2)得:()()12112222212n n n T n --=++++--⋅L()12221221212n n n --⨯=+⨯---()3223n n =--,所以()2323n n T n =-+.18.解:(1)由题意得,通过系统抽样分别抽取编号为4,8,12,16,20,24,28,32,36,40的评分数据为样本,则样本的评分数据为92,84,86,78,89,74,83,78,77,89. (2)由(1)中的样本评分数据可得()1928486788974837877898310x =+++++++++=, 则有 ()()()()()()()222222221[928384838683788389837483838310s =-+-+-+-+-+-+-+ ()()()222788377838983]33-+-+-=(3)由题意知评分在(83之间,即()77.26,88.74之间,由(1)中容量为10的样本评分在()77.26,88.74之间有5人,则该地区满意度等级为“A 级”的用户所占的百分比约为5100%50.0%10⨯=.另解:由题意知评分在(83,即()77.26,88.74之间,,从调查的40名用户评分数据中在()77.26,88.74共有21人,则该地区满意度等级为“A 级”的用户所占的百分比约为21100%52.5%40⨯=. 19.解法一:(1)证明:取CE 的中点M ,连接,FM BM . 因为点F 为棱DE 的中点, 所以//FM CD 且122FM CD ==,因为//AB CD 且 2AB =, 所以//FM AB 且FM AB =, 所以四边形ABMF 为平行四边形, 所以//AF BM ,因为AF ⊄平面BCE ,BM ⊂平面BCE , 所以//AF 平面BCE .(2)因为//90AB CD ABC ∠=︒,, 所以CD BC ⊥.因为,254,2CD CE DE ===,所以222 C D CE DE +=, 所以CD CE ⊥,因为BC CE C ⋂=,BC ⊂平面BCE ,CE ⊂平面BCE , 所以CD ⊥平面BCE .因为点F 为棱DE 的中点,且4CD =, 所以点F 到平面BCE 的距离为2. 11sin 42sin1202322BCE S BC CE BCE ∆=⋅∠=⨯⨯︒=三棱锥B CEF -的体积123B CEF F BCE BCE V V S --∆==⨯1432323=⨯=.解法二:(1)证明:在平面ABCD 内,分别延长,CB DA ,交于点N . 因为//,2AB CD CD AB =, 所以A 为DN 中点.又因为F 为DE 的中点, 所以//AF EN .因为EN ⊂平面BCE ,AF ⊄平面BCE , 所以//AF 平面BCE .(2)同解法一.解法三:(1)证明:取棱CD 的中点G ,连接,AG GF , 因为点F 为棱DE 的中点, 所以//FG CE ,因为FG ⊄平面BCE ,CE ⊂平面BCE , 所以//FG 平面BCE ;因为//,2AB CD AB CG ==, 所以四边形ABCG 是平行四边形, 所以//AG BC ,因为AG ⊄平面BCE ,BC ⊂平面BCE , 所以//AG 平面BCE ;又因为FG AG G ⋂=,FG ⊂平面AFG ,AG ⊂平面AFG , 所以平面//AFG 平面BCE ; 因为AF ⊂平面AFG , 所以//AF 平面BCE .(2)同解法一.20.解法一:(1)由题意得()()()()20,0,,2414P a a Q x x x a x ≠-+<<. 故224PQx x ak x-+=24x =-()2,4∈-(2)由(1)知,点P 坐标为()()0,0a a ≠. 令2240x x a -+=,解得421ax -=±, 故42421,1a a A B ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故可设圆E 的圆心为()1,M t , 由22MP MA =得,()2222421a t a t -+-=+⎝⎭, 解得124a t =+,则圆E 的半径为21142a r MP ⎛⎫=+- ⎪⎝⎭所以圆E 的方程为()22211112442a a x y ⎛⎫⎛⎫-+--=+- ⎪ ⎪⎝⎭⎝⎭,所以圆E 的一般方程为2212022a x y x a y ⎛⎫+--++= ⎪⎝⎭,即22112022x y x y a y ⎛⎫⎛⎫+--+-= ⎪ ⎪⎝⎭⎝⎭. 由22120,210,2x y x y y ⎧+--=⎪⎪⎨⎪-=⎪⎩ 得012x y =⎧⎪⎨=⎪⎩或212x y =⎧⎪⎨=⎪⎩, 故E 都过定点110,,2,22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 解法二:(1)同解法一.(2)由(1)知,点P 坐标为()()0,0a a ≠,设抛物线C 与x 轴两交点分别为()()12,0,,0A x B x . 设圆E 的一般方程为:220x y Dx Fy G ++++=,则21122220,0,0.x Dx G x Dx G a Fa G ⎧++=⎪++=⎨⎪++=⎩因为抛物线C 与x 轴交于()()12,0,,0A x B x ,所以12,x x 是方程2240x x a -+=,即2202a x x -+=的两根, 所以2,2a D G =-=, 所以212G a F a a --⎛⎫==-+ ⎪⎝⎭, 所以圆E 的一般方程为2212022a x y x a y ⎛⎫+--++= ⎪⎝⎭, 即22112022x y x y a y ⎛⎫⎛⎫+--+-= ⎪ ⎪⎝⎭⎝⎭. 由22120,210,2x y x y y ⎧+--=⎪⎪⎨⎪-=⎪⎩ 得012x y =⎧⎪⎨=⎪⎩或212x y =⎧⎪⎨=⎪⎩, 故E 都过定点110,,2,22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 21.解:(1)()()0e f x a x x'=->, ①若0a ≤,则()0f x '>,()f x 在()0,+∞上为増函数;②若0a >,则当e x a <时,()0f x '>;当e x a>时,()0f x '<.故在0,e a ⎛⎫ ⎪⎝⎭上,()f x 为増函数;在,e a ⎛⎫+∞ ⎪⎝⎭上,()f x 为减函数.(2)因为0x >,所以只需证()2xe f x e x≤-, 由(1)知,当a e =时,()f x 在()0,1上为增函数,在()1,+∞上为减函数, 所以()()max 1f x f e ==-.记()()20xe g x e x x =->,则()()21xx e g x x -'=, 所以,当1x <<0时,()0g x '<,()g x 为减函数;当1x >时,()0g x '>,()g x 为增函数, 所以()()min 1g x g e ==-.所以当 0x >时,()()f x g x ≤,即()2xe f x e x≤-,即()20x xf x e ex -+≤. 解法二:(1)同解法一.(2)由题意知,即证2ln 20x ex x ex e ex --+≤, 从而等价于ln 2xe x x ex-+≤. 设函数()ln 2g x x x =-+,则()11g x x'=-. 所以当()0,1x ∈)时,()0g x '>;当()1,x ∈+∞时,()0g x '<, 故()g x 在()0,1上单调递增,在()1,+∞上单调递减.从而()g x 在()0,+∞上的最大值为()11g =.设函数()xe h x ex=,则()()21x e x h x ex -'=. 所以当()0,1x ∈)时,()0h x '<;当()1,x ∈+∞时,()0h x '>. 故()h x 在()0,1上单调递减,在()1,+∞上单调递増.从而()h x 在()0,+∞上的最小值为()11h =.综上,当0x >时,()()g x h x <,即()20x xf x e ex -+≤.22. 解:(1)因为直线l 的极坐标方程为cos 4πρθ⎛⎫-= ⎪⎝⎭cos sin 2ρθρθ+=,所以直线l 的直角坐标方程为2x y +=;因为cos ,sin x t y αα=⎧⎨=⎩(α参数,0t >) 所以曲线C 的普通方程为2221x y t+=, 由2222,1,x y x y t +=⎧⎪⎨+=⎪⎩消去x 得,()2221440t y y t +-+-=, 所以()()22016414t t ∆-+-<=,解得 0t <<,故t的取值范围为(.(2)由(1)知直线l 的直角坐标方程为20x y +-=,故曲线C 上的点()cos ,sin t αα到l的距离d =, 故d=解得t =又因为0t >,所以t =23.解:(1)因为()()31f x f x ≤--,所以132x x -≤--, 123x x ⇔-+-≤,1,323,x x <⎧⇔⎨-≤⎩或12,13,x ≤≤⎧⎨≤⎩或2,233x x >⎧⎨-≤⎩解得01x ≤<或12x ≤≤或23x <≤,所以03x ≤≤, 故不等式()()31f x f x ≤--的解集为[]0,3.(2)因为31,2M ⎛⎫⊆ ⎪⎝⎭, 所以当31,2x ⎛⎫∈ ⎪⎝⎭时,()()1f x f x x a ≤+--恒成立, 而()()1f x f x x a ≤+--101x x x a x a x x ⇔--+-≤⇔-≤--, 因为31,2x ⎛⎫∈ ⎪⎝⎭,所以1x a -≤,即11x a x -≤≤+, 由题意,知11x a x -≤≤+对于31,2x ⎛⎫∈ ⎪⎝⎭恒成立, 所以122a ≤≤,故实数a 的取值范围1,22⎡⎤⎢⎥⎣⎦.。

2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)

2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)

2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.12.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.686.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°7.若均α,β为锐角,=()A.B.C.D.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.49.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣212.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,a n﹣a n+1=2a n a n+1,且n∈N*,则a8=.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于.15.设实数x,y满足,则的取值范围是.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.21.(2分)已知函数f(x)=ax+lnx(a∈R)(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间和极值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.1【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:iz=1+2i,∴﹣i•iz=﹣i(1+2i),z=﹣i+2则z的共轭复数=2+i的虚部为1.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.2.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④【分析】利用命题的否定判断①的正误;命题的否定判断②的正误;充要条件判断③的正误;幂函数的形状判断④的正误;【解答】解:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;满足命题的否定形式,正确;②若p∧q是真命题,p是真命题,则¬p是假命题;所以②不正确;③“a>5且b>﹣5”可得“a+b>0”成立,“a+b>0”得不到“a>5且b>﹣5”所以③不正确;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减,正确,反例:y=,可知:x∈(﹣∞,0)时,函数是增函数,在(0,+∞)上单调递减,所以④正确;故选:A.【点评】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假,充要条件的应用,是基本知识的考查.3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)【分析】当B=∅时,m+1>2m﹣1,当B≠∅时,,由此能求出实数m的取值范围.【解答】解:∵集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},B⊆A,∴当B=∅时,m+1>2m﹣1,解得m<2,成立;当B≠∅时,,解得2≤m≤3.综上,实数m的取值范围是(﹣∞,3].故选:C.【点评】本题考查实数的取值范围的求法,考查子集、不等式的性质等基础知识,考查运算求解能力,是基础题.4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π【分析】由题意利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于函数,令2x+=kπ+,求得x=+,k∈Z,故它的图象的对称轴为x=+,k∈Z,故A不正确.令2x+=kπ,求得x=﹣,k∈Z,故它的图象的对称中心为(﹣,0 ),k∈Z,故B正确.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ﹣,k∈Z,故它增区间[kπ﹣,kπ﹣],k∈Z,故C不正确.该函数的最小正周期为=π,故D错误,故选:B.【点评】本题主要考查正弦函数的图象和性质,属于基础题.5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.68【分析】首先运用a n=求出通项a n,判断正负情况,再运用S10﹣2S2即可得到答案.【解答】解:当n=1时,S1=a1=﹣2,当n≥2时,a n=S n﹣S n﹣1=(n2﹣4n+1)﹣[(n﹣1)2﹣4(n﹣1)+1]=2n﹣5,故a n=,据通项公式得a1<a2<0<a3<a4<…<a10∴|a1|+|a2|+…+|a10|=﹣(a1+a2)+(a3+a4+…+a10)=S10﹣2S2=102﹣4×10+1﹣2(﹣2﹣1)=67.故选:C.【点评】本题主要考查数列的通项与前n项和之间的关系式,注意n=1的情况,是一道基础题.6.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°【分析】利用正弦定理把已知等式转化成角的关系,根据三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可求cosA的值,结合A的范围即可得解A的值.【解答】解:∵b=acosC+c.∴由正弦定理可得:sinB=sinAcosC+sinC,可得:sinAcosC+sinCcosA=sinAcosC+sinC,可得:sinCcosA=sinC,∵sinC≠0,∴cosA=,∵A∈(0°,180°),∴A=60°.故选:A.【点评】本题主要考查了正弦定理的应用,三角函数恒等变换的应用.注重了对学生基础知识综合考查,属于基础题.7.若均α,β为锐角,=()A.B.C.D.【分析】由题意求出cosα,cos(α+β),利用β=α+β﹣α,通过两角差的余弦函数求出cosβ,即可.【解答】解:α,β为锐角,则cosα===;<sinα,∴,则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.故选:B.【点评】本题考查两角和与差的三角函数的化简求值,注意角的范围与三角函数值的关系,考查计算能力.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.4【分析】由“等差数列{a n}前9项的和等于前4项的和”可求得公差,再由a k+a4=0可求得结果.【解答】解:∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+(k﹣1)d+1+3d=0,代入可解得k=10,故选:C.【点评】本题考查等差数列的前n项和公式及其应用,涉及方程思想,属基础题.9.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]【分析】求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为e x﹣2m=﹣3有解,即可得到结论.【解答】解:函数的f(x)的导数f′(x)=e x﹣2m,若曲线C存在与直线y=x垂直的切线,则切线斜率k=e x﹣2m,满足(e x﹣2m)=﹣1,即e x﹣2m=﹣3有解,即2m=e x+3有解,∵e x+3>3,∴m>,故选:A.【点评】本题主要考查导数的几何意义的应用,以及直线垂直的关系,结合指数函数的性质是解决本题的关键.10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的最大值,再根据最值给出λ的求值范围.【解答】解:由题意得x,y的约束条件.画出不等式组表示的可行域如图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有最大值z=3+7=10.x﹣y<λ+恒成立,即:λ+≥10,即:.解得:λ∈(0,1]∪[9,+∞)故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣2【分析】利用基本不等式的性质即可得出.【解答】解:∵a,b,c>0且(a+b)(a+c)=4﹣2,则2a+b+c=(a+b)+(a+c)≥=2=2,当且仅当a+b=a+c=﹣1时取等号.故选:D.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.【分析】根据题意可得函数g(x)=xf(x)=e x﹣ax2在x∈(0,+∞)时是单调增函数,求导,分离参数,构造函数,求出最值即可【解答】解:∵x∈(0,+∞),∴x1f(x1)<x2f(x2).即函数g (x )=xf (x )=e x ﹣ax 2在x ∈(0,+∞)时是单调增函数. 则g′(x )=e x ﹣2ax ≥0恒成立. ∴2a ≤,令,则,x ∈(0,1)时m'(x )<0,m (x )单调递减, x ∈(1,+∞)时m'(x )>0,m (x )单调递增, ∴2a ≤m (x )min =m (1)=e , ∴.故选:D .【点评】本题考查了函数的单调性问题,考查函数恒成立问题,考查转化思想,考查导数的应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,且n ∈N*,则a 8=.【分析】直接利用递推关系式求出数列的通项公式,进一步根据通项公式求出结果. 【解答】解:数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,则:(常数),数列{}是以为首项,2为公差的等差数列.则:,所以:,当n=1时,首项a 1=1, 故:.所以:.故答案为:【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于﹣3.【分析】由已知中向量的模为1,且,满足|﹣|=4,|+|=2,我们易求出•的值,进而根据在方向上的投影等于得到答案.【解答】解:∵||=1,|﹣|=4,|+|=2,∴|+|2﹣|﹣|2=4•=﹣12∴•=﹣3=||||cosθ∴||cosθ=﹣3故答案为:﹣3【点评】本题考查的知识点是平面向量数量积的含义与物理意义,其中根据已知条件求出•的值,是解答本题的关键.15.设实数x,y满足,则的取值范围是[﹣,] .【分析】首先画出可行域,利用目标函数的几何意义求z的最值.【解答】解:由实数x,y满足,得到可行域如图:由图象得到的范围为[k OB,k OA],A(1,1),B(,)即∈[,1],∈[1,7],﹣ [﹣1,].所以则的最小值为﹣;m最大值为:;所以的取值范围是:[﹣,]故答案为:[﹣,].【点评】本题考查了简单线性规划问题;关键是正确画出可行域,利用目标函数的几何意义求出其最值,然后根据对勾函数的性质求m的范围.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比P是边长为a的正△ABC内的一点,本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故答案为:a.【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.【分析】(1)用向量数量积公式计算后再化成辅助角形式,最后用正弦函数的周期公式和对称轴的结论可求得;(2)将方程有解转化为求函数的值域,然后用正弦函数的性质解决.【解答】解:(1)∵f(x)=•=2sin(+x)•sin(+x)﹣cos2x=2sin2(+x)﹣cos2x=1﹣cos[2(+x)]﹣cos2x=sin2x﹣cos2x+1=2sin(2x﹣)+1,∴最小正周期T=π,由2x﹣=+kπ,得x=+,k∈Z,所以f(x)的对称轴为:x=+,k∈Z,(2)因为f(x)﹣m=2可化为m=2sin(2x﹣)﹣1在x∈[,]上有解,等价于求函数y=2sin(2x﹣)﹣1的值域,∵x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1]∴y∈[0,1]故实数m的取值范围是[0,1]【点评】本题考查了平面向量数量积的性质及其运算.属基础题.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【分析】(Ⅰ)由已知及正弦定理,三角形内角和定理,三角函数恒等变换的应用可得,结合sinB≠0,可得,结合A为三角形内角,可求A 的值.(Ⅱ)由余弦定理,基本不等式可得,根据三角形面积公式即可计算得解.【解答】解:(Ⅰ)由正弦定理可得:,从而可得:,即,又B为三角形内角,所以sinB≠0,于是,又A为三角形内角,所以.(Ⅱ)由余弦定理:a2=b2+c2﹣2bccosA,得:,所以,所以≤2+,即△ABC面积的最大值为2+.【点评】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.【分析】(1)根据等差数列的通项公式和等比数列的性质列出关于公差d的方程,利用方程求得d,然后写出通项公式;(2)根据单调数列的定义推知a n=2n﹣1,然后利用已知条件求得b n的通项公式,再由错位相减法求得答案.【解答】解:(1)∵a8是a5,a13的等比中项,{a n}是等差数列,∴(1+7d)2=(1+4d)(1+12d)解得d=0或d=2,∴a n=1或a n=2n﹣1;(2)由(1)及{a n}是单调数列知a n=2n﹣1,(i)当n=1时,T1=b1===.(ii)当n>1时,b n==,∴T n=+++…+……①∴T n=+++…++……②①﹣②得T n=+++…+﹣=﹣,∴T n=﹣.综上所述,T n=﹣.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题综上所述,20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)直接利用等差数列的性质求出数列的通项公式.(2)利用裂项相消法求出数列的和.【解答】解:(1)等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.令n=1时,,n=2时,, n=3时,,由于2a 2=a 1+a 3, 所以,解得k=﹣1. 由于=(2n ﹣1)(n +1),且n +1≠0, 则a n =2n ﹣1;(2)由于===,所以S n =+…+=+n==.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用.21.(2分)已知函数f (x )=ax +lnx (a ∈R ) (1)若a=2,求曲线y=f (x )在x=1处的切线方程; (2)求f (x )的单调区间和极值;(3)设g (x )=x 2﹣2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.【分析】(1)利用导数的几何意义,可求曲线y=f (x )在x=1处切线的斜率,从而求出切线方程即可;(2)求导函数,在区间(0,﹣)上,f'(x )>0;在区间(﹣,+∞)上,f'(x )<0,故可得函数的单调区间;求出函数的极值即可;(3)由已知转化为f (x )max <g (x )max ,可求g (x )max =2,f (x )最大值﹣1﹣ln (﹣a ),由此可建立不等式,从而可求a 的取值范围.【解答】解:(1)由已知f′(x)=2+(x>0),…(2分)∴f'(1)=2+1=3,f(1)=2,故曲线y=f(x)在x=1处切线的斜率为3,故切线方程是:y﹣2=3(x﹣1),即3x﹣y﹣1=0…(4分)(2)求导函数可得f′(x)=a+=(x>0).…当a<0时,由f'(x)=0,得x=﹣.在区间(0,﹣)上,f'(x)>0;在区间(﹣,+∞)上,f'(x)<0,所以,函数f(x)的单调递增区间为(0,﹣),单调递减区间为(﹣,+∞),=﹣1﹣ln(﹣a)…(10分)故f(x)极大值=f(﹣)(3)由已知转化为f(x)max<g(x)max.∵g(x)=x2﹣2x+2=(x﹣1)2+1,x2∈[0,1],∴g(x)max=2…(11分)由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在(0,﹣)上单调递增,在(﹣,+∞)上单调递减,故f(x)的极大值即为最大值,f(﹣)=﹣1+ln(﹣)=﹣1﹣ln(﹣a),所以2>﹣1﹣ln(﹣a),所以ln(﹣a)>﹣3,解得a<﹣.…(14分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,根据函数的单调性证明即可.【解答】解:(Ⅰ)∵,∴∴a=1,∴f(x)=e x,f令h(x)=x2e x﹣1,h'(x)=(2x+x2)e x,h(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,所以x∈(﹣∞,0)时,h(x),即x∈(﹣∞,0)时,f'(x)<0,所以函数y=f(x)在x∈(﹣∞,0)上单调递减.(Ⅱ) 由条件可知,g(x)=e x﹣x+m+1,①g'(x)=e x﹣1,∴g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<﹣2.‚②证明:由上可知,x1<0<x2,∴﹣x2<0,∴构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,所以m(x)>m(0)即g(x2)=g(x1)>g(﹣x1)又g(x)在(﹣∞,0)上单调递减,所以x1<﹣x2,即x1+x2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.。

甘肃省甘谷县第一中学2018届高三上学期第一次月考数学(文)试题Word版含解析

甘肃省甘谷县第一中学2018届高三上学期第一次月考数学(文)试题Word版含解析

甘谷一中2017―― 2018学年高三第一次检测考试数学(文)第I卷(选择题共60分)一.选择题1. 已知集合J ,若珥则丄1「为()A. I .1B. I ':■C. I ':■D. 1.1'【答案】A【解析】-二」,■」-],■」:.m ■;-!;■■;I. -1;,选A.2. - ― Ij - I 二―二(,则i I '-()A. |B.C. [_;•D. :. I |【答案】B【解析】-卜.■:! ■ I I - ■ I ■■■ } - I :. ■ :-1 = h- . = }一「二一「]}一[「]一・I ' - ■ I ■',选B.3. 下列函数中,既不是奇函数,也不是偶函数的是()A. ■■: - . - rB. - ■ : -C. - -■;D. = ■ _ -.【答案】A1 x 1【解析】试题分析:由题意得,函数:'+和:--,满足I': ■ - II-:,所以函数都其2是奇函数,函数.二.满足h ,所以函数都是偶函数,故选 A.考点:函数的奇偶性.4. 王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的()A.充要条件 B.既不充分也不必要条件 C.充分不必要条件 D.必要不充分条件【答案】D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选 D.5. 有下列四个命题:①“若• I . II,则,,:,■互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若(| ■ 1,则._ 1 _ I:[:有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为()A.①②B. ②③C. ①③D. ③④【答案】C【解析】试题分析:①逆命题为若“,互为相反数,则.• ;是真命题;②的否命题为不全等的三角形面积不等”为假命题;③当订丨时---",方程有实根,为真命题;④ 逆命题为三角形三内角相等则三角形是不等边三角形”为假命题考点:四种命题6. 已知函数丨的定义域是I-'.III,值域为.4,则山的取值范围是()A. (0,4] B•[討C.[詢D.岳 + 閃)【答案】CQ <?£;Q【解析】因为对称轴为,,对应函数值为,;所以II -;当-丨时■ •,因此二,综合可得m的取值范围是£,3],选C.27•函数r - f ;■■ ■■-::的零点个数为()A. 3B. 2C. 1D. 0【答案】B【解析】由.戸•:得零点个数为2,选B.8. 已知I •是定义在R上的偶函数,且在区间上单调递增。

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案

湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案

湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案常德市2017-2018学年度上学期高三数学(文科)检测考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合$A=\{1,2,3\},B=\{2,3,4,5\}$,则$A\cap B$中元素的个数为()。

A.2.B.3.C.4.D.5.2.在复平面内,复数$z=1+2i$($i$为虚数单位)对应的点所在的象限为()。

A.第一象限。

B.第二象限。

C.第三象限。

D.第四象限。

3.在某学校图书馆的书架上随意放着有编号为1,2,3,4,5的五本史书,若某同学从中任意选出两本史书,则选出的两本史书编号相连的概率为()。

A.$\frac{1}{10}$。

B.$\frac{1}{5}$。

C.$\frac{2}{5}$。

D.$\frac{1}{2}$。

4.元朝著名数学家XXX《四元玉鉴》中有一首诗:“我有一壶酒,携着XXX走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”其意思为:“诗人带着装有一倍分酒的壶去春游,先遇到酒店就将酒添加一倍,后遇到朋友饮酒一斗,如此三次先后遇到酒店和朋友,壶中酒恰好饮完,问壶中原有多少酒?”用程序框图表达如图所示,即最终输出的$x=$,那么在这个空白框中可以填入()。

A.$x=x-1$。

B.$x=2x-1$。

C.$x=2x$。

D.$x=2x+1$。

5.已知向量$a=(x,y),b=(1,2),c=(-1,1)$,若满足$a\parallel b,b\perp(a-c)$,则向量$a$的坐标为()。

A.$(\frac{5}{11},\frac{5}{11})$。

B.$(-\frac{5}{11},-\frac{5}{11})$。

C.$(\frac{6}{11},\frac{3}{11})$。

D.$(\frac{5}{11},\frac{6}{11})$。

XXX2018年高三下学期期初考试(3月)数学(文)试题

XXX2018年高三下学期期初考试(3月)数学(文)试题

XXX2018年高三下学期期初考试(3月)数学(文)试题2018年全国高三文科数学统一联合考试一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合$A=\{x|x\leq1\}$,且$A\cap B=\{0,1\}$,则集合$B$可能是(。

)A.$\{x|x\geq\}$B.$\{x|x>-1\}$C.$\{-1,0,1\}$D.$\{0,1,2\}$2.已知向量$a=(1,2)$,$b=(-1,0)$,则$2a-b=$(。

)A.$17$B.$17\vec{a}$C.$5$D.$25$3.若复数$z$在复平面内对应的点的坐标是$(1,-2)$,则$z=$ (。

)A.$1-2i$B.$1+2i$C.$2-i$D.$-2-i$4.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边同时相向打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果这两只老鼠恰好用了7天把墙打穿,则墙厚为(。

)A.$8255$尺B.$129$尺C.$2079$尺D.$65$尺5.若双曲线$C:-\frac{x^2}{x^2+y^2}=1$的离心率为3,则实数$m=$ (。

)frac{m}{m+1}$A.$1$B.$2$C.$1$或$-2$D.$1$或$2$6.已知命题$p:\exists m\in R$,使得$f(x)=x^2+mx$是偶函数;命题$q:x^2=1\Rightarrow x=1$,现给出下列命题:①$p$;②$q$的逆否命题;③$p\land q$;④$p\lor(\negq)$。

其中真命题的个数为(。

)A.$0$B.$1$C.$2$D.$3$7.如图,网格纸上小正方形的边长为$1$,粗实线画出的是某几何体的三视图,则该几何体的体积为(。

山东省泰安市2018届高三上学期期末考试数学(文)试题 Word版含解析

山东省泰安市2018届高三上学期期末考试数学(文)试题 Word版含解析

高三年级考试数学试题(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1. 已知全集,,,则集合=()A. B. C. D.【答案】D【解析】由题意可知∵∴故选D2. 等差数列的前项和为,若,,则=()A. B. C. D.【答案】B【解析】设公差为,由可得∴,则故选B3. 已知,,,则()A. B. C. D.【答案】C【解析】∵,,∴故选C4. 下列命题中正确的是()A. 命题“,使”的否定为“,都有”B. 若命题为假命题,命题为真命题,则为假命题C. 命题“若,则与的夹角为锐角”及它的逆命题均为真命题D. 命题“若,则或”的逆否命题为“若且,则”【答案】D【解析】选择A:命题“,使”的否定为“,都有”;选项B:为真命题;选项C:“若,则与的夹角为锐角”原命题为假命题,逆命题为真命题,故选D5. 有两条不同的直线、与两个不同的平面、,下列命题正确的是()A. ,,且,则B. ,,且,则C. ,,且,则D. ,,且,则【答案】A【解析】对于,由,,且得,故正确;对于,由得故错误;对于,由,,且,得或相交或异面,故错误;对于,由,,且得得关系可以垂直,相交,平行,故错误.故选A6. 若,满足条件,则的最小值为()A. B. C. D.【答案】A【解析】作出约束条件对应的平面区域(阴影部分),由z=2x﹣y,得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z,经过点A时,直线y=2x﹣z的截距最大,此时z最小.由解得A(0,2).此时z的最大值为z=2×0﹣2=﹣2,故选:A.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

泰安市2018届高三上学期期末考试数学(文)试题含答案

泰安市2018届高三上学期期末考试数学(文)试题含答案

【答案】 C
移动后
经过点 ,则
,解之得





∴ 最小值为
故选 C
8. 一个几何体的三视图如图所示,则该几何体的体积为(

A.
B.
C.
D.
【答案】 C
根据条件得到原图是这是一个组合体,上面是四棱锥棱锥,下面是长方体,故得到体积为:
2 故答案为: C。
9. 函数

的图象大致是(

A.
B.
C.
D.
【答案】 C
.
(2)把 代入

整理得:



, .
23. 选修 4-5 :不等式选讲 .
设函数
.
(1)当
时,求
的解集;
(2)证明:
.
【答案】 (1)
(2) 见
试题: (1) 由
,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式
组的解集,再取并集,即得所求; (2) 使用绝对值不等式消去 ,利用基本不等式证明.

即:

∴直线的极坐标方程为
.
(2)把 代入

整理得:




.
试题:(1)由
可得圆 的极坐标方程及直线的极坐标方程; ( 2)联立直线与圆 的
极坐标方程,结合韦达定理,即可求出
.
试题:( 1)由题意,圆的标准方程可整理为:



∴圆 的极坐标方程为

直线的参数方程可化普通方程为:
,即:
∴直线的极坐标方程为
高三年级考试
数学试题(文科)

安徽省示范高中(皖江八校)2018届高三第八次(5月)联考数学文试题(精编含解析)

安徽省示范高中(皖江八校)2018届高三第八次(5月)联考数学文试题(精编含解析)

数学(文科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设 (为虚数单位),则()A. B. C. D.【答案】A【解析】分析:将复数化简成,利用公式计算复数的模.详解:,,故选A.点睛:复数题在高考中属于简单题,多以选择、填空形式出现. 解题时注意,切勿忽略符号导致出错.2. 已知集合,若,则实数的值为()A. B. C. D.【答案】B【解析】分析:根据已知得,代入求解的值,验证互异性可得.详解:或,解得或,由集合中元素的互异性知,故选B.点睛:本题主要考察集合的交集运算,解题时注意验证集合中元素的互异性.3. 已知函数的图象如图所示,则的大小关系为()A. B. C. D.【答案】A【解析】分析:根据图像分析得,可得结论.详解:由图像可知,,得,故选A.4. 已知双曲线,四点,中恰有三点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】分析:由对称性分析可得点在双曲线上,代入求得,计算离心率.详解:由双曲线对称性可知,点在双曲线上,且点一定不再双曲线上,则点在双曲线上,代入可得,则,所以,故选C.点睛:本题解题的关键是能够根据对称性判断出哪三个点在双曲线上,进而求解的值,利用公式求出离心率.5. 已知输入实数,执行如图所示的流程图,则输出的是()A. B. C. D.【答案】C【解析】分析:初始化数值,执行循环结构,判断条件,可得.详解:初始化数值执行第一次循环:成立,;执行第二次循环:成立,;执行第三次循环:成立,;判断不成立,输出.故选C.点睛:程序框图问题是高考数学中的常考问题,属于得分题,解题时只要按照循环结构,注意判断条件的成立与否完成解答即可.6. 已知为圆上的三点,若,圆的半径为,则()A. B. C. D.【答案】D【解析】分析:画出图形,根据向量关系得四边形为菱形,可将问题转化为求的值.详解:如下图所示,由,知四边形是边长为的菱形,且,.点睛:本题主要是根据题设中给出的向量关系,利用将问题转化为求解的值,再根据向量的数量积公式得出结论.7. 2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是()A. B. C. D.【答案】A【解析】分析:求出他等待“红月亮”不超过30分钟的时间长度,代入几何概型概率计算公式,即可得答案.详解:如下图,时间轴点所示,概率为故选A.点睛:本题主要考察“长度型”几何概型问题的概率计算,分别求出构成事件的区域长度及试验的全部构成的区域长度,再利用几何概型的计算公式即可求解.8. 已知定义在上的函数在上单调递减,且是偶函数,不等式对任意的恒成立,则实数的取值范围是()A. B.C. D.【答案】D【解析】分析:根据函数为偶函数可得函数关于对称,再结合函数的单调性可得,解得.详解:是偶函数,所以则函数的图像关于对称,由得所以,解得.故选D.点睛:本题解题的关键在于能够根据题意,分析出函数的单调性,画出函数的草图,利用数形结合找到不等关系,解不等式即可.9. 某几何体的三视图如图所示,其中每个单位正方体的边长为,则该几何体的体积A. B. C. D.【答案】B【解析】分析:根据三视图分析该几何体的结构为一个半圆柱挖去一个三棱锥,计算半圆柱的体积和三棱锥的体积,相减可得该几何体的体积.详解:由三视图可知,该几何体是半圆柱挖去一个三棱锥,其体积为.点睛:本题的核心关键在于弄清楚该几何体的构成,再利用体积公式求解,解题时注意公式要记忆准确,避免“丢三落四”而出错.10. 已知是函数·的一个极小值点,则的一个单调递增区间是()A. B. C. D.【答案】A【解析】分析:将已知函数化简为,可得函数的周期为,结合极小值点,可得函数的单调递减区间.详解:,由已知是函数过最小值点的对称轴结合图像可知是函数的一个单调增区间,因为,所以是函数的一个单调递增区间,故选A.点睛:设为三角函数的极小值点,为三角函数的最小正周期,则从三角函数的图像可知是函数的一个单调递减区间,是函数的一个单调递增区间.11. 已知圈经过原点且圆心在轴正半轴上,经过点且倾斜角为的直线与圆相切于点,点在轴上的射影为点,设点为圆上的任意一点,则()A. B. C. D.【答案】C【解析】分析:根据题干写出直线方程,再利用直线与圆相切求出圆心坐标为,写出圆的方程,得出点坐标,设,并将圆的方程代入可求得值为.详解:由题可知直线,即,设圆心,则,解得.所以圆的方程为:,将代入圆的方程,可解得,故,设,则,将圆的方程代入得,所以,故选C.点睛:已知直线方程,和圆的方程,且设圆心到直线的距离为,则直线与圆相交;直线与圆相交.12. 设函数 (为自然对数的底数),当时恒成立,则实数的最大值为()A. B. C. D.【答案】D【解析】分析:令,则可转化为的恒成立问题,画出函数的草图,利用数形结合可得参数的取值范围.详解:由,得,令,则,令,得或,分别作出的图像,要使的图象在的图象下方,设切点,切线为,即,由切线过得,,解得或或,由图像可知.故选D.点睛:利用导数研究含参变量函数的恒成立问题:(1)其中关键是根据题目找到给定区间上恒成立的不等式,转化成最值问题;(2)恒成立问题的标志关键词:“任意”,“所有”,“均有”,“恒成立”等等;(3)对于“曲线在曲线上方(下方)”类型的恒成立问题,可以转化为()恒成立.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填在横线上.13. 已知满足条件则点到点的距离的最小值是__________.【答案】【解析】分析:作出可行域,研究目标函数的几何意义可知,当时目标函数取得最小值为.详解:作出不等式组所表示的阴影部分,易知点到点的距离的最小值为,又.所以点到点的距离的最小值为.点睛:在解决线性规划问题时,要注意分析目标函数是属于“截距型”、“斜率型”、“距离型”中的哪一种,利用数形结合分析目标函数取得最值时对应的取值14. 已知是长轴长为的椭圆的左右焦点,是椭圆上一点,则面的最大值为__________.【答案】2【解析】分析:根据椭圆的定义可计算出,再根据三角形面积公式,利用均值定理可得的最大值为.详解:,又根据题意,则,所以面积的最大值为,点睛:本题主要考察椭圆的定义及焦点三角形问题,在使用均值定理求最值问题时注意“=”成立的条件.【答案】1【解析】分析:根据题意画出图形,列出等式关系,联立即可求解.详解:如图,已知(尺),(尺),,∴,解得,因此,解得,故折断后的竹干高为尺.点睛:本题属于解三角形中的简单题型,主要考察解三角形的实际应用问题,关键在于读懂题意,根据题设做出图形.16. 在中,是角所对的边长,若,则__________.【答案】1【解析】分析:根据正弦定理找到三角形中边之间的关系,再利用余弦定理可计算出的值.详解:由正弦定理得,又由余弦定理知,∴.点睛:正弦定理为实现“边角互化”提供了依据,而当已知三边比例关系时,则可利用余弦定理求出任何一个内角的余弦值.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答应写在答题卡上的指定区域内.17. 设是等差数列,是各项都为正数的等比数列,且,,.(I)求数列和的通项公式;(Ⅱ)求数列的前项和.【答案】(Ⅰ),(Ⅱ)【解析】试题分析:(Ⅰ)设的公差为,的公比为,则,解得,又,所以…5分(Ⅱ),所以两式作差,整理得:. …10分考点:本小题主要考查等差数列和等比数列中基本量的计算,和错位相减法求数列的前项和,考查学生的运算求解能力.点评:错位相减法是求数列的前项和的重要方法,难在相减后的整理过程容易出错,要仔细整理.18. 某市为制定合理的节电方案,对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:百度),将数据按照,,分成组,制成了如图所示的频率分布直方图:(I)求直方图中的值;56789月均用电量百厦(Ⅱ)设该市有100万户居民,估计全市每户居民中月均用电量不低于6百度的人数,估计每户居民月均用电量的中位数,说明理由;(Ⅲ)政府计划对月均用电量在4(百度)以下的用户进行奖励,月均用电量在内的用户奖励20元/月,月均用电量在内的用户奖励10元/月,月均用电量在内的用户奖励2元/月.若该市共有400万户居民,试估计政府执行此计划的年度预算.【答案】(Ⅰ)(Ⅱ)(Ⅲ)亿元【解析】分析:(1)利用频率分布直方图中所有小矩形的面积之和为,可求出参数的值;(2)根据频率分布直方图计算出200户居民月均用电量不低于6百度的频率为,则可估计100万户居民中月均用电量不低于6百度的户数为120000,设中位数为,由前4组频率之和为,前5组频率之和为,可知,可继续计算出的值;(3)分别计算出月均用电量在内的用户数,可得出一年的预算.详解:(Ⅰ)(Ⅱ)200户居民月均用电量不低于6百度的频率为,100万户居民中月均用水量不低于6百度的户数有;设中位数是百度,前组的频率之和而前组的频率之和所以,,故.(Ⅲ)该市月均用电量在,,内的用户数分别为,,,所以每月预算为元,故一年预算为万元亿元.点睛:本题主要结合频率直方图考察样本估计总体,以及样本数字特征的计算等知识。

(天津专版)高考数学 母题题源系列 专题10 导数的基本运算 文-人教版高三全册数学试题

(天津专版)高考数学 母题题源系列 专题10 导数的基本运算 文-人教版高三全册数学试题

母题十 导数的基本运算【母题原题1】【2018某某,文10】已知函数()()e ln ,xf x x f x ='为()f x 的导函数,则()1f '的值为__________. 【答案】e【解析】试题分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.试题解析:由函数的解析式可得:()11e ln e e ln x xx f x x x x x ⎛⎫'=⨯+⨯=+ ⎪⎝⎭, 则()111e ln1e 1f ⎛⎫'=⨯+= ⎪⎝⎭.即()1f '的值为e .【名师点睛】本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.【母题原题2】【2017某某,文10】已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为 . 【答案】1()()000y y f x x x '-=-.注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,谨记,有切点直接带入切点,没切点设切点,建立方程组求切点.【母题原题3】【2016某某,文10】已知函数()(2+1),()x f x x e f x '=为()f x 的导函数,则(0)f '的值为__________. 【答案】3 【解析】()(2+3),(0) 3.x f x x e f ''=∴=【名师点睛】求函数的导数的方法(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导; (4)复合函数:确定复合关系,由外向内逐层求导;(5)不能直接求导的:适当恒等变形,转化为能求导的形式再求导.【母题原题4】【2015某某,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为.【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==. 【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出()()1ln f x a x '=+由,再由()13f '=可直接求得a 的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.【命题意图】主要考查导数的运算、导数的几何意义,考查代数式化简与变形能力、运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【命题规律】导数的基本运算几乎是每年高考的必考内容,考查题型以选择题、填空题,有时出现在解答题的第(1)问中,难度偏小,属中低档题.常见的命题角度有:(1)求导函数值;(2)求切线方程;(3)求参数的值. 【答题模板】解答本类题目,以2018年高考题为例,一般考虑如下两步: 第一步:求导数得()11e ln e e ln xxx f x x x x x ⎛⎫'=⨯+⨯=+ ⎪⎝⎭,第二步:把1x =代入上式,得()111e ln1e 1f ⎛⎫'=⨯+= ⎪⎝⎭,即()1f '的值为e .【方法总结】一、导数的代数意义及其几何意义1.代数意义:函数y =f (x )在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆叫做y =f (x )在0x x =处导数, 记作0000000()()()|,()lim limx x x x f x x f x yf x y f x x x =∆→∆→+∆-∆'''==∆∆或即 2.几何意义:函数f (x )在点0x 处的导数0()f x '的几何意义是在曲线y =f (x )上点00(,())x f x 处的切线的斜率.相应地,切线方程为'000()()()y f x f x x x -=-. 二、导数的四则运算1.熟记基本初等函数的导数公式 2.导数的运算法则(1)''[()]()cf x cf x =;(2)[]'''()()()()f x g x f x g x ±=±;(3)[]'''()()()()()()f x g x f x g x f x g x ⋅=±;(4)[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦. 3.函数求导应先注意函数的定义域.4.对复杂函数求导时应注意先对函数进行化简.1.【2018某某某某5月模拟】已知是函数的导函数,且对任意的实数都有(是自然对数的底数),,则( )A .B .C .D .【答案】D【名师点睛】本题需要构造函数,一般:(1)条件含有,就构造,(2)若,就构造,(3),就构造,(4)就构造,等便于给出导数时联想构造函数.2.【2018某某三模】设函数的导函数记为,若,则()A. -1 B. C. 1 D. 3【答案】D【名师点睛】该题涉及到的知识点有正余弦的求导公式,同角三角函数关系式,还有就是函数在某点处的导数就是导函数在相应的点处的函数值,利用公式求得结果.3.【2018某某某某二模】已知函数在处取极值10,则A. 4或 B. 4或 C. 4 D.【答案】C【解析】分析:根据函数的极值点和极值得到关于的方程组,解方程组并进行验证可得所求.详解:∵,∴.由题意得,即,解得或.当时,,故函数单调递增,无极值.不符合题意.∴.故选C.【名师点睛】(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值. 4.【2018某某豫南九校模拟】已知函数是函数的导函数,(其中为自然对数的底数),对任意实数,都有,则不等式的解集为( )A .B .C .D .【答案】B【名师点睛】解抽象不等式的常用方法是构造函数后利用函数的单调性求解,其中如何构造函数是解题的难点,在本题中根据含有的不等式,并结合导数的求导法则构造出函数是关键.5.【2018某某某某模拟】已知函数()y f x =在()0+∞,上非负且可导,满足,()()21xf x f x x x +≤-+-',若0a b <<,则下列结论正确的是( )A . ()()af b bf a ≤B . ()()af b bf a ≥C . ()()af a f b ≤D . ()()bf b f a ≤ 【答案】A【解析】因为()()21xf x f x x x +≤-+-'()'0,xf x ⎡⎤∴<∴⎣⎦函数()()F x xf x =在()0,+∞上递减,又0a b <<且()f x 非负,于是有()()0af a bf b >≥,①22110a b>>,②①②两式相乘得()()()()0f a f b af b bf a ab>≥→<,根据“或”命题成立的条件可得()()af b bf a ≤成立,故选A .【方法点睛】本题主要考查抽象函数的单调性以及函数的求导法则,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.本题通过观察四个选项,联想到函数()()F x xf x =,再结合条件判断出其单调性,进而得出正确结论.6.【2018某某模拟】已知函数()()2ln f x x x f a =+',且()11f =-则实数a 等于( )A . 12-或1 B . 12C . 1D . 2 【答案】C【解析】取1x =得()()1ln11f f a =+=-',则()/1f a =-,取0x a =>得()()12f a af a a=+'',则2210a a --=,解得1a =或12a =-(舍去),故选C 7.【2018某某二模】已知函数,为的导函数,则_______.【答案】【名师点睛】考查基本初等函数和商的导数的求导公式,已知函数求值的方法.8.【2018某某静海一中模拟】已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.【答案】3【解析】()()1ln f x a x '=+,()13f a '==. 9.【2018某某上学期期末考试】已知函数()ln xf x x=,()'f x 为()f x 的导函数,则()'1f 的值为__________. 【答案】1【解析】∵()ln x f x x =,∴()221ln 1ln x xx x f x x x⋅--==',∴()11f '=.答案:110.【2018某某一中期中考试】已知函数 ()()()21221f x f x x f =++',则 ()2f '的值为__________. 【答案】-6【解析】分析:函数表达式中有两个参数()()1,'1f f ,因此需要构建()()1,'1f f 的方程组求出它们的值后才能求()'2f 的值.详解:令1x =,则()()1'12f f +=-①.又()()'2'12f x f x =+,故令1x =得()'12f =-,由①得()10f =,故()222f x x x =-+,()'42f x x =-+,所以()'26f =-.填6-.【名师点睛】本题考查函数解析式的求法,因原函数中含有特定导数值,故常利用导函数构建与特定导数值相关的方程或方程组,解出它们的值即可. 11.【2018某某一中月考五】已知在平面直角坐标系中,曲线在处的切线过原点,则__________.【答案】【名师点睛】用导数的几何意义求曲线方程时,注意“在点P 处的切线”和“过点P 的切线”的区别,其中“在点P 处的切线”的含义是点P 在曲线上,同时点P 又是切点,求“过点P 的切线”时要转化为另一种情况处理.12.【2018某某某某三模】已知函数,在区间上任取一个实数,则的概率为__________. 【答案】【解析】分析:由,可得,利用几何概型概率公式可得结果.详解:,由,可得,的概率为,故答案为.【名师点睛】本题題主要考查“长度型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.13.【2018某某豫南九校模拟】若,则__________.【答案】6 【解析】由题得,所以故填6.14.【2018某某省某某金卷调研卷(五)】已知函数()()()513f x x x =-+,()f x '为()f x 的导函数,则()f x '的展开式中2x 项的系数是__________. 【答案】-540【方法点晴】本题主要考查导数的求导法则以及二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用. 15.【2018某某某某四模】已知()()'1ln f f x x x x=+,则()'1f =__________.【答案】12. 【解析】因为()()2'11ln f f x x x '=+-,令1x =,得()()11'1f f ='-,解得()1'12f =.16.【2018某某某某模拟】等比数列{}n a 中,182,4a a ==,函数()()()()128f x x x a x a x a =--⋯-,则()0f '=__________.【答案】122 【解析】函数()()()()128...f x x x a x a x a =---,()()()()128'...f x x a x a x a =---()()()128...'x x a x a x a ⎡⎤+---⎣⎦,则()()441212818'0...82f a a a a a =⋅===,故答案为122.17.【2018某某二模】已知函数()f x 的导函数为()'f x ,且满足关系式()()3'2ln f x xf x =+,则()'1f 的值等于__________.【答案】1418.【2018某某某某一模】已知()()31303f x x xf =+',则()1f '=_________. 【答案】1【解析】由题意可得:()()2'3'0f x x f =+,令0x =可得:()()()2'003'0,'00f f f =+∴=,则:()()()321,','113f x x f x x f =∴==.。

[精编]福建省2018届高三上学期期末考试数学(文)有答案

[精编]福建省2018届高三上学期期末考试数学(文)有答案

泉港一中2017-2018学年上学期期末质量检测高三数学(文科)试题(考试时间:120分钟 总分:150分)第Ⅰ卷(选择题 60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =ln(2)y x =-的定义域分别为M 、N ,则M N =( )A .(1,2]B .[1,2)C .(,1](2,)-∞+∞D .(2,)+∞2.若2iz i=+,则复数z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.设D 、E 、F 分别为△ABC 三边BC 、CA 、AB 的中点,则++=( )A .B .C .D .4.从编号为1,2,…,79,80的80件产品中,采用系统抽样的方法抽取容量为5的样本,若编号为10的产品在样本中,则该样本中产品的最大编号为( ) A .72B .73C .74D .755.已知角α(0360α︒≤<︒)终边上一点的坐标为(sin150,cos150)︒︒,则α=( ) A .150︒ B .135︒C .300︒D .60︒6.函数ln ||()||x x f x x =的大致图象是( )7.我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k 的值为( )A.6 B.4.5 C.7.5 D.98.某几何体的三视图如图所示,则其体积为()A.34πB.24π+C.12π+D.324π+9.实数x,y满足1|1|12x y x+≤≤-+时,目标函数z mx y=+的最大值等于5,则实数m的值为()A.1-B.12-C.2D.510.三棱锥S ABC -中,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,SA =,则该三棱锥的外接球的表面积为( ) A .643π B .2563π C .4363π D11.已知动点P 在椭圆2213627x y +=上,若点A 的坐标为(3,0),点M 满足||1AM =,0PM AM ⋅=,则||PM 的最小值是( ) ABC.D .312.已知函数()[]()cos ,1,1lg 2,1x x f x x x π⎧∈-⎪⎨>⎪⎩,关于x 的方程()f x a =的五个实根由小到大依次为12345,,,,x x x x x ,则345x x x +的取值范围是( ) A. 2,15⎛⎫ ⎪⎝⎭ B.1,15⎛⎫ ⎪⎝⎭ C. 1,25⎛⎫ ⎪⎝⎭ D.1,110⎛⎫ ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.观察下列式子:213122+<,221151233++<,222111712344+++<,…,根据上述规律,第n 个不等式可能为 .14.已知函数()sin()f x x ωϕ=+(0ω>,0ϕπ<<)的图象如图所示,则(0)f 的值为 .15.双曲线22221x y a b-=(0a >,0b >)上一点M 关于渐进线的对称点恰为右焦点2F ,则该双曲线的离心率为 .16.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为a ,b ,c,其面积S =,这里1()2p a b c =++.已知在ABC ∆中,6BC =,2AB AC =,则ABC ∆面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 满足1122(1)22n n a a na n ++++=-+…,*n N ∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若2211log log n n n b a a +=⋅,12n n T b b b =+++…,求证:对任意的*n N ∈,1n T <.18.在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:CD ⊥平面ADEF ; (Ⅱ)求多面体ABCDEF 的体积.19.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.(Ⅰ)天气预报说,在今后的三天中,每一天降雨的概率均为40%,该营销部门通过设计模拟实验的方法研究三天中恰有两天降雨的概率,利用计算机产生0到9之间取整数值的随机数,并用1,2,3,4,表示下雨,其余6个数字表示不下雨,产生了20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 求由随机模拟的方法得到的概率值;(Ⅱ)经过数据分析,一天内降雨量的大小x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:降雨量(毫米) 12345快餐数(份)5085115140160试建立y 关于x 的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)附注:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-20.已知点P 是圆F 1:(x ﹣1)2+y 2=8上任意一点,点F2与点F 1关于原点对称,线段PF 2的垂直平分线分别与PF 1,PF 2交于M ,N 两点. (1)求点M 的轨迹C 的方程; (2)过点的动直线l 与点M 的轨迹C 交于A ,B 两点,在y 轴上是否存在定点Q ,使以AB 为直径的圆恒过这个点?若存在,求出点Q 的坐标;若不存在,请说明理由.21.已知函数1()(1)1xax f x a x e +=-+-,其中0a ≥. (Ⅰ)若1a =,求函数()y f x =的图象在点(1,(1))f 处的切线方程; (Ⅱ)若0x ≥,()0f x ≤恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,0απ≤<)以坐标原点O 为极点,x 轴的非负半轴为极轴,并取相同的长度单位,建立极坐标系.曲线1:1C ρ=.(I )若直线l 与曲线1C 相交于点(),,1,1A B M ,证明:MA MB ⋅为定值; (II )将曲线1C 上的任意点(),y x 作伸缩变换''x y y ⎧=⎪⎨=⎪⎩后,得到曲线2C 上的点()',y'x ,求曲线2C 的内接矩形ABCD 最长的最大值.23.选修4-5:不等式选讲 已知函数()2|1||1|f x x x =+--.(Ⅰ)求函数()f x 的图象与直线1y =围成的封闭图形的面积m ;(Ⅱ)在(Ⅰ)的条件下,若正数a 、b 满足2a b abm +=,求2a b +的最小值.泉港一中2017-2018学年上学期期末质量检测高三数学(文科)试题答案一、选择题1-5BAACC 6-10BADBB 11、C 12: B 二、填空题13.22211121123(1)1n n n +++++<++…12三、解答题17. 解:(Ⅰ)当1n >时,1121212(1)222-1)(2)22n n nn a a na n a a n a n +-+++=-++++=-+①(②①-②得1(1)2(2)22n n n n na n n n +=---=⋅,2n n a =,当1n =时,12a =,所以2,*n n a n N =∈. (Ⅱ)因为2n n a =,2211111log log (1)1n n n b a a n n n n +===-⋅++.因此1111112231n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111n =-+, 所以n T 1<.18.(Ⅰ)证明:取AD 中点M ,连接EM ,AF=EF=DE=2,AD=4,可知EM=12AD ,∴AE ⊥DE , 又AE ⊥EC ,DEEC E = ∴AE ⊥平面CDE ,∵CD CDE ⊂平面 ,∴AE ⊥CD ,又CD ⊥AD ,ADAE A = ,∴CD⊥平面ADEF .(Ⅱ)由(1)知 CD ⊥平面ADEF ,CD ⊂ 平面ABCD , ∴平面ABCD ⊥平面ADEF ;作EO ⊥AD ,∴EO ⊥平面ABCD ,, 连接AC ,则ABCDEF C-ADEF F ABC V V V -=+111(24)4332C-ADEF ADEF V S CD ==⨯⨯+=111243323F-ABC ABC V S OE ==⨯⨯⨯=△, ∴ABCDEF V ==.19.解:(Ⅰ)上述20组随机数中恰好含有1,2,3,4中的两个数的有191 271 932 812 393 ,共5个,所以三天中恰有两天下雨的概率的近似值为51==204P . (Ⅱ)由题意可知1234535x ++++==,50+85+115+140+160=1105y =,51521()()275==27.510()iii ii x x y y b x x ==--=-∑∑, ==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5yx=+. 将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈.所以预测当降雨量为6毫米时需要准备的快餐份数为193份. 20.【解答】解:(1)由题意得,∴点M 的轨迹C 为以F 1,F 2为焦点的椭圆∵,∴点M 的轨迹C 的方程为.(2)直线l 的方程可设为,设A(x 1,y 1),B (x 2,y 2),联立可得9(1+2k 2)x2+12kx ﹣16=0.由求根公式化简整理得,假设在y 轴上是否存在定点Q (0,m ),使以AB 为直径的圆恒过这个点,则即.∵,===.∴求得m=﹣1.因此,在y轴上存在定点Q(0,﹣1),使以AB为直径的圆恒过这个点.21. 解:(Ⅰ)当1=a时,xexxf-+-=)1(1)(,当1=x时,exf21)(-=,1'(1)fe=,所以所求切线方程为:131y xe e=+-.(Ⅱ)首先xeaaxaxf--++-=)1()1()(',令其为)(xg,则xeaaxxg--+-=)12()('.1)当12≤a即210≤≤a时,,0)('≤xg)(xg单调递减,即)('xf单调递减,)('≤xf,)(xf单调递减,0)(≤xf,所以210≤≤a成立;2)当21>a时,0)12()('=-+-=-xeaaxxg解得:ax12-=,当)12,0(ax-∈时,,0)('>xg)(xg单调递增,即)('xf单调递增,)('>xf,)(xf单调递增,0)(>xf,所以21>a不成立.综上所述:210≤≤a.22. 22.(I)曲线221:1C x y+=.()2221cos1sin2cos sin101x ty t t tx yαααα=+⎧⎪=+⇒+++=⎨⎪+=⎩,121MA MB t t⋅=⋅=.(II)伸缩变换后得222:13xC y+=.其参数方程为:sinxyθθ⎧=⎪⎨=⎪⎩.不妨设点(),A m n在第一象限,由对称性知:周长为())4,4sinm nθθ=+8sin 83πθ⎛⎫=+≤ ⎪⎝⎭,(6πθ=时取等号)周长最大为8. 23. 解:(Ⅰ)函数3,1,()21131,11,3, 1.x x f x x x x x x x --≤-⎧⎪=+--=+-<<⎨⎪+≥⎩它的图象如图所示:函数)(x f 的图象与直线1=y 的交点为(4,1)-、(0,1),故函数)(x f 的图象和直线1=y 围成的封闭图形的面积14362m =⨯⨯=.(Ⅱ)ab b a 62=+ ,621=+∴ab844244)21)(2(=+≥++=++abb a a b b a ,当且仅当abb a 4=, 可得31,32==b a 时等号成立,b a 2+∴的最小值是34。

2018南昌市高三调研考试试卷有答案(数学文)

2018南昌市高三调研考试试卷有答案(数学文)

2018—2018学年度南昌市高三年级调研测试卷数 学 (文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分. 第I 卷考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅球的体积公式如果事件A 在一次试验中发生的概率是P ,34π3V R =那么n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)kk n kn n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|ln }A x y x ==,集合{2,1,1,2}B =--,则AB =A .(1,2)B .{1,2}C .{1,2}--D .(0,)+∞2.已知复数z 的实部为1-,虚部为2,则5iz =A .2i -B .2i +C .2i --D .2i -+3.若函数2()()f x x ax a =+∈R ,则下列结论正确的是 A .存在a ∈R ,()f x 是偶函数 B .存在a ∈R ,()f x 是奇函数C .对于任意的a ∈R ,()f x在(0,+∞)上是增函数 D .对于任意的a ∈R ,()f x在(0,+∞)上是减函数4.如图所示,一个空间几何体的主视图和左视图都是 边长为1的正方形,俯视图是一个直径为1的圆, 那么这个几何体的体积为A .32πB .2πC .3πD .4π5.已知数列{}n a 的前n 项和为n S ,且满足32132S S -=,,则数列{}n a 的公差是A .12B .1C .2D .36.若下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k 的条件是A .9k =B .8k ≤C .8k <D .8k >7.已知函数sin()y A x m ωϕ=++的最大值为4,最小值为0,最小正周期为π2,直线π3x =是其图象的一条对称轴,则符合条件的函数解析式是A.π4sin 46y x ⎛⎫=+ ⎪⎝⎭ B.π2sin 223y x ⎛⎫=++ ⎪⎝⎭ C.π2sin 423y x ⎛⎫=++ ⎪⎝⎭ D.π2sin 426y x ⎛⎫=++ ⎪⎝⎭8.已知函数()()21,1,log , 1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a的取值范围为 A .()1,2 B .()2,3C .(]2,3D .()2,+∞9.直线l 过抛物线22(0)y px p =>的焦点,且与抛物线的交于A 、B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是A .212y x =B .28y x = C .26y x = D .24y x = 10.如图,在透明塑料制成的长方体ABCD —A1B1C1D1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱A1D1始终与水面EFGH 平行; ④当1E AA ∈时,AE BF +是定值.其中正确说法是A . ①②③B .①③C .①②③④D .①③④二.填空题:本大题共5小题,每小题5分,共25分.把答案填写在题中横线上.11.函数f(x)=2log (1)x -的定义域为_________.12.已知O 为坐标原点,点(3,2)M ,若(,)N x y 满足不等式组104x y x y ≥⎧⎪≥⎨⎪+≤⎩,则OM ON ⋅ 的最大值为__________. 13.已知正三棱柱111ABC A B C -的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于 。

2018年普通高考全国123卷文科数学(含参考答案)

2018年普通高考全国123卷文科数学(含参考答案)

2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)文科数学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I () A .{}02, B .{}12, C .{}0 D .{}21012--,,,, 2.设121i z i i-=++,则z =()A .0B .12C .1D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是() A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率()A .13B .12CD 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为() A .B .12πC .D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为()A .2y x =-B .y x =-C .2y x =D .y x = 7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r()A .3144AB AC -u u u r u u u r B .1344AB AC -u u u r u u u rC .3144AB AC +u u u r u u u r D .1344AB AC +u u u r u u u r8.已知函数()222cos sin 2f x x x =-+,则() A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为() A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为()A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=()A .15B .5 C .25 D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是()A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分) 13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.ABC△的内角A B C,,的对边分别为a b c,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

山西省吕梁市2018届高三上学期第一次模拟考试数学(文)试题+Word版含答案【KS5U+高考】

山西省吕梁市2018届高三上学期第一次模拟考试数学(文)试题+Word版含答案【KS5U+高考】

吕梁市2017-2018学年度高三年级第一次模拟考试文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合8}64{2,,,=A ,7}x 2|{x ≤<=B ,则=B A ( ) A .}4,2{ B .}6,4{ C .}8,6{ D .}8,2{2.已知i 是虚数单位,复数i-12的虚部为( ) A . 1 B .i C . -1 D .i -3.若1||=,2||=,且⊥+)(,则与的夹角为( ) A .3πB .3π-C .32πD . 32π或3π-4. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知6=a ,3=c ,32cos =A ,则=b ( )A . 3B . 1 C.1或3 D .无解 5.如图为几何体的三视图,则其体积为( )A .432+π B .342+π C. 43+π D .34+π 6.函数)(x f 在),0(+∞单调递增,且)2(+x f 关于2-=x 对称,若1)2(=-f ,则1)2(≤-x f 的x 的取值范围是( )A . ]2,2[-B . ),2[]2,(+∞--∞ C. ),4[]0,(+∞-∞ D .]4,0[7. F 为双曲线22221x y a b-=(0,0)a b >>右焦点,N M ,为双曲线上的点,四边形OFMN为平行四边形,且四边形OFMN 的面积为bc ,则双曲线的离心率为( ) A .2 B . 22 C. 2 D .38.已知变量y x ,满足⎪⎩⎪⎨⎧≥-+≤≥+-022042y x x y x ,则21++x y 的取值范围是( )A .]23,1[ B .]23,41[ C. ]1,41[ D .),23[]41,(+∞-∞9. 世界数学名题“13+x 问题”:任取一个自然数,如果它是偶数,我们就把它除以2,如果它是奇数,我们就把它乘3再加上1,在这样一个变换下,我们就得到了一个新的自然数,如果反复使用这个变换,我们就会得到一串自然数,猜想:反复进行上述运算后,最后结果为1,现根据此问题设计一个程序框图如下图,执行该程序框图,若输入的3=N ,则输出=i ( )A .5B . 7 C. 8 D .910.函数xe x xf 1)(2-=的图像大致为( )A .B .C. D .11.将函数)62sin(2)(π+=x x f 的图像向左平移12π个单位,再向下平移1个单位,得到)(x g 的图像,若9)()(21=x g x g ,且]2,2[,21ππ-∈x x ,则212x x -的最大值为( )A .1255π B .1253π C. 625πD .417π12. 已知点D C B A ,,,在同一个球的球面上,2==BC AB ,2=AC ,若四面体ABCD的体积为332,球心O 恰好在棱DA 上,则这个球的表面积为( ) A .425πB .π4 C. π8 D .π16 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知3)4tan(-=+πα,则=αtan .14.从圆422=+y x 内任意一点P ,则P 到直线1=+y x 的距离小于22的概率为 .15.已知函数)(x f )(R x ∈满足1)1(=f 且)(x f 的导数21)('<x f ,则不等式212)(22+<x x f 的解集为 .16.已知抛物线)0(2:2>=p px y C 的焦点为F ,点)22,(0x M )2(0px >是抛物线C 上一点,以M 为圆心的圆与线段MF 相交于点A ,且被直线2px =截得的弦长为3||MA ,若2||||=AF MA ,则=||AF . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知}{n a 是首项为1的等比数列,数列}{n b 满足21=b ,52=b ,且11+++=n n n n n a b a b a .(1)求数列}{n a 的通项公式; (2)求数列}{n b 的前n 项和.18. 某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,得到如图的频率分布直方图(图1).(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数; (2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到图2中数据,根据表中的数据,能否在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系?19. 在如图所示的多面体ABCDE 中,已知DE AB //,AD AB ⊥,ACD ∆是正三角形,22===AB DE AD ,5=BC ,F 是CD 的中点.(1)求证://AF 平面BCE ; (2)求证:平面⊥BCE 平面CDE ;(3)求D 到平面BCE 的距离.20. 已知椭圆2222:1(0)x y C a b a b +=>>过)23,1(E ,且离心率为21=e .(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆交于B A ,两点,D 点坐标为)3,4(,求直线DB DA ,的斜率之和.21. 已知函数)1(ln )(--=x a x x x f . (1)讨论函数)(x f 的单调性; (2)若0)(≥x f 恒成立,求a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧=+=ααsin cos 1y x (α为参数),曲线13:222=+y x C .(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求21,C C 的极坐标方程; (2)射线)0(3≥=ρπθ与1C 异于极点的交点为A ,与2C 的交点为B ,求||AB .23.选修4-5:不等式选讲已知函数|1|)(-=x x f ,m x x g ++-=|2|)(.(1)若关于x 的不等式0)(≥x g 的解集为}04|{≤≤-x x ,求实数m 的值; (2)若)()(x g x f >对于任意的R x ∈恒成立,求实数m 的取值范围.试卷答案一、 1-5 BACCD 6-10 DBBCA 11-12 AD4.【解析】由余弦定理得cos a b c bc A =+-2222,即b b -+=2430,所以b =1或3.选C5.【解析】几何体形状如图所示:是由半个圆柱和一个四棱锥的组合体,所以选D6.【解析】.由()f x 为偶函数,所以(||)(||)f x f -≤-22,又()f x 在(,)+∞0单调递增,所以||x -≤22,即x ≤≤04.选D7.【解析】设()00 M x y ,,x 0>0,y 0>0.∵四边形OFMN 为平行四边形,∴02cx =,∵四边形OFMN 的面积为bc ,∴0y c bc =,即0y b =,∴ 2c M b ⎛⎫ ⎪⎝⎭,,代入双曲线方程得2114e -=, ∵1e >,∴e = B.10.【解析】函数21()x x f x e -=不是偶函数,可以排除C,D ,又令221'()0xx x f x e-++==得极值点为1211x x ==B ,选A 11. 【解析】由题意得()2sin[2()]1126g x x ππ=++-,故max ()1g x =,min ()3g x =-,由12()()9g x g x =,得12()3()3g x g x =-⎧⎨=-⎩,由()2sin(2)133g x x π=+-=-得22,32x k k Z πππ+=-∈即5,12x k k Z ππ=-∈,由12,[2,2]x x ππ∈-,得12175719,,,,12121212x x ππππ=-- 故当121917,1212x x ππ==-时122x x -最大,即1255212x x π-=,故选A.12. 【解析】如图所示,设AC 的中点为M ,由已知AB ⊥BC 所以底面三角形ABC 外接圆的圆心为M ,所以OM ⊥平面ABC ,又OM //DC,所以DC ⊥平面ABC ,由四面体的体积为233,得DC =23所以DA =4,球的半径为2,由球的表面积公式得球的表面积为16π.选D二、选择题 13. 2 14.ππ+24 【解析】如图所示满足条件的点P 构成阴影部分区域,由一个直角边为2的等腰直角三角形和两个圆心角为45°的扇形组成.这是一个几何概型,不难求得P 到直线x +y =1的距离小于22的概率为ππ+24.15.{x |x >1或x <-1}【解析】令g (x )=f (x )-x 2-12,则()(),()g x f x g ''=-<=10102,所以g (x )在R 上为减函数,不等式等价于g (x 2)<0, 则x 2>1,得x >1或x <-1.16.1三.解答题17.解:(Ⅰ)把n =1代入已知等式得a b a b a =+12112, 所以a a b a b a =-=2121113 所以{}n a 是首项为1,公比为3的等比数列,即n n a -=13(Ⅱ)由已知得n n n na b b a ++-==113, 所以{}n b 是首项为2公差为3的等差数列,其通项公式为n b n =-31()()n n n b b n n n nS ++-+===21231322218.解(Ⅰ)由图可知,第一组有3人,第二组7人,第三组27人, 设后四组的频数构成的等差数列的公差为d, 则(27-d )+(27-2d )+(27-3d )=63,解得d =3所以后四组频数依次为27,24,21,18所以视力在5.0以下的频率为3+7+27+24+21=82人, 故全年级视力在5.0以下的人数约为1000×82100=820(人)(Ⅱ)22100(4118329)3004.110 3.8415050732773k ⨯⨯-⨯==≈>⨯⨯⨯因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系. 19. 解:(Ⅰ)取CE 的中点M ,连接,BM MF ,因F 为CD 的中点, 所以1//2MF ED ,又AB //ED 21,所以//MF AB ,四边形ABMF 为平行四边形, 所以MB//AF , 因为BM ⊂平面BCE ,AF ⊄平面BCE ,所以//AF 平面.BCE (Ⅱ)因为ACD ∆是正三角形,所以2AC AD CD ===,在ABC ∆中,1,2,AB AC BC ===所以222AB AC BC +=,故AB AC ⊥, ∴DE ⊥AC ,又DE ⊥AD ,AC∩AD=A ∴DE ⊥平面ACD∴DE ⊥AF,又AF ⊥CD ,由(Ⅰ)得BM ∥AF ∴DE ⊥BM, BM ⊥CD ,DE ∩CD=D ∴BM ⊥平面CDE ,BM ⊂平面BCE∴平面BCE ⊥平面CDE (Ⅲ)连接DM ,由于DE =DC ∴DM ⊥CE由(Ⅱ)知,平面BCE ⊥平面CDE ,∴DM ⊥平面BCE 所以DM 为D 到平面BCE 的距离,DM =2所以D 到平面BCE 的距离为220.(Ⅰ)解:由已知得222221911,,24c a b c a a b+===+ 解之得,a =2,b =3,c =1 所以椭圆方程为22143x y += (Ⅱ)设1122(,),(,)A x y B x y ,由(1)得(1,0)F ,设直线l 的方程为(1)y k x =-与椭圆联立得22143x y y kx k ⎧+=⎪⎨⎪=-⎩消去x 得22222(34)84120k x k x k +-+-=, 所以221212228412,4343k k x x x x k k -+==++ 所以1212121233334444DA DB y y kx k kx k k k x x x x ------+=+=+---- 1212122222222(33)(8)33332244(4)(4)3(1)(83224)3(1)(2424)224124816(43)36362k x x k k k k x x x x k k k k k k k k k k k -+---=++=+----------=+=+--⨯+++=当直线l 斜率不存在时,A (1, -32),B (1, 32),2DA DB k k += 所以,DA DB 的斜率之和为221.解:(Ⅰ)函数()f x 的定义域为(,)+∞0'()ln f x x a =+-1由'()f x =0得,e a x -=1 当(,e)a x -∈10时,'()f x <0;当(e ,)a x -∈+∞1时,'()f x >0.所以()f x 在(,e )a -10单调递减,()f x 在(e ,)a -+∞1单调递增(Ⅱ)由(Ⅰ)得()f x 在e a x -=1时有极小值,也就是最小值. 所以(e )a f -≥1即()e(e )a a a a -----≥11110也就是e a a -≥1设()e x g x x -=-1,'()ex g x -=-11由'()g x =0得,x =1.当(,)x ∈01时,'()g x >0;当(,)x ∈+∞1时,'()g x <0.所以()g x 在(,)01单调递增,()g x 在(,)+∞1单调递减. 所以()g x 的最大值为max ()()g x g ==10.所以e a a -≤1又e a a -≥1,所以e a a -=1即a =122.解:(Ⅰ)曲线C 1:cos sin x y αα=+⎧⎨=⎩1(α为参数)化为普通方程为x y x +=222, 所以曲线C 1的极坐标方程为cos ρθ=2,曲线C 2的极坐标方程为(sin )ρθ+=22123. (Ⅱ)射线()πθρ=≥03与曲线C 1的交点的极径为cos πρ==1213, 射线()πθρ=≥03与曲线C 2的交点的极径满足(sin )πρ+=2221233,解得ρ=25,所以||||AB ρρ=-=-1215 23.解:(Ⅰ)由()||g x x m =-++≥20,可得||x m +≤2, 所以m x m --≤≤-22,由题意得m m --=-⎧⎨-=⎩2420, 所以m =2.(Ⅱ)若()()f x g x >恒成立,则有||||x x m -++>12恒成立, 因为||||||x x x x -++≥---=12123,当且仅当()()x x -+≤120时取等号,所以m <3。

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)本试题卷共23题,分为第I卷和第II卷,共计150分,考试时间120分钟。

第I卷一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x(x-6)(x+1)0},则A∩B=(C)。

2.若复数z=a1为纯虚数,则实数a=(B)。

3.已知a=(12),b=(-1,1),c=2a-b,则|c|=(B)。

4.3cos15°-4sin215°cos15°=(D)。

5.已知双曲线C的两个焦点F1F2都在x轴上,对称中心为原点,离心率为3,若点M在C 上,且MF1MF2M到原点的距离为3,则C的方程为(C)。

6.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于(B)。

7.右面的程序框图的算法思路源于我国古代著名的《孙子剩余定理》。

图中的Mod(N,m)=n表示正整数N除以正整数m后的余数为n,例如Mod(10,3)=1.执行该程序框图,则输出的i等于(C)。

8.将函数y=2sinx+cosx的图象向右平移1个周期后,所得图象对应的函数为(D)。

二、填空题(共3小题,每小题10分,共30分)9.已知函数y=ln(1-x),则y''=(B)。

10.已知函数f(x)=x+sinx,则f'(π)的值为(C)。

11.已知函数f(x)=x+sinx,则f(x)在[0,π]上的最小值为(A)。

三、解答题(共8小题,每小题10分,共80分)12.解方程log2(x+1)+log2(x-1)=1.13.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的单调递减区间。

14.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的极值和极值点。

15.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的图象在点(1,1)处的切线方程。

高中数学(一轮复习)最基础考点系列考点2 根据集合间的关系求参数 含解析

高中数学(一轮复习)最基础考点系列考点2 根据集合间的关系求参数 含解析

专题2 根据集合间的关系求参数根据参数的取值讨论集合间的包含关系★★★○○○○表示关系文字语言记法集合间的基本关系子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A真子集集合A是集合B的子集,并且B中至少有一个元素不属于AA B或B A 相等集合A的每一个元素都是集合B的元素,集合B的每一个元素也都是集合AA⊆B且B⊆A⇔A=B空集是任何非空集合的真子集∅B且B≠∅集合间的常见包含关系为子集、真子集和相等。

在集合中含有参数时要讨论参数的取值来确定集合间的关系。

(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件. (2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性"而导致解题错误.(3)防范空集。

在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.若集合A={x|2a+1≤x≤3a−5},B={x|3≤x≤22},则能使A⊆B成立的所有a的集合是()A。

{a|1≤a≤9} B. {a|6≤a≤9} C. {a|a≤9}D。

ϕ【答案】C1.【广西省钦州市钦州港经济技术开发区中学2018届高三理科数学开学考试试卷】设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a 的取值范围是( )A. {a |a≤2}B. {a|a≤1}C. {a|a≥1} D 。

{a|a≥2} 【答案】D【解析】∵设A ={x |1〈x 〈2},B ={x |x 〈a },A∩B=A 得A ⊆B ,∴结合数轴,可得2⩽a ,即a ⩾2 故选:D2.【河北省衡水中学2018届高三上学期一轮复习周测数学(文)试题】若集合{}{}2|60,|10P x xx T x mx =+-==+=,且T P ⊆,则实数m 的可能值组成的集合是__________.【答案】11,,023⎧⎫-⎨⎬⎩⎭【解析】由题意得:{}2,3P =-,由T P ⊆易知,当T =∅时, 0m =;当{}2T =-时, 12m =-;当{}3T =时, 13m =,则实数m 的可能值组成的集合是11,,023⎧⎫-⎨⎬⎩⎭,故答案为11,,023⎧⎫-⎨⎬⎩⎭.3.【浙江省诸暨市牌头中学高中数学人教A 版必修1巩固练习:1。

2018届高三上学期期末考试数学(文)试题参考答案

2018届高三上学期期末考试数学(文)试题参考答案

2017---2018学年度上学期高三期末统一考试数学试题(文科) 参考答案及评分标准一.选择题:每小题5分,总计60分17. (本小题满分12分)(1)解法1:由已知,得cos cos 2cos a B b A c A +=.由正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,即sin()2sin cos A B C A += ………………………………………………………2分 因为sin()sin()sin A B C C π+=-=, 所以sin 2sin cos C C A =. 因为sin 0C ≠,所以1cos 2A =.…………………………………………………4分 因为0A <<π,所以3A π=.………………………………………………………6分 解法2:由已知根据余弦定理,得()222222222a c b b c a a c b ac bc +-+-⨯=-⨯. 即222b c a bc +-=. ………………………………………………………………2分所以2221cos 22b c a A bc +-==.……………………………………………………4分因为0A <<π,所以3A π=.………………………………………………………6分(2)由余弦定理2222cos a b c bc A =+-,得224bc b c +=+,即2()34b c bc +=+.………………………………………………………………8分因为22b c bc +⎛⎫≤ ⎪⎝⎭,…………………………………………………………………10分 所以223()()44b c b c +≤++. 即4b c +≤(当且仅当2b c == 时等号成立).所以6a b c ++≤.…………………………………………………………………12分 18.(本小题满分12分)(1)证明:联结BD 交线段AC 于点点N ,联结MN ,则N 为线段BD 中点,又因为点M 为线段PD 中点, MN PB ∴P ,…………………………………………3分 又MN MAC ⊂Q 面MN MA C ∴P 面…………………………………………………………………………6分(2)证明:Q,所以三角形PAD 为等边三角形,又因为E 为AD中点,所以PE AD ⊥,又PE BE ⊥Q ,BE∩AD=E,∴PE ⊥平面ABCD ;又AC ⊂平面ABCD ,∴AC ⊥PE ,…………………………………………………………………………8分 ∵AD=2,AB=2,四边形ABCD 是矩形,E 是AD 中点,∴△ABE ∽△DAC ,∴∠ABE=∠DAC ,∴AC ⊥BE ,…………………………………10分 ∵PE∩BE=E,∴AC ⊥平面PBE ,∵AC ⊂平面MAC ,∴平面MAC ⊥平面PBE .……………………………………………………………12分 解:(Ⅰ)甲队前5位选手的总分为:86+88+89+90+91+92+96=632,乙队前5位选手的总分为:82+84+87+92+91+94+95=625, ……………………………2分 甲队第六位选手的成绩可能为:90,91,92,93,94,95乙队第六位选手的成绩可能为:95,96,97,98,99 ………………………………………4分 若乙队总分超过甲队,则甲、乙两班第六位选手的成绩可分别为:(90,98),(90,99)(91,99)三种情况,乙班总分超过甲班的概率P=36×5 =130 ………………………………………………6分(Ⅱ)甲队平均分为86888990919296+90==90.258x ++++++甲,乙队平均分为82848792919495+97==90.258x ++++++乙,…………………………8分甲队方差()()()()()()()()22222222286-90.2589-90.2588-90.2590-90.2591-90.2592-90.2596-90.2590-90.25==8s +++++++甲7.6, 乙队方差()()()()()()()()22222222286-90.2589-90.2588-90.2590-90.2591-90.2592-90.2596-90.2590-90.25==8s +++++++乙24.6, 两队的平均分相同,但甲队选手的方差小于乙队。

2018届高三上学期期末质量调查数学(文)试题 含答案

2018届高三上学期期末质量调查数学(文)试题 含答案

数学(文)学科期末质量调查试卷第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|60A x x x =--<,{}|31B x x =-≤≤,则AB 等于( )A .[2,1)-B .(2,1]-C .[3,3)-D .(3,3]-2.一个袋子里装有红、黄、绿三种颜色的球各2个,这6个球除颜色外完全相同,从中摸出2个球,则这2个球中至少有1个是红球的概率是( ) A .13B .25C .815D .353.如图的三视图所对应的的立体图形可以是( )4.若双曲线2213x y -=的左焦点在抛物线22y px =的准线上,则p 的值为( )A .2B .3C .4D .5.“1x <”是“ln(1)0x +<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知()f x 和()g x 分别是定义在R 上的奇函数和偶函数,且32()()23f x g x x x -=++,则(2)(2)f g +等于( ) A .9-B .7-C .7D .97.如图,在平行四边形ABCD 中,3BAD π∠=,2AB =,1AD =,若M 、N 分别是边BC 、CD 上的点,且满足BM NCBC DCλ==,其中[]0,1λ∈,则AM AN ⋅的取值范围是( )A .[]0,3B .[]1,4C .[]2,5D .[]1,78.设函数()4cos()sin 2cos(2)6f x x x x ππ=--+,则函数()f x 的最大值和最小值分别为( ) A .13和11-B .8和6-C .1和3-D .3和1-第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.若复数12z i =-,则复数1z的虚部为 . 10.已知函数1()ln xf x x x-=+,'()f x 为()f x 的导函数,则'(2)f 的值为 . 11.阅读如图的程序框图,运行相应的程序,则输出T 的值为 .12.直线3y kx =+(0)k ≠与圆22(3)(2)4x y -+-=相交于A 、B 两点,若||AB =,则k 的值为 . 13. 设0a b >>,则21()a b a b +-的最小值是 .14.已知函数22,0,()2,0,x x f x x x x -<⎧=⎨-+≥⎩若关于x 的方程1()2f x x m =+恰有三个不相等的实数解,则m 的取值范围是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分13分)在ABC ∆中,若2a =,7b c +=,1cos 4B =-. (1)求b 的值; (2)求ABC ∆的面积. 16. (本小题满分13分)某单位生产A 、B 两种产品,需要资金和场地,生产每吨A 种产品和生产每吨B 种产品所需资金和场地的数据如下表所示:现有资金12万元,场地400平方米,生产每吨A 种产品可获利润3万元;生产每吨B 种产品可获利润2万元,分别用x ,y 表示计划生产A 、B 两种产品的吨数. (1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问A 、B 两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润. 17. (本小题满分13分)如图,在直三棱柱111ABC A B C -中,D 为BC 的中点,3AB =,14AC AA ==,5BC =. (1)求证:1AB AC ⊥; (2)求证:1//A B 平面1ADC ;(3)求直三棱柱111ABC A B C -的体积.18. (本小题满分13分)设数列{}n a 满足条件11a =,1132n n n a a -+=+⋅. (1)求数列{}n a 的通项公式; (2)若nnb n a =,求数列{}n b 的前n 项和n S . 19. (本小题满分14分)已知椭圆E :22221x y a b+=(0a b >>)经过点(2,3)A ,离心率12e =.(1)求椭圆E 的方程;(2)若12F AF ∠的角平分线所在的直线l 与椭圆E 的另一个交点为B ,C 为椭圆E 上的一点,当ABC ∆的面积最大时,求C 点的坐标. 20. (本小题满分14分) 已知函数3221()233f x x ax a x =-+-(a R ∈且0a ≠). (1)当1a =-时,求曲线()y f x =在(2,(2))f --处的切线方程; (2)当0a >时,求函数()y f x =的单调区间和极值;(3)当[]2,22x a a ∈+时,不等式|'()|3f x a ≤恒成立,求a 的取值范围.和平区2018-2019学年度第一学期高三年级 数学(文)学科期末质量调查试卷答案一、选择题1-5:CDACB 6-8:DCD二、填空题9.25 10.14 11.120 12.34- 13.4 14.9(0,)16三、解答题15.解:(1)由已知条件2a =,7c b =-,1cos 4B =-, 运用余弦定理,222cos 2a c b B ac+-=,(2)∵(0,)B π∈,∴sin B ===. 而2a =,73c b =-=, 由ABC ∆的面积公式1sin 2ABC S ac B ∆=,得1232ABC S ∆=⨯⨯=. 16.解:(1)由已知,x ,y 满足的数学关系式为:2312,10050400,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即2312,28,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 该二元一次不等式组所表示的平面区域为下图的阴影部分:(2)设利润为z 万元,则目标函数为32z x y =+.将其变形为322z y x =-+,这是斜率为32-,随z 变化的一族平行直线, 2z 为直线在y 轴上的截距,当2z取最大值时,z 的值最大. 因为x ,y 满足约束条件,所以当直线32z x y =+经过可行域上的点M 时,截距2z最大,即z 最大, 解方程组2312,28,x y x y +=⎧⎨+=⎩得点M 的坐标(3,2),∴max 332213z =⨯+⨯=.答:生产A 种产品3吨、B 种产品2吨时,利润最大为13万元. 17.(1)证明:在ABC ∆中,3AB =,4AC =,5BC =,∴222AB AC BC +=,∴AB AC ⊥.∵三棱柱111ABC A B C -为直三棱柱, ∴1AA ⊥平面ABC , ∵AB ⊂平面ABC , ∴1AB AA ⊥, ∵1ACAA A =,∴AB ⊥平面1AAC , ∵1AC ⊂平面1AAC ,∴1AB AC ⊥.(2)证明:设1AC 与1AC 交于E 点,连接ED . ∵在1A BC ∆中,D 为BC 的中点,E 为1AC 的中点, ∴1//A B ED ,∵ED ⊂平面1ADC ,1A B ⊄平面1ADC , ∴1//A B 平面1ADC . (3)解:∵ABC ∆的面积13462S =⨯⨯=, 直三棱柱111ABC A B C -的高4h =,∴直三棱柱111ABC A B C -的体积6424V Sh ==⨯=.18.解:∵11a =,1132n n n a a -+-=⋅, ∴121321()()()n n n a a a a a a a a -=+-+-++- (012)1323232n -=+⨯+⨯++⨯…1322n -=⨯-(2n ≥).∵当1n =时,113221-⨯-=,式子也成立,∴数列{}n a 的通项公式1322n n a -=⨯-. (2)∵1322n n n b na n n -==⋅-,即013122b =⨯⨯-,123224b =⨯⨯-,233326b =⨯⨯-,…∴123n n S b b b b =++++…01213(1222322)(2462)n n n -=⨯+⨯+⨯++⋅-++++…….设01211222322n n T n -=⨯+⨯+⨯++⋅…,①则2212 1222(1)22n n n T n n -=⨯+⨯++-⋅+⋅…,②①-②,得0121(2222)2(21)2n n n n n T n n --=++++-⋅=--⋅…, ∴(1)21n n T n =-⋅+,∴3(1)232(123)n n S n n =-⋅+-++++…3(1)2(1)3n n n n =-⋅-++. 19.解:(1)由椭圆E 经过点(2,3)A ,离心率12e =, 可得22222491,1,4a b a b a ⎧+=⎪⎪⎨-⎪=⎪⎩ 解得2216,12,a b ⎧=⎪⎨=⎪⎩ ∴椭圆E 的方程为2211612x y +=. (2)由(1)可知1(2,0)F -,2(2,0)F , 则直线1AF 的方程为3(2)4y x =+,即3460x y -+=, 直线2AF 的方程为2x =,由点A 在椭圆E 上的位置易知直线l 的斜率为正数. 设(,)P x y 为直线l 上任意一点,|2|x =-,解得210x y --=或280x y +-=(斜率为负数,舍去). ∴直线l 的方程为210x y --=.设过C 点且平行于l 的直线为20x y m -+=,由221,161220x y x y m ⎧+=⎪⎨⎪-+=⎩,整理得2219164(12)0x mx m ++-=, 由22(16)4194(12)0m m ∆=-⨯⨯-=,解得276m =,因为m 为直线20x y m -+=在y 轴上的截距,依题意,0m >,故m =∴C点的坐标为(. 20.解:(1)∵当1a =-时,321()233f x x x x =---,2'()43f x x x =---, ∴82(2)8633f -=-+=,'(2)4831f -=-+-=. ∴[]2(2)3y x =--+,即所求切线方程为3380x y -+=.(2)∵22'()43()(3)f x x ax a x a x a =-+-=---.当0a >时,由'()0f x >,得3a x a <<;由'()0f x <,得x a <或3x a >. ∴函数()y f x =的单调递增区间为(,3)a a ,单调递减区间为(,)a -∞和(3,)a +∞, ∵(3)0f a =,34()3f a a =-, ∴当0a >时,函数()y f x =的极大值为0,极小值为343a -. (3)2222'()43(2)f x x ax a x a a =-+-=--+, ∵'()f x 在区间[]2,22a a +上单调递减,∴当2x a =时,2max '()f x a =,当22x a =+时,2min '()4f x a =-. ∵不等式|'()|3f x a ≤恒成立,∴220,3,43,a a a a a ≥⎧⎪≤⎨⎪-≥-⎩解得13a ≤≤, 故a 的取值范围是[]1,3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届高三上学期期末考试数学(文)试题(xx县附答案)
衡阳县2017年下学期期未未质量检测试
高三文科数学
第I卷(共60分)
一、选择题;本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只
有一项是符合题目要求的
设集合 :则()
2.已知复数Z满足 ,则复数Z的虚部为( )
3.把函数的图象向左平移个单位,所得图象的函数表达式是()4抛物线的焦点坐标为( )
5.执行如图所示的程序框图输出的n为( )
6,在平行四边形ABCD中,已知AB=2,AD=1,∠BAD=60°,E为CD的中点,
则()
7.在如图所示的勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边
长为2的大正方形,直角三角形中较小的锐角为现在向该大正方形区域内随机地投掷
一枚飞镖,则飞镖落在小正方形内的概率是( )
A.
8.已知实数x、y满足,则的最小值是( )
9.一个几何体的三视图如图2所示其表面积为 ,则该几何体的体积为( )
10.△ABC中,∠B=45°°,D是BC边上一点,AD=5,AC=7,DC=3,则AB的长为( )
11.在各项均为正数的等比数列中,若 ,则的最小值是( )
12.对于定义在D上的函数 ,若同时满足:①存在区间 ,使得 ,
都有 (c是常数);②对于D内时,总有 .则称函数是“平底型”函
数若函数是“平底型”函数,则 ( )
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上
13.双曲线的渐近线方程为________________。

14.若则。

15.已知三棱锥A-BCD的三条棱AB、BC、BD所在的直线两两垂直且长度分别为4、2、3,顶点A、B、C、D都在球O的表面上则球O的表面积为___________。

16.设a>0,函数 ,若对任意 ,都有,则实数a的取值范围是__________________。

三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤
17.已知等差数列和等比数列 ,若 .
(1)求和的通项公式
(2)求数列的前n项和Tn
18.如图,在四棱锥中P-ABCD中,PA⊥底面ABCD,AD⊥AB,AD∥BC,CD= ,AB+AD=3,
∠CDA=45°,
(1)求证:平面PAC⊥平面PCD
(2)若四棱锥 p-ABCD的体积为 ,求点A到平面PCD的距离
19.某校对高三年级学生参加社区服务的次数进行统计,随机抽取M 名学生作为样本,得
到这M名学生参加社区服务的次数根据此份数据作出的频数、频率统计表如下
(1)求出表中M、p、n的值
(2)若该校高三共有1200人,试估计该校高三学生中参加社区服务的次数在区间[10,15)内的人数
(3)从所取样本中参加社区服务的次数不少于20次的学生中任选2人,求参加社区服务次数在区间[25,30)内至多只有1人的概率
20.已知椭圆C:的两个焦点分别为F1 ,点M(1,0)与椭圆短轴的两个端点的连线相互垂直
(1)求椭圆C的方程;
(2)过点M(1,0)的直线与椭圆C相交于A、B两点,设点N(3,2),记直线AN、BN的斜率分别
为k1、k2,求证:k1+k2为定值
21.设函数
(1)讨论函数f(x)的单调性;
(2)当f(x)有极值时,若存在x0使得成立,求实数m的取值范围
请考生在22~23题中任选一题作答,如果多选,则按所选的题中第一题计分
22在直角坐标系xOy中,曲线C1的参数方程为为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1:
(1)写出曲线C1、C2的普通方程
(2过曲线C1的左焦点且倾斜角为的直线l交曲线C2于A、B两点,求
23,设函数
(1)求不等式的解集
(2)若的最小值为4,求实数m的值
2017年下学期期末考试高三文科数学参考答案一.选择题:
1-6:B A C D C C 7-12:A B D C D A 二.填空题:
13. 14. 15.29 16. 三.解答题:
17.(1) ………………6分
(2) , ………………8分
………10分
= ……………12分
18.(1)证明:过点C作CE垂直AD于E,
, ∥

在中,

……………6分
(2)由(1)知平面平面过点A在平面PAC内作AF垂直PC于F, 则AF 平面PCD, 的长就是点A到平面PCD的距离. …………8分四边形的面积
即点A到平面PCD的距离为………………12分
19(1)由分组内的频数是10,频率是0.25,所以M=40, m=4.
于是…………4分
(2)因为该校高三学生共有1200人,分组区间内的频率是0.25,
所以估计
该校高三学生中参加社区服务的次数在此区间内的人数为1200 0.25=300. …………6分
(3)样本中参加社区服务的次数不少于20次的学生共有m+2=6人,设在区间内的4人为在区间内的2人为…………8分
则任选2人共有
这15种情况,而两人都在
内的只有一种情况,所以所求概率为…………12分
20.(1)依题意,由已知得b=OM=1,解得
所以椭圆的方程为…………3分
(2)①当直线l的斜率不存在时,由解得
设为定值;…………6分
②当直线l的斜率存在时,设直线l的方程为代入
化简整理得
依题意,直线l与椭圆必相交于两点,设则
…………8分


=
=
=
= 为定值.
综上,为定值2. …………12分
21.(1)函数的定义域为,,
当时,,∴在上单调递增;
当时,解得,
∴在上单调递增,在上单调递减. ………………6分
(2)由(1)知,当有极值时,,且在上单调递增,在上单调递减.
∴,
若存在,使得成立,则成立.
即成立,令,
∵在上单调递增,且,∴ .
∴实数的取值范围是 .………………12分
22. (1)
即的普通方程为
可化化为, . ……4分
(2)曲线左焦点为(- 4,0),直线的斜率为 , 直线的普通方程为 . 即
由(Ⅰ)知圆圆心为,1),半径 . 到直线的距离
故 . ………………10分
23.(1)∵可化为,
∴当时,原不等式化为,解得,∴;
当时,原不等式化为,解得,∴;
当时,原不等式化为,解得,∴ .
综上,不等式的解集为 .………………5分
(2)∵,∴

∴依题设有,解得 .………………10分。

相关文档
最新文档