辽宁省抚顺市第十中学2016-2017学年高一上学期期中考试数学试题(原卷版)

合集下载

高一上期中数学考试函数经典难题汇编(含解析)必修一(培优)

高一上期中数学考试函数经典难题汇编(含解析)必修一(培优)

必修一函数经典难题汇编一、选择题:1.(5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0)(x1≠x2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25) B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3) D.f(0.32)<f(log25)<f(20.3)2.(5分)函数f(x)=2sin(2x+),g(x)=mcos(2x﹣)﹣2m+3(m>0),若对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,则实数m的取值范围是()A.B.C.D.3.(5分)已知函数f(x)=e x﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,则实数a的取值范围是()A.(﹣2,1)B.(0,1) C.D.(﹣∞,﹣2)∪(1,+∞)4.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)5.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.46.(5分)设函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2﹣x+1,则f(1)=()A.1 B.2 C.3 D.47.(5分)已知函数f(x)=|log2x|,若0<b<a,且f(a)=f(b),则图象必定经过点(a,2b)的函数为()A.y=B.y=2x C.y=2x D.y=x28.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x 的图象的交点个数为()A.3 B.4 C.5 D.69.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.810.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.811.(5分)若函数f(x)=且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A.(1,+∞)B.(1,8) C.(4,8) D.[4,8)12.(5分)已知在(﹣∞,+∞)上满足,则b的取值范围是()A.(﹣∞,0)B.[1,+∞)C.(﹣1,1)D.[0,1)13.(5分)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)14.(5分)定义函数序列:,f2(x)=f(f1(x)),f3(x)=f (f2(x)),…,f n(x)=f(f n﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A.B.C.D.15.(3分)关于x的方程(a>0,且a≠1)解的个数是()A.2 B.1 C.0 D.不确定的16.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)=有4个不相等的实根,则实数a的取值范围是()A.(﹣,1)B.(,1)C.(,1)D.(﹣1,)17.(5分)已知f(x)=ln(1﹣)+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f(5)+f(7 )+f(9)=()A.0 B.4 C.8 D.1618.(5分)定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=a x为一个“λ一半随函数;③“一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是()A.1个 B.2个 C.3个 D.4个19.(5分)如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为()A.3 B.4 C.5 D.720.(5分)已知函数f(x)=e x+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则实数a的取值范围是()A.(﹣∞,e)B.(0,e) C.(e,+∞)D.(﹣∞,1)21.(5分)已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x ﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)=,则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上的交点个数为()A.5 B.6 C.7 D.822.(5分)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.B.C.D.23.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增二、填空题:1.(5分)某投资公司准备在2016年年底将1000万元投资到某“低碳”项目上,据市场调研,该项目的年投资回报率为20%.该投资公司计划长期投资(每一年的利润和本金继续用作投资),若市场预期不变,大约在年的年底总资产(利润+本金)可以翻一番.(参考数据:lg2=0.3010,lg3=0.4771)2.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是.3.(5分)已知函数f(x)=,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是.4.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为;(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为.5.(4分)已知函数若存在x1,x2∈R,x1≠x2,使f (x1)=f(x2)成立,则实数a的取值范围是.6.(5分)下列命题中①若log a3>log b3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有.7.(5分)已知函数,若方程f(x)﹣a=0有三个不同的实数根,则a的取值范围为.8.(5分)方程=ax+a由两个不相等的实数根,则实数a的取值范围为.9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是.10.(5分)定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是.三、简答题:1.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b ∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.2.(12分)已知函数f(x)=ax2+bx+c(a,b,c∈R).(1)若a<0,b>0,c=0,且f(x)在[0,2]上的最大值为,最小值为﹣2,试求a,b的值;(2)若c=1,0<a<1,且||≤2对任意x∈[1,2]恒成立,求b的取值范围.(用a来表示)3.(12分)已知a∈R,函数f(x)=log2(+a).(1)若f(1)<2,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.4.(12分)已知函数f(x)=.(1)求f(f());(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.5.(12分)已知函数f(x)=ax2+4x﹣1.(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f()与的大小;(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,﹣3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.6.(12分)已知函数f(x)=x+﹣1(x≠0),k∈R.(1)当k=3时,试判断f(x)在(﹣∞,0)上的单调性,并用定义证明;(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;(3)当k∈R时,试讨论f(x)的零点个数.7.(12分)已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g (x)是h(x)=e x的反函数.(1)求函数g(f(x))的单调区间;(2)求证:函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h (x0)﹣1(参考数据:e=2.71828…,ln2≈0.693).8.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.9.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.10.(10分)已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf (x+T)对任意的x∈R成立,则称函数f(x)是Ω函数.(Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;(Ⅲ)求证:当a>1时,函数f(x)=a x一定是Ω函数.11.(10分)已知函数f(x),定义(Ⅰ)写出函数F(2x﹣1)的解析式;(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;(Ⅲ)当时,求h(x)=cosx•F(x+sinx)的零点个数和值域.12.(12分)已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.13.(12分)已知函数是奇函数,f(x)=lg(10x+1)+bx是偶函数.(1)求a+b的值.(2)若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.(3)设,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.14.(12分)已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)=是奇函数.(1)讨论函数y=f(x)的单调性;(2)若对任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求实数k的取值范围.15.(12分)已知f(x)=3x+m•3﹣x为奇函数.(1)求函数g(x)=f(x)﹣的零点;(2)若对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求实数a的取值范围.16.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.17.(10分)函数f(x)=log a(a x+1)+mx是偶函数.(1)求m;(2)当a>1时,若函数f(x)的图象与直线l:y=﹣mx+n无公共点,求n的取值范围.18.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.19.(12分)已知函数f(x)=.(1)判断f(x)的奇偶性;(2)判断f(x)在R上的单调性,并用定义证明;(3)是否存在实数t,使不等式f(x﹣t)+f(x2﹣t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.20.(12分)已知函数.任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).(1)求函数f(x)的最小正周期及对称轴方程;(2)当t∈[﹣2,0]时,求函数g(t)的解析式;(3)设函数h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式有解,若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围.参考答案与解析一、选择题:1.(5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0)(x1≠x2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25) B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3) D.f(0.32)<f(log25)<f(20.3)【解答】解:∵对任意x1,x2∈(﹣∞,0),且x1≠x2,都有<0,∴f(x)在(﹣∞,0)上是减函数,又∵f(x)是R上的偶函数,∴f(x)在(0,+∞)上是增函数,∵0.32<20.3<log25∴f(0.32)<f(20.3)<f(log25).故选:A.2.(5分)函数f(x)=2sin(2x+),g(x)=mcos(2x﹣)﹣2m+3(m>0),若对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,则实数m的取值范围是()A.B.C.D.【解答】解:当x∈[0,]时,2x+∈[,],sin(2x+)∈[,1],f(x)=2sin(2x+)∈[1,2],同理可得2x﹣∈[﹣,],cos(2x﹣)∈[,1],g(x)=mcos(2x﹣)﹣2m+3∈[﹣+3,﹣m+3],对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,∴,求得1≤m≤,故选:D.3.(5分)已知函数f(x)=e x﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,则实数a的取值范围是()A.(﹣2,1)B.(0,1) C.D.(﹣∞,﹣2)∪(1,+∞)【解答】解:令g(x)=f(x)﹣1=e x﹣e﹣x+4sin3x,则g(﹣x)=﹣g(x),即g(x)为奇函数,若f(1﹣a)+f(1﹣a2)>2成立,即g(1﹣a)+g(1﹣a2)>0成立,即g(1﹣a)>﹣g(1﹣a2)=g(a2﹣1),∵g′(x)=e x+e﹣x+12sin2xcosx≥0在x∈(﹣1,1)时恒成立,故g(x)在(﹣1,1)上为增函数,故﹣1<a2﹣1<1﹣a<1,解得:a∈(0,1),故选:B.4.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)【解答】解:由题意,存在x<0,使f(x)﹣g(﹣x)=0,即e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,令m(x)=e x﹣﹣ln(﹣x+a),则m(x)=e x﹣﹣ln(﹣x+a)在其定义域上是增函数,且x→﹣∞时,m(x)<0,若a≤0时,x→a时,m(x)>0,故e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,若a>0时,则e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为e0﹣﹣ln(a)>0,即lna<,故0<a<.综上所述,a∈(﹣∞,).故选:C5.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C6.(5分)设函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2﹣x+1,则f(1)=()A.1 B.2 C.3 D.4【解答】解:根据条件,f(﹣x)=f(x),g(﹣x)=﹣g(x);∴由f(x)﹣g(x)=x2﹣x+1①得,f(﹣x)﹣g(﹣x)=x2+x+1=f(x)+g(x);即f(x)+g(x)=x2+x+1②;①+②得,2f(x)=2(x2+1);∴f(x)=x2+1;∴f(1)=2.7.(5分)已知函数f(x)=|log2x|,若0<b<a,且f(a)=f(b),则图象必定经过点(a,2b)的函数为()A.y=B.y=2x C.y=2x D.y=x2【解答】解:函数f(x)=|log2x|的图象如下图所示:若0<b<a,且f(a)=f(b),则b<1<a,且log2b=﹣log2a,即ab=1,故图象必定经过点(a,2b)的函数为y=,故选:A.8.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x 的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点9.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.8【解答】解:∵对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,∴f(x)在(2,+∞)上递增,又∵f(x)=f(4﹣x),∴f(2﹣x)=f(2+x),即函数关于x=2对称,∵f(2﹣x)=f(),∴2﹣x=,或2﹣x+=4,∴x2+5x+3=0或x2+3x﹣3=0,∴满足f(2﹣x)=f()的所有x的和为﹣8,故选C.10.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.8【解答】解:∵对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,∴f(x)在(2,+∞)上递增,又∵f(x)=f(4﹣x),∴f(2﹣x)=f(2+x),即函数关于x=2对称,∵f(2﹣x)=f(),∴2﹣x=,或2﹣x+=4,∴x2+5x+3=0或x2+3x﹣3=0,∴满足f(2﹣x)=f()的所有x的和为﹣8,故选C.11.(5分)若函数f(x)=且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A.(1,+∞)B.(1,8) C.(4,8) D.[4,8)【解答】解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得:a∈[4,8),故选:D12.(5分)已知在(﹣∞,+∞)上满足,则b的取值范围是()A.(﹣∞,0)B.[1,+∞)C.(﹣1,1)D.[0,1)【解答】解:由题意,在(﹣∞,+∞)上单调递增,∴,∴2≤a<3,0≤b<1,故选D.13.(5分)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)【解答】解:集合A={x|2x≤8}={x|x≤3},因为A∪B=A,所以B⊆A,所以m2+m+1≤3,解得﹣2≤m≤1,即m∈[﹣2,1].故选:B.14.(5分)定义函数序列:,f2(x)=f(f1(x)),f3(x)=f (f2(x)),…,f n(x)=f(f n﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A.B.C.D.【解答】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))==,f3(x)=f(f2(x))==,…f n(x)=f(f n﹣1(x))=,∴f2017(x)=,由得:,或,由中x≠1得:函数y=f2017(x)的图象与曲线的交点坐标为,故选:A15.(3分)关于x的方程(a>0,且a≠1)解的个数是()A.2 B.1 C.0 D.不确定的【解答】解:由题意a x=﹣x2+2x+a,﹣x2+2x+a>0.令f(x)=a x,g(x)=﹣x2+2x+a,(1)当a>1时,f(x)=a x在(﹣∞,+∞)上单调递增,且f(0)=1,f(1)=a,g(x)=﹣x2+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,在[0,1]上,f(x)<g(x),∵g(x)在x<0及x>1时分别有一个零点,而f(x)恒大于零,∴f(x)与g(x)的图象在x<0及x>1时分别有一个交点,∴方程有两个解;(2)当a<1时,f(x)=a x在(﹣∞,+∞)上单调递减,且f(0)=1,f(1)=a,g(x)=﹣x2+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,f(0)>g(0),f(1)<g(1),∴在(0,1)上f(x)与g(x)有一个交点,又g(x)在x>1时有一个零点,而f(x)恒大于零,∴f(x)与g(x)的图象在x>1时还有一个交点,∴方程有两个解.综上所述,方程有两个解.故选:A.16.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)=有4个不相等的实根,则实数a的取值范围是()A.(﹣,1)B.(,1)C.(,1)D.(﹣1,)【解答】解:设x<0,则﹣x>0,∵当x≥0时,f(x)=|x﹣1|,∴f(﹣x)=|﹣x﹣1|=|x+1|,∵f(x)是定义在R上的偶函数,∴f(x)=f(﹣x)=|x+1|,则f(x)=,即,由f(x)=得,f2(x)=x+a,画出函数y=x+a与y=f2(x)的图象,如图所示:由图知,当直线y=x+a过点A时有三个交点,且A(1,1),此时a=1,当直线y=x+a相切与点P时有三个交点,由图知,y=f2(x)=(x+1)2=x2+2x+1,则y′=2x+2,令y′=2x+2=1得x=,则y=,此时切点P(,),代入y=x+a得a=,∵方程f(x)=有4个不相等的实根,∴函数y=x+a与y=f2(x)的图象有四个不同的交点,由图可得,实数a的取值范围是(,1),故选B.17.(5分)已知f(x)=ln(1﹣)+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f(5)+f(7 )+f(9)=()A.0 B.4 C.8 D.16【解答】解:∵f(x)=ln(1﹣)+1,则f(﹣7)=ln9﹣ln7+1,f(﹣5 )=ln7﹣ln5+1,f(﹣3)=ln5﹣ln3+1,f(﹣1)=ln3+1,f(3 )=﹣ln3+1,f(5)=ln3﹣ln5+1,f(7 )=ln5﹣ln7+1,f(9)=ln7﹣ln9+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f(5)+f(7 )+f(9)=8,故选:C.18.(5分)定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=a x为一个“λ一半随函数;③“一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①、若f(x)为“1一半随函数”,则f(x+1)+f(x)=0,可得f(x+1)=﹣f(x),可得f(x+2)=﹣f(x+1)=f(x),因此x=0,可得f(0)=f(2);故①正确;②、假设f(x)=a x是一个“λ一半随函数”,则a x+λ+λa x=0对任意实数x成立,则有aλ+λ=0,而此式有解,所以f(x)=a x是“λ一半随函数”,故②正确.③、令x=0,得f()+f(0)=0.所以f()=﹣f(0),若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f()•f(0)=﹣(f (0))2<0,又因为f(x)的函数图象是连续不断,所以f(x)在(0,)上必有实数根,因此任意的“﹣一半随函数”必有根,即任意“﹣一半随函数”至少有一个零点.故③正确.④、假设f(x)=x2是一个“λ一半随函数”,则(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ﹣同伴函数”.故④错误正确判断:①②③.故选:C.19.(5分)如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为()A.3 B.4 C.5 D.7【解答】解:定义在[﹣2,2]的偶函数f(x)的图象如图:函数是偶函数,函数的值域为:f(x)∈[﹣2,1],函数的零点为:x1,0,x2,x1∈(﹣2,﹣1),x2∈(1,2),令t=f(x),则f(f(x))=0,即f(t)=0可得,t=x1,0,x2,f(x)=x1∈(﹣2,﹣1)时,存在f[f(x1)]=0,此时方程的根有2个.x2∈(1,2)时,不存在f[f(x2)]=0,方根程没有根.f[f(0)]=f(0)=f(x1)=f(x2)=0,有3个.所以方程f(f(x))=0的实根个数为:5个.故选:C.20.(5分)已知函数f(x)=e x+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则实数a的取值范围是()A.(﹣∞,e)B.(0,e) C.(e,+∞)D.(﹣∞,1)【解答】解:由题意知,方程f(﹣x)﹣g(x)=0在(0,+∞)上有解,即e﹣x﹣ln(x+a)=0在(0,+∞)上有解,即函数y=e﹣x与y=ln(x+a)在(0,+∞)上有交点,则lna<1,即0<a<e,则a的取值范围是:(0,e).故选:B.21.(5分)已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x ﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)=,则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上的交点个数为()A.5 B.6 C.7 D.8【解答】解:由f(x)+f(2﹣x)=0,可得函数f(x)的图象关于点M(1,0)对称.由f(x﹣2)=f(﹣x),可得函数f(x)的图象关于直线x=﹣1对称.又在[﹣1,1]上表达式为f(x)=,可得图象:进而得到在区间[﹣3,3]上的图象.画出函数g(x)=在区间[﹣3,3]上的图象,其交点个数为6个.故选:B.22.(5分)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A. B.C.D.【解答】解:依题意f(x)在(﹣∞,﹣2)和(0,2)上递增,在(﹣2,0)和(2,+∞)上递减,当x=±2时,函数取得极大值;当x=0时,取得极小值0.要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R 有且只有6个不同实数根,设t=f(x),则则有两种情况符合题意:(1),且,此时﹣a=t1+t2,则;(2)t1∈(0,1],,此时同理可得,综上可得a的范围是.故选答案C.23.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增【解答】解:由x(e x﹣e﹣x)>0,得f(x)的定义域是(﹣∞,0)∪(0,+∞),而f(﹣x)=ln=ln=f(x),∴f(x)是偶函数,x>0时,y=x(e x﹣e﹣x)递增,故f(x)在(0,+∞)递增,故选:D.二、填空题:1.(5分)某投资公司准备在2016年年底将1000万元投资到某“低碳”项目上,据市场调研,该项目的年投资回报率为20%.该投资公司计划长期投资(每一年的利润和本金继续用作投资),若市场预期不变,大约在2020年的年底总资产(利润+本金)可以翻一番.(参考数据:lg2=0.3010,lg3=0.4771)【解答】解:假设n年后总资产可以翻一番,依题意得:a×(1+20%)n=2a,即1.2n=2,两边同时取对数得,n=≈3.8所以大约经过4年,即在2020年底总资产可以翻一番.2.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是④.【解答】解:函数①y=2x不存在零点且为非奇非偶函数,故不满足条件;函数②y=2﹣2x存在零点1,但为非奇非偶函数,故不满足条件;函数③f(x)=x+x﹣1不存在零点,为奇函数,故不满足条件;函数④f(x)=x﹣x﹣3存在零点1且为奇函数,故满足条件;故答案为:④.3.(5分)已知函数f(x)=,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是[1,2] .【解答】解:当﹣1≤x≤k时,函数f(x)=log2(1﹣x)+1为减函数,且在区间左端点处有f(﹣1)=2,令f(x)=0,解得x=,令f(x)=x|x﹣1|=2,解得x=2,∵f(x)的值域为[0,2],∴k≤,当k≤x≤a时,f(x)=x|x﹣1|=,∴f(x)在[k,],[1,a]上单调递增,在[,1]上单调递减,从而当x=1时,函数有最小值,即为f(1)=0函数在右端点的函数值为f(2)=2,∵f(x)的值域为[0,2],∴1≤a≤2故答案为:[1,2]4.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为(2,+∞);(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为[,1).【解答】解:(1)a=时,f(x)=|x﹣1|+x=,∵f(x)>1,∴,解得x>2,故x的取值范围为(2,+∞),(2)函数f(x)的图象与x轴没有交点,①当a≥1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,②当0<a<1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:要使两个图象无交点,斜率满足:a﹣1≥﹣a,∴a≥,故≤≤a<1③当a≤0时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,综上①②③知:≤a<1故答案为:(2,+∞),[,1)5.(4分)已知函数若存在x1,x2∈R,x1≠x2,使f (x1)=f(x2)成立,则实数a的取值范围是(﹣∞,).【解答】解:当x≥0时,2x﹣1≥0,当x<0时,若a=0,则f(x)=2恒成立,满足条件;若a>0,则f(x)<2﹣3a,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则2﹣3a>0,即a∈(0,);若a>0,则f(x)<2﹣3a,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则2﹣3a>0,即a∈(0,);若a<0,则f(x)>2﹣3a,满足条件,综上可得:a∈(﹣∞,);故答案为:(﹣∞,)6.(5分)下列命题中①若log a3>log b3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有②④.【解答】解:若log a3>log b3>0,则a<b,故①错误;函数f(x)=x2﹣2x+3的图象开口朝上,且以直线x=1为对称轴,当x=1时,函数取最小值2,无最大值,故函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);故②正确;g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)可能存在零点;故③错误;数满足h(﹣x)=﹣h(x),故h(x)为奇函数,又由=﹣e x<0恒成立,故h(x)为减函数故④正确;故答案为:②④.7.(5分)已知函数,若方程f(x)﹣a=0有三个不同的实数根,则a的取值范围为0<a<1.【解答】解:∵函数,∴作出函数f(x)的图象如右图所示,∵方程f(x)﹣a=0有三个不同的实数根,则函数y=f(x)的图象与y=a的图象有三个不同的交点,根据图象可知,a的取值范围为0<a<1.故答案为:0<a<1.8.(5分)方程=ax+a由两个不相等的实数根,则实数a的取值范围为[0,).【解答】解:设f(x)=,如图所示,表示以(2,0)为圆心,1为半径的半圆,由圆心(2,0)到y=ax+a的距离=1,可得a=,∵方程=ax+a有两个不相等的实数根,∴实数a的取值范围为[0,).故答案为[0,).9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是(0,1).【解答】解:令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)与y=m的图象,要使函数g(x)=f(x)﹣m有3个零点,则y=f(x)与y=m的图象有3个不同的交点,所以0<m<1,故答案为:(0,1).10.(5分)定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是[2,+∞).【解答】解:①令x=y=0,则f(0)=2f(0),则f(0)=0;再令y=﹣x,则f(x﹣x)=f(x)+f(﹣x)=0,且f(x)定义域为R,关于原点对称.∴f(x)是奇函数.②F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点.∴f(asinx)+f(sinx+cos2x﹣3)=0在(0,π)上有解;∴f(asinx)=﹣f(sinx+cos2x﹣3)=f(﹣sinx﹣cos2x+3)在(0,π)上有解;又∵函数f(x)是R上的单调函数,∴asinx=﹣sinx﹣cos2x+3在(0,π)上有解.∵x∈(0,π),∴sinx≠0;∴a==sinx+﹣1;令t=sinx,t∈(0,1];则a=t+﹣1;∵y=t+,<0,因此函数y在(0,1]上单调递减,∴a≥2.故答案为:[2,+∞).三、简答题:1.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b ∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.【解答】解:(Ⅰ)由为奇函数得:f(﹣x)+f(x)=0,即,(2分)所以,解得a=1,(4分)(Ⅱ)当b>1时,设,则h(x)是偶函数且在(0,+∞)上递减又所以h(x)在(0,+∞)上有惟一的零点,方徎g(x)=ln|x|有2个实数根.…(8分)(Ⅲ)不等式f(1﹣x)≤lgg(x)等价于,即在有解,故只需,(10分)因为,所以,函数,所以,所以b≥﹣13,所以b的取值范围是[﹣13,+∞).(12分)2.(12分)已知函数f(x)=ax2+bx+c(a,b,c∈R).(1)若a<0,b>0,c=0,且f(x)在[0,2]上的最大值为,最小值为﹣2,试求a,b的值;(2)若c=1,0<a<1,且||≤2对任意x∈[1,2]恒成立,求b的取值范围.(用a来表示)【解答】(1)抛物线的对称轴为,①当时,即b>﹣4a时,当时,,f(x)min=f(2)=4a+2b+c=﹣2,∴,∴a=﹣2,b=3.②当时,即b≥﹣4a时,f(x)在[0,2]上为增函数,f(x)min=f(0)=0与f(x)min=﹣2矛盾,无解,综合得:a=﹣2,b=3.(2)对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,令,则,∵0<a<1,∴,(ⅰ)若,即时,g(x)在[1,2]单调递减,此时,即,得,此时,∴∴.(ⅱ)若,即时,g(x)在单调递减,在单调递增,此时,,只要,当时,,当时,,.综上得:①时,;②时,;③时,.3.(12分)已知a∈R,函数f(x)=log2(+a).(1)若f(1)<2,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.【解答】解:(1)若f(1)<2,则log2(1+a)<2,即0<1+a<4,解得:a∈(﹣1,3);(2)令函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5]=0,则f(x)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5,即(a﹣4)x2+(a﹣5)x﹣1=0,①当a=4时,方程可化为:﹣x﹣1=0,解得:x=﹣1,此时+a=(a﹣4)x+2a﹣5=3,满足条件,即a=4时函数g(x)有一个零点;②当(a﹣5)2+4(a﹣4)=0时,a=3,方程可化为:﹣x2﹣2x﹣1=0,解得:x=﹣1,此时+a=(a﹣4)x+2a﹣5=2,满足条件,即a=3时函数g(x)有一个零点;③当(a﹣5)2+4(a﹣4)>0时,a≠3,方程有两个根,x=﹣1,或x=,当x=﹣1时,+a=(a﹣4)x+2a﹣5=a﹣1,当a>1时,满足条件,当x=时,+a=(a﹣4)x+2a﹣5=2a﹣4,当a>2时,满足条件,综上可得:1<a≤2时,函数g(x)有一个零点;a>2且a≠3且a≠4时函数g(x)有两个零点;4.(12分)已知函数f(x)=.(1)求f(f());(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.【解答】解:(1)∵f(x)=.∴f())=ln=,∴f(f())=f()=2﹣2×=1;(2)函数f(x)=.x∈[0,),f(x)=2﹣2x∈(1,2],x∈[,1),f(x)=2﹣2x∈(0,1],x∈[1,e],f(x)=lnx∈(0,1),∴f(f(x))=,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,所以:x0∈[0,),ln(2﹣2x0)=x0,由y=ln(2﹣x0),y=x0,图象可知:存在满足题意的不动点.x0∈[,1),﹣2+4x0=x0,解得x0=,满足f()=.不是f(x)的二阶不动点.x0∈[1,e],2﹣2lnx0=x0,即2﹣x0=2lnx0,由y=2﹣x0,y=2lnx0,图象可知:存在满足题意的不动点.函数f(x)的二阶不动点的个数为:2个.5.(12分)已知函数f(x)=ax2+4x﹣1.(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f()与的大小;(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,﹣3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.【解答】解:(1)a=1时,f(x)=x2+4x﹣1,f()=+2(x1+x2)﹣1=++x1x2+2(x1+x2)﹣1,==++2(x1+x2)﹣1;故f()﹣=﹣﹣+x1x2=﹣≤0;(2)∵f(x)=ax2+4x﹣1=a(x+)2﹣1﹣,显然f(0)=﹣1,对称轴x=﹣<0.①当﹣1﹣<﹣3,即0<a<2时,g(a)∈(﹣,0),且f[g(a)]=﹣3.令ax2+4x﹣1=﹣3,解得x=,此时g(a)取较大的根,即g(a)==,∵0<a<2,∴g(a)>﹣1.②当﹣1﹣≥﹣3,即a≥2时,g(a)<﹣,且f[g(a)]=3.令ax2+4x﹣1=3,解得x=,此时g(a)取较小的根,即g(a)==,∵a≥2,∴g(a)=≥﹣3.当且仅当a=2时,取等号.∵﹣3<﹣1∴当a=2时,g(a)取得最小值﹣3.6.(12分)已知函数f(x)=x+﹣1(x≠0),k∈R.(1)当k=3时,试判断f(x)在(﹣∞,0)上的单调性,并用定义证明;(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;(3)当k∈R时,试讨论f(x)的零点个数.【解答】解:(1)当k=3,x∈(﹣∞,0)时,f(x)=x﹣,>0,∴f(x)在(﹣∞,0)上单调递增.证明:在(﹣∞,0)上任取x1,x2,令x1<x2,f(x1)﹣f(x2)=()﹣()=(x1﹣x2)(1+),∵x1,x2∈(﹣∞,0),x1<x2,∴,∴f(x1)﹣f(x2)<0,∴f(x)在(﹣∞,0)上单调递增.(2)设2x=t,则t>0,f(t)=t+,①当k>0时,f′(t)=1﹣,t=时,f′(t)=0,且f(t)取最小值,f()==2﹣1,当k时,f()=2﹣1>0,当0<k≤时,f()=2﹣1≤0,∴k>时,f(2x)>0成立;0<k≤时,f(2x)>0不成立.②当k=0时,f(t)=t﹣1,∵t∈(0,+∞),不满足f(t)恒大于0,∴舍去.③当k<0时,f恒大于0,∵,且f(x)在(0,+∞)内连续,∴不满足f(t)>0恒成立.综上,k的取值范围是(,+∞).(3)由f(x)=x+﹣1=0,(x≠0),k∈R.得x+﹣1=0,∴k=|x|•(1﹣x),x≠0,当x>0时,k=x(1﹣x),当x<0时,k=﹣x(1﹣x),∴结合图象得:当k>或k≤0时,f(x)有1个零点;当k=时,f(x)有2个零点;当0<k<时,f(x)有3个零点.7.(12分)已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g (x)是h(x)=e x的反函数.(1)求函数g(f(x))的单调区间;(2)求证:函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h (x0)﹣1(参考数据:e=2.71828…,ln2≈0.693).【解答】解:(1)函数g(x)是h(x)=e x的反函数,可得g(x)=lnx;函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,只能是f(﹣1)=8或f(2)=8,即有1﹣a=8或4+2a=8,解得a=2(﹣7舍去),函数g(f(x))=ln(x2+2x),由x2+2x>0,可得x>0或x<﹣2.由复合函数的单调性,可得函数g(f(x))的单调增区间为(0,+∞);单调减区间为(﹣∞,﹣2);(2)证明:由(1)得:f(x)=x2+2x,即φ(x)=f(x)h(x)﹣,(x>0),设0<x1<x2,则x1﹣x2<0,x1x2>0,∴<0,∵f(x)在(0,+∞)递增且f(x)>0,∴f(x2)>f(x1)>0,∵>>0,∴f(x1)<f(x2),∴φ(x1)﹣φ(x2)=f(x1)﹣f(x2)+<0,即φ(x1)<φ(x2),∴φ(x)在(0,+∞)递增;∵φ()=﹣2>﹣2=0,φ()=﹣e<﹣e<0,即φ()φ()<0,∴函数y=f(x)h(x)﹣(x>0)恰有1个零点x0,且x0∈(,),∴(+2x0)﹣=0,即=,∴h(x0)﹣g(x0)=﹣lnx0=﹣lnx0,∵y=﹣lnx在(0,)上是减函数,∴﹣lnx0>﹣ln=+ln2>+0.6=1,即g(x0)<h(x0)﹣1,综上,函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h(x0)﹣1.8.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)⇒|x+a|=|4﹣x+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f(x)]=|3x+a|﹣3的零点个数,就是函数G(x)=|3x+a|与y=3的交点,①当0≤a<3时,G(x)=|3x+a|=3x+a与y=3的交点只有一个,即函数y=g[f(x)]的零点个数为1个(如图1);②当a≥3时,G(x)=|3x+a|=3x+a与y=3没有交点,即函数y=g[f(x)]的零点个数为0个(如图1);③﹣3≤a<0时,G(x)=|3x+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G(x)=|3x+a|与y=3的交点有2个(如图2);9.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f(x)=ax2+bx+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f(x)=x2+2x+1,由新定义可得g(x)=x为函数f(x)的一个承托函数;(2)假设存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数.即有x≤ax2+bx+c≤x2+恒成立,令x=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又ax2+(b﹣1)x+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)x2+bx+c﹣≤0恒成立,可得a<,且b2﹣4(a﹣)(c﹣)≤0,即有(1﹣2a)2﹣4(a﹣)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1﹣2a,可取a=c=,b=.满足题意.10.(10分)已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf (x+T)对任意的x∈R成立,则称函数f(x)是Ω函数.(Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;(Ⅲ)求证:当a>1时,函数f(x)=a x一定是Ω函数.【解答】解:(I)①对于函数f(x)=x是Ω函数,假设存在非零常数T,Tf(x+T)=f(x),则T(x+T)=x,取x=0时,则T=0,与T≠0矛盾,因此假设不成立,即函数f(x)=x不是Ω函数.②对于g(x)=sinπx是Ω函数,令T=﹣1,则sin(πx﹣π)=﹣sin(π﹣πx)=﹣sinπx.即﹣sin(π(x﹣1))=sinπx.∴Tsin(πx+πT)=sinπx成立,即函数f(x)=sinπx对任意x∈R,有Tf(x+T)=f(x)成立.(II)(i)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf(﹣x+T)=f(﹣x).又f(x)是偶函数,∴f(﹣x)=f(x),∴Tf(﹣x+T)=Tf(x+T),T≠0,化为:f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴f(2T+t)=f(﹣t)=f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(ii)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf (﹣x+T)=f(﹣x).又f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣Tf(x+T)=Tf(﹣x+T),T≠0,化为:﹣f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴﹣f(2T+t)=f(﹣t)=﹣f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(III)证明:当a>1时,假设函数f(x)=a x是Ω函数,则存在非零常数T,Tf (x+T)=f(x),∴Ta x+T=a x,化为:Ta T a x=a x,∵a x>0,∴Ta T=1,即a T=,此方程有非0 的实数根,因此T≠0且存在,∴当a>1时,函数f(x)=a x一定是Ω函数.11.(10分)已知函数f(x),定义(Ⅰ)写出函数F(2x﹣1)的解析式;(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;(Ⅲ)当时,求h(x)=cosx•F(x+sinx)的零点个数和值域.【解答】解:(Ⅰ)定义,当2x﹣1>x,可得x>1,则F(2x﹣1)=1;当2x﹣1=x,可得x=1,则F(2x﹣1)=0;。

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。

辽宁省抚顺市高一上学期数学第一次月考试卷

辽宁省抚顺市高一上学期数学第一次月考试卷

辽宁省抚顺市高一上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016高一上·金台期中) 设集合A={1,2,3},B={x|﹣1<x<2,x∈Z},则A∪B=()A . {1}B . {1,2}C . {0,1,2,3}D . {﹣1,0,1,2,3}2. (2分) (2019高一上·大冶月考) 已知函数,则()A .B . -15C .D . 163. (2分) (2019高一上·河南月考) 已知集合,则下列关系式中,正确的是()A .B .C .D .4. (2分) (2020高一上·重庆月考) 下列函数中,不能表示y是x的函数的是()A .B .C .D .5. (2分) (2020高三上·汕头月考) 若函数在上的最小值为,则在上的最大值为()A . 4B . 5C .D .6. (2分)设集合A={x|x2﹣(a+3)x+3a=0},B={x|x2﹣5x+4=0},集合A∪B中所有元素之和为8,则实数a的取值集合为()A . {0}B . {0,3}C . { 1,3,4}D . {0,1,3,4}7. (2分) (2016高一上·襄阳期中) 非空集合A中的元素个数用(A)表示,定义(A﹣B)= ,若A={﹣1,0},B={x||x2﹣2x﹣3|=a},且(A﹣B)≤1,则a的所有可能值为()A . {a|a≥4}B . {a|a>4或a=0}C . {a|0≤a≤4}D . {a|a≥4或a=0}8. (2分) (2016高一上·南昌期中) 下列四组函数中,f(x)与g(x)是同一函数的一组是()A . f(x)=|x|,g(x)=B . f(x)=x,g(x)=() 2C . f(x)= ,g(x)=x+1D . f(x)=1,g(x)=x09. (2分) (2018高一上·重庆月考) 若,则实数a的最小值是()A . 2B . 3C . 4D .10. (2分)(2019·达州模拟) 函数与函数在区间上的图象大致是A .B .C .D .二、填空题 (共4题;共4分)11. (1分)已知函数f(x)=x2+4ax+2在区间(﹣∞,6)上是减函数,则实数a的取值范围是________12. (1分) (2017高一上·雨花期中) 函数f(x)= 的值域________.13. (1分) (2015高一下·衡水开学考) 函数f(x)= 在x∈R内单调递减,则a的取值范围是________.14. (1分) (2017高一上·扬州期中) 已知函数f(x﹣1)=x2﹣2x,则f(x)=________.三、解答题 (共3题;共25分)15. (10分) (2015高一下·枣阳开学考) 已知f(x)是定义在R上的奇函数,当x≥0时f(x)=2x﹣x2 ,(1)求f(x)的表达式;(2)设0<a<b,当x∈[a,b]时,f(x)的值域为,求a,b的值.16. (5分) (2020高一上·镇江月考) 在①A B=B,②A B ,③B A这三个条件中任选一个,补充在下面问题中,若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合,,是否存在实数a,使得_________成立.注:如果选择多个条件分别解答,按第一个解答计分.17. (10分) (2018高一下·宜宾期末) 已知二次函数 ,且不等式的解集为,对任意的都有恒成立.(1)求的解析式;(2)若不等式在上有解,求实数的取值范围.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共4题;共4分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共3题;共25分)答案:15-1、答案:15-2、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、考点:解析:。

高一数学测试题10套含答案

高一数学测试题10套含答案

三、解答题: 18.在如图 11 的方格纸中,每个小方格都是边长为 1 个单位的
正方形, △ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). (1)画出 △ABC 绕点 O 顺时针旋转 90 后的 △A1B1C1 ;
(2)求点 A 旋转到 A1 所经过的路线长.
图 11
高一数学测试题(3)




(A) ①③ (B) ①④ (C)
②③
(D)
②④
6.中央电视台 2 套“开心辞典”栏目中,有一期的题目如图 6 所示,
两个天平都平衡,则与 2 个球体相等质量的正方体的个数为
()
(A)
5
(B)
4
(C)
3
(D)
2
图6
7.如图 8,把矩形 ABCD 沿 EF 对折后使两部分重合,若 1 50 ,则 AEF = ( )
高一数学测试题(1)
一、选择题:
1.化简: 4 =
()
(A)
2
(B)
2
(C)
2 (D) 4
2.一交通管理人员星期天在市中心的某十字
路口,对闯红灯的人次进行统计,根据上午
7∶00 ~ 12∶00 中各时间段(以 1 小时为一
个时间段)闯红灯的人次,制作了如图所示
的条形统计图,则各时间段闯红灯人次的众

45


13.如图是一个均匀转盘,任意拨动它,当它
12
停下来后指针指向一个数字(指在分隔线上 3
2
30
重转),则指针指向 1 的概率是
;2
3
31
15
第13题
0 1 2 3 4 5 x(小时)

【高一数学试题精选】高一数学上册第一章综合检测试题(含答案)

【高一数学试题精选】高一数学上册第一章综合检测试题(含答案)

高一数学上册第一章综合检测试题(含答案)5第一综合检测题本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.sin2cs3tan4的值( )A.小于0 B.大于0c.等于0D.不存在[答案] A[解析] ∵π2 2 π,∴sin2 0,∵π2 3 π,∴cs3 0,∵π 4 3π2,∴tan4 0,∴sin2cs3tan4 02.若角600°的终边上有一点(-4,a),则a的值是( )A.43B.-43c.±43D3[答案] B[解析] 由条知,tan600°=a-4,∴a=-4tan600°=-4tan60°=-433.(08 全国Ⅰ)=(sinx-csx)2-1是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数c.最小正周期为π的偶函数D.最小正周期为π的奇函数[答案] D[解析] ∵=(sinx-csx)2-1=sin2x-2sinxcsx+cs2x-1=-sin2x,∴函数=(sinx-csx)2-1的最小正周期为π,且是奇函数.4.函数=sin2x-π3在区间-π2,π的简图是( )[答案] A[解析] x=0时, 0,排除B、D,x=π6时,=0,排除c,故选A5.为了得到函数=cs2x+π3的图象,只需将函数=sin2x的图象( )A.向左平移5π12个长度单位B.向右平移5π12个长度单位c.向左平移5π6个长度单位D.向右平移5π6个长度单位[答案] A[解析] =cs(2x+π3)=sin(2x+π2+π3)=sin(2x+5π6)=sin2(x+5π12),由=sin2x的图象得到=cs(2x+π3)的图象.只需向左平移5π12个长度单位就可以.6.函数=|sinx|的一个单调增区间是( )A-π4,π4Bπ4,3π4cπ,3π2D3π2,2π[答案] c[解析] 画出函数=|sinx|的图象,如图所示.由函数图象知它的单调增区间为π,π+π2(∈Z),所以当=1时,得到=|sinx|的一个单调增区间为π,3π2,故选c 7.(08 四川)设0≤α≤2π,若sinα 3csα,则α的取值范围是( )Aπ3,π2Bπ3,πcπ3,4π3Dπ3,3π2[答案] c[解析] ∵sinα 3csα,∴csα 0tanα 3或csα 0tanα 3或csα=0sinα=1,∴π3 α 4π3[点评] ①可取特值检验,α=π2时,1=sinπ2 3csπ2=0,排除A;α=π时,0=sinπ 3csπ=-3,排除B;α=4π3时,sin4π3=-32,3cs4π3=-32,∴sin4π3=3cs4π3,排除D,故选c②学过两角和与差的三角函数后,可化一角一函解决,sinα-3csα=2sinα-π3 0,∴sinα-π3 0,∵0≤α≤2π,∴π3 α4π38.方程sinπx=14x的解的个数是( )A.5 B.6c.7 D.8[答案] c[解析] 在同一坐标系中分别作出函数1=sinπx,2=14x的图象,左边三个交点,右边三个交点,再加上原点,共计7个.9.已知△ABc是锐角三角形,P=sinA+sinB,Q=csA+csB,则( )A.P QB.P Qc.P=QD.P与Q的大小不能确定[答案] B[解析] ∵△ABc是锐角三角形,∴0 A π2,0 B π2,A+B π2,∴A π2-B,B π2-A,∵=sinx在0,π2上是增函数,∴sinA csB,sinB csA,∴sinA+sinB csA+csB,∴P Q10.若函数f(x)=3cs(ωx+φ)对任意的x都满足fπ3+x=fπ3-x,则fπ3的值是( )A.3或0B.-3或0c.0D.-3或3[答案] D[解析] f(x)的图象关于直线x=π3对称,故fπ3为最大值或最小值.11.下列函数中,图象的一部分符合下图的是( )A.=sin(x+π6)B.=sin(2x-π6)c.=cs(4x-π3)D.=cs(2x-π6)[答案] D[解析] 用三角函数图象所反映的周期确定ω,再由最高点确定函数类型.从而求得解析式.由图象知T=4(π12+π6)=π,故ω=2,排除A、c又当x=π12时,=1,而B中的=0,故选D12.函数=2sinπ3-x-csx+π6(x∈R)的最小值为( )A.-3 B.-2c.-1 D.-5[答案] c[解析] ∵=2sinπ3-x-csx+π6=2csπ2-π3-x-csx+π6=csx+π6,∴in=-1第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.若1+sin2θ=3sinθcsθ则tanθ=________[答案] 1或12[解析] 由1+sin2θ=3sinθcsθ变形得2sin2θ+cs2θ-3sinθcsθ=0 (2sinθ-csθ)(sinθ-csθ)=0,∴tanθ=12或114.函数=16-x2+sinx的定义域为________.[答案] [-4,-π]∪[0,π][解析] 要使函数有意义,则16-x2≥0sinx≥0,∴-4≤x≤42π≤x≤2π+π(∈Z),∴-4≤x≤-π或0≤x≤π15.已知集合A={α|30°+180° α 90°+180°,∈Z},集合B={β|-45°+360° β 45°+360°,∈Z},则A∩B=________[答案] {α|30°+360° α 45°+360°,∈Z}[解析] 如图可知,A∩B={α|30°+360° α 45°+360°,∈Z}.16.若a=sin(sin2018°),b=sin(cs2018°),c=cs(sin2018°),d=cs(cs2018°),则a、b、c、d从小到大的顺序是________.[答案] b a d c[解析] ∵2018°=5×360°+180°+29°,∴a=sin(-sin29°)=-sin(sin29°) 0,b=sin(-c s29°)=-sin(cs29°) 0,c=cs(-sin29°)=cs(sin29°) 0,d=cs(-cs29°)=cs(cs29°) 0,又0 sin29° cs29° 1 π2,∴b a d c[点评] 本题“麻雀虽小,五脏俱全”,考查了终边相同的角、诱导式、正余弦函数的单调性等,应加强这种难度不大,对基础知识要求掌握熟练的小综合题训练.三、解答题(本大题共6个小题,共74分,解答应写出字说明,证明过程或演算步骤)17.(本题满分12分)已知sinθ=1-a1+a,csθ=3a-11+a,若θ为第二象限角,求实数a的值.[解析] ∵θ为第二象限角,∴sinθ 0,csθ 0∴1-a1+a 0,3a-11+a 0,解之得,-1 a 13又∵sin2θ+cs2θ=1,∴1-a1+a2+3a-11+a2=1,解之,得a=19或a=1(舍去).故实数a的值为1918.(本题满分12分)若集合=θsinθ≥12,0≤θ≤π,N=θcsθ≤12,0≤θ≤π,求∩N[解析] 解法一可根据正弦函数图象和余弦函数图象,找出集合N和集合对应的部分,然后求∩N首先作出正弦函数与余弦函数的图象以及直线=12如图.结合图象得集合、N分别为=θπ6≤θ≤5π6,N=θπ3≤θ≤π得∩N=θπ3≤θ≤5π6解法二利用单位圆中的三角函数线确定集合、N作出单位圆的正弦线和余弦线如图所示.由单位圆中的三角函数线知=θπ6≤θ≤5π6,N=θπ3≤θ≤π由此可得∩N=θπ3≤θ≤5π619.(本题满分12分)已知csx+sin=12,求sin-cs2x的最值.[解析] ∵csx+sin=12,∴sin=12-csx,∴sin-cs2x=12-csx-cs2x=-csx+122+34,∵-1≤sin≤1,∴-1≤12-csx≤1,解得-12≤csx≤1,所以当csx=-12时,(sin-cs2x)ax=34,当csx=1时,(sin-cs2x)in=-32[点评] 本题由-1≤sin≤1求出-12≤csx≤1是解题的关键环节,是易漏掉出错的地方.20.(本题满分12分)已知=a-bcs3x(b 0)的最大值为32,最小值为-12(1)求函数=-4asin(3bx)的周期、最值,并求取得最值时的x;(2)判断其奇偶性.[解析] (1)∵=a-bcs3x,b 0,∴ax=a+b=32in=a-b=-12,解得a=12b=1,∴函数=-4asin(3bx)=-2sin3x∴此函数的周期T=2π3,当x=2π3+π6(∈Z)时,函数取得最小值-2;当x=2π3-π6(∈Z)时,函数取得最大值2(2)∵函数解析式f(x)=-2sin3x,x∈R,∴f(-x)=-2sin(-3x)=2sin3x=-f(x),∴=-2sin3x为奇函数.21.(本题满分12分)函数f(x)=Asin(ωx+φ)的图象如图所示.试依图推出(1)f(x)的最小正周期;(2)f(x)的单调递增区间;(3)使f(x)取最小值的x的取值集合.[解析] (1)由图象可知,T2=74π-π4=32π,∴T=3π(2)由(1)可知当x=74π-3π=-54π时,函数f(x)取最小值,∴f(x)的单调递增区间是-54π+3π,π4+3π(∈Z).(3)由图知x=74π时,f(x)取最小值,又∵T=3π,∴当x=74π+3π时,f(x)取最小值,所以f(x)取最小值时x的集合为xx=74π+3π,∈Z22.(本题满分14分)函数f(x)=1-2a-2acsx-2sin2x的最小值为g(a)(a∈R).(1)求g(a);(2)若g(a)=12,求a及此时f(x)的最大值.[解析] (1)由f(x)=1-2a-2acsx-2sin2x=1-2a-2acsx-2(1-cs2x)=2cs2x-2acsx-(2a+1)=2csx-a22-a22-2a-1这里-1≤csx≤1①若-1≤a2≤1,则当csx=a2时,f(x)in=-a22-2a-1;②若a2 1,则当csx=1时,f(x)in=1-4a;③若a2 -1,则当csx=-1时,f(x)in=1因此g(a)=1 (a -2)-a22-2a-1 (-2≤a≤2)1-4a (a 2) (2)∵g(a)=12∴①若a 2,则有1-4a=12,得a=18,矛盾;②若-2≤a≤2,则有-a22-2a-1=12,即a2+4a+3=0,∴a=-1或a=-3(舍).∴g(a)=12时,a=-1此时f(x)=2csx+122+12,当csx=1时,f(x)取得最大值为55。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。

A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。

A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。

A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。

A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。

A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。

___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。

___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。

___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。

3.本卷命题范围:新人教版必修第一册第一章~第四章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。

一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。

高一数学必修一期中考试试题及答案

高一数学必修一期中考试试题及答案

考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .xy 2= B .x y 2log = C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛⎫⎪ ⎪⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。

高一上学期期中考试数学试卷含答案(共5套)

高一上学期期中考试数学试卷含答案(共5套)

高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。

卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。

在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。

抚顺市中考数学模拟试卷分类汇编有理数解答题(含答案)

抚顺市中考数学模拟试卷分类汇编有理数解答题(含答案)

抚顺市中考数学模拟试卷分类汇编有理数解答题(含答案)一、解答题1.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.2.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________.A,B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.3.大家知道,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|= .根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是________;数轴上表示-2和-5的两点之间的距离是________.(2)点A、B在数轴上分别表示实数x和-1.①用代数式表示A、B两点之间的距;②如果 ,求x的值.(3)直接写出代数式的最小值.4.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.5.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019−x也必是这个集合的元素,这样的集合我们又称为黄金集合,例如{0,2019}就是一个黄金集合,(1)集合{2019}________黄金集合,集合{−1,2020}________黄金集合.(填“是”或“不是”) (2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.6.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.7.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

辽宁省抚顺市第十中学2022高二生物下学期期中试题

辽宁省抚顺市第十中学2022高二生物下学期期中试题

辽宁省抚顺市第十中学2022高二生物下学期期中试题注意事项:本试题分为第Ⅰ卷和第Ⅱ卷,满分100分考试时间90分钟第Ⅰ卷(30题,共60分)一、选择题(每题2分,共60分)1.下列各组物质中全是内环境成分的是( )A.O2、CO2、血红蛋白、H+B.过氧化氢酶、抗体、激素、H2OC.纤维蛋白原、Ca2+、载体 D.Na+、HPO2-4、葡萄糖、氨基酸2.有关人体内环境及稳态的叙述中,错误的是( )A. 内环境是指多细胞生物体内细胞外液构成的液体环境B. 稳态是指内环境的化学成分、理化特性等保持相对稳定的状态C. 人类疾病的产生都是内环境稳态遭到破坏的结果D.饥饿时,血液流经肝脏后血糖浓度会增加3.过量饮酒的人往往表现为语无伦次、走路不稳、呼吸急促。

在小脑、脑干和大脑三个结构中,与上述生理状态相对应的结构分别是()A. 大脑、小脑和脑干B. 小脑、大脑和脑干C. 脑干、小脑和大脑D. 脑干、大脑和小脑4.下列有关神经细胞结构与功能的叙述,正确的是( )A.突触后神经细胞不具有合成神经递质的能力B.神经冲动的传导与细胞膜的选择透过性有关C.发生反射时,神经冲动在神经纤维上以局部电流的形式双向传导D.神经细胞轴突末梢有大量突起,有利于附着更多神经递质受体蛋白5.机体稳态的调节离不开物质运输,下列相关叙述正确的是( )A.神经递质都是生物大分子,所以都以胞吐的方式运出细胞B.神经纤维上兴奋的产生与Na+内流密切相关C.性激素在载体协助下进入靶细胞D.淋巴因子、激素等信息分子在机体内的运输都是定向的6. 脑啡肽是脑内的一种抑制性神经递质,具有镇痛作用。

如图表示a、b、c三个神经元之间构成的联系。

下列有关叙述错误的是( )A.在X处给予一定刺激,该处的膜外由正电位变为负电位B.痛觉感受器产生的兴奋沿a神经元传至结构①和②处会出现相同的信号转换C.c神经元兴奋时释放的脑啡肽与结构①上的特定受体结合,抑制③释放神经递质D.③中的物质以胞吐的形式排出细胞,需要消耗能量7.取两相接的神经细胞(生理功能未受操作影响),浸泡在任氏液中(可保持神经细胞活性),如图所示,在神经纤维上的B、C两点接上灵敏的电流计,刺激G点,电流计指针会发生什么现象?( )A.不会发生偏转B.发生一次偏转C.发生两次偏转,方向相同D.发生两次偏转,方向相反8.如图为某健康的学生血糖变化情况,他在13时前仅吃了早餐。

人教版新教材高中数学高一上学期期中考试数学试卷(共四套)

人教版新教材高中数学高一上学期期中考试数学试卷(共四套)

人教版新教材高中数学高一上学期期中考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{0,1,2}A =,那么( ) A .0A ⊆B .0A ∈C .{1}A ∈D .{0,1,2}A2.集合{|14}A x x =∈-<<N 的真子集个数为( ) A .7B .8C .15D .163.命题“x ∀∈R ,||10x x -+≠”的否定是( ) A .x ∃∈R ,||10x x -+≠ B .x ∃∈R ,||10x x -+= C .x ∀∈R ,||10x x -+=D .x ∀∉R ,||10x x -+≠4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62%B .56%C .46%D .42%5.已知集合{|10}A x x =-≥,2{|280}B x x x =--≥,则()AB =R( )A .[2,1]-B .[1,4]C .(2,1)-D .(,4)-∞6.甲、乙两人沿着同一方向从A 地去B 地,甲前一半的路程使用速度1v ,后一半的路程使用速度2v ;乙前一半的时间使用速度1v ,后一半的时间使用速度2v ,关于甲,乙两人从A 地到达B 地的路程与时间的函数图像及关系(其中横轴t 表示时间,纵轴s 表示路程12v v <)可能正确的图示分析为( )A .B .C .D .7.若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( )A .3(0,]4B .3[0,]4C .3[0,)4D .3(0,)48.若定义在R 的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( ) A .[1,1][3,)-+∞ B .[3,1][0,1]-- C .[1,0][1,)-+∞ D .[1,0][1,3]-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1x ≥C .01x <≤D .11x -≤≤10.下列各项中,()f x 与()g x 表示的函数不相等的是( )A .()f x x =,()g x =B .()f x x =,2()g x =C .()f x x =,2()x g x x=D .()|1|f x x =-,1(1)()1(1)x x g x x x -≥⎧=⎨-<⎩11.若函数22,1()4,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( )A .0B .1C .32D .312.下列函数中,既是偶函数又在(0,3)上是递减的函数是( )A .21y x =-+B .3y x =C .1y x =-+D .y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20182018a b +=________.14.已知(1)f x +的定义域为[2,3)-,则(2)f x -的定义域是 . 15.若12a b <-≤,24a b ≤+<,则42a b -的取值范围_________.16.已知函数21()234f x x x =-++,3()|3|2g x x =-,若函数(),()()()(),()()f x f xg x F x g x f x g x <⎧=⎨≥⎩, 则(2)F = ,()F x 的最大值为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设集合{25}A x x =-≤≤,{121}B x m x m =-≤≤+. (1)若A B =∅,求m 的范围; (2)若A B A =,求m 的范围.18.(12分)已知命题:p x ∃∈R ,2(1)(1)0m x ++≤,命题:q x ∀∈R ,210x mx ++>恒成立.若,p q 至少有一个为假命题,求实数m 的取值范围.19.(12分)已知函数26,0()22,0x x f x x x x +≤⎧=⎨-+>⎩.(1)求不等式()5f x >的解集;(2)若方程2()02m f x -=有三个不同实数根,求实数m 的取值范围.20.(12分)已知奇函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩. (1)求实数m 的值; (2)画出函数的图像;(3)若函数()f x 在区间[1,||2]a --上单调递增,试确定a 的取值范围.21.(12分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用()f x ;(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.22.(12分)已知()f x 是定义在[5,5]-上的奇函数,且(5)2f -=-,若对任意的m ,[5,5]n ∈-,0m n +≠,都有()()0f m f n m n+>+.(1)若(21)(33)f a f a -<-,求a 的取值范围;(2)若不等式()(2)5f x a t ≤-+对任意[5,5]x ∈-和[3,0]a ∈-都恒成立,求t 的取值范围.【参考答案】第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】∵集合{0,1,2}A =,∴0A ∈,故A 错误,B 正确; 又∵{1}A ⊆,∴C 错误; 而{0,1,2}A =,∴D 错误. 2.【答案】C【解析】{0,1,2,3}A =中有4个元素,则真子集个数为42115-=. 3.【答案】B【解析】全称量词命题的否定是存在量词命题. 4.【答案】C【解析】由Venn 图可知,既喜欢足球又喜欢游泳的学生所占比60%82%96%46%X =+-=, 故选C .5.【答案】C【解析】∵{|10}{|1}A x x x x =-≥=≥,2{|280}{|2B x x x x x =--≥=≤-或4}x ≥,∴{|2A B x x =≤-或1}x ≥,则()(2,1)A B =-R.6.【答案】A【解析】因为12v v <,故甲前一半路程使用速度1v ,用时超过一半,乙前一半时间使用速度1v , 行走路程不到一半. 7.【答案】C【解析】2430mx mx ++≠,所以0m =或000m m Δ≠⎧⇒=⎨<⎩或2030416120m m m m ≠⎧⇒≤<⎨-<⎩. 8.【答案】D【解析】∵()f x 为R 上奇函数,在(,0)-∞单调递减,∴(0)0f =,(0,)+∞上单调递减.由(2)0f =,∴(2)0f -=,由(1)0xf x -≥,得0(1)0x f x ≥⎧⎨-≥⎩或0(1)0x f x ≤⎧⎨-≤⎩,解得13x ≤≤或10x -≤≤,∴x 的取值范围是[1,0][1,3]-,∴选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】AC【解析】∵不等式21x ≤,∴11x -≤≤,“01x <≤”和“10x -≤<”是不等式21x ≤成立的一个充分不必要条件. 10.【答案】ABC【解析】A ,可知()||g x x =,()f x x =,两个函数对应关系不一样,故不是同一函数;B ,()f x x =,x ∈R ,2()g x x ==,0x ≥,定义域不一样;C ,()f x x =,x ∈R ,2()x g x x=,0x ≠,定义域不一样;D ,1(1)()|1|1(1)x x f x x x x -≥⎧=-=⎨-<⎩与()g x 表示同一函数.11.【答案】BC【解析】当1x ≤-时,2()2f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤.12.【答案】AC【解析】A :21y x =-+是偶函数,且在(0,3)上递减,∴该选项正确; B :3y x =是奇函数,∴该选项错误;C :1y x =-+是偶函数,且在(0,3)上递减,∴该选项错误;D :y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】由集合相等可知0ba=,则0b =, 即{}{}21,,00,,a a a =,故21a =,由于1a ≠,故1a =-,则20182018101a b +=+=. 14.【答案】[)1,6【解析】∵(1)f x +的定义域为[2,3)-,∴23x -≤<,∴114x -≤+<, ∴()f x 的定义域为[1,4)-; ∴124x -≤-<,∴16x ≤<,∴(2)f x -的定义域为[1,6). 15.【答案】(5,10)【解析】由题设42()()a b x a b y a b -=-++,42()()a b x y a y x b -=++-,则42x y y x +=⎧⎨-=-⎩,解得31x y =⎧⎨=⎩,所以423()()a b a b a b -=-++,12a b <-≤,33()6a b <-≤,24a b ≤+<,所以53()()10a b a b <-++<,故54210a b <-<. 16.【答案】0,6【解析】因为(2)6f =,(2)0g =,所以(2)0F =,画出函数()F x 的图象(实线部分),由图象可得,当6x =时,()F x 取得最大值6.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)6m >或32m <-;(2)2m <-或12m -≤≤.【解析】(1)已知{25}A x x =-≤≤,{121}B x m x m =-≤≤+. 当B =∅时,有121m m ->+,即2m <-,满足A B =∅; 当B ≠∅时,有121m m -≤+,即2m ≥-,又A B =∅,则15m ->或212m +<-,即6m >或322m -≤<-,综上可知,m 的取值范围为6m >或32m <-.(2)∵A B A =,∴B A ⊆,当B =∅时,有121m m ->+,即2m <-,满足题意;当B ≠∅时,有121m m -≤+,即2m ≥-,且12215m m -≥-⎧⎨+≤⎩,解得12m -≤≤,综上可知,m 的取值范围为2m <-或12m -≤≤. 18.【答案】2m ≤-或1m >-.【解析】当命题p 为真时,10m +≤,解得1m ≤-; 当命题q 为真时,24110Δm =-⨯⨯<,解得22m -<<,当命题p 与命题q 均为真时,则有12122m m m ≤-⎧⇒-<≤-⎨-<<⎩,命题q 与命题p 至少有一个为假命题,所以此时2m ≤-或1m >-.19.【答案】(1)(1,0](3,)-+∞;(2)(2,(2,2)-. 【解析】(1)当0x ≤时,由65x +>,得10x -<≤; 当0x >时,由2225x x -+>,得3x >, 综上所述,不等式的解集为(1,0](3,)-+∞.(2)方程2()02m f x -=有三个不同实数根, 等价于函数()y f x =与函数22m y =的图像有三个不同的交点,如图所示,由图可知,2122m <<,解得2m -<<2m <<,所以实数m 的取值范围为(2,(2,2)-.20.【答案】(1)2m =;(2)图像见解析;(3)[3,1)(1,3]--. 【解析】(1)当0x <时,0x ->,22()()2()2f x x x x x -=--+-=--, 又因为()f x 为奇函数,所以()()f x f x -=-, 所以当0x <时,2()2f x x x =+,则2m =.(2)由(1)知,222,0()0,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,函数()f x 的图像如图所示.(3)由图像可知()f x 在[1,1]-上单调递增,要使()f x 在[1,||2]a --上单调递增, 只需1||21a -<-≤,即1||3a <≤,解得31a -≤<-或13a <≤, 所以实数a 的取值范围是[3,1)(1,3]--. 21.【答案】(1)144()4f x x x=+(036x <≤,*x ∈N );(2)只需每批购入6张书桌,可以使资金够用.【解析】(1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值为20x 元,由题意36()420f x k x x=⋅+⋅, 由4x =时,()52f x =,得161805k ==,所以144()4f x x x=+(036x <≤,*x ∈N ). (2)由(1)知,144()4f x x x=+(036x <≤,*x ∈N ),所以()48f x ≥=(元),当且仅当1444x x=,即6x =时,上式等号成立,故只需每批购入6张书桌,可以使资金够用.22.【答案】(1)8(2,]3;(2)3(,]5-∞.【解析】(1)设任意1x ,2x 满足1255x x -≤<≤, 由题意可得12121212()()()()()0()f x f x f x f x x x x x +--=-<+-,即12()()f x f x <,所以()f x 在定义域[5,5]-上是增函数,由(21)(33)f a f a -<-,得521553352133a a a a -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得823a <≤,故a 的取值范围为8(2,]3.(2)由以上知()f x 是定义在[5,5]-上的单调递增的奇函数,且(5)2f -=-, 得在[5,5]-上max ()(5)(5)2f x f f ==--=,在[5,5]-上不等式()(2)5f x a t ≤-+对[3,0]a ∈-都恒成立, 所以2(2)5a t ≤-+,即230at t -+≥,对[3,0]a ∈-都恒成立, 令()23g a at t =-+,[3,0]a ∈-,则只需(3)0(0)0g g -≥⎧⎨≥⎩,即530230t t -+≥⎧⎨-+≥⎩,解得35t ≤,故t 的取值范围为3(,]5-∞.人教版新教材高中数学高一上学期期中考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

高一(上)期中数学试卷(含答案)

高一(上)期中数学试卷(含答案)

一、单选题。

(本大题共8小题,共40高一(上)期中数学试卷分。

在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。

高一上学期期中考试数学试卷 Word版含解析(数理化网)9

高一上学期期中考试数学试卷 Word版含解析(数理化网)9

高一(上)期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.满足条件M∪{1}={1,2,3}的集合M的个数是()A.4 B.3 C.2 D.12.已知全集U=R,设集合A={x|y=lg(x﹣1)},集合B={y|y=2x,x≥1},则A∩(C U B)=()A.[1,2]B.[1,2)C.(1,2)D.(1,2]3.函数y=a x+1(a>0且a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(2,1)D.(0,2)4.已知集合M={﹣1,1},N=,则M∩N=()A.{﹣1,1} B.{﹣1}C.{0}D.{﹣1,0}5.设函数f(x)=.若f(a)=4,则实数a=()A.﹣4 或﹣2 B.﹣4 或2 C.﹣2 或4 D.﹣2 或26.函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)7.已知函数f(x)=若f(x0)>3,则x0的取值范围是()A.x0>8 B.x0<0或x0>8 C.0<x0<8 D.x0<0或0<x0<88.如果函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,那么实数a取值范围是()A.a≤﹣3 B.a≥﹣3 C.a≤5 D.a≥59.已知对数函数f(x)=log a x是增函数,则函数f(|x|+1)的图象大致是()A.B.C.D.10.已知a=2,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a11.已知函数f(x)=是R上的减函数则a的取值范围是()A.(0,3)B.(0,3]C.(0,2)D.(0,2]12.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0则<0的解集为()A.(﹣3,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞)D.(﹣∞,﹣3)∪(0,+3)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在对应题号后的横线上)13.已知函数f(x)的定义域为(﹣1,1),则函数f(2x+1)的定义域为.14.计算:e ln3+log9+0.125=.15.已知集合A={x,,1},B={x2,x+y,0},若A=B,则x2014+y2015=.16.已知函数y=log a(2﹣ax),(a>0,a≠1)在[0,1]上是减函数,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范围.18.(12分)已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1)(1)求函数f(x)的定义域;(2)求函数f(x)的零点.19.(12分)设a>0,f(x)=+是R上的偶函数.(1)求a的值;(2)证明f(x)在(0,+∞)上为增函数.20.(12分)已知函数f(x)=1﹣(1)求函数f(x)的定义域和值域;(2)试判断函数f(x)的奇偶性.21.(12分)经济学中,函数f(x)的边际函数M(x)定义为M(x)=f(x+1)﹣f(x),利润函数p(x)边际利润函数定义为M1(x)=p(x+1)﹣p(x),某公司最多生产100 台报系统装置,生产x台的收入函数为R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000x(单位:元),利润是收入与成本之差.(1)求利润函数p(x)及边际利润函数M1(x);(2)利润函数p(x)与边际利润函数M1(x)是否具有相等的最大值?22.(12分)定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,(1)求f(1)和f(﹣1)的值;(2)试判断f(x)的奇偶性,并加以证明;(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.2016-2017学年青海省师大附中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.满足条件M∪{1}={1,2,3}的集合M的个数是()A.4 B.3 C.2 D.1【考点】并集及其运算.【专题】计算题.【分析】根据集合并集的定义“由所有属于集合A或属于集合B的元素所组成的集合叫做并集”进行反向求解即可.【解答】解:∵M∪{1}={1,2,3}∴M={2,3}或{1,2,3}故选C.【点评】本题主要考查了集合中并集的运算,是求集合的并集的基础题,也是高考常会考的题型.2.已知全集U=R,设集合A={x|y=lg(x﹣1)},集合B={y|y=2x,x≥1},则A∩(∁U B)=()A.[1,2]B.[1,2)C.(1,2)D.(1,2]【考点】交、并、补集的混合运算.【专题】集合.【分析】先求出A、B,然后求解,从而求出∁U B,即可求解集合A∩(∁U B).【解答】解:全集U=R,设集合A={x|y=lg(x﹣1)}={x|x>1},集合B={y|y=2x,x≥1}={y|≥2},∁U B={y|y<2}则A∩(∁U B)=(1,+∞)∩(﹣∞,2)=(1,2).故选:C.【点评】本题考察了集合的运算,求出补集是解题的关键,本题是一道基础题.3.函数y=a x+1(a>0且a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(2,1)D.(0,2)【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】已知函数f(x)=a x+1,根据指数函数的性质,求出其过的定点.【解答】解:∵函数f(x)=a x+1,其中a>0,a≠1,令x=0,可得y=1+1=2,点的坐标为(0,2),故选:D【点评】本题主要考查指数函数的性质及其特殊点,是一道基础题.4.已知集合M={﹣1,1},N=,则M∩N=()A.{﹣1,1} B.{﹣1}C.{0}D.{﹣1,0}【考点】交集及其运算.【分析】N为指数型不等式的解集,利用指数函数的单调性解出,再与M求交集.求【解答】解:⇔2﹣1<2x+1<22⇔﹣1<x+1<2⇔﹣2<x<1,即N={﹣1,0}又M={﹣1,1}∴M∩N={﹣1},故选B【点评】本题考查指数型不等式的解集和集合的交集,属基本题.5.设函数f(x)=.若f(a)=4,则实数a=()A.﹣4 或﹣2 B.﹣4 或2 C.﹣2 或4 D.﹣2 或2【考点】函数的值.【专题】计算题;分类讨论;分类法;函数的性质及应用.【分析】当a>0时,f(a)=a2=4;当a≤0时,f(a)=﹣a=4.由此能求出实数a的值.【解答】解:∵f(x)=,f(a)=4,∴当a>0时,f(a)=a2=4,解得a=2或a=﹣2(舍);当a≤0时,f(a)=﹣a=4,解得a=﹣4.∴a=﹣4或a=2.故选:B.【点评】本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.6.函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】将选项中各区间两端点值代入f(x),满足f(a)•f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.7.已知函数f(x)=若f(x0)>3,则x0的取值范围是()A.x0>8 B.x0<0或x0>8 C.0<x0<8 D.x0<0或0<x0<8【考点】对数函数的单调性与特殊点;指数函数的单调性与特殊点.【专题】计算题;压轴题;分类讨论.【分析】通过对函数f(x)在不同范围内的解析式,得关于x0的不等式,从而可解得x0的取值范围.【解答】解:①当x≤0时,f(x0)=>3,∴x0+1>1,∴x0>0 这与x≤0相矛盾,∴x∈∅.②当x>0时,f(x0)=log2x0>3,∴x0>8综上:x0>8故选A.【点评】本题主要考查对数函数的单调性,及分段函数,在解不等式时注意分类讨论,是个基础题.8.如果函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,那么实数a取值范围是()A.a≤﹣3 B.a≥﹣3 C.a≤5 D.a≥5【考点】二次函数的性质.【专题】计算题.【分析】先用配方法将二次函数变形,求出其对称轴,再由“在(﹣∞,4]上是减函数”,知对称轴必须在区间的右侧,求解即可得到结果.【解答】解:∵f(x)=x2+2(a﹣1)x+2=(x+a﹣1)2+2﹣(a﹣1)2其对称轴为:x=1﹣a∵函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数∴1﹣a≥4∴a≤﹣3故选A【点评】本题主要考查二次函数的单调性,解题时要先明确二次函数的对称轴和开口方向,这是研究二次函数单调性和最值的关键.9.已知对数函数f(x)=log a x是增函数,则函数f(|x|+1)的图象大致是()A.B.C.D.【考点】对数函数的图象与性质;函数的图象与图象变化.【专题】数形结合.【分析】先导出再由函数f(x)=log a x是增函数知,a>1.再由对数函数的图象进行判断.【解答】解:由函数f(x)=log a x是增函数知,a>1.故选B.【点评】本小题主要考查了对数函数的图象与性质,以及分析问题和解决问题的能力.这类试题经常出现,要高度重视.10.已知a=2,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【考点】对数值大小的比较.【专题】转化思想;函数的性质及应用.【分析】由于1<a=2<,c=log=log23>=,进而得出.【解答】解:∵1<a=2<=,b=log2<0,c=log=log23>=,∴c>a>b.故选:C.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.11.已知函数f(x)=是R上的减函数则a的取值范围是()A.(0,3)B.(0,3]C.(0,2)D.(0,2]【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】由f(x)为R上的减函数可知,x≤1及x>1时,f(x)均递减,且(a﹣3)×1+5≥,由此可求a的取值范围.【解答】解:因为f(x)为R上的减函数,所以x≤1时,f(x)递减,即a﹣3<0①,x>1时,f(x)递减,即a>0②,且(a﹣3)×1+5≥③,联立①②③解得,0<a≤2.故选D.【点评】本题考查函数单调性的性质,本题结合图象分析更为容易.12.若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0则<0的解集为()A.(﹣3,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞)D.(﹣∞,﹣3)∪(0,+3)【考点】奇偶性与单调性的综合.【专题】综合题;转化思想;演绎法;函数的性质及应用.【分析】根据题意和偶函数的性质画出符合条件的图象,利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.【解答】解:由题意画出符合条件的函数图象:∵函数y=f(x)为偶函数,∴<0转化为xf(x)<0,由图得,当x>0时,f(x)<0,则x>3;当x<0时,f(x)>0,则﹣3<x<0;综上得,<0的解集是:(﹣3,0)∪(3,+∞),故选C.【点评】本题主要考查函数奇偶性的应用,利用数形结合的思想是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在对应题号后的横线上)13.已知函数f(x)的定义域为(﹣1,1),则函数f(2x+1)的定义域为(﹣1,0).【考点】函数的定义域及其求法.【专题】函数思想;定义法;函数的性质及应用.【分析】根据复合函数定义域之间的关系进行求解即可.【解答】解:∵函数f(x)的定义域为(﹣1,1),∴由﹣1<2x+1<1,得﹣1<x<0,则函数f(2x+1)的定义域为(﹣1,0).故答案为:(﹣1,0)【点评】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.根据复合函数定义域之间的关系是解决本题的关键.14.计算:e ln3+log9+0.125=11.【考点】对数的运算性质.【专题】转化思想;函数的性质及应用.【分析】利用指数幂与对数的运算法则即可得出.【解答】解:原式=3++=3+4+2﹣1×(﹣2)=11.故答案为:11.【点评】本题考查了指数幂与对数的运算法则,考查了推理能力与计算能力,属于基础题.15.已知集合A={x,,1},B={x2,x+y,0},若A=B,则x2014+y2015=1.【考点】集合的相等.【专题】计算题;方程思想;演绎法;集合.【分析】根据集合的性质得到x≠0,1,分别求出x,y的值,代入x2014+y2015,求出即可.【解答】解:∵集合{x2,x+y,0}={x,,1},由题意得:x≠0,1,∴=0,则y=0,∴x+y=1,x2=1,解得:x=﹣1,∴x2014+y2015=(﹣1)2014+02015=1,故答案为:1.【点评】本题考查了集合的运算,考查集合的性质,是一道基础题.16.已知函数y=log a(2﹣ax),(a>0,a≠1)在[0,1]上是减函数,则实数a的取值范围是(1,2).【考点】对数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】先将函数f(x)=log a(2﹣ax)转化为y=log a t,t=2﹣ax,两个基本函数,再利用复合函数的单调性求解.【解答】解:令y=loga t,t=2﹣ax,(1)若0<a<1,则函y=loga t,是减函数,由题设知t=2﹣ax为增函数,需a<0,故此时无解;(2)若a>1,则函数y=loga t是增函数,则t为减函数,需a>0且2﹣a×1>0,可解得1<a<2综上可得实数a 的取值范围是(1,2).故答案为:(1,2).【点评】本题考查复合函数的单调性,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数的范围.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范围.【考点】交集及其运算.【专题】集合.【分析】由A与B的交集为A,得到A为B的子集,分A为空集与A不为空集两种情况求出a的范围即可.【解答】解:∵A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},且A∩B=A,∴A⊆B,当A=∅时,则有2a>a+3,即a>3,满足题意;当A≠∅时,则有2a≤a+3,即a≤3,且a+3<﹣1或2a>5,解得:a<﹣4或<a≤3,综上,a的范围为{a|a<﹣4或a>}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.18.(12分)已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1)(1)求函数f(x)的定义域;(2)求函数f(x)的零点.【考点】对数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】(1)根据对数函数的性质得到关于x的不等式组,解出即可;(2)问题转化为解方程x2+2x﹣2=0,从而求出函数的零点即可.【解答】解:(1)要使函数由意义,则有,解得:﹣3<x<1,所以函数的定义域为(﹣3,1).(2)函数化为f(x)=log a(﹣x2﹣2x+3),由f(x)=0,得﹣x2﹣2x+3=1,即x2+2x﹣2=0,解得:x=﹣1±,∵﹣1±∈(﹣3,1),∴f(x)的零点是﹣1±.【点评】本题考查了求函数的定义域问题,考查函数的零点问题,是一道基础题.19.(12分)(2001•江西)设a>0,f(x)=+是R上的偶函数.(1)求a的值;(2)证明f(x)在(0,+∞)上为增函数.【考点】函数单调性的判断与证明;偶函数.【分析】(1)根据偶函数的定义f(﹣x)=f(x)即可得到答案.(2)用定义法设0<x1<x2,代入作差可得.【解答】解:(1)依题意,对一切x∈R,有f(﹣x)=f(x),即∴=0对一切x∈R成立,则,∴a=±1,∵a>0,∴a=1.(2)设0<x1<x2,则=,由x1>0,x2>0,x2﹣x1>0,得,得,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上为增函数.【点评】本题主要考查偶函数的定义和增函数的判断方法.20.(12分)已知函数f(x)=1﹣(1)求函数f(x)的定义域和值域;(2)试判断函数f(x)的奇偶性.【考点】函数奇偶性的判断;函数的定义域及其求法;函数的值域.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】(1)求使解析式有意义的x范围;并结合指数函数的值域求f(x)的值域.(2)利用奇偶函数的定义判断奇偶性.【解答】解:(1)要使f(x)有意义,只要使2x+1≠0.由于对任意的x都成立,即函数的定义域为R.设y=f(x)=1﹣,2x>0,2x+1>1,0<<2,所以﹣1<1﹣<1,所以函数的值域为(﹣1,1);(2)对任意的x∈R,则有﹣x∈R,.∵f(﹣x)=1﹣=1﹣==﹣f(x),∴f(x)为奇函数.【点评】本题考查了函数的定义域和值域的求法以及奇偶性的判断;属于经常考查题型.21.(12分)经济学中,函数f(x)的边际函数M(x)定义为M(x)=f(x+1)﹣f(x),利润函数p(x)边际利润函数定义为M1(x)=p(x+1)﹣p(x),某公司最多生产100 台报系统装置,生产x台的收入函数为R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000x(单位:元),利润是收入与成本之差.(1)求利润函数p(x)及边际利润函数M1(x);(2)利润函数p(x)与边际利润函数M1(x)是否具有相等的最大值?【考点】函数模型的选择与应用.【专题】转化思想;配方法;函数的性质及应用.【分析】(1)P(x)=R(x)﹣C(x),M1(x)=P(x+1)﹣P(x).(1≤x≤100,x∈N*).(2)由P(x)=﹣20+74125,利用二次函数的单调性可得,P(x)max.利用一次函数的单调性可得M1(x)max.【解答】解:(1)P(x)=R(x)﹣C(x)=3000x﹣20x2﹣(500x+4000)=﹣20x2+2500x﹣4000(1≤x≤100,x∈N*),M1(x)=P(x+1)﹣P(x)=2480﹣40x.(1≤x≤100,x∈N*).(2)∵P(x)=﹣20+74125,∴当x=62 或63 时,P(x)max=74120.又∵M1(x)是减函数,∴当x=1 时,M1(x)max=2440.故利润函数p(x)与边际利润函数M1(x)不具有相等的最大值.【点评】本题考查了一次函数与二次函数的单调性,考查了推理能力与计算能力,属于中档题.22.(12分)定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,(1)求f(1)和f(﹣1)的值;(2)试判断f(x)的奇偶性,并加以证明;(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.【考点】抽象函数及其应用.【专题】转化思想;转化法;函数的性质及应用.【分析】(1)利用赋值法即可求f(1)、f(﹣1)的值;(2)根据函数奇偶性的定义即可证明f(x)是偶函数;(3)根据函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:(1)令x=y=1,得f(1)=f(1)+f(1)=2f(1),∴f(1)=0,令x=y=﹣1,得f(1)=f(﹣1)+f(﹣1)=2f(﹣1)=0,∴f(﹣1)=0,(2)令y=﹣1,则f(﹣x)=f(x)+f(﹣1)=f(x),∴f(﹣x)=f(x)∴f(x)是偶函数.(3)由式f(x+1)﹣f(2﹣x)≤0得式f(x+1)≤f(2﹣x),由(2)函数是偶函数,则不等式等价为f(|x+1|)≤f(|2﹣x|),∵x≥0时f(x)为增函数,∴不等式等价为|x+1|≤|2﹣x|,平方得x2+2x+1≤x2﹣4x+4,即6x≤3,即x≤,即满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合为(﹣∞,].【点评】本题主要考查函数奇偶性的判断以及不等式的求解,根据抽象函数的关系,利用赋值法是解决抽象函数的基本方法,。

XXX2015-2016学年高一数学上学期期中考试试卷

XXX2015-2016学年高一数学上学期期中考试试卷

XXX2015-2016学年高一数学上学期期中考试试卷XXX2015-2016学年高一上学期期中考试数学试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,满分共计150分。

考试时间为120分钟。

卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分。

1.如果A={x|x>−1},那么正确的结论是A.A⊆B。

{0}∈A C。

{0}∈C2.函数f(x)=2−2x,则f(1)=A。

0 B.−2 C.2/2 D.−2/23.设全集I={x|x∈Z−3<x<3},A={1,2},B={−2,−1,2},则A∪(I∩B)等于A。

{1} B。

{1,2} C。

{2} D。

{0,1,2}4.与函数y=10lg(x−1)的定义域相同的函数是A。

y=x−1 B。

y=x−1 C。

y=1/(x−1) D。

y=x−15.若函数f(x)=3+3x−x与g(x)=3−3^(−x)的定义域均为R,则A。

f(x)与g(x)均为偶函数 B。

f(x)为偶函数,g (x)为奇函数C。

f(x)与g(x)均为奇函数 D。

f(x)为奇函数,g (x)为偶函数6.设a=log_3(2),b=ln2,c=5,则A。

a<b<XXX<c<a C。

c<a<b D。

c<b<a7.设函数y=x和y=1/2,则y的交点为(x,y),则x所在的区间是A.(,1)B.(1,2)C.(2,3)D.(3,4)8.已知函数f(x)是R上的偶函数,当x≥1时f(x)=x−1,则f(x)<0的解集是A.(−1,∞)B.(−∞,1)C.(−1,1)D.(−∞,−1)∪(1,∞)9.某商店同时卖出两套西服,售价均为168元,以成本计算,一套盈利20%,另一套亏损20%,此时商店A.不亏不盈B.盈利37.2元C.盈利14元D.亏损14元10.设函数f(x)在R上是减函数,则A。

f(a)>f(2a)B。

辽宁省抚顺市第十中学2016-2017学年高一上学期期中考

辽宁省抚顺市第十中学2016-2017学年高一上学期期中考

抚顺十中2016-2017学年度上学期高一年级期中考试化学试卷命题人:西海晶 校正:贾丽荣注意事项:1、本试卷分为第Ⅰ卷和第Ⅱ卷,满分100分,考试时间:60分钟。

2、客观题涂在答题卡上,主观题答在答题纸上。

3、可能用到的相对原子质量:第Ⅰ卷(20小题,共60分)一、选择题(每题只有1个正确选项,共20小题,每小题3分) 1.在物质分类中,前者包括后者的是( )A .氧化物、化合物B .化合物、电解质C .溶液、 胶体D .溶液、 分散系2.现有三组实验:①除去混在植物油中的水 ②回收碘的CCl 4溶液中的CCl 4 ③用食用酒精浸泡中草药提取其中的有效成份。

分离以上各混合液的正确方法依次是( ) A .分液、蒸馏、萃取 B .萃取、蒸馏、分液 C .分液、萃取、蒸馏D .蒸馏、萃取、分液3.下列变化需要加入还原剂才能实现的( ) A .KClO 3O 2 B .MnO 4-Mn 2+C .FeFe 3+D .HClCl 24.在某无色透明的酸性溶液中,能大量共存的离子组是( )A .Na +、K +、SO 42-、HCO 3B .Cu 2+、K +、SO 42-、NO 3C .Na +、 K +、Cl、 NO 3D .Fe 3+、K +、SO 42-、Cl5.苹果汁是人们喜欢的饮料。

由于此饮料中含有Fe 2+,现榨的苹果汁在空气中会由淡绿色变为棕黄色。

若榨汁时加入维生素C ,可有效防止这种现象发生,说明维生素C 具有( ) A.氧化性 B. 酸性 C.碱性 D. 还原性6.向氢氧化铁溶胶中逐滴加入一种液体,首先使溶胶发生凝聚而沉淀,继续加入使沉淀消失,这种液体是( )A .0.5 mol/L 氢氧化钠溶液B .0.5 mol/L 盐酸C .0.5 mol/L 氯化钾溶液D .蒸馏水7.下列溶液与20mL 1 mol ·L —1NaNO 3溶液中NO 3—物质的量浓度相等的是( ) A .10 mL 1 mol ·L —1Mg(NO 3)2溶液 B .5 mL 0.8 mol ·L —1Al(NO 3)3溶液 C .10 mL 2 mol ·L—1 AgNO 3溶液 D .10 mL 0.5 mol ·L —1Cu(NO 3)2溶液8.下列实验操作中正确的是 ( )A .蒸发操作时,应使混合物中的水分完全蒸干后,才能停止加热B .蒸馏操作时,应使温度计的水银球插入蒸馏烧瓶溶液中C .分液操作时,分液漏斗中下层液体从下口放出,上层液体从上口倒出D .萃取操作时,应选择有机萃取剂,且萃取剂的密度必须比水大 9.下列叙述正确的是( )A .根据酸分子中含有的氢原子个数可将酸分为一元酸、二元酸、三元酸等B .碱性氧化物一定是金属氧化物C .SO 2的水溶液能导电,所以SO 2是电解质D .金刚石不导电,因此金刚石是非电解质 10.下列叙述中正确的是( )A .在氧化还原反应中,非金属单质一定是氧化剂B .金属阳离子被还原不一定得到金属单质C .许多胶体能进行电泳是因为这些胶体带电D .溶于水能导电的化合物一定是电解质11.下列带括号的气体在反应中只做氧化剂的是( )A .2F 2(g) + 2H 2O = 4HF + O 2B .SO 2(g) + I 2+2H 2O = H 2SO 4 + 2HIC .H 2S(g)+ Br 2= 2HBr + S↓D .3NO 2(g) + H 2O = 2HNO 3 + NO12.离子方程式BaCO 3 + 2H += CO 2↑+ H 2O + Ba 2+中的H +不能代表的物质是( )①HCl ②H 2SO 4 ③HNO 3 ④NaHSO 4 ⑤CH 3COOH A .②④⑤ B .④⑤ C .①③ D .⑤13.已知1g N 2含有m 个原子,则阿伏加德罗常数为( )A .14mB .28mC . 14m mol ﹣1D .28m mol ﹣114.在标准状况下,相同质量的下列气体中体积最大的是( )A .O 2B .N 2C .Cl 2D .CO 215.设N A 为阿伏加德罗常数,下列叙述正确的是( )A.28g CO所占的体积为22.4LB.1L 1mol/L HCl溶液中含有HCl分子为N A个C.标准状况下,2.24L水中约含有N A个氧原子D.标准状况下22.4LCO和CO2的混合气体中含碳原子数为N A16.下列离子反应,表达正确的是()A.向KHSO4溶液中加入Ba(OH)2溶液至溶液呈中性:2H+ + SO42-+ Ba2++ 2OH-= BaSO4↓ + 2H2O B.CaCO3与醋酸反应:CaCO3 + 2H+=Ca2+ + CO2↑+ H2OC.向碳酸氢钙溶液中滴入过量澄清石灰水:Ca2++2HCO3—+2OH— =CaCO3↓+CO32—+2H2OD.MgSO4溶液跟B a(O H)2溶液反应:SO42― + Ba2+=BaSO4↓17.VL Fe2(SO4)3溶液中含有ag SO42﹣,取此溶液0.5VL,用水稀释至2VL,则稀释后溶液中Fe3+的物质的量的浓度为()A.mol/L B.mol/L C.mol/L D.mol/L18.下列溶液中溶质的物质的量浓度为1mol/L的是()A.将58.5gNaCl溶解在1L水中B.将1L10mol/L的浓盐酸加入9L水中C.将22.4LHCl气体溶于水配成1L溶液D.将10gNaOH溶解在少量水中,再加蒸馏水直到溶液体积为250mL19.相同条件下:2A-+B2=2B-+A2;2C-+A2=2A-+C2;2B-+D2=2D-+B2可以判断正确的是()A.氧化性:A2>B2>C2>D2B.还原性:A->B->C->D-C.2A-+D2=2D-+A2反应可以进行D.2C-+B2=2B-+C2反应不能进行20. 两个体积相同的密闭容器一个盛有HCl气体,另一个盛有H2和Cl2的混合气体,在同温同压下,两个容器内的气体一定具有相同的()①质量②密度③分子总数④原子总数⑤质子总数A. ③④B. ①②③C. ①②③④⑤D. ①④⑤第Ⅱ卷非选择题(3小题,共40分)二、非选择题(本大题共3小题)21. (共16分,各2分)(1)①Cu ②CO2③H2SO3④H2O⑤液态HCl ⑥H2SO4⑦Ba(OH)2⑧NaCl ⑨蔗糖⑩NaOH溶液上述物质中属于电解质的是,属于非电解质的是,能导电的是 。

沈阳数学高一上期中经典题(含答案解析)

沈阳数学高一上期中经典题(含答案解析)

一、选择题1.(0分)[ID :11816]f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .22.(0分)[ID :11778]对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( )A .315,22⎛⎫⎪⎝⎭B .[]28,C .[)2,8D .[]2,73.(0分)[ID :11749]设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z4.(0分)[ID :11789]设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( )A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =5.(0分)[ID :11787]已知函数21(1)()2(1)ax x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-6.(0分)[ID :11786]若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( )A .1log log b ab aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 7.(0分)[ID :11767]若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<8.(0分)[ID :11766]函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)9.(0分)[ID :11763]定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3x f x =,则()3log 54f =( )A .32B .23-C .23D .32-10.(0分)[ID :11748]已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),af 2b(log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<11.(0分)[ID :11747]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,312.(0分)[ID :11746]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b13.(0分)[ID :11736]函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( )A .[)2,+∞B .[]2,4C .[]0,4D .(]2,414.(0分)[ID :11823]已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B中元素的个数为( ) A .3B .2C .1D .015.(0分)[ID :11783]函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( )A .52B.52 C .32D .2二、填空题16.(0分)[ID :11907]已知函数()()22log f x x a =+,若()31f =,则a =________.17.(0分)[ID :11903]若函数()y f x =的定义域是[0,2],则函数()g x =的定义域是__________.18.(0分)[ID :11886]已知函数()xxf x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x 的取值范围为______.19.(0分)[ID :11884]已知函数2,()24,x x mf x x mx m x m ⎧≤=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 20.(0分)[ID :11880]已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x-1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.21.(0分)[ID :11870]设()f x 是定义在R 上的奇函数,且()y f x =的图像关于直线12x =对称,则(1)(2)(3)(4)(5)f f f f f ++++= . 22.(0分)[ID :11862]若幂函数()a f x x 的图象经过点1(3)9,,则2a -=__________.23.(0分)[ID :11840]函数()221,ln 2,0x x f x x x x x ⎧+-≤=⎨-+>⎩的零点的个数是______.24.(0分)[ID :11831]已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的 零点的集合为 .25.(0分)[ID :11863]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :12026]某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?27.(0分)[ID :12007]如图所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中30AE =米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过2.5米,其中该太阳光线与水平线的夹角θ满足3tan 4θ=.(1)若设计18AB =米,6AD =米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)28.(0分)[ID :11978]一种放射性元素,最初的质量为500g ,按每年10﹪衰减. (Ⅰ)求t 年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)29.(0分)[ID :11946]已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=. (1)求,a b 的值; (2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.30.(0分)[ID :12014]已知()221g x x ax =-+在区间[]13, 上的值域为[]0,4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

......
抚顺十中2016-2017学年度高一上学期期中考试
数学试卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 集合A={x|﹣1≤x≤2},B={x|x<1},则A∩(C R B)=()
A. {x|x>1}
B. {x|x≥1}
C. {x|1<x≤2}
D. {x|1≤x≤2}
2. 下列函数中与函数相等的函数是()
A. B. C. D.
3. 函数f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函数,则a的范围是()
A. a≥5
B. a≥3
C. a≤3
D. a≤-5
4. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )
A. y=x3
B. y=|x|+1
C. y=-x2+1
D. y=2-|x|
5. 设函数若,则实数( )
A. 4
B. -2
C. 4或
D. 4或-2
6. 函数的零点所在的一个区间是( )
A. (-2,-1)
B. (-1,0)
C. (0,1)
D. (1,2)
7. 设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则( )
A. f(x1)+f(x2)+f(x3)<0
B. f(x1)+f(x2)+f(x3)>0
C. f(x1)+f(x2)+f(x3)=0
D. f(x1)+f(x2)>f(x3)
8. 已知,,则()
A. B. C. D.
9. 已知是(-∞,+∞)上的增函数,那么a的取值范围是( )
A. (1,+∞)
B. (-∞,3)
C.
D. (1,3)
10. 若函数y=x2﹣6x+8的定义域为x∈[1,a],值域为[﹣1,3],则a的取值范围是()
A. (1,3)
B. (1,5)
C. (3,5)
D. [3,5]
11. 已知,若,则y=,y=在同一坐标系内的大致图象是 ( )
A. B. C. D.
12. 已知函数的定义域是,且满足,如果对于,都有
,不等式的解集为()
A. B. C. D.
二、填空题:(每小题5分,共20分)
13. 已知集合,集合,若,则实数=______
14. 若幂函数y=(m2-3m+3)x m2-m-2的图象不过原点,则m是__________.
15. 定义在R上的奇函数,当x<0时,,则_______
16. 已知函数,给出下列结论:
(1)若对任意,且,都有,则为R上的减函数;
(2)若为R上的偶函数,且在内是减函数,(-2)=0,则>0解集为(-2,2);
(3)若为R上的奇函数,则也是R上的奇函数;
(4)t为常数,若对任意的,都有则关于对称。

其中所有正确的结论序号为_________
三.解答题(共70分)
17. 计算:(1)
(2)
18. 函数的定义域为集合A,函数的值域为集合B.
(1)求;
(2)若,且,求实数的取值范围。

19. 已知函数的定义域为,函数
(1)求函数的定义域;
(2)若是奇函数,且在定义域内单调递减,求不等式的解集
20. 已知函数
(1) 若,求函数最大值和最小值;
(2) 若方程有两根,试求的值.
21. 已知函数()在区间上有最大值和最小值,设.(1)求、的值;
(2)若不等式在上恒成立,求实数的取值范围;
22. 定义在上的函数满足:对任意、恒成立,当时,
(1)求证在上是单调递增函数;
(2)已知,解关于的不等式;
(3)若,且不等式对任意恒成立.求实数的取值范围.。

相关文档
最新文档