复变函数论第三版钟玉泉PPT第4章

合集下载

复变函数第4讲PPT课件

复变函数第4讲PPT课件
§2.1 解析函数的概念
1.复变函数的导数
1)导数概念:
设函数f (z)在点z0及其邻域内有定义,如果极限
lim f (z0 z) f (z0 )
z 0
z
存在, 那么就说f (z)在点z0可导. 这个极限值称
为f (z)在点z0的导数.
记作
f
'(z0 )
dw dz
z z0
lim
z 0
f
( z0
u e x cos y, x v e x si n y, x
u e x si ny u v
y v
e x cos y
x y v u
y
x y
故 f (z) e x (cos y i siny)在 全 平 面 可 导 , 解 析 。
f '(z) u i v e x cos y ie x si ny f (z). x x
条件是 u(x, y) 和 v(x, y)在D内可微,且
满足Cauchy-Rieman方程
u v ,
v
u .
x y x y
并且在解析的条件下
f (z) ux ivx vy iuy
第18页/共26页
例1 判定下列函数在何处可导,在何处解析:
(1) f (z) ex (cosy i siny); 解:(1) u e x cos y, v e x siny,
第7页/共26页
例如
f
(z)
1 z2
z
,则当z
0,
1时 ,f
'(z)
2z 1 (z2 z)2
.
思考题
实 函 数 中, f ( x) x 2 在( , )内 可 导;

复变函数钟玉泉讲义大学复变函数课件

复变函数钟玉泉讲义大学复变函数课件

复变函数钟玉泉讲义大学复变函数课件复变函数第一节解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设是在区域内确定的单值函数,并且。

如果极限存在,为复数,则称在处可导或可微,极限称为在处的导数,记作,或。

定义2.2:如果在及的某个邻域内处处可导,则称在处解析;如果在区域内处处解析,则我们称在内解析,也称是的解析函数。

解析函数的导(函)数一般记为或。

注解1、语言,如果任给,可以找到一个与有关的正数,使得当,并且时,,则称在处可导。

注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。

解析函数的四则运算:和在区域内解析,那么,,(分母不为零)也在区域内解析,并且有下面的导数的四则运算法则:。

复合求导法则:设在平面上的区域内解析,在平面上的区域内解析,而且当时,,那么复合函数在内解析,并且有求导的例子:(1)、如果(常数),那么;(2)、,;(3)、的任何多项式在整个复平面解析,并且有(4)、在复平面上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与是实变量时相同。

2、柯西-黎曼条件可微复变函数的实部与虚部满足下面的定理:定理2.1 设函数在区域内确定,那么在点可微的充要条件是:1、实部和虚部在处可微;2、和满足柯西-黎曼条件(简称方程)证明:(必要性)设在有导数,根据导数的定义,当时其中,。

比较上式的实部与虚部,得因此,由实变二元函数的可微性定义知,,在点可微,并且有因此,柯西-黎曼方程成立。

(充分性)设,在点可微,并且有柯西-黎曼方程成立:设则由可微性的定义,有:令,当()时,有令,则有所以,在点可微的。

定理2.2 设函数在区域内确定,那么在区域内解析的充要条件是:1、实部和虚部在内可微;2、)和在内满足柯西-黎曼条件(简称方程)关于柯西-黎曼条件,有下面的注解:注解1、解析函数的实部与虚部不是完全独立的,它们是方程的一组解,它们是在研究流体力学时得到的;注解2、解析函数的导数形式更简洁:公式可避免利用定义计算带来的困难。

复变函数论_钟玉泉_第三版_高教_答案_清晰版

复变函数论_钟玉泉_第三版_高教_答案_清晰版

n 1
z z 0 nM n1 , 故对 0 ,
n
只需取

nM
n 1
,于是当 z z 0 时,就有 z n z 0 .
(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此 f ( z ) 在
z 平面上除使分母为零点外都连续.
arg z, z 0 13.证明:令 f ( z ) arg z 0, z 0
2
2
z 3 z1 为实数. z 2 z1
10.解:(1)令 z x yi t (1 i) ,得 x y ,即曲线为一,三象限的角平分线. (2)令 z x yi a cos t ib sin t , 得 x a cos t , y b sin t ,则有


2
.
因而对任何自然数 p ,也有 z n p z 0

2
.
利用三角不等式及上面两不等式, 当 n N 时,有
z n p z n z n p z 0 z n z 0
充分性 :设对 0, N ( ) 0 ,当 n, n p N 时,有 z n p z 0 ,由定义 得
12.证明:(1)首先考虑函数 f ( z ) z n 在 z 平面上的连续性. 对复平面上任意一点 z 0 ,来证明 lim z n z 0
z z0 n
不妨在圆 z M z 0 1 内考虑. 因为 z n z 0 z z 0 ( z
n n 1
z
n2
z0 z0

3
2k
(k 0,1,2,)
1 i 2

复变函数论第三版PPT课件

复变函数论第三版PPT课件
导数的性质
导数具有线性、可加性、可乘性和链式法则等性质。这些性质在计算复杂函数 的导数时非常有用。
导数的计算方法
基本初等函数的导数
隐函数的导数
对于常数、幂函数、指数函数、三角 函数等基本初等函数,其导数都有固 定的公式可以查询和使用。
如果一个函数$F(x, y) = 0$,我们可 以通过对$F$求关于$x$或$y$的偏导 数来找到隐函数的导数。
傅里叶级数与傅里叶变换
傅里叶级数
将周期函数表示为无穷级数,通过正 弦和余弦函数的线性组合来逼近原函 数。
傅里叶变换
将函数从时间域转换到频率域,通过 积分形式实现。
傅里叶变换的性质与应用
线性性质
若 $f(t)$ 和 $g(t)$ 是 可傅里叶变换的,$a, b$ 是常数,则 $af(t) + bg(t)$ 也可进行傅里叶 变换。
复数的几何意义
复数可以用平面上的点来 表示,实部为横坐标,虚 部为纵坐标。
复数的运算
复数可以进行加法、减法、 乘法和除法等运算,满足 交换律、结合律和分配律。
02 复数与复变函数
复数及其运算
复数
由实部和虚部构成的数, 表示为 a + bi,其中 a 和 b 是实数,i 是虚数单位。
复数的运算
加法、减法、乘法和除法 等。
共轭复数
如果一个复数的虚部变号, 则得到该复数的共轭复数。
复变函数及其定义域
复变函数
从复平面到复平面的映射。
定义域
复变函数的输入值的集合。
单值函数和多值函数
根据定义域和值域的关系进行分类。
复变函数的极限与连续性
极限
描述函数值随自变量变化的行为。
连续性
函数在某一点处的极限值等于该 点的函数值。

复变函数ppt课件

复变函数ppt课件
(iii) f (z) cn (z z0 )n n
有无穷多个负幂次项,称z=z0为~~本~~性~~奇~~点。
3. 性质
若z0为f (z)的可去奇点
f (z) cn(z z0 )n
n0
lim z z0
f (z) c0
补充定义:f (z0 ) c0 f (z)在z0解析.
若z0为f (z)的m (m 1) 级极点
----z=1为孤立奇点
f
(z)
1 sin
1
z
----z=0及z=1/n (n = 1 , 2 ,…)都是它的奇点
但 lim 1 0, 在z 0不论多么小的去心
n n
y
邻域内,总有f (z)的奇点存在,
故z
0不

1 sin
1
z
的孤立奇点。
这说明奇点未
o
x
必是孤立的。
2. 分类
以下将f (z)在孤立奇点的邻域内展成洛朗级数,根 据展开式的不同情况,将孤立点进行分类。考察:
(1 ez )'
ez
z i ( 2k 1)
z i ( 2k 1)
[cos (2k 1) i sin (2k 1)] 0
zk i(2k 1) (k 0,1,2,)是1 ez的一级零点
综合 z i为f (z)的二级极点; zk i(2k 1) (k 1,2,)为f (z)的 一 级 极 点.

f (m)(z0 ) m!
c0
0
必要性得证!
充分性略!
例如 z 0与z 1均为f (z) z(z 1)3的零点。 又f '(z) (z 1)3 3z(z 1)2
f "(z) 6(z 1)2 6z(z 1)

课程简介:《复变函数》课程是高等师范院校和综合性大学数学类专业本.doc

课程简介:《复变函数》课程是高等师范院校和综合性大学数学类专业本.doc

课程编码()课程总学时:54学分:3数学与应用数学专业《复变函数》教学大纲一、课程说明1.课程性质《复变函数》是数学与应用数学专业的一门专业主干课程,是数学分析的后续课程。

本课程的主要内容是讨论单复变量的复值可微函数的性质,其主要研究对象是全纯函数,即复解析函数。

复变函数论又称复分析,是数学分析的推广和发展。

因此它不仅在内容上与数学分析有许多类似Z 处,而只在逻辑结构方面也非常类似。

复变函数论是一门古老而富有生命力的学科。

早在19世纪,Cauchy> Weierstrass及Riem ann等数学巨匠就已经给这门学科奠定了坚实的基础。

复变函数论作为一种强有力的工具,已经被广泛应用于自然科学的众多领域,如理论物理、空气动力学、流体力学、弹性力学以及口动控制学等,冃前也被广泛应用于信号处理、电子工程等领域。

复变函数论作为一门学科,冇其自身的特点,有其特冇的研究方法。

在学习过程中,应注意将所学的知识融汇贯通,并通过与微积分理论的比较加深理解,掌握它H身所固有的理论和方法。

2.课程教学目标与要求(1)通过本课程的教学,使学生学握复变函数论的基本理论和方法,获得独立地分析和解决某些相关理论和实际问题的能力。

为进一步学习其他课程,并为将來从事教学,科研及其他实际工作打好基础。

(2)通过基本概念的止确讲解,基本理论的系统阐述,基本运算能力的严格训练,逐步提髙学生的数学修养。

同时注意扩展学牛的学习思路,使他们了解更多的和现代牛活息息相关的数学应用知识。

(3)作为师范专业,在冇关内容方面注重高等数学对初等数学的提高和指导意义,使学生在今后的工作中有较高的起点。

3.选用教材与参考书目选用教材:《复变函数论》(第三版),钟玉泉,高等教育出版社,2003年。

参考书目:《复变函数》(第二版),余家荣,高等教育出版社,1992年。

《多复变函数》[美]那托西姆汉著,科学出版社。

《解析函数边值问题》路见可著,上海科技出版社。

《复变函数》教学大纲

《复变函数》教学大纲

《复变函数》课程教学大纲一教学大纲说明(一)课程的性质、地位、作用和任务《复变函数》是数学与应用数学(教师教育)专业的一门重要的专业限选课程,它是重要的基础课程。

本课程的任务是使学生掌握复分析的基本思想,加深对数学分析、解析几何以及高等代数相关知识的理解,培养学生的数学素质,为进一步学习近代数学理论打下良好的基础。

(二)课程教学的目的和要求在学习本课程之前,学生已经学过数学分析。

本课程本质上是复分析的基本内容。

通过本课程的学习,使学生掌握复分析的基本思想,加深对数学分析、解析几何以及高等代数的理解,培养学生的数学素质,为进一步学习近代数学理论打下良好的基础。

掌握:解析函数概念及几个与解析函数相关的等价命题、残数理论及其应用、最大模原理及其应用。

理解:复积分、复级数理论。

了解:复几何的基本思想。

(三)课程教学方法与手段本课程的教学以课堂教学为主,辅以习题练习与自学相结合的方法进行。

基本知识与重要内容如基本定理与重要定理从叙述到详细证明,应用等由教师讲授,其它由学生自学。

为了贯彻少而精的原则,本大纲在内容选取上注意突出基本理论与基本方法。

对与数学分析中平行的概念和结果,既指出其相似之处,更强调其不同之点。

对本课程所具有的新内容,包括其证明方法,在课程教学中教师都将给予较详尽的讲解。

有*号的内容,可视教学情况而取舍。

(四)课程与其它课程的联系本课程的先行课程是数学分析,而本课程所讨论的内容和研究方法是其它许多数学理论的基础。

例如在微分几何、偏微分方程、动力系统、计算数学、近代物理、工程技术等理论中都有广泛的应用。

(五)教材与教学参考书教材:钟玉泉编,《复变函数论》,高等教育出版社,2004年第三版教学参考书:余家荣编,《复变函数》,高等教育出版社,1988年第二版二课程的教学内容、重点和难点第一章复数与复变函数教学内容:复数及其表示、几何上的应用,复平面点集,复变函数,复球面与无穷远点重点:复平面点集,复变函数难点:复球面与无穷远点第二章解析函数教学内容:解析函数的概念与柯西-黎曼条件、初等解析函数、初等多值函数重点:解析函数的概念与柯西-黎曼条件难点:支点的概念与初等多值函数第三章复变函数的积分教学内容:复积分的概念及其简单性质、柯西积分定理、柯西积分公式及其推论、解析函数与调和函数的关系、*平面向量场——解析函数的应用(一)重点:柯西积分定理、柯西积分公式及其推论难点:柯西积分公式及其推论第四章解析函数的幂级数表示法教学内容:复级数的基本性质、幂级数、解析函数的泰勒展式、解析函数零点的孤立性及唯一性定理重点:解析函数零点的孤立性及唯一性定理难点:解析函数的泰勒展式与唯一性定理第五章解析函数的罗朗展式与孤立奇点教学内容:解析函数的罗朗展式、解析函数的孤立奇点、解析函数在无穷远点的性质、*平面向量场——解析函数的应用(二)重点:解析函数的罗朗展式难点:解析函数的孤立奇点,解析函数在无穷远点的性质第六章残数理论及其应用教学内容:残数、用残数定理计算定积分、辐角原理及其应用重点:用残数定理计算定积分难点:辐角原理及其应用*第七章保形变换教学内容:解析变换的特性、线性变换、某些初等函数所构成的保形变换重点:线性变换难点:某些初等函数所构成的保形变换三建议学时分配。

复变函数论钟玉泉第三版高教答案清晰版

复变函数论钟玉泉第三版高教答案清晰版

第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有0)()(lim )(0101001=--='→t t t z t z t z n n t t n此与假设矛盾.01001),(t t t t t >⇒+∈δ因为 [])()(a r g)()(a r g 010101t z t z t t t z t z -=-- 所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-= ()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微.(2)在C 上处处不满足C R -条件. (3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-= 且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Q x ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+=()s i n s i n c o s x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有x c h yv x s h y v x s h y u x c h y u y x y x c o s ,s i n ,s i n ,c o s =-=== 故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x c o s s i n c o s )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有x c h y v x s h y v x s h y u x c h y u y x y x s i n ,c o s ,c o s ,s i n -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x s i n c o s s i n )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1c o s s i n s i n c o s r i u i ur θθθθθ=--+ ()()c o s s i n s i n c o s r r i u ivθθθθ=-++ ()()c o s s i n r r i u iv θθ=-+()()1c o s s i n r r r r ru i v u i v i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例 当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e ei ---+-=()112i i i e e-+++=c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim 00==-=→z zz z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)c o s ()c o s (c o s nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ibbn i ia ib b n i ia e e e e e e 111121)1()1( =)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=--(4) z z iz i iz cos )cos()cos()cosh(=-=⋅= (5) z i zzi iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121s h z s h z c h z c h z += 18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshy i xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( s h z e e e e c h z zz z z =-='+='--2)2()(20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z += (4)z z sin cos -=,即1tan -=z ,所以 ππk i i i z +-=+-=411ln 21(5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255izi e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦ 21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i ei w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i i eeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此1)()(4+-=-=R z f z f AB.26.证明:()f z =0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()a r g f z π=得()()a r g c i f zi f i e e π∆=()2a r g 1a rg 3c c i z z e ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i e π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z zf z zz f z z z z+-+⋅==---()4242121Re m z I z i z z -+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z +-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim 0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i y v x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂ 所以x v y u y v x u ∂∂-=∂∂∂∂=∂∂,,得 0=∂∂zf5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y s h y Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+=即 c h R t ≤s i n又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有(1) 10182)(,8)(arg ie c e i f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆ 2]0[21ππ-=-= 故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f e π-==,i f 162)1(-=-''.第三章复变函数的积分(一)1.解:)10(≤≤=x x y 为从点0到1+i 的直线方程,于是∫∫+++−=+−iC yi x d ix y x dz ix y x 1022)()()(∫∫+=++−=102102)1()()(dx x i i ix x d ix x x 31013)1(3i x i −−=⋅−=2.解:(1)11,:≤≤−=x x z C ,因此111==∫∫−C dx x dz z (2)θi e z C =:,θ从π变到0,因此200===∫∫∫πθπθθd e i de dz z i C i (3)下半圆周方程为πθπθ2,≤≤=i e z ,则202===∫∫∫πθππθθd ie i de dz z i C i 3.证明:(1)11,0:≤≤−=y x C 因为1)(222≤=+=iy i y x z f ,而积分路径长为2)(=−−i i 故2)()(2222≤+=+∫∫−i i C dz iy x dz iy x .(2)0,1:22≥=+x y x C 而1)(4422≤+=+=y x iy x z f ,右半圆周长为π,所以π≤+∫−ii dz iy x )(22.4.解:(1)因为距离原点最近的奇点2π±=z ,在单位圆1≤z 的外部,所以zcos 1在1≤z 上处处解析,由柯西积分定理得0cos =∫C zdz .(2)1)1(122122++=++z z z ,因奇点i z +−=1在单位圆1≤z 的外部,所以2212++z z 在1≤z 上处处解析,由柯西积分定理得0222=++∫C z z dz .(3))3)(2(652++=++z z e z z e zz ,因奇点3,2−−=z 在单位圆1≤z 的外部,所以652++z z e z 在1≤z 上处处解析,由柯西积分定理得0652=++∫C z z z dz e .(4)因为2cos z z 在1≤z 上处处解析,由柯西积分定理得0cos 2=∫C dz z z .5.解:(1)因2)2()(+=z z f 在z 平面上解析,且3)2(3+z 为其一原函数,所以3223)2()2(3222i i z dz z i −=−+−+=+∫+−−(2)设t i z )2(+=π,可得dt e e e e i dt i t i dz z t i t t i t i)(22)2)(22cos(2cos 1010220∫∫∫−−+++=++=ππππππ1−+=e e 6.解:220(281)az z dz π++∫=2320243|a z z z π⎡⎤++⎢⎥⎣⎦=3322281623a a a πππ++7.证明:由于)(),(z g z f 在单连通区域D 内解析,所以])()([),()(′z g z f z g z f 在D 内解析,且)()()()(])()([z g z f z g z f z g z f ′+′=′仍解析,所以)()(z g z f 是)()()()(z g z f z g z f ′+′的一个原函数.从而∫=′+′βααβ)]()([)]()()()([z g z f dz z g z f z g z f 因此得∫∫′−=′βαβααβdz z g z f z g z f dz z g z f )()()]()([)()(.8.证明:||1||1,02z dz z z ==∴=+∫Q 设,i i z e dz ie d θθθ==⇒222200(cos sin )[(cos 2)sin ]0(cos 2)sin 2i i i d i i d e e θππθθθθθθθθθ−+−==+++∫∫=202sin (12cos )54cos i d πθθθθ−+++∫于是2012cos 0,54cos d πθθθ+=+∫故012cos 054cos d πθθθ+=+∫.9.解:(1)因为12)(2+−=z z z f 在2≤z 上是解析的,且21≤∈=z z ,根据柯西公式得iz z i dz z z z z z ππ4)12(21121222=+−=−+−=≤∫(2)可令12)(2+−=z z z f ,则由导数的积分表达式得i z f i dz z z z z z ππ6)(2)1(121222=′=−+−==∫10.解:(1)若C 不含±z=1,则201zdz z π=−∫c sin4(2)若C 含z=1但不含有z=-1,则22212zdz i i z ππ=⋅=−∫c sin4(3)若C 含有z=-1,但不含z=1,则:221zdz i zπ=−∫c sin4(4)若C 含有1z =±,则2111sin (12411c zdz z dz z z z ππ=−−−+∫∫c sin42(222i iπ==11.证明:θθθθθπθθπθθ∫∫∫−=++=+20sin cos 20sin cos )()sin (cos sin cos id e e i d i e dz ze i i C z ∫⋅+−=πθθθθθ20cos cos )cos(sin )sin(sin d ie e 再利用柯西积分公式i d e dz z e C C z πξξξ20=−=∫∫则∫=πθπθθ20cos 2)cos(sin d e ,由于)cos(sin cos θθe 关于πθ=对称,因此∫=πθπθθ0cos )cos(sin d e 12.解:令173)(2++=ξξξϕ,则)173(2)(2)()(2++⋅==−=∫z z i z i d zz f C πϕπξξξϕ则)76(2)(+=′z i z f π因此)166(2)766(2)1(i i i i f +−=++=+′ππ13.证明:利用结论:)(z f 在D 内单叶解析,则有0)(≠′z f 由题知,))((:b t a t z z C ≤≤=为D 内光滑曲线,由光滑曲线的定义有1)C 为若尔当曲线,即21t t ≠时,)()(21t z t z ≠;2)0)(≠′t z ,且连续于[a,b]要证Γ为光滑曲线,只须验证以上两条即可.而在)(z f w =的变换下,C 的象曲线下的参数方程为))](([)(:b t a t z f t w w ≤≤==Γ1)因21t t ≠时,)()(21t z t z ≠,又因)(z f 在D 内单叶解析,所以当21t t ≠时,)()(21z f z f ≠.因此当21t t ≠时,有)()(21t w t w ≠.2)因为0)(≠′t z 且连续于[a,b],又因0)(≠′z f ,则由解析函数的无穷可微性知)(z f ′′在D 内也存在,所以)(z f ′在D 内也连续,则由复合函数求导法则0)()()(≠′′=′t z z f t w ,且连续于[a,b].14.证明:由上题知C 和Γ均为光滑曲线,因)(w Φ沿Γ连续以及)(),(z f z f ′′在包含C 的区域D 内解析,因此)()]([z f z f ′Φ也连续,故公式中的两端积分存在.则dtt z t z f t z f dz z f z f C b a)())(())](([)()]([′′Φ=′Φ∫∫∫∫ΓΦ=′Φ=b adw w dt t w t w )()()]([15.证明:应用刘维尔定理,因)(z f 恒大于一正的常数,则)(1z f 必恒小于一正的常数,则)(1z f 为常数,故)(z f 为常数.16.解:(1)因为22u x xy y =+−,所以有22x y u x y v x y=+⇒=+22()2y v xy c x ⇒=++2()2x y v y c x u y x′⇒=+=−=−2()()2x x x c x D ′⇒=−⇒=−+c 2222()()(2)22y x f z x xy y xy D i ⇒=+−++−+由已知12Di D ⇒+⇒=i f(i)=-1+i -1+i=-1+222221()()(2)222y x f z x xy y i xy ⇒=+−++−+(2)由C R −条件,coy e y y y x e u v x x x y +−==)sin cos (,则∫+−=dycoy e y y e y xe v x x x )sin cos (∫−+=ydyy e y e y xe x x x sin sin sin )(cos sin x y y e y xe x x ϕ++=又因x y v u −=,故))(cos sin sin (cos sin sin x y e y xe y e y y e y e y e x x x x x x Φ′+++−=−−−即C x x =Φ=Φ′)(,0)(,故)cos sin ()sin cos ()(C y y e y xe i y y y x e z f x x x +++−=又因,0)0(=f 故00)0(=⇒==C iC f ,所以)cos sin ()sin cos ()(y y e y xe i y y y x e z f x x x ++−=(3)由C R −条件,222)(2y x xy v u x y +=−=,所以∫++−=+=)()(222222x y x x dy y x xy u ϕ又因x y u v =,故y x y x y x y x x )()()(2222′+=′+′+−ϕ,即0)(=′x ϕ.所以C x =)(ϕ,故2222)(y x y i C y x x z f ++++−=又因为0)2(=f ,所以21=C ,故222221)(y x y i y x x z f ++++−=17.证明:设222()4()4()x y f z u iv f z u v ′=+⇒=+2()f z =22u v +,2()22y x f z uu vv x ∂=+∂2222222()2222x x x x f z u uu v vv x∂=+++∂同理可得:2222222()2222y y y y f z u uu v vv y∂=+++∂于是结合C R −条件及,u v 为调和函数可得:22222222222()()4()2()2()x x x y x y f z u v u u u v v v x y∂∂+=+++++∂∂=4(22x x u v +)=42()f z ′18.证明:)(z f 在D 内解析,则)(z f ′在D 内也解析.已知0)(≠′z f ,则)(ln z f ′在D 内解析,于是其实部)(ln z f ′为D 内的调和函数.19.解:∫−==z z i z k dz z v z f 022)()(势函数和流函数分别为kxy y x =),(ϕ)(2),(22y x k y x −−=ϕ故势线和流线为双曲线.20.解:根据流量和环量的定义来计算i y x y x xy y x y x y x z z f 22222222222224)1(24)1(111)(+−−−+−−−−=−=环量04)1(24)1(111222222222222=+−−−+−−−−=Γ∫dy y x y x xy dx y x y x y x C C 流量为04)1(24)1(11222222222222=+−−++−−−−∫dx y x y x xy dy y x y x y x C 同理,在32,C C 处也为0.(二)1.答:)(z f 不必需要在0=z 解析,如zz f 1)(=在0=z 处不解析.2.解:若沿负实轴]0,(−∞隔开z 平面,z 就能分成两个单值解析分支,即)1,0,arg ()(22arg =<<−=+k z e z z k z i k πππ(1)在πθθ≤≤=0,:1i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=k θ,则2θi e z =,故i zdz C 221+−=∫.(2)在πθθ≤≤=−0,:2i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=−k θ,则i zdz C 222−−=∫.3.证明:利用积分估值定理及三角不等式212112111≤−+≤−+=−+z z z z 且由积分估值定理有π811≤−+∫C dz z z 4.证明:因为sz e z f =)(在单连通区域z 平面上解析,则ττ∫=−ba s as bs d se e e 由积分估值定理有ab M d se ba s −≤∫ττ其中M 可由ττστσττ⋅+⋅≤⋅⋅=⋅=⋅=),max()(b a it t it s s e s e e s e s e s se 得出.5.解:设i z e α=,1c 为0到1的直线段,2c 为1到z 的圆弧,则由柯西积分定理12222111C dz dz dz c c z z z =++++∫∫∫=1220011i i dx ie d x e θαθθ+++∫∫=214C dz RE z π=+∫6.解:z e z f z sin )(=在圆周a z =内解析,故其积分值与路径无关,只与起点终点有关,而积分路径为封闭的圆周,故∫=Cz zdz e 0sin 因此,原式=∫∫∫==−C C Cz a adz zdz e dz z 22sin π7.证明:因为()f z 在||1z ≤上连续,所以()f z 在||1z ≤一致连续,因此0ε∀>,0δ∃>,使当11r δ−<<时均有|()()|,2i i f e f re θθεπ−<(02)θπ<<于是:||1||1||1|()||()()|z z z rf z dz f z dz f z dz r ====−∫∫22001|()()|i i i i f e ie d f re rie d r ππθθθθθθ=−∫∫20|()()|i i f e f re d πθθθε≤−<∫所以||1()0z f z dz ==∫.8.证明:首先由题设积分∫r K dz z f )(存在,应用积分估值定理.rr M dz z f r K π2)()(⋅≤∫而由题设(3)0)(lim =⋅+∞→r r M r ,故得证.9.证明:(1)参见教材(3.16)式的证明.因为)(z f 在点0=z 的邻域内连续,则对0ε∀>,0δ∃>,0=∈∀z z 的邻域,有ε<−)0()(f z f 所以∫∫−=−πθπθθθπθ2020))0()(()0(2)(d f d re f f d re f i i∫∫=<−≤ππθπεθεθθ20202)0()(d d f d re f i 故)0(2)(lim 0f d re f i r πθθ=→(2)取(1)中的0=a ,再利用圆周的参数方程化简(1)中等式左端即证.10.证明:||111[2()]()2z dz z f z i z zπ=±+∫=2||112()()()]2z f z f z f z dz i z zπ=±±∫=2(0)(0)2(0)f f f ′′±=±11.证明:由题设,)(z f ′在D 内含C 之单连通区域内解析,∫∫′≤′=−ba ba dz z f dz z f a fb f )()()()(考虑到)(z f ′在有界闭集C 上的连续性,必存在点C ∈ξ,使得)(ξf ′是)(z f ′在C 上的最大值.∫∫−′≤′b a b a a b f dz z f )()(ξ由上得ab f a f b f −′≤−)()()(ξ如果C ∈∀η,都有0)(=′ηf ,则沿C ,0)(≡′z f ,于是沿C ,)(z f 为常数,故)()(a f b f =,题中等式成立.如果存在C ∈ξ使0)(≠′ξf ,且是)(z f ′在C 上的最大值,则可令))(()()(a b f a f b f −′−=ξλ,则题中等式成立.12.证明:取圆周1<=ρz 由于)(z f 在1<z 内解析,故知)(z f 在ρ≤z 上解析,且有ρ−=−≤1111)(z z f 由柯西不等式,知)1(!)(!)0()(ρρρρ−=≤n n n n M n f 对于ρ在(0,1)上,当1+=n n ρ时,)1(ρρ−n 取最大值)11()1(n n n n n +−+于是得)1(!ρρ−n n 的最小值为n n n n )1()!1(++,当∞→n 时e n n n 1)1(→+所以有)0()(n f 的估值为e n f n )!1()0()(+≤.13.证明:由柯西不等式nn R R M n a f )(!)()(≤,其中L ,2,1,)(max )(===−n z f R M R a z 可知∫∫==⋅≤=′1212)(21)(21)0(z z dzz z f dz z z f i f ππ1112112=≤∫=z dz π14.证明:应用反证法假设满足R z >且M z f >)(的z 不存在,则必存在某正数M R ,,使得对于任意的z ,R z >时,M z f ≤)(,又由)(z f 的连续性.则当R z ≤时,)(z f 必有最大值,设其为1M ,令{}10,max M M M =,则在∞<z 时有0)(M z f ≤,于是得到)(z f 在全平面上是有界的,则由刘维尔定理,)(z f 必为常数,与题矛盾,假设错误.15.解:由22()(4)2(),v x y x xy y x y µ+=−++−+得22(4)()(24)2x x v x xy y x y x y µ+=+++−+−=223362x y xy −+−两式相加并结合C R −条件得:22332x x y µ=−−从而323232,32x y x x v y x y y µ=−−=−+−故322332(32)f x y x x i x y y y =−−+−−16.解:在D 内,由条件(1),(2)已知满足柯西积分公式的条件,故得在D 内)()(21z f z f =在C 上,由条件(3)知)()(21z f z f =故综合得在C D D +=上有)()(21z f z f =.第四章 解析函数的幂级数表示法(一)1.解:(1)其部分和数列14151311()414121(4--++-++++-=n i n S n由交错级数收敛性判别及极限运算法则知n n S 4lim ∞→存在,设为l S n n =∞→4lim ,又有,0241,0142414→+-=→+=++n a n i a n n 由此得知l S n n =∞→lim ,因此级数收敛,但非绝对收敛.(2)∑∑∑∞=∞=∞=≤=+111!)34(!1!)53(n n n nn n n b n n i ,可知原级数绝对收敛. (3)由于1226251251lim lim >=+=+=∞→∞→i ia nnn nn n ,故原级数发散. 2.解:(1)11lim lim1=+==∞→+∞→n n c c R n n n n(2)212lim lim 1=+==∞→+∞→n nc c R n n n n(3)01limlim 1==∞→∞→n c R n n nn 3.证明:(1)如果∞≠=+∞→λn n n c c 1lim,则∞≠=+∞→λnn n c c1lim ,则级数的收敛半径为⎪⎩⎪⎨⎧∞+==+∞→n n n c c R 1lim 1λ 00=≠λλ(2)由(1)可证其收敛半径为R . (3)由(1)可证其收敛半径为R .4.证明:因为∑∑∞=∞==0n nn n nn R c z c 收敛,而当R z ≤时,∑∑∞=∞=≤0n n n n nnR c z c,因此级。

复变函数论三钟玉泉PPT课件

复变函数论三钟玉泉PPT课件

k 1
k 1
2022/4/24
5
第5页/共78页
26022/4/24
(5)取极限
记 m1kaxn{sk }, 当n 无限增加且 0 时,
这里 zk zk zk1 , sk zk1zk的长度,
如果不论对C 的分法及 k 的取法如何, Sn 有唯
一极限, 那么称这极限值为函数f (z) 沿曲线C 的积分, 记为
k 1
n
i [v(k ,k )xk u(k ,k )yk ]
k 1
C f (z)dz C udx vdy iC vdx udy
公式 f (z)dz udx vdy i vdx udy
C
C
C
在形式上可以看成是
f (z) u iv 与dz dx idy 相乘后求积分得到
2022/4/24
25

1 dz 25 .
5 3
ds 25
C
5
3
C z i
3
2022/4/24
17
第17页/共78页
计算积分CRe z dz ;
其中积分路径C为 (1)连接由点O到点1 i的直线段; (2)先沿着正实轴从O到1,再沿着平行于
虚轴的方向从1到1 i
1+i
2022/4/24
o
1
18
第18页/共78页
C
C1
C2
Cn
在今后讨论的积分中, 总假定被积函数是连续的, 曲线 C 是按段光滑的.
第12页/共78页
例1 计算 zdz, C : 从原点到点 3 4i 的直线段.

C
直线方程为 x 3t, y 4t,0 t 1,
在 C 上, z (3 4i)t,

复变函数论第三版钟玉泉ppt 3 shu

复变函数论第三版钟玉泉ppt 3 shu

2020/4定/4 理仍成立.
26
三、典型例题
例1 计算积分
1 dz.
z 1 2z 3

函数 1 在 z 1内解析, 2z 3
根据柯西积分定理, 有
1 dz 0.
z 1 2z 3
2020/4/4
27
例2 证明 (z )n dz 0(n 1), 其中C是任意闭曲线. c
证 (1)当 n 为正整数时, (z )n 在 z 平面上解析,
i {v[x(t), y(t)]x(t) u[x(t), y(t)]y(t)}dt
{u[
x(t ),
y(t )]
iv[
x(t
),
y(t
)]}{x(t
)
iy(t
)}dt
f [z(t)]z(t)dt.
2020/4/4

C
f (z)dz
f [z(t)]z(t)dt
12
(3)如果C 是由C1, C2 , , Cn 等光滑曲线依次 相互连接所组成的按段光滑曲线, 则
C
C1
C2
24
第二节 柯西积分定理
一、问题的提出 被积函数 f (z) z x iy,
由于不满足柯西-黎曼方程, 故而在复平面内
处处不解析. 此时积分值 c zdz 与路线有关.
被积函数 f (z) z 在复平面内处处解析,
此时积分与路线无关.
而被积函数
1, z z0
此时
c
1 dz 2i 0. z z0
(
z
1 z0
)n1
dz
2π 0
ire i r n1ei(n1)
d
i rn
2π ein d ,

复变函数课件1-1资料

复变函数课件1-1资料
他被一些数学史学者称为历史上最伟大的两位数 学家之一(另一位是卡尔·弗里德里克·高斯)。欧 拉是第一个使用“函数”一词来描述包含各种参 数的表达式的人,例如:y = F(x) (函数的定义由 莱布尼兹在1694年给出)。他是把微积分应用于 物理学的先驱者之一
10
法国著名的物理学家、数学家和 天文学家。1717 年11月 17 日生 于巴黎,1783年10月29日卒于同 地。他是圣让勒隆教堂附近的一 个弃婴 ,被一位玻璃匠收养,后
称为虚数单位. 对虚数单位的规定: (1) i2 1; (2) i 可以与实数在一起按同样的法则进行
四则运算.
16
虚数单位的特性:
i1 i;
i2 1;
i3 i i2 i;
i4 i 2 i 2 1;
i5 i4 i1 i;
i6 i4 i 2 1;
i7 i4 i3 i;
课程概况
课程名称 复变函数
教材 总学时
《复变函数论》 高教第三版(钟玉泉编)
76学时
1
第一章 复数与复变函数
8
第二章 解析函数
12
第三章 复变函数的积分
12
第四章 解析函数的幂级数表示法
10
第五章 解析函数罗朗展示与孤立奇点 12
第六章 留数理论及其应用
12
第七章 共形映射(选学)
10
2
课程简介
13
第一章 复数与复变函数
第一节 复数 第二节 复平面上的点集 第三节 复变函数 第四节 复球面与无穷远点
14
第一节 复数
•1 复数域 •2 复平面 •3 复数的模与辐角 •4 复数的乘幂与方根 •5 共轭复数 •6 复数在几何上的应用举例
15

第一章复数与复变函数

第一章复数与复变函数
后来为这门学科得发展作了大量奠基工作得 要算就是柯西、黎曼与德国数学家维尔斯特拉斯。 二十世纪初,复变函数论又有了很大得进展,维尔斯 特拉斯得学生,瑞典数学家列夫勒、法国数学家彭 加勒、阿达玛等都作了大量得研究工作,开拓了复 变函数论更广阔得研究领域,为这门学科得发变函数论在应用方面,涉及得面很广,有很多 复杂得计算都就是用它来解决得。比如物理学上 有很多不同得稳定平面场,所谓场就就是每点对应 有物理量得一个区域,对它们得计算就就是通过复 变函数来解决得。
大家学习辛苦了,还是要坚持
继续保持安静
• 总之,复变函数得主要研究对象就是解析函 数,包括单值函数、多值函数以及几何理论 三大部分。在悠久得历史进程中,经过许多 学者得努力,使得复变函数论获得了巨大发 展,并且形成了一些专门得研究领域。
• 从20世纪30年代开始,我国数学家在单复变 与多复变函数方面,做过许多重要工作:在四 五十年代,华罗庚教授在调与分析、复分析、 微分方程等研究中,有广泛深入得影响。在 70年代,杨乐、张广厚教授在单复变函数得 值得分布与渐进值理论中得到了首创性得 重要成果。从80年代起,我国数学工作者在 数学得各领域中开展了富有成果得研究工 作。这些都受到国际数学界得重视。建议 大家多读一些数学史资料。
解: (cos 3 i sin 3)=(cos i sin )3
cos3 3i cos2 sin 3cos sin2 i sin3
cos 3 cos3 3cos sin2 4 cos3 3cos
sin 3 3cos2 sin sin3 3sin 4sin3
1、 复平面点集得几个基本概
定义1、1 邻域:

平面上以 z0 为中心, (任意的正数 )为半径
的圆 : z z0 内部的点的集合称为 z0 的邻域.

复变函数论第三版钟玉泉PPT第四章

复变函数论第三版钟玉泉PPT第四章
n
定义2 对于序列(*),如果在点集E上有一个函数f(z), 使对任给的ε>0,存在正整数N=N(ε),当n>N时,对一切
的z∈E均有 |f(z)-fn(z)|<ε,则称序列(*)在E上一致收
敛于f(z),记作:
10
f n ( z ) f ( z )( n . )
E
复变函数
定义4.3
(4.2)在闭圆K:|z-a|≤ ρ上一致收敛.
14
复变函数
定理4.9 设 (1)fn(z) (n=1,2,…)在区域D内解析,级数
6. 解析函数项级数
n
f ( z) 或 { f n ( z)} 序列在区域D内内闭一致收敛于函数f(z),
则 (1) f(z)在区域D 内解析
或f
( p)
(2) f ( p ) ( z ) f n( p ) ( z )( z D, p 1, 2, ).
3、幂级数的和函数的解析性
4、例题 5、小结
17
复变函数
一、幂级数的敛散性
具有 1. 幂级数的定义: n 2 c ( z a ) c c ( z a ) c ( z a ) n 0 1 2
n 0
4.3
形式的复函数项级数称为幂级数,其中 c0,c1,c2 ,…,a 都是复常数 . 当a=0,则以上幂级数可以写成如下形式
定义4.4 对于级数(4.2),如果在点集E上有一个函数 f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
n 1

一切的z∈E均有 |f(z)-sn(z)|<ε,则称级数(4.2)在E上一
致收敛于f(z),记作:

【复变函数论】全套课件

【复变函数论】全套课件

1
znn|来自z |[cos(1Argz)
i sin( 1
Argz)]
n
n
n | z |[cos(1 arg z 2k ) i sin(1 arg z 2k )]
n
n
n
n
可以看到,k=0,1,2,…,n-1时,可得n个不同的
值,即z有n个n次方根,其模相同,辐角相差
一个常数,均匀分布于一个圆上。这样,复
z1 x1 iy1 x1 iy1 z1
三角表示的乘法:
利用复数的三角表示,我们可以更简单的表示 复数的乘法与除法 ,设
z1 | z1 | (cos Argz1 i sin Argz1)
z2 | z2 | (cos Argz2 isin Argz2)
则有 z1z2 | z1 || z2 | [cos( Argz1 Argz2 )
(a1 ib1)(a2 ib2 ) (a1a2 b1b2 ) i(a1b2 a2b1)
(a1 (a2
ib1) ib2 )
a1a2 a22
b1b2 b22
i
a2b1 a1b2 ) a22 b22
复数在四则运算这个代数结构下,构成一个
复数域(对加、减、乘、除运算封闭),记为 C,复数域可以看成实数域的扩张。
例2 则,z1z2 (x1iy1)(x2 iy2 )
(x1x2 y1y2 ) i(x1y2 y1x2 ) (x1x2 y1y2 ) i(x1y2 y1x2 ) [x1x2 ( y1)( y2 )] i[x1( y2 ) ( y1)x2 ] (x1 iy1)(x2 iy2 ) z1z2
| z1 / z2 || z1 | / | z2 |
Arg(z1 / z2 ) Argz1 Argz2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f n ( z ) f ( z )( n . )
2016/2/29
E
复变函数
定义4.3 设复变函数项级数
华中科技大学数学与统计学院
5. 一致收敛的复函数项级数
f1(z)+f2(z)+f3(z)+…+fn(z)+… (4.2)
的各项均在点集E上有定义,且在E上存在一个函数 f(z),对于E上的每一点z,级数(4.2)均收敛于f(z),则称

11
sn ( z ) k 1 f k ( z )
n

n 1

fn ( z ) (z) f,
z D

2016/2/29
复变函数
华中科技大学数学与统计学院
定理4.5 (柯西一致收敛准则) 级数(4.2)在点集E上 一致收敛于某函数的充要条件是: 任给的ε>0, 存在 正整数N=N(ε),使当n>N时,对于一切z∈E,均有 |fn+1(z)+…+fn+p(z)|<ε (p=1,2,…). Weierstrass优级数准则: 如果整数列Mn(n=1,2,…), 使对一切z∈E,有|fn(z)|≤Mn (n=1,2,…),而且正项 级数 M n收敛,则复函数项级数 f n ( z ) 在点集E上 n 1 n 1 绝对收敛且一致收敛: 这样的正项级数 M n称为函数项级数 f n ( z ) n 1 n 1 的优级数.

它收敛于 .
9
2列
华中科技大学数学与统计学院
4. 一致收敛的复函数项序列
f1(z),f2(z),f3(z),…,fn(z),… (*)
的各项均在点集E上有定义,且在E上存在一个函数 f(z),对于E上的每一点z,序列(*)均收敛于f(z),则称f(z)
即f ( p ) ( z ) f n( p ) ( z ).
n 1

16
2016/2/29
复变函数
第二节 幂级数
1、幂级数的敛散性
华中科技大学数学与统计学院
2、幂级数的收敛半径的求法
3、幂级数的和函数的解析性
f(z)为级数(4.2)的和函数,记为 :z) fn ( z) f(
定义4.4 对于级数(4.2),如果在点集E上有一个函数 f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
n 1

一切的z∈E均有 |f(z)-sn(z)|<ε,则称级数(4.2)在E上一
致收敛于f(z),记作:
定理4.4 (1)一个绝对收敛的复级数的各项可以任 意重排次序,而不改变其绝对收敛性,亦不改变其和. (2)两个绝对收敛的复级数 n1 n , n1 n 可按对角线法得到乘积级数 11 (12 2 1 ) (1n 2 n1 n 1
复数列收敛的条件
定理
复数列 { n } {an ibn }( n 1, 2 ,)
收敛于 a ib 的充要条件是
lim an a ,
n
lim bn b .
n
2016/2/29
2
复变函数

n
华中科技大学数学与统计学院
如果 lim n , 那末对于任意给定的 0
n 1 ( p)
( z ), p 1,2,.
证 (1)设 z0 D ,若 C 为D内任一围线, 则由柯西积分定理得 f n ( z )dz 0, n 1,2, 由定理4.7得 c f ( z )dz c f n ( z )dz 0
n 1
c
15
于是,由摩勒拉定理知,f(z)在 C 内解析,即 在 z0 D 解析。由于 z0 D 的任意性, 故f(z)在区域 D 内解析。
复变函数
2. 复数项级数的收敛与发散
表达式
华中科技大学数学与统计学院
定义 设{n } {an ibn } (n 1, 2,)为一复数列,

n 1

n
1 2 n
(4.1)
称为复数项级数.sn 1 2 n 称为级数的部分和.
为序列(*)的极限函数,记为: f ( z ) lim f n ( z )
n
定义2 对于序列(*),如果在点集E上有一个函数f(z), 使对任给的ε>0,存在正整数N=N(ε),当n>N时,对一切
的z∈E均有 |f(z)-fn(z)|<ε,则称序列(*)在E上一致收
敛于f(z),记作:
10
就能找到一个正数N, 当 n N 时, (an ibn ) (a ib) , 从而有 an a (an a ) i (bn b) , 所以 lim an a . 同理 lim bn b.
lim bn b, n n 那末当 n N 时, an a , bn b . 2 2 从而 n (an ibn ) (a ib) (an a ) i (bn b) an a bn b , 所以 lim n .
6 2016/2/29
n 1
n
复变函数
华中科技大学数学与统计学院
定理4.2 (Cauchy准则)复级数(4.1)收敛的充要条件为: 对任给ε>0,存在正整数N(ε),当n>N且p为任何正整数时 |n+1+ n+2+…+ n+p|<ε
n 0 推论1 收敛级数的通项必趋于零: lim n (事实上,取p=1,则必有|an+1|<ε).
推论2 收敛级数的各项必是有界的. 推论3 若级数(4.1)中略去有限个项,则所得级数与原 级数同为收敛或同为发散.
7
2016/2/29
复变函数
| a
n 1
华中科技大学数学与统计学院
3. 绝对收敛与条件收敛 定理 4.3 复级数(4.1)收敛的一个充分条件为级数
n
|收敛.
n 1
定义4.2 若级数 | an |收敛,则原级数 an 称
若部分和数列{sn}(n=1,2,…,)以有限复数s为极限, 即 lim sn s( ) 则称复数项无穷级数(4.1)收敛 n 于s,且称s为(4.1)的和,写成 s 否则若复数列sn(n=1,2,…,)无有限极限,则称级数 (4.1)为发散. 注 复级数n收敛于s的 N定义:
2016/2/29
复变函数
f n ( z) f ( z) 一致收敛于 , p 1 p 1 ( z z0 ) n 1 ( z z0 )

华中科技大学数学与统计学院
(2)设z0的某邻域U的边界圆K也在D内,对于z K ,
由定理4.7有
f n ( z )dz 1 f ( z )dz 1 , p 1 p 1 K K 2i ( z z0 ) 2i ( z z0 ) n 1
n
3 2016/2/29
反之, 如果 lim an a ,
n
n
复变函数
华中科技大学数学与统计学院
例1 下列数列是否收敛, 如果收敛, 求出其极限. π i 1 en ( 2) n n cos in . (1) n (1 ) ; n 解 π π i 1 1 ei n 1 n n e n (1) lim(1 ) lim(1 ) 1; n n n n
2 2 k 1 k 1 k 1 k 1
n
n
n
n
2016/2/29
复变函数
n
华中科技大学数学与统计学院

1 . 例1 当 | | 1时, 级数 绝对收敛,且有 n 1
(8i ) 是否绝对收敛? 例2 级数 n! n 1 n n

n 0
n
n 0

n (8i ) 8 8 因为| n! | n! , 故原级数绝对收敛。 而级数 收敛, n! n 1
f ( z) 或 { f n ( z)} 序列在区域D内内闭一致收敛于函数f(z),
则 (1) f(z)在区域D 内解析
或f
( p)
(2) f ( p ) ( z ) f n( p ) ( z )( z D, p 1, 2, ).
( z ) lim f n
n
12
2016/2/29
复变函数
定理4.6 设级数
华中科技大学数学与统计学院
且一致收敛于f(z),则和函数 f ( z ) f n ( z ) 也在E n 1 上连续.
定理4.7 设级数 f n ( z )的各项在曲线C上连续,并

f
n 1

n
( z ) 的各项在点集E上连续,并

且在C上一致收敛于f(z),则沿C可以逐项积分:
n 1

C
f ( z )dz f n ( z )dz
n 1 C

13
2016/2/29
复变函数
华中科技大学数学与统计学院
定义4.5 设函数fn(z)(n=1,2,…)定义于区域D内,若
级数(4.2)在D内任一有界闭集上一致收敛,则称此
级数在D内内闭一致收敛.
定理4.8 设级数(4.2)在圆K:|z-a|<R内闭一致收敛
的充要条件为:对于任意正数ρ,只要ρ<R,级数
(4.2)在闭圆K:|z-a|≤ ρ上一致收敛.
14
2016/2/29
复变函数
6. 解析函数项级数
n
华中科技大学数学与统计学院
定理4.9 设 (1)fn(z) (n=1,2,…)在区域D内解析,级数
相关文档
最新文档