高三数学一轮总复习第九章平面解析几何第二节两直线的位置关系课时跟踪检测理
高考数学一轮复习 第九章 平面解析几何 第2讲 两直线的位置关系课件 理
12/8/2021
第十四页,共六十六页。
1.直线 2x+(m+1)y+4=0 与直线 mx+3y-2=0 平行,则 m=________. 解析:直线 2x+(m+1)y+4=0 与直线 mx+3y-2=0 平行,则有m2 =m+3 1≠-42,故 m =2 或-3. 答案:2 或-3
12/8/2021
(2)两条直线垂直 如果两条直线 l1,l2 斜率都存在,设为 k1,k2,则 l1⊥l2⇔__k_1_·__k_2=__-__1______,当一条 直线斜率为零,另一条直线斜率不存在时,两条直线__垂__直_____.
12/8/2021
第五页,共六十六页。
2.两直线相交 直 线 l1 : A1x + B1y + C1 = 0 和 l2 : A2x + B2y + C2 = 0 的 公 共 点 的 坐 标 与 方 程 组 AA12xx+ +BB12yy+ +CC12= =00,的解一一对应. 相交⇔方程组有__唯__一_____解,交点坐标就是方程组的解; 平行⇔方程组____无_____解; 重合⇔方程组有__无__数__个___解.
12/8/2021
第六页,共六十六页。
3.两种距离 点点距 点线距
点 P1(x1,y1),P2(x2,y2)
|P1P2|=
之间的距离
_____(__x_2-__x_1_)__2_+__(__y_2-__y_1_)__2____
点 P0(x0,y0)到直线 l: Ax+By+C=0 的距离
|Ax0+By0+C| d=_____A__2+__B__2 _____
3.直线 2x+2y+1=0,x+y+2=0 之间的距离是________.
解析:先将 2x+2y+1=0 化为 x+y+12=0,
【新人教A版】2024版高考数学一轮总复习第9章解析几何第2节点与直线两条直线的位置关系课件
垂直
k1k2=-1
A1A2+B1B2=0
平行
k1 = k 2
b1 ≠ b2
重合
k1 = k 2
b1 = b2
A1 B2 -A2 B1 = 0,
A1 B2 -A2 B1 = 0,
或
B1 C2 -B2 C1 ≠ 0
A1 C2 -A2 C1 ≠ 0
A1B2-A2B1=0,且 B1C2-B2C1=0
微点拨解析几何中的两条直线的位置关系含有重合,而立体几何中空间两
第九章
第二节 点与直线、两条直线的位置关系
内
容
索
引
01
强基础•固本增分
02
研考点•精准突破
课标解读
1.能根据斜率判定两条直线平行
或垂直.
2.能用解方程组的方法求两条直
线的交点坐标.
3.探索并掌握平面上两点间的距
离、点到直线的距离公式,会求两
条平行直线间的距离.
衍生考点
核心素养
1.两直线的位置关系
程为
.
答案:4x+3y-36=0
27
解析:设切点坐标为(x0,y0)(x0>0),y'=- 2 ,
27
所以切线 l1 的斜率为- 2 .
0
3
又直线 l2 的斜率为4,
27
所以由- 2 ×
0
3
2
=-1,得
0
4
所以切点坐标为
=
81
4
9
9
,又 x0>0,所以 x0=2,所以 y0=6,
4
9
,
6
的对称曲线方程为f(2a-x,2b-y)=0.
高考数学一轮复习 第九章 解析几何 第二节 两条直线的位置关系教案 理(含解析)苏教版-苏教版高三全
第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离|P 1P 2|=x 2-x 12+y 2-y 12点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离d =|C 1-C 2|A 2+B2[小题体验]1.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则实数m 的值为________.解析:由k AB =4-mm +2=-2,得m =-8.答案:-82.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________. 解析:由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1. 答案:2-13.若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为________.解析:直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23,因为两直线垂直,所以-a 2×23=-1,即a =3.答案:31.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:①若l 1的斜率不存在,此时t =1,l 1的方程为x =13,l 2的方程为y =-25,显然l 1⊥l 2,符合条件;若l 2的斜率不存在,此时t =-32,易知l 1与l 2不垂直.②当l 1,l 2的斜率都存在时,直线l 1的斜率k 1=-t +21-t ,直线l 2的斜率k 2=-t -12t +3,因为l 1⊥l 2,所以k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,所以t =-1.综上可知t =-1或t =1. 答案:-1或12.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:因为63=m 4≠14-3,所以m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2. 答案:2考点一 两条直线的位置关系 (基础送分型考点——自主练透)[题组练透]1.(2019·沭阳月考)若直线y =mx +1与直线y =4x -8垂直,则m =________. 解析:由直线y =mx +1与直线y =4x -8垂直, 得m ×4=-1,解得m =-14.答案:-142.(2018·某某模拟)过点(1,0)且与直线x -2y -2=0平行的直线方程是________. 解析:依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.答案:x -2y -1=03.(2019·启东调研)已知直线l 1:(a -1)x +y +b =0,l 2:ax +by -4=0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(1,1);(2)l 1∥l 2,且l 2在第一象限内与两坐标轴围成的三角形的面积为2. 解:(1)因为l 1⊥l 2,所以a (a -1)+b =0.① 又l 1过点(1,1),所以a +b =0.②由①②,解得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =2,b =-2.当a =0,b =0时不合题意,舍去. 所以a =2,b =-2.(2)因为l 1∥l 2,所以a -b (a -1)=0,③由题意,知a >0,b >0,直线l 2与两坐标轴的交点坐标分别为⎝ ⎛⎭⎪⎫4a,0,⎝⎛⎭⎪⎫0,4b .则12×4a ×4b=2,得ab =4,④ 由③④,得a =2,b =2.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;(2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法直线方程l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0)l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件 A 1A 2+B 1B 2=0 l 1与l 2平行的充分条件 A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0) l 1与l 2相交的充分条件 A 1A 2≠B 1B 2(A 2B 2≠0) l 1与l 2重合的充分条件A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0) [提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答填空题时,建议多用比例式来解答.考点二 距离问题重点保分型考点——师生共研[典例引领]已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使PA =PB ,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). 因为A (4,-3),B (2,-1),所以线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,所以线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0. 因为点P (a ,b )在直线x -y -5=0上, 所以a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, 所以|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.所以所求点P 的坐标为(1,-4)或⎝⎛⎭⎪⎫277,-87.[由题悟法]距离问题的常见题型及解题策略(1)求两点间的距离.关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等.(2)解决与点到直线的距离有关的问题.应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.(3)求两条平行线间的距离.要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.[即时应用]1.(2019·阜宁中学检测)在坐标轴上,与点A (1,5),B (2,4)等距离的点的坐标是________.解析:线段AB 的垂直平分线方程为y -92=-1-25-4·⎝ ⎛⎭⎪⎫x -32,令x =0,可得y =3;令y=0,可得x =-3,∴在坐标轴上,与点A (1,5),B (2,4)等距离的点的坐标是(0,3)或(-3,0). 答案:(0,3)或(-3,0)2.(2018·某某中学测试)已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则PM 的最小值为________.解析:PM 的最小值即为点P (3,-1)到直线x +3y =2的距离, 又d =|3-3-2|1+3=1,故PM 的最小值为1.答案:13.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为______________________.解析:因为l 1与l 2:x +y -1=0平行, 所以可设l 1的方程为x +y +b =0(b ≠-1).又因为l 1与l 2的距离是2, 所以|b +1|12+12=2,解得b =1或b =-3,即l 1的方程为x +y +1=0或x +y -3=0. 答案:x +y +1=0或x +y -3=0考点三 对称问题题点多变型考点——多角探明 [锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.(2019·丹阳高级中学检测)点A (2,3)关于点P (0,5)对称的点的坐标为________. 解析:设A (2,3)关于点P (0,5)对称的点的坐标为(x 0,y 0),由中点坐标公式,得2+x 02=0,3+y 02=5,则x 0=-2,y 0=7.∴点A (2,3)关于点P (0,5)对称的点的坐标为(-2,7).答案:(-2,7)角度二:点关于线对称2.(2018·某某模拟)已知△ABC 的两个顶点A (-1,5)和B (0,-1),若∠C 的平分线所在的直线方程为2x -3y +6=0,则BC 边所在的直线方程为______________.解析:设点A 关于直线2x -3y +6=0的对称点为A ′(x ′,y ′),则⎩⎪⎨⎪⎧2×x ′-12-3×y ′+52+6=0,y ′-5x ′+1=-32,即⎩⎪⎨⎪⎧2x ′-3y ′-5=0,3x ′+2y ′-7=0,解得⎩⎪⎨⎪⎧x ′=3113,y ′=-113,即A ′⎝ ⎛⎭⎪⎫3113,-113,由题意知,点A ′在直线BC 上.所以直线BC 的方程为y =-113--13113-0x -1,整理得12x -31y -31=0. 答案:12x -31y -31=0 角度三:线关于线对称3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________.解析:设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, 所以2(y -2)-(x +2)+3=0, 即x -2y +3=0. 答案:x -2y +3=0[通法在握]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.(2019·沭阳期中)已知点A (1,-2)关于直线x +ay -2=0的对称点为B (m,2),则实数a 的值为________.解析:由对称的特点可知,AB 的中点在对称轴上,直线AB 垂直于对称轴,则1+m 2+-2+22a -2=0,2--2m -1·⎝ ⎛⎭⎪⎫-1a =-1,解得m =3,a =2.答案:22.(2018·启东期末)已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为________.解析:设P (a ,b )是直线l 上任意一点,则点P 到直线l 1:2x -y -2=0和直线l 2:x +2y -1=0的距离相等, 即|2a -b -2|5=|a +2b -1|5,整理得a -3b -1=0或3a +b -3=0, ∴直线l 的斜率为13或-3.答案:13或-33.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ), 则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0一抓基础,多练小题做到眼疾手快1.(2019·某某调研)已知点A (1,3)关于直线l 的对称点为B (-5,1),则直线l 的方程为________.解析:∵已知点A (1,3)关于直线l 的对称点为B (-5,1),故直线l 为线段AB 的中垂线.求得AB 的中点为(-2,2),AB 的斜率为1-3-5-1=13,故直线l 的斜率为-3,故直线l 的方程为 y -2=-3(x +2),即3x +y +4=0.答案:3x +y +4=02.(2018·宿迁模拟)过点(1,0)且与直线x -2y -2=0垂直的直线方程是________. 解析:因为直线x -2y -2=0的斜率为12,所以所求直线的斜率ky -0=-2(x -1),即2x +y -2=0.答案:2x +y -2=03.直线y =3x +3关于直线l :x -y -2=0对称的直线方程为________. 解析:取直线y =3x +3上一点A (0,3),设A 关于直线l :x -y -2=0对称的点为A ′(a ,b ),则有⎩⎪⎨⎪⎧b -3a -0·1=-1,a +02-b +32-2=0,解得a =5,b =-2.∴A ′(5,-2).联立⎩⎪⎨⎪⎧y =3x +3,x -y -2=0,解得x =-52,y =-92.令M ⎝ ⎛⎭⎪⎫-52,-92,∵直线y =3x +3关于直线l 对称的直线过A ′,M 两点,∴所求直线方程为y -⎝ ⎛⎭⎪⎫-92-2-⎝ ⎛⎭⎪⎫-92=x -⎝ ⎛⎭⎪⎫-525-⎝ ⎛⎭⎪⎫-52,即x -3y -11=0.答案:x -3y -11=04.(2018·启东中学测试)已知直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则点P 的坐标为________.解析:因为l 1∥l 2,且l 1的斜率为2,则直线l 2l 2过点(-1,1),所以直线l 2的方程为y -1=2(x +1),整理得y =2xx =0,得y =3,所以点P 的坐标为(0,3).答案:(0,3)5.若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.解析:解方程组⎩⎪⎨⎪⎧2x -y =-10,y =x +1,可得⎩⎪⎨⎪⎧x =-9,y =-8,所以直线2x -y =-10与y =x +1的交点坐标为(-9,-8), 代入y =ax -2,得-8=a ·(-9)-2, 所以a =23.答案:236.(2019·某某检测)已知直线l 1:mx +2y +4=0与直线l 2:x +(m +1)y -2=0平行,则l 1与l 2间的距离为________.解析:∵直线l 1:mx +2y +4=0与直线l 2:x +(m +1)y -2=0平行,当m =-1时,显然不合题意;当m ≠-1时,有m 1=2m +1≠4-2,解得m =1,∴l 1与l 2间的距离d =|-2-4|1+4=655.答案:655二保高考,全练题型做到高考达标1.已知直线l 1:(m +1)x +2y +2m -2=0,l 2:2x +(m -2)y +2=0,若直线l 1∥l 2,则m =________.解析:由题意知,当m =2时,l 1:3x +2y +2=0,l 2:x +1=0,不合题意;当m ≠2时,若直线l 1∥l 2,则m +12=2m -2≠2m -22,解得m =-2或m =3(舍去). 答案:-22.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为________.解析:因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1, 所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0, 所以l 1与l 2的距离d =⎪⎪⎪⎪⎪⎪6-232=823.答案:823 3.(2019·X 家港模拟)过点P (1,2)作一直线l ,使直线l 与点M (2,3)和点N (4,-5)的距离相等,则直线l 的方程为________________.解析:易知直线l 的斜率存在,∵直线l 过点P (1,2),∴设l 的方程为y -2=k (x -1),即kx -y -k +2=0.又直线l 与点M (2,3)和点N (4,-5)的距离相等, ∴|2k -3-k +2|k 2+1=|4k +5-k +2|k 2+1, 解得k =-4或k =-32, ∴l 的方程为4x +y -6=0或3x +2y -7=0.答案:4x +y -6=0或3x +2y -7=04.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点________. 解析:由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).答案:(0,2)5.已知点P (0,-1),点Q 在直线x -y +1=0上,若直线P Q 垂直于直线x +2y -5=0,则点Q 的坐标是________.解析:设Q(x 0,y 0),因为点Q 在直线x -y +1=0上,所以x 0-y 0+1=0.①又直线x +2y -5=0的斜率k =-12,直线P Q 的斜率k P Q =y 0+1x 0, 所以由直线P Q 垂直于直线x +2y -5=0,得y 0+1x 0·⎝ ⎛⎭⎪⎫-12=-1.② 由①②解得x 0=2,y 0=3,即点Q 的坐标是(2,3).答案:(2,3)6.(2019·某某一模)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且坐标原点O 到直线l 的距离为3,则△AOB 的面积S 的最小值为________.解析:由坐标原点O 到直线l 的距离为3,可得|-1|m 2+n 2=3,化简得m 2+n 2=13. 对直线l :mx +ny -1=0,令x =0,可得y =1n ;令y =0,可得x =1m, 故△AOB 的面积S =12·⎪⎪⎪⎪⎪⎪1m ·1n =12|mn |≥1m 2+n2=3, 当且仅当|m |=|n |=66时,取等号. 故△AOB 的面积S 的最小值为3.答案:37.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以PA 2+PB 2=AB 2=10,所以PA ·PB ≤PA 2+PB 22=5(当且仅当PA =PB =5时,等号成立),当P 与A 或B 重合时,PA ·PB=0,故PA ·PB 的最大值是5.答案:58.将一X 画有直角坐标系的图纸折叠一次,使得点A (0,2)与点B (4,0)重合.若此时点C (7,3)与点D (m ,n )也重合,则m +n 的值是________.解析:由题意知,折痕既是A ,B 的对称轴,也是 C ,D 的对称轴.因为AB 的斜率k AB =0-24-0=-12,AB 的中点为(2,1), 所以图纸的折痕所在的直线方程为y -1=2(x -2),所以k CD =n -3m -7=-12, ① 因为CD 的中点为⎝⎛⎭⎪⎫m +72,n +32, 所以n +32-1=2⎝ ⎛⎭⎪⎫m +72-2. ② 由①②解得m =35,n =315,所以m +n =345. 答案:3459.已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)当l 1∥l 2时,求a 的值;(2)当l 1⊥l 2时,求a 的值.解:(1)法一:当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a 2x -3,l 2:y =11-ax -(a +1), 由l 1∥l 2可得⎩⎪⎨⎪⎧ -a 2=11-a,-3≠-a +1,解得a =-1. 综上可知,a =-1.法二:由l 1∥l 2知⎩⎪⎨⎪⎧ A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0, 即⎩⎪⎨⎪⎧ a a -1-1×2=0,a a 2-1-1×6≠0⇒⎩⎪⎨⎪⎧ a 2-a -2=0,a a 2-1≠6⇒a =-1.(2)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合;当a ≠1时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎫-a 2·11-a=-1⇒a =23. 法二:因为l 1⊥l 2,所以A 1A 2+B 1B 2=0,即a +2(a -1)=0,得a =23. 10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65, 所以直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.(2019·江阴检测)直线l 经过点P (2,1),且与两坐标轴围成的三角形的面积为S ,如果符合条件的直线l 能作且只能作三条,则S =________.解析:由已知可得直线l 的斜率一定存在且不为零,设直线l 的方程为y -1=k (x -2),则直线l 与坐标轴的交点为(0,1-2k ),⎝ ⎛⎭⎪⎫2-1k ,0, 则S =12|1-2k |·⎪⎪⎪⎪⎪⎪2-1k =⎪⎪⎪⎪⎪⎪2-12k -2k . 如果符合条件的直线l 能作且只能作三条,则关于k 的方程⎪⎪⎪⎪⎪⎪2-12k -2k =S 只有三个解,即4k 2+2(S -2)k +1=0与4k 2-2(S +2)k +1=0,一个有一解,一个有两解,解得S =4.答案:42.(2018·锡山高级中学检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系是________.解析:在△ABC 中,由正弦定理a sin A =b sin B ,得b sin B ·sin A ax sin A +ay +c =0的斜率k 1=-sin A a ,bx -y sin B +sin C =0的斜率k 2=b sin B ,因此k 1·k 2=b sin B ·⎝ ⎛⎭⎪⎫-sin A a =-1,所以两条直线垂直.答案:垂直3.已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值,并求此时l 的方程.解:(1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0,因为点A (5,0)到l 的距离为3,所以|10+5λ-5|2+λ2+1-2λ2=3,即2λ2-5λ+2=0,所以λ=2或λ=12, 所以直线l 的方程为x =2或4x -3y -5=0.(2)如图,由⎩⎪⎨⎪⎧ 2x +y -5=0,x -2y =0,解得交点P (2,1),过P 作任一直线l ,设d 为点A 到l的距离,则d ≤PA (当l ⊥PA 时等号成立).所以d max =PA =5-22+0-12=10.因为k PA =-13,l ⊥PA ,所以k l =3, 所以直线l 的方程为y -1=3(x -2),即3x -y -5=0.。
高考数学一轮复习第九章平面解析几何第2讲两直线的位置关系练习理
【创新设计】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 第2讲 两直线的位置关系练习 理基础巩固题组(建议用时:40分钟)一、填空题1.(2016·苏北四市模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =________.解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或2. 答案 -1或22.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为________.解析 把3x +y -3=0化为6x +2y -6=0,则两平行线间的距离d =|1-(-6)|62+22=72010.答案 71020 3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为________.解析 由⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x , 即3x +19y =0.答案 3x +19y =04.两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,则k =________.解析 由⎩⎪⎨⎪⎧2x +3y -k =0,x -ky +12=0,得x =k 2-362k +3, 由x =0,得k =±6. 答案 ±65.(2015·金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 答案 二6.点(2,1)关于直线x -y +1=0的对称点为________. 解析 设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0, 解得⎩⎪⎨⎪⎧x 0=0,y 0=3,故所求对称点为(0,3). 答案 (0,3)7.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2. ∴点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,∴m =-9.答案 -98.(2016·南京师大附中调研)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案 2x +3y -18=0或2x -y -2=0二、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合.解 (1)由已知1×3≠m (m -2),即m 2-2m -3≠0,解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2. (3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解 依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3). 设B (x 0,y 0),AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.能力提升题组(建议用时:20分钟)11.(2014·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直,即△APB 为直角三角形,∴PA ·PB ≤PA 2+PB 22=AB 22=102=5.答案 512.(2016·南京、盐城调研)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是________.解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值,而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2.所以m 2+n 2的最小值为4.答案 413.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是________.解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离.于是A 1A 2=(4+2)2+(2-0)2=210.答案 21014.(1)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.(2)光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 (1)设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,∴a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.(2) 法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0, 得⎩⎪⎨⎪⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5. 而PP ′的中点Q 的坐标为⎝⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上, ∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213. 根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23, 又PP ′的中点Q ⎝⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0. 可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0,∴所求反射光线所在的直线方程为29x -2y +33=0.。
核按钮(新课标)高考数学一轮复习 第九章 平面解析几何 9.2 两条直线的位置关系习题 理
§9.2 两条直线的位置关系1.两条直线的位置关系(1)平行:对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,有l 1∥l 2⇔____________,特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为____________.(2)垂直:如果两条直线l 1,l 2的斜率都存在,且分别为k 1,k 2,则有l 1⊥l 2⇔____________,特别地,若直线l 1:x =a ,直线l 2:y =b ,则l 1与l 2的关系为____________.2.两条直线的交点坐标一般地,将两条直线的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 若方程组有惟一解,则两条直线__________,此解就是__________;若方程组无解,则两条直线___________,此时两条直线___________.3.距离公式(1)点到直线的距离:点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =__________________.(2)两条平行直线间的距离:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离d =____________________.4.过两直线交点的直线系方程若已知直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0相交,则方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ∈R ,这条直线可以是l 1,但不能是l 2)表示过l 1和l 2交点的直线系方程.自查自纠1.(1)k 1=k 2 l 1∥l 2 (2)k 1k 2=-1 l 1⊥l 2 2.相交 交点的坐标 无公共点 平行3.(1)||Ax 0+By 0+C A 2+B 2 (2)||C 1-C 2A 2+B 2直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解:由题意知直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y-1=0.故选A .(2015·北京海淀区期末)已知直线l 1:x +2y -1=0与直线l 2:mx -y =0平行,则实数m 的值为( )A .-12 B.12C .2D .-2解:∵直线l 1:x +2y -1=0与直线l 2:mx -y =0平行,∴m 1=-12≠0,解得m =-12.故选A .(2015·浙江名校联考)已知直线l 1:x +(a -2)y -2=0,l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =-1,则l 1:x -3y -2=0,l 2:-3x -y -1=0,显然两条直线垂直;若l 1⊥l 2,则(a -2)+a (a -2)=0,解得a =-1或a =2,因此,“a =-1”是“l 1⊥l 2”的充分不必要条件.故选A .点A (4,5)关于直线l 的对称点为B (-2,7),则l 的方程是____________.解:由题意得k AB =7-5-2-4=-13,∵k l ⊥k AB ,∴k l =3.又线段AB 的中点在直线l 上,∴直线l 过点(1,6).∴直线l 的方程为y -6=3(x -1),即3x -y +3=0.故填3x -y +3=0.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为____________.解:设l 1的方程为x +y +c =0,则|c +1|2=2,解得c =1或c =-3.∴直线l 1的方程为x +y +1=0或x +y -3=0. 故填x +y +1=0或x +y -3=0.类型一 两条直线平行、重合或相交已知两条直线:l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,l 1与l 2:(1)相交;(2)平行;(3)重合.解:联立两直线方程⎩⎪⎨⎪⎧x +my +6=0,(m -2)x +3y +2m =0.当m =0或m =2时两直线相交;当m ≠0且m ≠2时,此时A 1A 2=1m -2,B 1B 2=m 3,C 1C 2=62m,当A 1A 2=B 1B 2时,即1m -2=m3,解得m =-1或m =3;当A 1A 2=C 1C 2时,即1m -2=62m,解得m =3. (1)当m ≠-1且m ≠3时,A 1A 2≠B 1B 2,方程组有唯一一组解.∴l 1与l 2相交.(2)当m =-1时,A 1A 2=B 1B 2且A 1A 2≠C 1C 2,方程组无解. ∴l 1与l 2平行.(3)当m =3时,A 1A 2=B 1B 2=C 1C 2,方程组有无穷多组解. ∴l 1与l 2重合.【点拨】由直线的一般式直接判断两条直线是否平行时,可直接应用本题的结论,即:若A 1A 2=B 1B 2≠C 1C 2,则直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0平行,这是一个很实用的结论,但要注意分母不能为零.当实数m 为何值时,三条直线l 1:3x +my -1=0,l 2:3x -2y -5=0,l 3:6x+y -5=0不能围成三角形.解:当m =0时,直线l 1,l 2,l 3可以围成三角形,要使直线l 1,l 2,l 3不能围成三角形,则m ≠0.记l 1,l 2,l 3三条直线的斜率分别为k 1,k 2,k 3,则k 1=-3m ,k 2=32,k 3=-6.若l 1∥l 2,或l 1∥l 3,则k 1=k 2=32,或k 1=k 3=-6,解得m =-2或m =12;若三条直线交于一点,由⎩⎪⎨⎪⎧3x -2y -5=0,6x +y -5=0得⎩⎪⎨⎪⎧x =1,y =-1, l 2与l 3交于点(1,-1),将点(1,-1)代入3x +my -1=0,得m =2.∴当m =±2或12时,l 1,l 2,l 3不能围成三角形.类型二 两条直线垂直(1)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1⊥l 2,且l 1过点(-3,-1),求a ,b 的值;(2)已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,若l 1⊥l 2,求α的值.解:(1)法一:由已知可得l 2的斜率k 2存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,∴直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,得a =43(矛盾).∴此种情况不存在,∴k 2≠0, ∴k 1,k 2都存在.∵k 2=1-a ,k 1=a b ,l 1⊥l 2,∴k 1k 2=-1,即ab(1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 联立①②可得a =2,b =2.法二:∵l 1⊥l 2,∴a (a -1)+(-b )·1=0, 即b =a 2-a .①又∵l 1过点(-3,-1),∴-3a +b +4=0.②联立①②可得⎩⎪⎨⎪⎧a =2,b =2.经验证,符合题意.故a =2,b =2.(2)∵A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,∴2sin α+sin α=0,即sin α=0,α=k π,k ∈Z . ∴当α=k π,k ∈Z 时,l 1⊥l 2.【点拨】判定两直线垂直的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k 1·k 2=-1,则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论.设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.(3)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解:由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0, 解得m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.故选A .类型三 对称问题已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 解:(1)设A ′(x ,y ),则有⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一:在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3). 则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二:设Q (x ,y )为l ′上任意一点, 则Q (x ,y )关于点A (-1,-2)的对称点为Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.【点拨】(1)关于中心对称问题的处理方法:①若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1.②求直线关于点的对称直线的方程,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用两直线平行,由点斜式得到所求直线方程,当然,斜率必须存在.(2)关于轴对称问题的处理方法:①点关于直线的对称.若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在l 上,且连接P 1P 2的直线垂直于l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).②直线关于直线的对称.此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________.解:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有 ⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,∴A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). ∴BC 边所在直线方程为2x -y +3=0. 故填2x -y +3=0.类型四 距离问题(1)平行于直线3x +4y -2=0,且与它的距离是1的直线方程为________________________.解:设所求直线方程为3x +4y +c =0(c ≠-2), 则d =|-2-c |32+42=1,解得c =3或c =-7, 所求直线方程为3x +4y +3=0或3x +4y -7=0. 故填3x +4y +3=0或3x +4y -7=0.(2)已知点A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线的方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.【点拨】距离的求法: (1)点到直线的距离.可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离.①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式d =|C 1-C 2|A 2+B 2.直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,求直线l 的方程.解:当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d 1=1,点B 到直线l 的距离为d 2=3,不符合题意,故直线l 的斜率必存在.设直线l 的方程为y +5=k (x -2),即kx -y -2k -5=0,则点A (3,-2)到直线l 的距离d 1=|3k -(-2)-2k -5|k 2+1=|k -3|k 2+1,点B (-1,6)到直线l 的距离d 2=|-k -6-2k -5|k 2+1=|3k +11|k 2+1,∵d 1∶d 2=1∶2,∴|k -3||3k +11|=12, 解得k =-1或k =-17.∴所求直线方程为x +y +3=0和17x +y -29=0.类型五 直线系及其应用求证:动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0(其中m ∈R )恒过定点,并求出定点坐标.证法一:令m =0,则直线方程为3x +y +1=0,① 再令m =1时,直线方程为6x +y +4=0,②联立①②,得方程组⎩⎪⎨⎪⎧3x +y +1=0,6x +y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =2.将点A (-1,2)代入动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0中, (m 2+2m +3)×(-1)+(1+m -m 2)×2+3m 2+1 =(3-1-2)m 2+(-2+2)m +2+1-3=0,故点A (-1,2)的坐标恒满足动直线方程,所以动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0恒过定点A .证法二:将动直线方程按m 降幂排列整理得,m 2(x -y +3)+m (2x +y )+3x +y +1=0,①不论m 为何实数,①式恒为零,∴有⎩⎪⎨⎪⎧x -y +3=0,2x +y =0,3x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2.故动直线恒过点(-1,2).【点拨】此题属于数学中恒成立问题,所以证法一是先赋给m 两个特殊值得两条直线,那么这两条直线的交点就是那个定点,但m 只是取两个特殊值,是否m ∈R 时都成立,则要进行代入检验;证法二是将动直线方程按m 的降幂排列,由于∀m ∈R 恒成立,所以得关于x ,y 的方程组,解此方程组便得定点坐标.直线系也称直线束,是具有某一共同性质的直线的集合.常见直线系方程有:(1)过定点(x 1,y 1)的直线系:y -y 1=k (x -x 1)和x =x 1.(2)平行于直线Ax +By +C =0的直线系:Ax +By +λ=0(λ≠C ).(3)垂直于直线Ax +By +C =0的直线系:Bx -Ay +λ=0.(4)过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).已知直线l :(a +b )x +(a -b )y +2=0,其中a ,b 满足3a -b +2=0.求证:直线l 恒过一定点.证明:由已知得b =3a +2,则直线l 的方程可化为 (4a +2)x -(2a +2)y +2=0,整理得a (4x -2y )+2x -2y +2=0.令⎩⎪⎨⎪⎧4x -2y =0,2x -2y +2=0,解得⎩⎪⎨⎪⎧x =1,y =2. ∵点(1,2)恒满足直线l 的方程,∴直线l 恒过定点(1,2).1.当直线的方程中含有字母参数时,不仅要考虑斜率存在与不存在的情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.两条直线的位置关系一般用斜率和截距来判定,但当直线方程用一般式给出且系数中有参数时,往往需要繁琐地讨论.但也可以这样避免:设两直线为A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0,则两直线垂直的条件为⎝ ⎛⎭⎪⎫-A 1B 1·⎝ ⎛⎭⎪⎫-A 2B 2=-1,由此得A 1A 2+B 1B 2=0,但后者适用性更强,因为当B 1=0或B 2=0时前者不适用但后者适用.3.运用直线系方程,有时会使解题更为简单快捷,常见的直线系方程有: (1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ); (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.4.运用公式d =||C 1-C 2A 2+B 2求两平行直线间的距离时,一定要将两条直线方程中x ,y 的系数化成相等的系数,求两平行直线间的距离也可化归为点到直线的距离,即在一条直线上任取一点(如直线与坐标轴的交点),求该点到另一条直线的距离即为两平行直线间的距离.这一方法体现了化归思想的应用.5.对称主要分为中心对称和轴对称两种,中心对称仅用中点坐标公式即可,轴对称因对称点连线的中垂线就是对称轴,所以根据线段的中点坐标公式和两条直线垂直的条件即可解决.1.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0C .x -2y +3=0D .x -2y +5=0解:由点斜式得所求直线方程为y -3=12(x -2),即x -2y +4=0.故选A .2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解:设所求直线方程为x -2y +c =0,将(1,0)代入得c =-1.∴所求直线方程为x -2y -1=0.故选A .3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解:∵直线l 1与l 2关于点(2,1)对称,且直线l 1过点(4,0),∴直线l 2必过点(4,0)关于点(2,1)的对称点(0,2).故选B .4.(2013·长春调研)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.175C .8D .2 解:由题意得36=4m ≠-314,解得m =8.∴直线6x +my +14=0可化为3x +4y +7=0.∴两平行线间的距离为d =||-3-732+42=2.故选D . 5.已知过点A (-2,m )和点B (m ,4)的直线为l 1,l 2:2x +y -1=0,l 3:x +ny +1=0.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解:∵l 1∥l 2,∴k AB =4-mm +2=-2,解得m =-8.又∵l 2⊥l 3.∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2.∴m +n =-10.故选A .6.(2015·湖北八市联考)已知M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-2解:集合M 表示去掉一点A (2,3)的直线3x -y -3=0,集合N 表示恒过定点B (-1,0)的直线ax +2y +a =0,∵M ∩N =∅,∴两直线要么平行,要么直线ax +2y +a =0与直线3x -y -3=0相交于点A (2,3).因此-a2=3或2a +6+a =0,解得a =-6或a =-2.故选A .7.过圆x 2+y 2+2x -4y =0的圆心,且与直线2x +3y =0垂直的直线方程为____________.解:设与直线2x +3y =0垂直的直线方程为3x -2y +m =0,由于其过圆心(-1,2),所以有3×(-1)-2×2+m =0,得m =7,所求直线方程为3x -2y +7=0.故填3x -2y +7=0.8.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为_________.解法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,解得k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.解法二:当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.故填x +3y -5=0或x =-1.9.已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,试求θ的值,使得:(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)由12sin θ=sin θ≠-11,得sin θ=±22. 由sin θ=±22,得θ=k π±π4(k ∈Z ). ∴当θ=k π±π4(k ∈Z )时,l 1∥l 2. (2)由2sin θ+sin θ=0,得sin θ=0,θ=k π(k ∈Z ),∴当θ=k π(k ∈Z )时,l 1⊥l 2.10求直线l :x -2y +6=0关于点M (-1,1)对称的直线l ′的方程.解法一:取l 上的两点A (0,3),B (-6,0),求出它们关于点M 的对称点,A ′(-2,-1),B ′(4,2),再用两点式求出l ′的方程为x -2y =0.解法二:设点P ′(x ′,y ′)为所求直线l ′上的任意一点,则点P ′关于点M 在直线l 上的对称点为P (x ,y ).由⎩⎪⎨⎪⎧-1=x +x ′2,1=y +y ′2 得 ⎩⎪⎨⎪⎧x =-2-x ′,y =2-y ′, 代入直线l 的方程得: (-2-x ′)-2(2-y ′)+6=0,得x ′-2y ′=0,即x -2y =0为所求直线l ′的方程.11.设一直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.解法一:设直线x -y -1=0与l 1,l 2的交点分别为C (x C ,y C ),D (x D ,y D ),则由⎩⎪⎨⎪⎧x +2y -1=0,x -y -1=0解得⎩⎪⎨⎪⎧x C =1,y C =0,∴C (1,0). 由⎩⎪⎨⎪⎧x +2y -3=0,x -y -1=0解得⎩⎪⎨⎪⎧x D =53,y D =23, ∴D ⎝ ⎛⎭⎪⎫53,23. ∴CD 的中点为M ⎝ ⎛⎭⎪⎫43,13. 又l 过点(-1,1),由两点式得l 的方程为:y -131-13=x -43-1-43,即2x +7y -5=0. 解法二:∵与l 1,l 2平行且与它们距离相等的直线方程为:x +2y +-1-32=0,即x +2y -2=0, ∴由⎩⎪⎨⎪⎧x +2y -2=0,x -y -1=0 得M ⎝ ⎛⎭⎪⎫43,13.(以下同解法一) 解法三:过中点且与两直线平行的直线方程为x +2y -2=0,设所求方程为:(x -y -1)+λ(x +2y -2)=0,①∵(-1,1)在此直线上,∴-1-1-1+λ(-1+2-2)=0,解得λ=-3,代入①得2x +7y -5=0.解法四:设所求直线与两平行线l 1,l 2的交点为A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x 1+2y 1-1=0,x 2+2y 2-3=0得(x 1+x 2)+2(y 1+y 2)-4=0.① 又AB 的中点在直线x -y -1=0上,∴x 1+x 22-y 1+y 22-1=0.② 联立①②解得⎩⎪⎨⎪⎧x 1+x 22=43,y 1+y 22=13. (以下同解法一) 已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4).(1)在直线l 上求一点P ,使|PA |+|PB |最小;(2)在直线l 上求一点P ,使||PB |-|PA ||最大.解:(1)设点A 关于直线l 的对称点为A ′(m ,n ),则⎩⎪⎨⎪⎧n -0m -2=-2,m +22-2·n +02+8=0,解得⎩⎪⎨⎪⎧m =-2,n =8, ∴A ′(-2,8).又P 为直线l 上的一点,∴|PA |+|PB |=|PA ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时,|PA |+|PB |取得最小值|A ′B |,易求得直线A ′B 的方程为x =-2,联立⎩⎪⎨⎪⎧x =-2,x -2y +8=0,得⎩⎪⎨⎪⎧x =-2,y =3,即点P 的坐标为(-2,3). (2)∵A ,B 两点在直线l 的同侧,P 是直线l 上的一点,∴||PB |-|PA ||≤|AB |,当且仅当A ,B ,P 三点共线时,||PB |-|PA ||取得最大值|AB |,点P 即是直线AB 与直线l 的交点,又直线AB 的方程为y =x -2,联立⎩⎪⎨⎪⎧y =x -2,x -2y +8=0,得⎩⎪⎨⎪⎧x =12,y =10,即所求点P 的坐标为(12,10).。
(课标通用)高考数学一轮复习第九章平面解析几何第2节两直线的位置关系课件理
[ 解析 ]
3x+4y-5=0, 由 3x-4y-13=0
x=3, 得 y=-1,
即两直线的
交点坐标为(3,-1),则所求直线方程为 y+1=2(x-3),即 2x-y-7=0.故选 B.
[答案] B
5.光线自点 M(2,3)射到 N(1,0)后被 x 轴反射,则反射光 线所在的直线方程为( A.y=3x-3 C.y=-3x-3 ) B.y=-3x+3 D.y=3x+3
[解析]
(1)由题意,得 解得 a=-7.故选 B.
3+a5+a-2×4=0, 3+a×8-2×5-3a≠0,
1 (2)因为直线 x-2y-2=0 的斜率为2, 所以所求直线的斜 率 k=-2.所以所求直线的方程为 y-0=-2(x-1), 即 2x+y -2=0.
(3)若两直线的方程组成的方程组有唯一解,则两直线相 交.( )
(4)已知直线 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2= 0(A1,B1,C1,A2,B2,C2 为常数),若直线 l1⊥l2,则 A1A2 +B1B2=0.( )
(5)直线外一点与直线上一点的距离的最小值就是点到直 (2)C
1 (3)2
-1
(4)3x+y=0
(1)若直线 l1 和 l2 有斜截式方程 l1: y=k1x+b1, l2 : y=k2x +b2, 则直线 1. (2)设 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0, 则 l1∥l2 的必要不充分条件是 A1B2=A2B1;l1⊥l2⇔A1A2 +B1B2=0.
1 (3)若 l1⊥l2,则 1×(m-2)+3m=0,∴m=2;若 l1∥l2, 则 3-m(m-2)=0 且 2m-6(m-2)≠0,∴m=-1. (4)联立 2x-y-5=0 和 x+y+2=0, 得交点 P(1, -3). 设 过点 P 且与直线 3x+y-1=0 平行的直线方程为 3x+y+m= 0.把点 P 代入即可得 m.
高考数学一轮复习第9章平面解析几何2第2讲两直线的位置关系教案理
第2讲 两直线的位置关系1.两直线的平行、垂直与其斜率的关系3.三种距离(1)平行于直线Ax +By +C =0的直线系方程:Ax +By +λ=0(λ≠C ). (2)垂直于直线Ax +By +C =0的直线系方程:Bx -Ay +λ=0.(3)过两条已知直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).判断正误(正确的打“√”,错误的打“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( )(2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则直线l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:选A.由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x+2y -1=0.已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A. 2 B .2- 2 C.2-1D.2+1解析:选C.由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1.(教材习题改编)已知直线l1:ax +3y +1=0,l 2:2x +(a +1)y +1=0互相平行,则实数a 的值是________.解析:由直线l 1与l 2平行,可得⎩⎪⎨⎪⎧a (a +1)=2×3,a ×1≠2,解得a =-3.答案:-3若三条直线2x +3y +8=0,x -y -1=0和x +by =0相交于一点,则b =________.解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0解得⎩⎪⎨⎪⎧x =-1,y =-2. 将其代入x +by =0,得b =-12.答案:-12两条直线平行与垂直(高频考点)两条直线的平行与垂直是高考的热点,高考多出现在选择题、填空题或解答题中的一小问,一般难度较小.高考对两条直线的平行与垂直的考查主要有以下两个命题角度: (1)两条直线位置关系的判断; (2)由两条直线位置关系求直线方程.[典例引领]角度一 两条直线位置关系的判断设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l 1∥l 2时,显然m ≠0,从而有2m=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立. 【答案】 C角度二 由两条直线位置关系求直线方程(2018·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.【解析】 法一:由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0解得⎩⎪⎨⎪⎧x =-53,y =79,即交点为⎝ ⎛⎭⎪⎫-53,79,因为所求直线与直线3x +4y -7=0垂直, 所以所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝ ⎛⎭⎪⎫x +53,即4x -3y +9=0.法二:由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0可解得交点为⎝ ⎛⎭⎪⎫-53,79,代入4x -3y +m =0得m =9, 故所求直线方程为4x -3y +9=0.法三:由题意可设所求直线的方程为(2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又因为所求直线与直线3x +4y -7=0垂直, 所以3(2+λ)+4(3-3λ)=0,所以λ=2,代入①式得所求直线方程为4x -3y +9=0. 【答案】 4x -3y +9=0两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1. [提醒] 判断两条直线位置关系应注意: (1)注意斜率不存在的特殊情况;(2)注意x ,y 的系数不能同时为零这一隐含条件.[通关练习]1.已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B. 13或-1 C. 13D .-1解析:选B.因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.2.求满足下列条件的直线方程.(1)过点P (-1,3)且平行于直线x -2y +3=0; (2)已知A (1,2),B (3,1),线段AB 的垂直平分线.解:(1)设直线方程为x -2y +c =0,把P (-1,3)代入直线方程得c =7, 所以直线方程为x -2y +7=0. (2)AB 中点为⎝⎛⎭⎪⎫1+32,2+12,即⎝ ⎛⎭⎪⎫2,32,直线AB 斜率k AB =2-11-3=-12,故线段AB 垂直平分线斜率k =2,所以其方程为y -32=2(x -2),即4x -2y -5=0.距离公式[典例引领](1)已知A (2,0),B (0,2),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( ) A .4 B .3 C .2D .1(2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【解析】 (1)设点C (t ,t 2),直线AB 的方程是x +y -2=0, |AB |=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t +t 2-2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个. (2)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,因此c =2或-6. 【答案】 (1)A (2)2或-6距离的求法(1)点到直线的距离可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离; ②利用两平行线间的距离公式.[通关练习]1.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是( ) A .[-10,10] B .[-10,5] C .[-5,5]D .[0,10]解析:选D.由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].2.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y-15=0.答案:12x +8y -15=03.l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.解析:当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.又k AB =-1-10-1=2,所以两条平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=0对称问题[典例引领]已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 【解】 (1)设A ′(x ,y ),由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0. (3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), 因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.[通关练习]1.(2018·河北五校联考)直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( ) A .2x +3y -12=0 B .2x -3y -12=0 C .2x -3y +12=0D .2x +3y +12=0解析:选D.由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y=1,所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0,故选D.2.如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程是________.解析:直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.答案:210由一般式确定两直线位置关系的方法(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据相应公式或性质判断,若直线无斜率,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数化为相同的形式.1.(2018·石家庄模拟)已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y +1=0D .x +y =0解析:选A.由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.2.已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( ) A .-10 B .-2 C .0D .8解析:选A.因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n×(-2)=-1,解得n =-2,所以m +n =-10.3.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12 B .-12C .2D .-2解析:选A.直线y =2x +3与y =-x 的交点为A (-1,1),而直线y =2x +3上的点(0,3)关于y =-x 的对称点为B (-3,0),而A ,B 两点都在l 2上,所以kl 2=1-0-1-(-3)=12.4.已知点A (-1,2),B (3,4).P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为( ) A .15 B.552 C .6 5D.152解析:选D.设AB 的中点坐标为M (1,3),k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0.令y =0,则x =52,即P 点的坐标为(52,0),|AB |=(-1-3)2+(2-4)2=2 5.P 到AB 的距离为|PM |=(1-52)2+32=352.所以S △PAB =12|AB |·|PM |=12×25×352=152.5.(2018·河南安阳模拟)两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值范围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34 ]解析:选D.当PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34,所以l 1,l 2之间距离的取值范围是(0,34 ]. 故选D.6.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析:设点P 的坐标为⎝ ⎛⎭⎪⎫x 0,1x 0,x 0>0,曲线y =1x在点P 处的切线斜率k 2=-1x 20(x 0>0).又因为曲线y =e x 在点(0,1)处的切线斜率k 1=e x|x =0=1,k 1k 2=-1,所以x 20=1,所以x 0=1,所以点P 的坐标为(1,1). 答案:(1,1)7.已知一直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________.解析:若所求直线的斜率存在,则可设其方程为:y -2=k (x -1),即kx -y -k +2=0,由题设有|2k -3-k +2|1+k 2=|0+5-k +2|1+k 2, 即|k -1|=|k -7|,解得k =4. 此时直线方程为4x -y -2=0.又若所求直线的斜率不存在,方程为x =1, 满足题设条件.故所求直线的方程为4x -y -2=0或x =1. 答案:4x -y -2=0或x =18.(2018·山西四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,所以m +n =345.答案:3459.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ).(1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0. 又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0, 显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立, 因此|ab |的最小值为2.10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). 所以d max =|PA |=10.1.(2018·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( ) A .过点P 且与l 垂直的直线 B .过点P 且与l 平行的直线 C .不过点P 且与l 垂直的直线 D .不过点P 且与l 平行的直线解析:选D.因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax+By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C ,故选D.2.(2018·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C.设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,所以BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),所以AC 所在直线方程为y -2=3-2-1-(-4)·(x+4),即x -3y +10=0.联立得⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C. 3.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解:依题意知,k AC =-2,A (5,1), 所以l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,所以C (4,3).设B (x 0,y 0),AB 的中点M 为⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,所以⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,所以B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.4.在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小.解:(1)如图,设B 关于l 的对称点为B ′,AB ′的延长线交l 于P 0,在l上另任取一点P ,则|PA |-|PB |=|PA |-|PB ′|<|AB ′|=|P 0A |-|P 0B ′|=|P 0A |-|P 0B |,则P 0即为所求.易求得直线BB ′的方程为x +3y -12=0, 设B ′(a ,b ),则a +3b -12=0,①又线段BB ′的中点⎝ ⎛⎭⎪⎫a 2,b +42在l 上,故3a -b -6=0.②由①②解得a =3,b =3,所以B ′(3,3). 所以AB ′所在直线的方程为2x +y -9=0.由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0可得P 0(2,5). (2)设C 关于l 的对称点为C ′,与(1)同理可得C ′⎝ ⎛⎭⎪⎫35,245.连接AC ′交l 于P 1,在l 上另任取一点P ,有|PA |+|PC |=|PA |+|PC ′|>|AC ′|=|P 1C ′|+|P 1A |=|P 1C |+|P 1A |,故P 1即为所求. 又AC ′所在直线的方程为19x +17y -93=0,故由⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0可得P 1⎝ ⎛⎭⎪⎫117,267.精美句子1、善思则能“从无字句处读书”。
2021届高考数学一轮总复习第9章解析几何第2节两直线的位置关系跟踪检测文含解析
第九章 解析几何第二节 两直线的位置关系A 级·基础过关|固根基|1.已知直线l :(a -1)x +(b +2)y +c =0,若l∥x 轴,但不重合,则下列结论正确的是( )A .a ≠1,c≠0,b≠2B .a ≠1,b =-2,c≠0C .a =1,b≠-2,c≠0D .其他解析:选C ∵直线l :(a -1)x +(b +2)y +c =0,l∥x 轴,但不重合,∴⎩⎪⎨⎪⎧a -1=0,b +2≠0,c≠0,解得a =1,b≠-2,c≠0.故选C.2.(2019届石家庄模拟)已知点P(3,2)与点Q(1,4)关于直线l 对称,则直线l 的方程为( )A .x -y +1=0B .x -y =0C .x +y +1=0D .x +y =0解析:选A 由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.3.已知过点A(-2,m)和点B(m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A 因为l 1∥l 2,所以k AB =4-m m +2=-2. 解得m =-8.又因为l 2⊥l 3,所以-1n×(-2)=-1, 解得n =-2,所以m +n =-10.4.已知点A(5,-1),B(m ,m),C(2,3),若△ABC 为直角三角形且AC 边最长,则整数m 的值为( )A .4B .3C .2D .1解析:选D 由题意得∠B =90°,即AB⊥BC,所以k AB ·k BC =-1,所以m +1m -5·3-m 2-m=-1,解得m =1或m =72,故整数m 的值为1,故选D. 5.对于任意的实数m ,直线(m -1)x +(2m -1)y =m -5都过一定点,则该定点的坐标为( )A .(9,-4)B .(-9,-4)C .(9,4)D .(-9,4)解析:选A (m -1)x +(2m -1)y =m -5即为m(x +2y -1)+(-x -y +5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,-x -y +5=0,得定点的坐标为(9,-4).故选A.6.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析:由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2. ∴点(1,2)在直线mx +2y +5=0上,即m×1+2×2+5=0,∴m=-9.答案:-97.已知点A(3,2)和B(-1,4)到直线ax +y +1=0的距离相等,则a 的值为________.解析:由点到直线的距离公式可得,|3a +2+1|a 2+1=|-a +4+1|a 2+1,解得a =12或a =-4. 答案:12或-4 8.如果直线l 1:ax +(1-b)y +5=0和直线l 2:(1+a)x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b)=0 ①,因为l 2∥l 3,所以-2(1+a)+1=0 ②,由①②解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,所以d =105=2 5. 答案:2 59.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1)因为l 1⊥l 2,所以a(a -1)-b =0. ①又因为直线l 1过点(-3,-1),所以-3a +b +4=0. ②由①②可得a =2,b =2.(2)因为直线l 2的斜率存在,且l 1∥l 2,所以直线l 1的斜率存在.所以a b =1-a. ③ 又因为坐标原点到这两条直线的距离相等,所以l 1,l 2在y 轴上的截距互为相反数,即4b=b.④ 联立③④可得a =2,b =-2或a =23,b =2. 10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P.(1)点A(5,0)到直线l 的距离为3,求直线l 的方程;(2)求点A(5,0)到直线l 的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2, 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0, 解得⎩⎪⎨⎪⎧x =2,y =1,即交点P(2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离,则d≤|PA|(当l⊥PA 时等号成立).所以d max =|PA|=10.B 级·素养提升|练能力|11.(2019届山东省实验中学模拟)设a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C 由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a,直线bx -sin B ·y+sin C =0的斜率k 2=b sin B ,由正弦定理可得,k 1k 2=-sin A a ·b sin B=-1,所以直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.12.已知直线l 1:2x -y +3=0,直线l 2:4x -2y -1=0和直线l 3:x +y -1=0,若点M 同时满足下列条件:①点M 是第一象限的点;②点M 到l 1的距离是到l 2的距离的12; ③点M 到l 1的距离与到l 3的距离之比是2∶ 5.则点M 的坐标为( )A.⎝ ⎛⎭⎪⎫13,2 B.⎝ ⎛⎭⎪⎫13,3718 C.⎝ ⎛⎭⎪⎫19,2 D.⎝ ⎛⎭⎪⎫19,3718 解析:选D 设点M(x 0,y 0),由点M 满足②,得|2x 0-y 0+3|5=12×|4x 0-2y 0-1|16+4,故2x 0-y 0+132=0或2x 0-y 0+116=0,由点M(x 0,y 0)满足③,根据点到直线的距离公式,得|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,故x 0-2y 0+4=0或3x 0+2=0,由于点M(x 0,y 0)在第一象限,故3x 0+2=0不符合题意,联立方程得⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12,不符合题意; 联立方程得⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718,即点M 的坐标为⎝ ⎛⎭⎪⎫19,3718.故选D. 13.已知直线l :x -y +3=0.(1)求点A(2,1)关于直线l :x -y +3=0的对称点A′;(2)求直线l 1:x -2y -6=0关于直线l 的对称直线l 2的方程.解:(1)设点A′(x′,y′),由题知⎩⎪⎨⎪⎧y ′-1x′-2×1=-1,x′+22-y′+12+3=0,解得⎩⎪⎨⎪⎧x ′=-2,y′=5, 所以A′(-2,5).(2)在直线l 1上取一点,如M(6,0),则M(6,0)关于直线l 的对称点M′必在l 2上.设对称点为M′(a ,b),则⎩⎪⎨⎪⎧a +62-b +02+3=0,b -0a -6×1=-1,解得M′(-3,9).设l 1与l 的交点为N ,则由⎩⎪⎨⎪⎧x -y +3=0,x -2y -6=0,得N(-12,-9).又因为l 2经过点N(-12,-9),所以直线l 2方程为y -9=9+9-3+12(x +3),即2x -y +15=0. 14.已知△ABC 的顶点A(5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知,k AC =-2,A(5,1),所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C(4,3). 设B(x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B(-1,-3), 所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.。
高考数学大一轮复习 第九章 平面解析几何 第2节 两直线的位置关系课件 文 新人教A版
,当一条直线斜率为零,另一条直线斜率不存
在时,两条直线 .
基础诊 断
考点突 破
@《创新设 计》
2.两直线相交 直线 l1:A1x+B1y+C1=0 和 l2:A2x+B2y+C2=0 的公共点的坐标与方程组 AA12xx++BB12yy++CC12==00,的解一一对应. 相交⇔方程组有 唯一解 ,交点坐标就是方程组的解; 平行⇔方程组 无解 ; 重合⇔方程组有 无数个解.
知识梳
1.两条直线平行与垂直的判1,l2,其斜率分别为k1k,1=k2k,2 则有
l1∥l2⇔
.特别地,当直线平l行1,l2的斜率都不存在时,
l1与l2
.
(2)两条直线垂直
k1·k2=-1
如果两条直线l1,l2斜率都存在,设为垂k1直,k2,则l1⊥l2⇔
基础诊 断
考点突 破
@《创新设 计》
5.(必修2P89练习2改编)已知P(-2,m),Q(m,4),且直线PQ垂 直于直线x+y+1=0,则m=________. 解析 由题意知 -m2--4m=1,所以 m-4=-2-m,所以 m=1. 答案 1
基础诊 断
考点突 破
@《创新设 计》
考点一 两直线的平行与垂直 【例1】 (一题多解)已知直线l1:ax+2y+6=0和直线l2:x+ (a-1)y+a2-1=0. (1)当l1∥l2时,求a的值; (2)当l1⊥l2时,求a的值.
@《创新设 计》
2.圆(x+1)2+y2=2 的圆心到直线 y=x+3 的距离为( )
A.1
B.2
C. 2
D.2 2
解析 圆(x+1)2+y2=2 的圆心坐标为(-1,0),由 y=x+3 得 x-y+3=0,则圆心
高三数学一轮复习课件 第九章 9.2 两条直线的位置关系
(1)点A关于直线l的对称点A′的坐标;
解 设 A′(x,y),则yx++21·23=-1,
x-1
y-2
2× 2 -3× 2 +1=0,
解得xy= =1-431,333,
即 A′-1333,143.
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程; 解 在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m′上. 设对称点为M′(a,b),
(2)轴对称 ①点A(a,b)关于直线Ax+By+C=0(B≠0)的对称点A′(m,n),则有
mn--ba×-AB=-1,
a+m b+n A· 2 +B· 2 +C=0. ②直线关于直线的对称可转化为点关于直线的对称问题来解决.
跟踪训练2 已知直线l:2x-3y+1=0,点A(-1,-2).求:
|kx0+b| (3)点P(x0,y0)到直线y=kx+b的距离为 1+k2 .( × )
1234567
(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ ) (5)若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于 -1k ,且 线段AB的中点在直线l上.( √ )
多维探究
题型三 对称问题
命题点1 点关于点中心对称
例2 过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0 截得的线段被点P平分,则直线l的方程为_x_+__4_y_-__4_=__0_.
解析 设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点 B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,
提示 当两条直线l1与l2的斜率都存在时, kl1 · kl2 =-1;当两条直线中一条
北师版高考总复习一轮数学精品课件 第9章平面解析几何 第2节两条直线的位置关系
|k0 + |
(4)点P(x0,y0)到直线y=kx+b的距离为
.( × )
2
1+k
)
2.已知平行直线l1:2x+y-1=0,l2:2x+y+1=0,则l1与l2的距离是
解析 利用两平行线间的距离公式得 d=
|-1-1|
22 +12
= -4.
4-2 + = 0,
考向2由两条直线位置关系求直线方程
例2过两条直线2x+3y+1=0和x-3y+4=0的交点,且垂直于直线3x+4y-7=0的直
线的方程为 4x-3y+9=0
.
=
2 + 3 + 1 = 0,
解析 (方法一)由
解得
-3 + 4 = 0,
=
为所求直线与直线 3x+4y-7=0
4
5
为
5
.
解析 由双曲线方程可得 c= 4 + 5=3,即双曲线的右焦点为 F(3,0).则点 F 到
|3+2×0-8|
直线 x+2y-8=0 的距离 d=
12 +22
= 5.
2 研考点 精准突破
考点一 两条直线的平行与垂直(多考向探究预测)
考向1两条直线平行与垂直的判断及应用
例1(1)(2024·安徽黄山模拟)“a=4”是“直线ax+y+a=0和直线4x+(a-3)y
的直线系方程为 A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括 l2.
高考总复习一轮数学精品课件 第九章 平面解析几何 第二节 两条直线的位置关系
与距离有关的问题
典例突破
例4.(1)若两条平行直线l1:x-2y+m=0(m>0)与l2:x+ny-3=0之间的距离是√5 ,
则m+n=(
)
A.0
C.-2
B.1
D.-1
(2)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则实数a的取值范围
为
.
答案 (1)A
解析
(2)[0,10]
1
(1)由两直线平行,得1
)
记 P 的轨迹为 E,则(
A.E 是一个半径为√5的圆
B.E 是一条与 l 相交的直线
C.E 上的点到 l 的距离均为√5
D.E 是两条平行直线
答案 (1)C
(2) C
解析(1)因为直线 x-y-m=0 与直线 mx+y-4=0 平行,所以
m≠0,且 1
=
1
-1
≠
-4
,解
-
得 m=-1,即两直线为直线 x-y+1=0 与直线 x-y+4=0,所以它们之间的距离为
式.
2 -1
提示
· = -1,
2 -1
1 +2
2
=
1 +2
·
+ .
2
常用结论
1.两种求直线方程的设法
(1)与直线Ax+By+C=0(A2+B2≠0)垂直的直线可设为Bx-Ay+m=0.
(2)与直线Ax+By+C=0(A2+B2≠0)平行的直线可设为Ax+By+n=0.
2.六种常见的对称点
(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).
2021版高考数学一轮复习第9章解析几何第2节两直线的位置关系课时跟踪检测理新人教A版
第二节 两直线的位置关系A 级·基础过关 |固根基|1.“a =2”是“直线y =-ax +2与y =a4x -1垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若直线y =-ax +2与y =a 4x -1垂直,则有(-a )×a4=-1,即a 2=4,所以a =±2,所以“a =2”是“直线y =-ax +2与y =a4x -1垂直”的充分不必要条件.故选A .2.若点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设点P 为(x ,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故点P 的坐标为(1,2)或(2,-1),故选C .3.(2019届广州调研测试)“a =3”是“直线ax +2y +3a =0和3x +(a -1)y =a -7平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 两直线平行的充要条件是a 3=2a -1≠3a 7-a .由a 3=2a -1,得a 2-a =6,解得a=3或a =-2.当a =-2时,a 3=2a -1=3a7-a,两直线重合,不符合题意,舍去,所以a =3,故“a =3”是“直线ax +2y +3a =0和3x +(a -1)y =a -7平行”的充要条件,故选C .4.(2019届江西南昌检测)直线3x -4y +5=0关于x 轴对称的直线的方程是( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 在所求直线上任取一点P (x ,y ),则点P 关于x 轴的对称点P ′(x ,-y )在已知的直线3x -4y +5=0上,所以3x -4(-y )+5=0,即3x +4y +5=0,故选A .5.(2019届河北模拟)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( )A .-6<k <-2B .-5<k <-3C .k <-6D .k >-2解析:选A 解方程组⎩⎪⎨⎪⎧y =-2x +3k +14,x -4y =-3k -2,得⎩⎪⎨⎪⎧x =k +6,y =k +2.因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,所以⎩⎪⎨⎪⎧k +6>0,k +2<0,所以-6<k <-2.故选A .6.已知点A (x ,5)关于点(1,y )的对称点是(-2,-3),则点P (x ,y )到原点的距离是( ) A .4 B .13 C .15D .17解析:选D 根据中点坐标公式得⎩⎪⎨⎪⎧x -22=1,5-32=y ,解得⎩⎪⎨⎪⎧x =4,y =1,所以点P 的坐标为(4,1),所以点P (x ,y )到原点的距离d =(4-0)2+(1-0)2=17,故选D .7.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B 由题知,直线l 1过定点(4,0),则由条件可知,直线l 2所过定点关于(2,1)对称的点为(4,0),故可知直线l 2所过定点为(0,2),故选B .8.(2019届南昌二中月考)设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫-∞,-52∪⎝ ⎛⎭⎪⎫43,+∞B .⎝ ⎛⎭⎪⎫-43,52C .⎣⎢⎡⎦⎥⎤-52,43 D .⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫52,+∞ 解析:选B 易知直线ax +y +2=0过定点P (0,-2),∴k PA =-52,k PB =43.设直线ax +y+2=0的斜率为k ,若直线ax +y +2=0与线段AB 没有交点,根据图象(图略)可知-52<k <43,即-52<-a <43,解得-43<a <52,故选B .9.过直线l 1:x -3y +4=0和直线l 2:2x +y +5=0的交点和原点的直线方程为( ) A .19x -9y =0B .9x +19y =0C .19x -3y =0D .3x +19y =0解析:选D 易知(0,0)不在直线2x +y +5=0上,可设过两直线交点的直线系方程为x -3y +4+λ(2x +y +5)=0,将(0,0)代入,求得λ=-45,故所求直线方程为x -3y +4-45(2x +y +5)=0,即3x +19y =0.10.(2019届绵阳诊断)已知直线l 1:x +(1+k )y =2-k 与l 2:kx +2y +8=0平行,则k 的值是________.解析:依题意得1k =1+k 2≠2-k-8,解得k =1或k =-2(舍去).答案:111.(2019届武汉调研)已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,∴λ=2或12, ∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1).如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=(5-2)2+(0-1)2=10.12.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于4 2.证明:(1)显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,∴⎩⎪⎨⎪⎧2x -y -6=0,x -y -4=0,解得⎩⎪⎨⎪⎧x =2,y =-2,故直线经过的定点为M (2,-2). (2)过P 作直线的垂线段PQ ,由垂线段长度小于斜线段长度知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.。
高三数学一轮复习 第九章 平面解析几何 第二节 两直线的位置关系与距离公式夯基提能作业本 理
第二节两直线的位置关系与距离公式A组基础题组1.已知A(2,3),B(-4,0),P(-3,1),Q(-m,m+1),若直线AB∥PQ,则m的值为( )A.-1B.0C.1D.22.(2017甘肃武威六中期末)设不同直线l1:2x-my-1=0,l2:(m-1)x-y+1=0,则“m=2”是“l1∥l2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.点P在直线3x+y-5=0上,且点P到直线x-y-1=0的距离为,则点P的坐标为( )A.(1,2)B.(2,1)C.(1,2)或(2,-1)D.(2,1)或(-1,2)4.平面直角坐标系中与直线y=2x+1关于点(1,1)对称的直线方程是( )A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-35.若函数y=ax+8与y=-x+b的图象关于直线y=x对称,则a+b=( )A. B.-C.2 D.-26.与直线l1:3x+2y-6=0和直线l2:6x+4y-3=0等距离的直线方程是.7.若三条直线2x+3y+8=0,x-y-1=0和x+by=0相交于一点,则b= .8.设直线l经过点A(-1,1),则当点B(2,-1)与直线l的距离最远时,直线l的方程为.9.已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.10.已知直线l:(2a+b)x+(a+b)y+a-b=0及点P(3,4).(1)证明直线l过某定点,并求该定点的坐标;(2)当点P到直线l的距离最大时,求直线l的方程.B组提升题组11.已知直线l过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l的方程为( )A.2x+3y-18=0B.2x-y-2=0C.3x-2y+18=0或x+2y+2=0D.2x+3y-18=0或2x-y-2=012.已知P(x0,y0)是直线l:Ax+By+C=0外一点,则方程Ax+By+C+(Ax0+By0+C)=0表示( )A.过点P且与l垂直的直线B.过点P且与l平行的直线C.不过点P且与l垂直的直线D.不过点P且与l平行的直线13.已知直线l1与l2:x+y-1=0平行,且l1与l2之间的距离是,则直线l1的方程为.14.以点A(4,1),B(1,5),C(-3,2),D(0,-2)为顶点的四边形ABCD的面积为.15.在直线l:3x-y-1=0上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小.16.已知三条直线l1:2x-y+a=0(a>0),l2:4x-2y-1=0和l3:x+y-1=0,且两平行直线l1与l2间的距离是.(1)求a的值;(2)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是∶?若能,求P点坐标;若不能,说明理由.答案全解全析A组基础题组1.C ∵AB∥PQ,∴k AB=k PQ,即=,解得m=1(经检验直线AB与PQ不重合).故选C.2.C 当m=2时,代入两直线方程中,易知两直线平行,即充分性成立.当l1∥l2时,显然m≠0,从而有=m-1,解得m=2或m=-1,但当m=-1时,两直线重合,故m=2,故必要性成立,故选C.3.C 设点P的坐标为(x,5-3x),则点P到直线x-y-1=0的距离d===,∴|2x-3|=1,∴x=1或x=2.∴点P的坐标为(1,2)或(2,-1).4.D 在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B关于点(1,1)对称的点为N(1,-1).由两点式求出直线MN的方程为=,即y=2x-3.5.C 直线y=ax+8关于y=x对称的直线方程为x=ay+8,所以x=ay+8与y=-x+b为同一直线,可得所以a+b=2.6.答案12x+8y-15=0解析直线l2:6x+4y-3=0可化为3x+2y-=0,所以l1与l2平行,设与l1,l2等距离的直线的方程为3x+2y+c=0,则|c+6|=,解得c=-,所以所求直线的方程为12x+8y-15=0.7.答案-解析由解得将其代入x+by=0,得b=-.8.答案3x-2y+5=0解析设点B(2,-1)到直线l的距离为d,当d=|AB|时取得最大值,此时直线l垂直于直线AB,kl=-=,所以直线l的方程为y-1=(x+1),即3x-2y+5=0.9.解析解方程组得交点坐标为(1,2).①若点A,B在直线l的同侧,则l∥AB.k AB==-,由点斜式得直线l的方程为y-2=-(x-1),即x+2y-5=0.②若点A,B在直线l的异侧,则直线l经过线段AB的中点,由两点式得直线l的方程为=,即x-6y+11=0.综上所述,直线l的方程为x+2y-5=0或x-6y+11=0.10.解析(1)直线l的方程可化为a(2x+y+1)+b(x+y-1)=0,由得所以直线l恒过定点(-2,3).(2)由(1)知直线l恒过定点(-2,3),设该点为A,当直线l垂直于直线PA时,点P到直线l的距离最大.又k PA==,所以满足题意的直线l的斜率为-5.故满足题意的直线l的方程为y-3=-5(x+2),即5x+y+7=0.B组提升题组11.D 由题知直线l的斜率存在,设所求直线方程为y-4=k(x-3),即kx-y+4-3k=0,由已知,得=,所以k=2或k=-.所以直线l的方程为2x-y-2=0或2x+3y-18=0.12.D 因为点P(x0,y0)是直线l:Ax+By+C=0外一点,所以Ax0+By0+C≠0,所以方程Ax+By+C+(Ax0+By0+C)=0中的常数项C+(Ax0+By0+C)≠C,因此方程Ax+By+C+(Ax0+By0+C)=0表示不过点P且与l平行的直线,故选D.13.答案x+y+1=0或x+y-3=0解析因为l1与l2:x+y-1=0平行,所以可设l1的方程为x+y+b=0(b≠-1).又因为l1与l2之间的距离是,所以=,解得b=1或b=-3,即直线l1的方程为x+y+1=0或x+y-3=0.14.答案25解析因为kAB==-,k DC==-,k AD==,k BC==,所以k AB=k DC,k AD=k BC,所以四边形ABCD为平行四边形.又k AD·k AB=-1,即AD⊥AB,故四边形ABCD为矩形.故四边形ABCD的面积S=|AB|·|AD|=×=25.15.解析(1)如图,设B关于l的对称点为B',AB'的延长线交l于P 0,在l上另任取一点P,则|PA|-|PB|=|PA|-|PB'|<|AB'|=|P0A|-|P0B'|=|P0A|-|P0B|,则P0即为所求.易求得直线BB'的方程为x+3y-12=0,设B'(a,b),则a+3b-12=0,①又线段BB'的中点在l上,故3a-b-6=0.②由①②解得a=3,b=3,所以B'(3,3).所以AB'所在直线的方程为2x+y-9=0.由可得P0(2,5).(2)设C关于l的对称点为C',与(1)同理可得C'.连接AC'交l于P1,在l上另任取一点P,有|PA|+|PC|=|PA|+|PC'|>|AC'|=|P1C'|+|P1A|=|P1C|+|P1A|,故P1即为所求.又AC':19x+17y-93=0,联立解得P1.16.解析(1)l 2的方程可化为2x-y-=0,∴l1与l2间的距离d==,∴=,∴=,∵a>0,∴a=3.(2)能.理由如下:假设存在满足题意的P点.设点P(x0,y0),因为P点满足条件②,所以P点在与l1、l2平行的直线l':2x-y+C=0上,其中C满足=×,则C=或C=,∴2x0-y0+=0或2x0-y0+=0.因为P点满足条件③,所以由点到直线的距离公式得=×,即|2x0-y0+3|=|x0+y0-1|,∴x0-2y0+4=0或3x0+2=0.∵P点在第一象限,∴3x0+2=0不满足题意.由解得(舍去).由解得∴存在满足题意的P点,且P点的坐标为.。
高考数学一轮复习 第9章 平面解析几何 2 第2讲 两直线的位置关系教案 理-高三全册数学教案
第2讲两直线的位置关系1.两直线的平行、垂直与其斜率的关系条件两直线位置关系斜率的关系两条不重合的直线l1,l2,斜率分别为k1,k2平行k1=k2k1与k2都不存在垂直k1k2=-1k1与k2一个为零、另一个不存在2. 两条直线的交点3.三种距离点点距点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=(x2-x1)2+(y2-y1)2点线距点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2线线距两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离d=|C1-C2|A2+B24. 几种常见的直线系方程(1)平行于直线Ax+By+C=0的直线系方程:Ax+By+λ=0(λ≠C).(2)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ=0.(3)过两条已知直线A1x+B1y+C1=0,A2x+B2y+C2=0交点的直线系方程:A1x+B1y+C1+λ(A2x+B2y+C2)=0(不包括直线A2x+B2y +C2=0).判断正误(正确的打“√”,错误的打“×”)(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.( )(2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( )(3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则直线l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0D .2x -3y +8=0解析:选A.由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B .2-2 C.2-1D.2+1解析:选C.由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1.(教材习题改编)已知直线l 1:ax +3y +1=0,l 2:2x +(a +1)y +1=0互相平行,则实数a 的值是________.解析:由直线l 1与l 2平行,可得⎩⎪⎨⎪⎧a (a +1)=2×3,a ×1≠2,解得a =-3.答案:-3若三条直线2x +3y +8=0,x -y -1=0和x +by =0相交于一点,则b =________.解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0解得⎩⎪⎨⎪⎧x =-1,y =-2.将其代入x +by =0,得b =-12.答案:-12两条直线平行与垂直(高频考点)两条直线的平行与垂直是高考的热点,高考多出现在选择题、填空题或解答题中的一小问,一般难度较小.高考对两条直线的平行与垂直的考查主要有以下两个命题角度: (1)两条直线位置关系的判断;(2)由两条直线位置关系求直线方程.[典例引领]角度一 两条直线位置关系的判断设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】 当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l 1∥l 2时,显然m ≠0,从而有2m=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立.【答案】 C角度二 由两条直线位置关系求直线方程(2018·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________. 【解析】法一:由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0解得⎩⎪⎨⎪⎧x =-53,y =79,即交点为⎝ ⎛⎭⎪⎫-53,79,因为所求直线与直线3x +4y -7=0垂直, 所以所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝ ⎛⎭⎪⎫x +53,即4x -3y +9=0.法二:由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0可解得交点为⎝ ⎛⎭⎪⎫-53,79,代入4x -3y +m =0得m =9, 故所求直线方程为4x -3y +9=0.法三:由题意可设所求直线的方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0,① 又因为所求直线与直线3x +4y -7=0垂直, 所以3(2+λ)+4(3-3λ)=0,所以λ=2,代入①式得所求直线方程为4x -3y +9=0. 【答案】 4x -3y +9=0两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1. [提醒] 判断两条直线位置关系应注意: (1)注意斜率不存在的特殊情况;(2)注意x ,y 的系数不能同时为零这一隐含条件.[通关练习]1.已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B. 13或-1C. 13D .-1解析:选B.因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.2.求满足下列条件的直线方程.(1)过点P (-1,3)且平行于直线x -2y +3=0; (2)已知A (1,2),B (3,1),线段AB 的垂直平分线.解:(1)设直线方程为x -2y +c =0,把P (-1,3)代入直线方程得c =7,所以直线方程为x -2y +7=0. (2)AB中点为⎝⎛⎭⎪⎫1+32,2+12, 即⎝⎛⎭⎪⎫2,32,直线AB 斜率k AB =2-11-3=-12,故线段AB 垂直平分线斜率k =2,所以其方程为y -32=2(x -2),即4x -2y -5=0.距离公式[典例引领](1)已知A (2,0),B (0,2),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( ) A .4 B .3 C .2D .1(2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________. 【解析】 (1)设点C (t ,t 2),直线AB 的方程是x +y -2=0, |AB |=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t +t 2-2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个. (2)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,因此c =2或-6. 【答案】 (1)A (2)2或-6距离的求法(1)点到直线的距离可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.(2)两平行直线间的距离①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式.[通关练习]1.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是( )A .[-10,10]B .[-10,5]C .[-5,5]D .[0,10]解析:选D.由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].2.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________.解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.答案:12x +8y -15=03.l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.解析:当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.又k AB =-1-10-1=2,所以两条平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=0 对称问题[典例引领]已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 【解】 (1)设A ′(x ,y ),由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.[通关练习]1.(2018·河北五校联考)直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( ) A .2x +3y -12=0 B .2x -3y -12=0 C .2x -3y +12=0D .2x +3y +12=0解析:选D.由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0,故选D. 2.如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程是________.解析:直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210. 答案:210由一般式确定两直线位置关系的方法直线方程l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0)l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件 A 1A 2+B 1B 2=0 l 1与l 2平行的充分条件 A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0) l 1与l 2相交的充分条件 A 1A 2≠B 1B 2(A 2B 2≠0) l 1与l 2重合的充分条件A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0) 易错防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据相应公式或性质判断,若直线无斜率,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数化为相同的形式.1.(2018·石家庄模拟)已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y +1=0D .x +y =0解析:选A.由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.2.已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( ) A .-10 B .-2 C .0D .8解析:选A.因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n×(-2)=-1,解得n =-2,所以m +n =-10.3.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12 B .-12C .2D .-2解析:选A.直线y =2x +3与y =-x 的交点为A (-1,1),而直线y =2x +3上的点(0,3)关于y =-x 的对称点为B (-3,0),而A ,B 两点都在l 2上,所以kl 2=1-0-1-(-3)=12.4.已知点A (-1,2),B (3,4).P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为( ) A .15B.552C .6 5D.152解析:选D.设AB 的中点坐标为M (1,3), k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0.令y =0,则x =52,即P 点的坐标为(52,0),|AB |=(-1-3)2+(2-4)2=2 5.P 到AB 的距离为|PM |=(1-52)2+32=352.所以S △PAB =12|AB |·|PM |=12×25×352=152.5.(2018·河南安阳模拟)两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值范围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34 ]解析:选D.当PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34, 所以l 1,l 2之间距离的取值范围是(0,34 ]. 故选D.6.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________. 解析:设点P的坐标为⎝⎛⎭⎪⎫x 0,1x 0,x 0>0,曲线y =1x在点P 处的切线斜率k 2=-1x 20(x 0>0).又因为曲线y =e x 在点(0,1)处的切线斜率k 1=e x|x =0=1,k 1k 2=-1,所以x 20=1,所以x 0=1,所以点P 的坐标为(1,1). 答案:(1,1)7.已知一直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________.解析:若所求直线的斜率存在,则可设其方程为:y -2=k (x -1),即kx -y -k +2=0,由题设有|2k -3-k +2|1+k 2=|0+5-k +2|1+k 2, 即|k -1|=|k -7|,解得k =4.此时直线方程为4x -y -2=0.又若所求直线的斜率不存在,方程为x =1, 满足题设条件.故所求直线的方程为4x -y -2=0或x =1. 答案:4x -y -2=0或x =18.(2018·山西四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,所以m +n =345.答案:3459.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ).(1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0.又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立, 因此|ab |的最小值为2.10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).所以d max =|PA |=10.1.(2018·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( ) A .过点P 且与l 垂直的直线 B .过点P 且与l 平行的直线 C .不过点P 且与l 垂直的直线 D .不过点P 且与l 平行的直线解析:选D.因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax+By +C =0平行,排除C ,故选D.2.(2018·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( ) A .(-2,4) B .(-2,-4) C .(2,4)D .(2,-4)解析:选C.设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,所以BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),所以AC 所在直线方程为y -2=3-2-1-(-4)·(x +4),即x -3y +10=0.联立得⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C. 3.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知,k AC =-2,A (5,1), 所以l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,所以C (4,3).设B (x 0,y 0),AB 的中点M为⎝⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,所以⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,所以B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.4.在直线l :3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大;(2)P 到A (4,1)和C (3,4)的距离之和最小.解:(1)如图,设B 关于l 的对称点为B ′,AB ′的延长线交l 于P 0,在l 上另任取一点P ,则|PA |-|PB |=|PA |-|PB ′|<|AB ′|=|P 0A |-|P 0B ′|=|P 0A |-|P 0B |,则P 0即为所求.易求得直线BB ′的方程为x +3y -12=0, 设B ′(a ,b ),则a +3b -12=0,① 又线段BB ′的中点⎝ ⎛⎭⎪⎫a 2,b +42在l 上,故3a -b -6=0.②由①②解得a =3,b =3,所以B ′(3,3). 所以AB ′所在直线的方程为2x +y -9=0.由⎩⎪⎨⎪⎧2x +y -9=0,3x -y -1=0可得P 0(2,5).(2)设C 关于l 的对称点为C ′,与(1)同理可得C ′⎝ ⎛⎭⎪⎫35,245.连接AC ′交l 于P 1,在l 上另任取一点P ,有|PA |+|PC |=|PA |+|PC ′|>|AC ′|=|P 1C ′|+|P 1A |=|P 1C |+|P 1A |,故P 1即为所求.又AC ′所在直线的方程为19x +17y -93=0,故由⎩⎪⎨⎪⎧19x +17y -93=0,3x -y -1=0可得P 1⎝ ⎛⎭⎪⎫117,267.。
高考数学一轮复习第九章平面解析几何第2讲两条直线的位置关系练习理新人教A版
【创新设计】(全国通用)2017版高考数学一轮复习 第九章 平面解析几何 第2讲 两条直线的位置关系练习 理 新人教A 版基础巩固题组(建议用时:40分钟)一、选择题1.(2016·济南模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =( )A.-1B.2C.0或-2D.-1或2解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或2. 答案 D2.(2016·郑州质量预测)“a =1”是“直线ax +y +1=0与直线(a +2)x -3y -2=0垂直”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 解析 ∵ax +y +1=0与(a +2)x -3y -2=0垂直,∴a (a +2)-3=0,∴a =1或a =-3.∴“a =1”是两直线垂直的充分不必要条件.答案 B3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( )A.19x -9y =0B.9x +19y =0C.19x -3y =0D.3x +19y =0 解析 由⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37, 则所求直线方程为:y =37-197x =-319x ,即3x +19y =0.答案 D4.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A.0B.2C.13D.4解析 ∵63=m 4≠-143,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2. 答案 B5.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( )A.(0,4)B.(0,2)C.(-2,4)D.(4,-2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).答案 B二、填空题6.点(2,1)关于直线x -y +1=0的对称点为________.解析 设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0, 解得⎩⎪⎨⎪⎧x 0=0,y 0=3,故所求对称点为(0,3). 答案 (0,3)7.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0,解得a =35. 答案 358.(2016·秦皇岛检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2,∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案 2x +3y -18=0或2x -y -2=0三、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合.解 (1)由已知1×3≠m (m -2),即m 2-2m -3≠0,解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2. (3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解 依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3). 设B (x 0,y 0),AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65, ∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0. 能力提升题组(建议用时:20分钟)11.(2016·泉州一模)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A.2B.2 2C.4D.2 3 解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值, 而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2.所以m 2+n 2的最小值为4.答案 C12.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.210 B.6 C.3 3 D.2 5 解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.答案 A13.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直,即△APB 为直角三角形,∴|PA |·|PB |≤|PA |2+|PB |22=|AB |22=102=5. 当且仅当|PA |=|PB |时,等号成立.答案 514.(1)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.(2)光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 (1)设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,∴a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.(2)法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5. 而PP ′的中点Q 的坐标为⎝⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上, ∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213. 根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23, 又PP ′的中点Q ⎝⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0, 由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0. 可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0,∴所求反射光线所在的直线方程为29x -2y +33=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(四十六) 两直线的位置关系一抓基础,多练小题做到眼疾手快1.(2015·盐城二模)若直线y =kx +1与直线2x +y -4=0垂直,则k =________. 解析:因为直线2x +y -4=0的斜率为-2, 故由条件得k =12.答案:122.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 答案:-13或-793.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:因为直线3x +4y -3=0与直线6x +my +14=0平行,所以3m -24=0,解得m =8,故直线6x +my +14=0可化为3x +4y +7=0,所以两平行直线间的距离是d =|-3-7|32+42=2.答案:24.(2016·宿迁模拟)直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0.答案:x +2y -3=05.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________. 解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]二保高考,全练题型做到高考达标1.(2015·苏州二模)已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =________.解析:由题意可得a ≠-5,所以3+a 2=45+a ≠5-3a8,解得a =-7(a =-1舍去).答案:-72.(2016·南京一中检测)P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上的任意一点,则PQ 的最小值为________.解析:因为36=48≠-125,所以两直线平行,根据平面几何的知识,得PQ 的最小值为这两条平行直线间的距离.在直线3x +4y -12=0上取一点(4,0),此点到另一直线6x +8y +5=0的距离为|6×4+8×0+5|62+82=2910,所以PQ 的最小值为2910. 答案:29103.(2015·苏北四市调研)已知直线l 1:ax +(3-a )y +1=0,l 2:2x -y =0.若l 1⊥l 2,则实数a 的值为________.解析:由2×a +(3-a )×(-1)=0,解得a =1. 答案:14.(2016·天一中学检测)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是________.解析:因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0. 答案:x -2y -1=05.已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是________.解析:因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,AB 的方程为y +x -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝ ⎛⎭⎪⎫12,12.答案:⎝ ⎛⎭⎪⎫12,126.(2016·无锡调研)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:依题意,设直线l :y -4=k (x -3),即kx -y +4-3k =0,则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6), 解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0. 答案:2x +3y -18=0或2x -y -2=07. 设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是________________.解析:由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0. 答案:x +y -7=08.(2016·江苏五星级学校联考)已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x+4y的最小值为________.解析:由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3,∴2x+4y≥22x·4y=22x +2y=42,当且仅当x =2y =32时等号成立,故2x +4y的最小值为4 2.答案:4 29.已知光线从点A (-4,-2)射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′, 则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C . 故BC 所在的直线方程为y -6-4-6=x -1-2-1,即10x -3y +8=0. 10.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程.解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,∴直线l 恒过定点(-2,3).(2)设直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大.又直线PA 的斜率k PA =4-33+2=15,∴直线l 的斜率k l =-5. 故直线l 的方程为y -3=-5(x +2),即5x +y +7=0. 三上台阶,自主选做志在冲刺名校1.(2016·湖北七市三联)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是________.解析:依题意得|a -b |=a +b2-4ab =1-4c ,当0≤c ≤18时,22≤|a -b |=1-4c ≤1.因为两条直线间的距离等于|a -b |2,所以两条直线间的距离的最大值与最小值分别是22,12. 答案:22,122.(2016·徐州一中检测)已知平面上一点M (5,0),若直线上存在点P 使PM =4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是________(填序号).①y =x +1;②y =2;③y =43x ;④y =2x +1.解析:设点M 到所给直线的距离为d ,①d =|5+1|12+-2=32>4,故直线上不存在点P 到点M 的距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点P ,使之到点M 的距离等于4,是“切割型直线”;③d =|4×5-0|-2+42=4,所以直线上存在一点P ,使之到点M 的距离等于4,是“切割型直线”;④d =|2×5+1|22+-2=1155>4,故直线上不存在点P ,使之到点M 的距离等于4,不是“切割型直线”.故填②③. 答案:②③3.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R).(1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0.又因为a 2+1≠3,所以b ≠-6. 故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2.。