3年高考(新课标)版高考数学一轮复习9.1直线方程及两条直线的位置关系

合集下载

湘教版高考总复习一轮数学精品课件 第9章平面解析几何 第2节两条直线的位置关系

湘教版高考总复习一轮数学精品课件 第9章平面解析几何 第2节两条直线的位置关系
l1∥l2⇔k1=k2,且b1≠b2
l1:y=k1x+b1
两直线平行时,它们的斜率可能都不存在
l2:y=k2x+b2
l1与l2相交⇔k1≠k2
l1⊥l2⇔ k1k2=-1
当一条直线的斜率不存在,另一条直线的斜率为0时,l1⊥l2
若 A1,A2,B1,B2,C1,C2 均不为 0,则 l1 与 l2 重
分别为2x+y-2=0,2x+y-2=0,此时l1与l2重合,当a=-1时,两条直线的方程分别
为2x-y+2=0,2x-y-2=0,此时l1与l2平行;当直线l1与l2相交时,2a2≠2,即a≠±1;当
直线l1与l2垂直时,4a+a=0,解得a=0.
考点二 距离问题
例3(1)在平面直角坐标系中,已知点A(cos 15°,sin 15°),B(cos 75°,
7 5
=
.
10
2
2
x-4y+3=0之间的距离为 2 + (-4)
|-4-3|
题组三连线高考
8.(2009·上海,文15)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,
则k的值是( C )
A.1或3
B.1或5
C.3或5
D.1或2
解析 当 k-3=0 时,两直线的方程分别为 y=-1 和
的坐标为(-2-x,4-y).因为点(-2-x,4-y)在直线2x+3y-6=0上,所以2(-2-x) +3(4y)-6=0,即2x+3y-2=0.
(2)过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段恰

两条直线的位置关系9题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(原卷版)

两条直线的位置关系9题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(原卷版)

专题39两条直线的位置关系9题型分类1.两条直线的位置关系直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 3:A 1x +B 1y +C 1=0,l 4:A 2x +B 2y +C 2=0(其中l 1与l 3是同一条直线,l 2与l 4是同一条直线)的位置关系如下表:位置关系l 1,l 2满足的条件l 3,l 4满足的条件平行k 1=k 2且b 1≠b 2A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0垂直k 1·k 2=-1A 1A 2+B 1B 2=0相交k 1≠k 2A 1B 2-A 2B 1≠02.三种距离公式(1)两点间的距离公式①条件:点P 1(x 1,y 1),P 2(x 2,y 2).②结论:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.③特例:点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 2.(2)点到直线的距离点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.常用结论1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.2.五种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).(一)判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.(二)利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.y (三)对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.求直线l 关于直线0l 对称的直线'l 若直线0//l l ,则//'l l ,且对称轴0l 与直线l 及'l 之间的距离相等.此时0,,'l l l 分别为00,0,++=++=Ax By C Ax By C 22'0(0)++=+≠Ax By C A B ,由002222|||'|--=++C C C C A B A B ,求得'C ,从而得'l .若直线l 与0l 不平行,则0= l l Q .在直线l 上取异于Q 的一点11(,)P x y ,然后求得11(,)P x y 关于直线0l 对称的点22'(,)P x y ,再由,'Q P 两点确定直线'l (其中0'= l l l Q ).题型6:点线对称6-1.(2024高二上·全国·课后作业)若直线定点()2,0A.35B.6-3.(2024高二上·四川遂宁-A.(1,4)--C.(3,4)题型7:线点对称7-1.(2024高二·全国·单元测试)直线7-2.(2024高三上·辽宁营口时,点M到直线2l的距离为7-3.(2024高二上·江苏苏州的直线方程为.7-4.(2024高二上·全国·课后作业)直线题型8:线线对称8-1.(2024高三·全国·专题练习)已知直线直线为2l,则直线2l的方程为8-2.(2024高二上·湖北黄石的距离是25,则直线1l关于直线(四)一、单选题1.(2024高二上·浙江·期中)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于()A B .2C 1D 12.(2024高二上·黑龙江哈尔滨·期末)已知两条直线1:3460l x y -+=,2:3440l x y --=,则这两条直线之间的距离为()A .2B .3C .5D .103.(2024高二·全国·课后作业)求直线x +2y -1=0关于直线x +2y +1=0对称的直线方程()A .x +2y -3=0B .x +2y +3=0C .x +2y -2=0D .x +2y +2=04.(2024高二·全国·课后作业)直线0ax by c ++=关于直线0x y -=对称的直线为()A .0ax by c -+=B .0bx ay c -+=C .0bx ay c ++=D .0bx ay c +-=5.(2024·浙江温州·三模)已知直线12:0,:10l x y l ax by +=++=,若12l l ⊥,则a b +=()A .1-B .0C .1D .26.(2024·安徽蚌埠·三模)已知直线1l :210ax y ++=,2l :()30a x y a --+=,则条件“1a =”是“12l l ⊥”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不必要也不充分条件7.(2024高二上·全国·课后作业)直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为()A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫⎪⎝⎭8.(2024高二下·四川广元·期中)若直线2mx ny +=过点()2,2A ,其中m ,n 是正实数,则12m n+的最小值是()A .3B .3+C .92D .59.(2024高二上·全国·课后作业)若直线230x y --=与420x y a -+=,则a 的值为()A .4B6C .4或16-D .8或16-10.(2024高二上·全国·课后作业)抛物线214y x =的焦点关于直线10x y --=的对称点的坐标是()A .(2,1)-B .(1,1)-C .11,44⎛⎫- ⎪⎝⎭D .11,1616⎛⎫- ⎪⎝⎭11.(2024·四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .12.(2024·全国)点(0,﹣1)到直线()1y k x =+距离的最大值为()A .1B CD .213.(2024·北京东城·二模)已知三条直线1:220l x y -+=,2:20l x -=,3:0+=l x ky 将平面分为六个部分,则满足条件的k 的值共有()A .1个B .2个C .3个D .无数个14.(2024高二上·辽宁沈阳·阶段练习)两直线方程为1:3260l x y --=,22:0x y l --=,则1l 关于2l 对称的直线方程为()A .3240x y --=B .2360x y +-=C .2340x y --=D .3260x y --=15.(2024高一下·海南·期末)设,,a b c 分别是ABC V 中,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ⋅++=与sin sin 0bx B y C -⋅+=的位置关系是()A .平行B .重合C .垂直D .相交但不垂直16.(2024高三下·江西·开学考试)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120°时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等且均为120°.根据以上性质,.则(,)F x y =的最小值为()A .4B .2+C .3+D .4+17.(2024·贵州毕节·模拟预测)直线()()1:11l x a y a a R ++=-∈,直线21:2l y x =-,下列说法正确的是()A .R a ∃∈,使得12l l ∥B .R a ∃∈,使得12l l ⊥C .R a ∀∈,1l 与2l 都相交D .R a ∃∈,使得原点到1l 的距离为318.(2024·全国)如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么()A .1,63a b ==B .1,63a b ==-C .3,2a b ==-D .3,6a b ==19.(2024高一·全国·课后作业)已知ΔA 的顶点()2,1B ,()6,3C -,其垂心为()3,2H -,则其顶点A 的坐标为A .()19,62--B .()19,62-C .()19,62-D .()19,6220.(2024高三·全国·课后作业)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为()A .B .C .D .21.(2024高二上·湖北·阶段练习)在等腰直角三角形ABC 中,3AB AC ==,点P 是边AB 上异于A B 、的一点,光线从点P 出发,经BC CA 、反射后又回到点P ,如图,若光线QR 经过ABC V 的重心,则AP =()A .32B .34C .1D .222.(2024高一上·湖南长沙·开学考试)如下图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为()A .53,22E ⎛⎫- ⎪⎝⎭,(0,2)F B .(2,2)E -,(0,2)F C .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D .(2,2)E -,20,3F ⎛⎫⎪⎝⎭23.(2024高二上·广东深圳·期中)过定点A 的动直线0x ky +=和过定点B 的动直线210kx y k --+=交于点M ,则MA MB +的最大值是()A .B .3C D24.(2024高二下·陕西西安·期末)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是()AB C .5D .1025.(河北省张家口市2023-2024学年高二上学期期末数学试题)已知0x y +=,则)AB .CD .26.(2024·贵州·模拟预测)已知,x y +∈R ,满足22x y +=,则x 的最小值为()A .45B .85C .1D .1327.(2024·上海静安·二模)设直线1:220l x y --=与2l 关于直线:240l x y --=对称,则直线2l 的方程是()A .112220x y +-=B .11220x y ++=C .5110x y +-=D .10220x y +-=28.(2024高三·北京·+的最小值所属区间为()A .[10,11]B .(11,12]C .(12,13]D .前三个答案都不对29.(2024·北京)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .4二、多选题30.(2024高二下·江苏南京·期末)已知动点,A B 分别在直线1:3460l x y -+=与2:34100l x y -+=上移动,则线段AB 的中点P 到坐标原点O )A B .75C D 31.(24-25高二上·全国·单元测试)已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,下列结论正确的是()A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交32.(24-25高二上·全国·课后作业)已知直线l 10y -+=,则下列结论正确的是()A .直线l 的一个法向量为)B .若直线m :10x +=,则l m ⊥C .点)到直线l 的距离是2D .过()2与直线l 40y --=33.(2024高二下·江西南昌·阶段练习)已知曲线e 2xy =和直线:240l x y --=,则()A .曲线上与直线l 平行的切线的切点为e 1,2⎛⎫⎪⎝⎭B .曲线上与直线l 平行的切线的切点为10,2⎛⎫⎪⎝⎭C .曲线上的点到直线lD .曲线上的点到直线l 的最短距离为(3e 5+34.(福建省莆田第三中学,励志学校2023-2024学年高二上学期期中联考数学试卷)以下四个命题叙述正确的是()A .直线210x y -+=在x 轴上的截距是1B .直线0x ky +=和2380x y ++=的交点为P ,且P 在直线10x y --=上,则k 的值是12-C .设点(,)M x y 是直线20x y +-=上的动点,O 为原点,则OM 的最小值是2D .直线()12:310:2110L ax y L x a y ++=+++=,,若12//L L ,则3a =-或2三、填空题35.(2024高二·全国·课后作业)已知(),6A a ,()2,B b -,点()2,3P 是线段AB 的中点,则a b +=.36.(2024高二·江苏·假期作业)已知点(),4M x -与点()2,3N 间的距离为x =.37.(2024高三上·河北廊坊·阶段练习)与直线:2310l x y -+=关于点()4,5对称的直线的方程为.38.(2024高一·全国·课后作业)已知直线l 与直线1:1l y =及直线2:70l x y +-=分别交于点P ,Q .若PQ 的中点为点()1,1M -,则直线l 的斜率为.39.(2024高二上·辽宁大连·阶段练习)设点A 在x 轴上,点B 在y 轴上,AB 的中点是1(2)P -,,则AB 等于40.(2024高三上·黑龙江哈尔滨·期中)点()0,1-到直线()2y k x =+的距离的最大值是.41.(2024高二上·江苏南通·期中)已知点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标为()2,1-,则线段AB 的长度为.42.(2024高二·全国·课堂例题)已知点()2,1A ,()3,4B ,()2,1C --,则ABC V 的面积为.43.(2024·云南保山·一模)已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是.44.(2024高二上·全国·课后作业)已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,则a =.45.(2024高二上·安徽六安·期中)已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为.46.(2024高三上·上海青浦·阶段练习)在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1:l y x =和2:2l y x =-+,则22a b +的最大值为.47.(2024·四川)在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,﹣1)的距离之和最小的点的坐标是.48.(2024高三·陕西·阶段练习)若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得的线段的长为m 的倾斜角可以是①15°,②30°,③45°,④60°,⑤75°.其中正确答案的序号是(写出所有正确答案的序号).49.(2024高三·全国·专题练习)在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是.50.(2024高三·全国·专题练习)点()0,0,()3,4到直线l 的距离分别为1和4,写出一个满足条件的直线l 的方程:.51.(2024高一·全国·课后作业)经过直线3x+2y+6=0和2x+5y-7=0的交点,且在两坐标轴上的截距相等的直线方程为.52.(2024高二上·全国·课后作业)经过点(1,0)P 和两直线1:220l x y +-=;2:3220l x y -+=交点的直线方程为.53.(2024·黑龙江哈尔滨·模拟预测)已知实数1212,,,x x y y ,满足22114x y +=,22229x y +=,12120x x y y +=,则112299x y x y +-++-的最小值是.四、解答题54.(2024高二上·广东东莞·期中)在平面直角坐标系xOy 中,已知ABC V 的三个顶点(,),(2,1),(2,3)A m n B C -.(1)求BC 边所在直线的方程;(2)若ABC V 的面积等于7,且点A 的坐标满足2360-+=m n ,求点A 的坐标.55.(24-25高二上·全国·课后作业)已知直线l 经过点()2,1P -,且平行于向量()1,1.(1)求直线l 的方程;(2)若直线m 与l 平行且点P 到直线mm 的方程.56.(2024高二上·天津河西·阶段练习)已知直线()():12360m a x a y a -++-+=,:230n x y -+=.(1)若坐标原点O 到直线m ,求a 的值;(2)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程.57.(2024高二·全国·课后作业)已知点()()1,3,5,2A B -,点P 在x 轴上使AP BP -最大,求点P 的坐标.。

高考数学一轮复习 第九章 解析几何 第二节 两条直线的位置关系教案 理(含解析)苏教版-苏教版高三全

高考数学一轮复习 第九章 解析几何 第二节 两条直线的位置关系教案 理(含解析)苏教版-苏教版高三全

第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离|P 1P 2|=x 2-x 12+y 2-y 12点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离d =|C 1-C 2|A 2+B2[小题体验]1.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则实数m 的值为________.解析:由k AB =4-mm +2=-2,得m =-8.答案:-82.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________. 解析:由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1. 答案:2-13.若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为________.解析:直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23,因为两直线垂直,所以-a 2×23=-1,即a =3.答案:31.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:①若l 1的斜率不存在,此时t =1,l 1的方程为x =13,l 2的方程为y =-25,显然l 1⊥l 2,符合条件;若l 2的斜率不存在,此时t =-32,易知l 1与l 2不垂直.②当l 1,l 2的斜率都存在时,直线l 1的斜率k 1=-t +21-t ,直线l 2的斜率k 2=-t -12t +3,因为l 1⊥l 2,所以k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,所以t =-1.综上可知t =-1或t =1. 答案:-1或12.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:因为63=m 4≠14-3,所以m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2. 答案:2考点一 两条直线的位置关系 (基础送分型考点——自主练透)[题组练透]1.(2019·沭阳月考)若直线y =mx +1与直线y =4x -8垂直,则m =________. 解析:由直线y =mx +1与直线y =4x -8垂直, 得m ×4=-1,解得m =-14.答案:-142.(2018·某某模拟)过点(1,0)且与直线x -2y -2=0平行的直线方程是________. 解析:依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.答案:x -2y -1=03.(2019·启东调研)已知直线l 1:(a -1)x +y +b =0,l 2:ax +by -4=0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(1,1);(2)l 1∥l 2,且l 2在第一象限内与两坐标轴围成的三角形的面积为2. 解:(1)因为l 1⊥l 2,所以a (a -1)+b =0.① 又l 1过点(1,1),所以a +b =0.②由①②,解得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =2,b =-2.当a =0,b =0时不合题意,舍去. 所以a =2,b =-2.(2)因为l 1∥l 2,所以a -b (a -1)=0,③由题意,知a >0,b >0,直线l 2与两坐标轴的交点坐标分别为⎝ ⎛⎭⎪⎫4a,0,⎝⎛⎭⎪⎫0,4b .则12×4a ×4b=2,得ab =4,④ 由③④,得a =2,b =2.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;(2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法直线方程l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0)l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件 A 1A 2+B 1B 2=0 l 1与l 2平行的充分条件 A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0) l 1与l 2相交的充分条件 A 1A 2≠B 1B 2(A 2B 2≠0) l 1与l 2重合的充分条件A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0) [提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答填空题时,建议多用比例式来解答.考点二 距离问题重点保分型考点——师生共研[典例引领]已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使PA =PB ,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). 因为A (4,-3),B (2,-1),所以线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,所以线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0. 因为点P (a ,b )在直线x -y -5=0上, 所以a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, 所以|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.所以所求点P 的坐标为(1,-4)或⎝⎛⎭⎪⎫277,-87.[由题悟法]距离问题的常见题型及解题策略(1)求两点间的距离.关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等.(2)解决与点到直线的距离有关的问题.应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.(3)求两条平行线间的距离.要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.[即时应用]1.(2019·阜宁中学检测)在坐标轴上,与点A (1,5),B (2,4)等距离的点的坐标是________.解析:线段AB 的垂直平分线方程为y -92=-1-25-4·⎝ ⎛⎭⎪⎫x -32,令x =0,可得y =3;令y=0,可得x =-3,∴在坐标轴上,与点A (1,5),B (2,4)等距离的点的坐标是(0,3)或(-3,0). 答案:(0,3)或(-3,0)2.(2018·某某中学测试)已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则PM 的最小值为________.解析:PM 的最小值即为点P (3,-1)到直线x +3y =2的距离, 又d =|3-3-2|1+3=1,故PM 的最小值为1.答案:13.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为______________________.解析:因为l 1与l 2:x +y -1=0平行, 所以可设l 1的方程为x +y +b =0(b ≠-1).又因为l 1与l 2的距离是2, 所以|b +1|12+12=2,解得b =1或b =-3,即l 1的方程为x +y +1=0或x +y -3=0. 答案:x +y +1=0或x +y -3=0考点三 对称问题题点多变型考点——多角探明 [锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.(2019·丹阳高级中学检测)点A (2,3)关于点P (0,5)对称的点的坐标为________. 解析:设A (2,3)关于点P (0,5)对称的点的坐标为(x 0,y 0),由中点坐标公式,得2+x 02=0,3+y 02=5,则x 0=-2,y 0=7.∴点A (2,3)关于点P (0,5)对称的点的坐标为(-2,7).答案:(-2,7)角度二:点关于线对称2.(2018·某某模拟)已知△ABC 的两个顶点A (-1,5)和B (0,-1),若∠C 的平分线所在的直线方程为2x -3y +6=0,则BC 边所在的直线方程为______________.解析:设点A 关于直线2x -3y +6=0的对称点为A ′(x ′,y ′),则⎩⎪⎨⎪⎧2×x ′-12-3×y ′+52+6=0,y ′-5x ′+1=-32,即⎩⎪⎨⎪⎧2x ′-3y ′-5=0,3x ′+2y ′-7=0,解得⎩⎪⎨⎪⎧x ′=3113,y ′=-113,即A ′⎝ ⎛⎭⎪⎫3113,-113,由题意知,点A ′在直线BC 上.所以直线BC 的方程为y =-113--13113-0x -1,整理得12x -31y -31=0. 答案:12x -31y -31=0 角度三:线关于线对称3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________.解析:设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, 所以2(y -2)-(x +2)+3=0, 即x -2y +3=0. 答案:x -2y +3=0[通法在握]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.(2019·沭阳期中)已知点A (1,-2)关于直线x +ay -2=0的对称点为B (m,2),则实数a 的值为________.解析:由对称的特点可知,AB 的中点在对称轴上,直线AB 垂直于对称轴,则1+m 2+-2+22a -2=0,2--2m -1·⎝ ⎛⎭⎪⎫-1a =-1,解得m =3,a =2.答案:22.(2018·启东期末)已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为________.解析:设P (a ,b )是直线l 上任意一点,则点P 到直线l 1:2x -y -2=0和直线l 2:x +2y -1=0的距离相等, 即|2a -b -2|5=|a +2b -1|5,整理得a -3b -1=0或3a +b -3=0, ∴直线l 的斜率为13或-3.答案:13或-33.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ), 则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0一抓基础,多练小题做到眼疾手快1.(2019·某某调研)已知点A (1,3)关于直线l 的对称点为B (-5,1),则直线l 的方程为________.解析:∵已知点A (1,3)关于直线l 的对称点为B (-5,1),故直线l 为线段AB 的中垂线.求得AB 的中点为(-2,2),AB 的斜率为1-3-5-1=13,故直线l 的斜率为-3,故直线l 的方程为 y -2=-3(x +2),即3x +y +4=0.答案:3x +y +4=02.(2018·宿迁模拟)过点(1,0)且与直线x -2y -2=0垂直的直线方程是________. 解析:因为直线x -2y -2=0的斜率为12,所以所求直线的斜率ky -0=-2(x -1),即2x +y -2=0.答案:2x +y -2=03.直线y =3x +3关于直线l :x -y -2=0对称的直线方程为________. 解析:取直线y =3x +3上一点A (0,3),设A 关于直线l :x -y -2=0对称的点为A ′(a ,b ),则有⎩⎪⎨⎪⎧b -3a -0·1=-1,a +02-b +32-2=0,解得a =5,b =-2.∴A ′(5,-2).联立⎩⎪⎨⎪⎧y =3x +3,x -y -2=0,解得x =-52,y =-92.令M ⎝ ⎛⎭⎪⎫-52,-92,∵直线y =3x +3关于直线l 对称的直线过A ′,M 两点,∴所求直线方程为y -⎝ ⎛⎭⎪⎫-92-2-⎝ ⎛⎭⎪⎫-92=x -⎝ ⎛⎭⎪⎫-525-⎝ ⎛⎭⎪⎫-52,即x -3y -11=0.答案:x -3y -11=04.(2018·启东中学测试)已知直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则点P 的坐标为________.解析:因为l 1∥l 2,且l 1的斜率为2,则直线l 2l 2过点(-1,1),所以直线l 2的方程为y -1=2(x +1),整理得y =2xx =0,得y =3,所以点P 的坐标为(0,3).答案:(0,3)5.若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.解析:解方程组⎩⎪⎨⎪⎧2x -y =-10,y =x +1,可得⎩⎪⎨⎪⎧x =-9,y =-8,所以直线2x -y =-10与y =x +1的交点坐标为(-9,-8), 代入y =ax -2,得-8=a ·(-9)-2, 所以a =23.答案:236.(2019·某某检测)已知直线l 1:mx +2y +4=0与直线l 2:x +(m +1)y -2=0平行,则l 1与l 2间的距离为________.解析:∵直线l 1:mx +2y +4=0与直线l 2:x +(m +1)y -2=0平行,当m =-1时,显然不合题意;当m ≠-1时,有m 1=2m +1≠4-2,解得m =1,∴l 1与l 2间的距离d =|-2-4|1+4=655.答案:655二保高考,全练题型做到高考达标1.已知直线l 1:(m +1)x +2y +2m -2=0,l 2:2x +(m -2)y +2=0,若直线l 1∥l 2,则m =________.解析:由题意知,当m =2时,l 1:3x +2y +2=0,l 2:x +1=0,不合题意;当m ≠2时,若直线l 1∥l 2,则m +12=2m -2≠2m -22,解得m =-2或m =3(舍去). 答案:-22.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为________.解析:因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1, 所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0, 所以l 1与l 2的距离d =⎪⎪⎪⎪⎪⎪6-232=823.答案:823 3.(2019·X 家港模拟)过点P (1,2)作一直线l ,使直线l 与点M (2,3)和点N (4,-5)的距离相等,则直线l 的方程为________________.解析:易知直线l 的斜率存在,∵直线l 过点P (1,2),∴设l 的方程为y -2=k (x -1),即kx -y -k +2=0.又直线l 与点M (2,3)和点N (4,-5)的距离相等, ∴|2k -3-k +2|k 2+1=|4k +5-k +2|k 2+1, 解得k =-4或k =-32, ∴l 的方程为4x +y -6=0或3x +2y -7=0.答案:4x +y -6=0或3x +2y -7=04.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点________. 解析:由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).答案:(0,2)5.已知点P (0,-1),点Q 在直线x -y +1=0上,若直线P Q 垂直于直线x +2y -5=0,则点Q 的坐标是________.解析:设Q(x 0,y 0),因为点Q 在直线x -y +1=0上,所以x 0-y 0+1=0.①又直线x +2y -5=0的斜率k =-12,直线P Q 的斜率k P Q =y 0+1x 0, 所以由直线P Q 垂直于直线x +2y -5=0,得y 0+1x 0·⎝ ⎛⎭⎪⎫-12=-1.② 由①②解得x 0=2,y 0=3,即点Q 的坐标是(2,3).答案:(2,3)6.(2019·某某一模)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且坐标原点O 到直线l 的距离为3,则△AOB 的面积S 的最小值为________.解析:由坐标原点O 到直线l 的距离为3,可得|-1|m 2+n 2=3,化简得m 2+n 2=13. 对直线l :mx +ny -1=0,令x =0,可得y =1n ;令y =0,可得x =1m, 故△AOB 的面积S =12·⎪⎪⎪⎪⎪⎪1m ·1n =12|mn |≥1m 2+n2=3, 当且仅当|m |=|n |=66时,取等号. 故△AOB 的面积S 的最小值为3.答案:37.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以PA 2+PB 2=AB 2=10,所以PA ·PB ≤PA 2+PB 22=5(当且仅当PA =PB =5时,等号成立),当P 与A 或B 重合时,PA ·PB=0,故PA ·PB 的最大值是5.答案:58.将一X 画有直角坐标系的图纸折叠一次,使得点A (0,2)与点B (4,0)重合.若此时点C (7,3)与点D (m ,n )也重合,则m +n 的值是________.解析:由题意知,折痕既是A ,B 的对称轴,也是 C ,D 的对称轴.因为AB 的斜率k AB =0-24-0=-12,AB 的中点为(2,1), 所以图纸的折痕所在的直线方程为y -1=2(x -2),所以k CD =n -3m -7=-12, ① 因为CD 的中点为⎝⎛⎭⎪⎫m +72,n +32, 所以n +32-1=2⎝ ⎛⎭⎪⎫m +72-2. ② 由①②解得m =35,n =315,所以m +n =345. 答案:3459.已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)当l 1∥l 2时,求a 的值;(2)当l 1⊥l 2时,求a 的值.解:(1)法一:当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a 2x -3,l 2:y =11-ax -(a +1), 由l 1∥l 2可得⎩⎪⎨⎪⎧ -a 2=11-a,-3≠-a +1,解得a =-1. 综上可知,a =-1.法二:由l 1∥l 2知⎩⎪⎨⎪⎧ A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0, 即⎩⎪⎨⎪⎧ a a -1-1×2=0,a a 2-1-1×6≠0⇒⎩⎪⎨⎪⎧ a 2-a -2=0,a a 2-1≠6⇒a =-1.(2)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合;当a ≠1时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎫-a 2·11-a=-1⇒a =23. 法二:因为l 1⊥l 2,所以A 1A 2+B 1B 2=0,即a +2(a -1)=0,得a =23. 10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65, 所以直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.(2019·江阴检测)直线l 经过点P (2,1),且与两坐标轴围成的三角形的面积为S ,如果符合条件的直线l 能作且只能作三条,则S =________.解析:由已知可得直线l 的斜率一定存在且不为零,设直线l 的方程为y -1=k (x -2),则直线l 与坐标轴的交点为(0,1-2k ),⎝ ⎛⎭⎪⎫2-1k ,0, 则S =12|1-2k |·⎪⎪⎪⎪⎪⎪2-1k =⎪⎪⎪⎪⎪⎪2-12k -2k . 如果符合条件的直线l 能作且只能作三条,则关于k 的方程⎪⎪⎪⎪⎪⎪2-12k -2k =S 只有三个解,即4k 2+2(S -2)k +1=0与4k 2-2(S +2)k +1=0,一个有一解,一个有两解,解得S =4.答案:42.(2018·锡山高级中学检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系是________.解析:在△ABC 中,由正弦定理a sin A =b sin B ,得b sin B ·sin A ax sin A +ay +c =0的斜率k 1=-sin A a ,bx -y sin B +sin C =0的斜率k 2=b sin B ,因此k 1·k 2=b sin B ·⎝ ⎛⎭⎪⎫-sin A a =-1,所以两条直线垂直.答案:垂直3.已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值,并求此时l 的方程.解:(1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0,因为点A (5,0)到l 的距离为3,所以|10+5λ-5|2+λ2+1-2λ2=3,即2λ2-5λ+2=0,所以λ=2或λ=12, 所以直线l 的方程为x =2或4x -3y -5=0.(2)如图,由⎩⎪⎨⎪⎧ 2x +y -5=0,x -2y =0,解得交点P (2,1),过P 作任一直线l ,设d 为点A 到l的距离,则d ≤PA (当l ⊥PA 时等号成立).所以d max =PA =5-22+0-12=10.因为k PA =-13,l ⊥PA ,所以k l =3, 所以直线l 的方程为y -1=3(x -2),即3x -y -5=0.。

高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

第2讲 两条直线的位置关系【2013年高考会这样考】1.考查两直线的平行与垂直.2.考查两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式.【复习指导】1.对两条直线的位置关系,求解时要注意斜率不存在的情况,注意平行、垂直时直线方程系数的关系.2.熟记距离公式,如两点之间的距离、点到直线的距离、两条平行线之间的距离.基础梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2,特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2的关系为平行.(2)两条直线垂直①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.②如果l 1、l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直.2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0.两个防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. (2)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中的x ,y 系数化为分别相等.三种对称(1)点关于点的对称点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)点关于直线的对称设点P (x 0,y 0)关于直线y =kx +b 的对称点P ′(x ′,y ′), 则有⎩⎪⎨⎪⎧ y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.(3)直线关于直线的对称①若已知直线l 1与对称轴l 相交,则交点必在与l 1对称的直线l 2上,然后再求出l 1上任一个已知点P 1关于对称轴l 对称的点P 2,那么经过交点及点P 2的直线就是l 2;②若已知直线l 1与对称轴l 平行,则与l 1对称的直线和l 1分别到直线l 的距离相等,由平行直线系和两条平行线间的距离即可求出l 1的对称直线.双基自测1.(人教A 版教材习题改编)直线ax +2y -1=0与直线2x -3y -1=0垂直,则a的值为( ).A .-3B .-43C .2D .3解析 由⎝ ⎛⎭⎪⎫-a 2×23=-1,得:a =3. 答案 D2.原点到直线x +2y -5=0的距离为( ).A .1 B. 3 C .2 D. 5解析 d =|-5|1+22= 5. 答案 D3.(2012·银川月考)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ).A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0 解析 ∵所求直线与直线x -2y -2=0平行,∴所求直线斜率k =12,排除C 、D.又直线过点(1,0),排除B ,故选A.答案 A4.点(a ,b )关于直线x +y +1=0的对称点是( ).A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析 设对称点为(x ′,y ′),则⎩⎪⎨⎪⎧ y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得:x ′=-b -1,y ′=-a -1.答案 B5.平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.解析 直线l 2变为:3x -2y +32=0,由平行线间的距离公式得:d =⎪⎪⎪⎪⎪⎪-5-3232+22=132.答案13 2考向一两条直线平行与垂直的判定及应用【例1】►(1)已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则实数a=________.(2)“ab=4”是直线2x+ay-1=0与直线bx+2y-2=0平行的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[审题视点] (1)利用k1·k2=-1解题.(2)抓住ab=4能否得到两直线平行,反之两直线平行能否一定得ab=4.解析(1)由题意知(a+2)a=-1,所以a2+2a+1=0,则a=-1.(2)直线2x+ay-1=0与直线bx+2y-2=0平行的充要条件是-2a=-b2且-1a≠-1,即ab=4且a≠1,则“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要而不充分条件.答案(1)-1(2)C(1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.(2)①若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,则:直线l1⊥l2的充要条件是k1·k2=-1.②设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则:l1⊥l2⇔A1A2+B1B2=0.(3)注意转化与化归思想的应用.【训练1】已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求m的值,使得:(1)l1与l2相交;(2)l1⊥l2;(3)l1∥l2;(4)l1,l2重合.解(1)由已知1×3≠m(m-2),即m2-2m-3≠0,解得m≠-1且m≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.考向二 两直线的交点【例2】►求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.[审题视点] 可先求出l 1与l 2的交点,再用点斜式;也可利用直线系方程求解.解 法一 先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0, 得l 1、l 2的交点坐标为(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1、l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.法三 由于l 过l 1、l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条,将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0.其斜率-3+5λ2+2λ=-53,解得λ=15, 代入直线系方程即得l 的方程为5x +3y -1=0.运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是:Ax +By +m =0(m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎨⎧ 4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0, 即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧ x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x -(-1)-2-(-1),即3x +y +1=0. 法二 设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由⎩⎨⎧ kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4. 由⎩⎨⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3. 则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此所求直线方程为y -2=-3(x +1),即3x +y +1=0.法三 两直线l 1和l 2的方程为(4x +y +3)(3x -5y -5)=0,①将上述方程中(x ,y )换成(-2-x,4-y ),整理可得l 1与l 2关于(-1,2)对称图形的方程:(4x +y +1)(3x -5y +31)=0.②①-②整理得3x +y +1=0.考向三 距离公式的应用【例3】►(2011·北京东城模拟)若O (0,0),A (4,-1)两点到直线ax +a 2y +6=0的距离相等,则实数a =________.[审题视点] 由点到直线的距离公式列出等式求a .解析 由题意,得6a 2+a 4=|4a -a 2+6|a 2+a4,即4a -a 2+6=±6,解之得a =0或-2或4或6.检验得a =0不合题意,所以a =-2或4或6.答案 -2或4或6用点到直线的距离公式时,直线方程要化为一般式,还要注意公式中分子含有绝对值的符号,分母含有根式的符号.而求解两平行直线的距离问题也可以在其中一条直线上任取一点,再求这一点到另一直线的距离.【训练3】 已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为 5,求直线l 1的方程. 解 ∵l 1∥l 2,∴m 2=8m ≠n -1,∴⎩⎨⎧ m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2. (1)当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0.∴|n +2|16+64=5,解得n =-22或n =18. 所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.(2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0,∴|-n +2|16+64=5,解得n =-18或n =22. 所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.考向四 对称问题【例4】►光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.[审题视点] 设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则直线A ′D ′经过点B 与C .解 作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.解决这类对称问题要抓住两条:一是已知点与对称点的连线与对称轴垂直;二是以已知点和对称点为端点的线段的中点在对称轴上.【训练4】 已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ).A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析 l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ x +02-y -22-1=0,y +2x ×1=-1,得⎩⎨⎧x =-1,y =-1.即(1,0)、(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0. 答案 B难点突破19——两直线平行与垂直问题的求解策略从近两年新课标高考试题可看出高考主要以选择题、填空题的形式考查两直线的平行和垂直问题,往往是直线方程中一般带有参数,问题的难点就是确定这些参数值,方法是根据两直线平行、垂直时所满足的条件列关于参数的方程(组),通过解方程(组)求出参数值,但要使参数符合题目本身的要求,解题时注意直线方程本身的限制.【示例1】►(2011·浙江)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m=________.【示例2】►(2010·上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是().A.1或3 B.1或5 C.3或5 D.1或2。

高考数学一轮复习 9.2 点与直线、两条直线的位置关系

高考数学一轮复习 9.2 点与直线、两条直线的位置关系

命题规律
本节考点在近五年高考中, 没有单独命过题,仅作为一道综 合性题目中的工具.在解析几何 的高考题中,主要涉及有两直线 交点坐标的求解、点到直线的距 离的求解及两直线间的平行或垂 直条件的应用.
知识梳理
-3-
知识梳理
双击自测
1.两直线的位置关系
平面内两条直线的位置关系包括平行、相交、重合三种情况.
双击自测
12345
2.已知直线 ax+3y-1=0 与直线 3x-3y+4=0 垂直,则 a 的值为(
A.3
B.-3
C.1
D.-1
-7-
)
由已知得 3a-9=0,得 a=3.
A
关闭 关闭
7 解析 答案
知识梳理
-8-
知识梳理
双击自测
12345
3.过点(1,0)且与直线 x-2y-2=0 平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0
因(1此,1)点 A'的坐标为(1,1).
关闭 关闭
10 解析 答案
知识梳理
双击自测
知识梳理
12345
-11-
自测点评 1.对于直线 l1 与直线 l2 相互平行(垂直)的条件一定要注
意其适用范围. 2.求解点到直线、两平行线间的距离时,注意直线方程要用一般式. 3.对称问题是解析几何中的常见问题,尤其要掌握好点关于线的轴对
9.2 点与直线、两条直线的 位置关系
考情概览
-2-
考纲要求
1.能根据两条直线的斜 率判定这两条直线平行 或垂直. 2.能用解方程组的方法 求两条相交直线的交点 坐标. 3.掌握两点间的距离公 式、点到直线的距离公 式,会求两条平行直线间 的距离.

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

考法1 求直线的方程
思维拓展
常见的直线系方程
(1)过定点P(x0,y0)的直线系方程:A(x-x0)+B(y-y0)=0(A2+B2≠0),还可以表示 为y-y0=k(x-x0)或x=x0. (2)平行于直线Ax+By+C=0的直线系方程:Ax+By+λ=0(λ≠C).
(3)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ=0.
a是直线的横截距. b是直线的纵截距.
不过原点且与两坐标轴均不 垂直的直线.
一般式 Ax+By+C=0(A2+B2≠0)
所有直线.
考点2 两直线的位置关系
1.两条直线的位置关系
斜截式
方程
相交 垂直
y=k1x+b1, y=k2x+b2.
k1≠k2. k1k2=-1.
平行
k1=k2且b1≠b2.
一般式
第九章 直线和圆的方程
第一讲 直线方程与两直线的 位置关系
考点帮·必备知识通关 考点1 直线的方程直 考点2 两直线的位置关系
考法帮·解题能力提升 考法1 求直线的方程 考法2 两直线的位置关系 考法3 两直线的交点与距离问题 考法4 对称问题
高分帮 ·“双一流”名校冲刺 明易错· 误区警示
易错 忽略斜率不存在致误
考法3 两直线的交点与距离问题
思维导引
考法3 两直线的交点与距离问题
解析 (1)易知点A到直线x-2y=0的距离不等于3,可设经过两已知直线交 点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0. (设出

2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。

专题9-1 直线与方程题型归类2023年高考数学一轮复习热点演练(全国通用)(原卷版)

专题9-1 直线与方程题型归类2023年高考数学一轮复习热点演练(全国通用)(原卷版)


A.
0,
3Leabharlann 2 3,C.
0,
6
5 6
,
B.
0,
6
5 6
,
D.
0,
3
U
2 3
,
2.已知点 P 为曲线 y2 4x 上一动点, A(1, 0) , B 3, 0 ,则 APB 的最大值为(

A. 6
B.
4
C.
3
D.
2
3.已知四边形 OABC 各顶点的坐标分别为 O(0,0) , A(2,1) , B(1,3) , C(1, 2) ,点 D 为边 OA 的中点,点 E 在线段 OC 上,
专题 9-1 直线与方程题型归类
目录 【题型一】直线倾斜角与斜率最值范围 ....................................................................................................................... 3 【题型二】绕点旋转动直线 ............................................................................................................................................3 【题型三】含三角函数的圆切线型动直线 ................................................................................................................... 3 【题型四】含参双动直线 ................................................................................................................................................4 【题型五】关于直线对称 ................................................................................................................................................4 【题型六】直线光学性质 ................................................................................................................................................5 【题型七】三角形三大线:中线,高,角平分线 ....................................................................................................... 6 【题型八】平行线 ............................................................................................................................................................6 【题型九】直线应用 1:叠纸 .........................................................................................................................................7 【题型十】直线 应用 2:直线与曲线交点 .................................................................................................................. 7 【题型十一】直线应用 3:直线与函数(切线型) .................................................................................................... 7 【题型十二】直线应用 4:距离公式 ............................................................................................................................ 8 【题型十三】直线应用 5:直线与方程 ........................................................................................................................ 8 【题型十四】直线与最值 ................................................................................................................................................9 真题再现 ............................................................................................................................................................................9 模拟检测 .......................................................................................................................................................................... 11

北师版高考总复习一轮理科数精品课件 第9章 解析几何 第2节 点与直线、两条直线的位置关系

北师版高考总复习一轮理科数精品课件 第9章 解析几何 第2节 点与直线、两条直线的位置关系
条直线的位+ 1 + 1 = 0,
直线l1和l2的交点坐标即为两直线方程组成的方程组
2 + 2 + 2 = 0
的解.
l1与l2相交⇔方程组有
唯一解
l1与l2平行⇔方程组 无解 ;
无数个解
l1与l2重合⇔方程组有
;
.
3.三种距离公式
(2)两平行线间的距离公式要求两条直线方程中x,y的系数分别相等.
对点训练2(2022上海虹口二模)设a∈R,k∈R,三条直线l1:ax-y-2a+5=0,
l2:x+ay-3a-4=0,l3:y=kx,则l1与l2的交点M到l3的距离的最大值为
答案:5+ 2
解析:∵a×1+(-1)×a=0,∴l1⊥l2.
垂直
k1k2=-1
A1A2+B1B2=0
平行
k1 = k 2
b1 ≠ b2
重合
k1 = k 2
b1 = b2
A1 B2 -A2 B1 = 0,
A1 B2 -A2 B1 = 0,

B1 C2 -B2 C1 ≠ 0
A1 C2 -A2 C1 ≠ 0
A1B2-A2B1=0,且 B1C2-B2C1=0
微点拨解析几何中的两条直线的位置关系含有重合,而立体几何中空间两
2
2
2
(3-0) + (4-0) + 2=5+ 2.
.
考点三
对称问题(多考向探究)
考向1 点关于点的对称
例5过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段
被点P平分,则直线l的方程为

高考数学一轮总复习课件:两直线的位置关系

高考数学一轮总复习课件:两直线的位置关系

例1 (1)(2021·江西八校联考)已知直线l1:kx+y+3=0, l2:x+ky+3=0,且l1∥l2,则k的值为__-__1____.
【思路】 根据两直线平行列关于k的方程,解出k的值,然后 代入两直线方程进行验证是否满足l1∥l2,即可得出实数k的值.
【解析】 ∵直线l1:kx+y+3=0,l2:x+ky+3=0,且l1 ∥l2,
答案 (1)× (2)× (3)√ (4)× (5)×
=0.若2.l1∥(课l2本,习则题a的改值编为)已_-_知_12_直__线__l,1:若axl1+⊥yl+2,5则=a0的,值l2:为x-2y+7 _____2___.
3.直线y=kx-k-2恒过定点__(_1,__-__2)_.
解析 y=kx-k-2=k(x-1)-2.当x=1,y=-2时恒成立, ∴直线恒过定点(1,-2).
【解析】 要使点P到直线x-y-4=0有最小距离, 只需点P为曲线与直线x-y-4=0平行的切线的切点, 即点P为曲线上斜率为1的切线的切点,设P(x0,y0),x0>0, y=x2-lnx,y′|x=x0=2x0-x10=1,解得x0=1或x0=-12(舍去), 点P(1,1)到直线x-y-4=0的距离为|1-12-4|=2 2, 所以曲线y=x2-lnx上任一点到直线x-y-4=0的距离的最小 值为2 2.
【思路】 结合图形,根据点到直线的距离公式求解.
【解析】 (1)过点P的直线l与原点的距离为2,而点P的坐 标为(2,-1),显然,过点P(2,-1)且垂直于x轴的直线满足条 件,
此时l的斜率不存在,其方程为x=2. 若斜率存在,设l的方程为y+1=k(x-2), 即kx-y-2k-1=0. 由已知得|-k22k+-11|=2,解得k=34. 此时l的方程为3x-4y-10=0.

高考数学一轮复习第九章解析几何第二节两直线的位置关系课件理

高考数学一轮复习第九章解析几何第二节两直线的位置关系课件理

的距离.( )
答案:(1)× (2)× (3)√ (4)√ (5)× (6)× (7)√
第八页,共43页。
2.已知直线 l 过点 P(1,2),直线 l1:2x+y-10=0. (1)若 l∥l1,则直线 l 的方程为________; (2)若 l⊥l1,则直线 l 的方程为________. 答案:(1)2x+y-4=0 (2)x-2y+3=0 3.经过两直线 2x+y-8=0 与 x-2y+1=0 的交点,且平行 于直线 4x-3y-7=0 的直线方程为____________. 答案:4x-3y-6=0
第十九页,共43页。
(1)两直线交点的求法 求两直线的交点坐标,就是解由两直线方程组成的方程组, 以方程组的解为坐标的点即为交点. (2)常见的三大直线系方程 ①与直线 Ax+By+C=0 平行的直线系方程是 Ax+By+m=0(m∈R 且 m≠C).
第二十页,共43页。
②与直线 Ax+By+C=0 垂直的直线系方程是 Bx-Ay+m=0(m∈R). ③过直线 l1:A1x+B1y+C1=0 与 l2:A2x+B2y+C2=0 的交 点的直线系方程为 A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R), 但不包括 l2.
(2)在判断两直线平行、垂直时,也可直接利用直线方程的系 数间的关系得出结论.
第十五页,共43页。
[典题 2] 经过两直线 l1:x-2y+4=0 和 l2:x+y-2=0 的交点 P,且与直线 l3:3x-4y+5=0 垂直的直线 l 的方程为 ________________.
[听前试做] 法一:由方程组xx-+2y-y+24==00,, 得xy==20,, 即 P(0,2).∵l⊥l3,∴直线 l 的斜率 k1=-43,

2023年新高考数学一轮复习9-1 直线与直线方程(真题测试)含详解

2023年新高考数学一轮复习9-1 直线与直线方程(真题测试)含详解

专题9.1 直线与直线方程(真题测试)一、单选题1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.92.(2020·山东·高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( )A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=3.(2020·山东·高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角4.(山东·高考真题)如下图,直线l 的方程是( )A 0y -=B 20y --=C 310y --=D .10x -=5.(2020·全国·高考真题(文))点(0,﹣1)到直线()1y k x =+距离的最大值为( )A .1 BC D .26.(2018·北京·高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .47.(全国·高考真题(理))等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )A .3B .2C .13-D .12- 8.(四川·高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A .B .C .D .二、多选题9.(2023·全国·高三专题练习)下列四个命题中,错误的有( )A .若直线的倾斜角为θ,则sin 0θ>B .直线的倾斜角θ的取值范围为0θπ≤<C .若一条直线的倾斜角为θ,则此直线的斜率为tan θD .若一条直线的斜率为tan θ,则此直线的倾斜角为θ10.(2023·全国·高三专题练习)过点(2,3)P ,并且在两轴上的截距互为相反数的直线方程为( )A .320x y -=B .10x y -+=C .50x y +-=D .4250x y -+=11.(2022·全国·高三专题练习)下列说法正确的是( )A .直线()32y ax a a R =-+∈必过定点()3,2B .直线32y x =-在y 轴上的截距为2C 10y -+=的倾斜角为60°D .过点()1,2-且平行于直线230x y -+=的直线方程为20x y +=12.(2022·山东省实验中学模拟预测)对于平面直角坐标系内的任意两点()11,P x y ,()22,Q x y ,定义它们之间的一种“距离”为1212PQ x x y y =-+-‖‖.已知不同三点A ,B ,C 满足AC BC AB +=‖‖‖‖‖‖,则下列结论正确的是( )A .A ,B ,C 三点可能共线B .A ,B ,C 三点可能构成锐角三角形C .A ,B ,C 三点可能构成直角三角形D .A ,B ,C 三点可能构成钝角三角形三、填空题13.(2008·江苏·高考真题)在平面直角坐标系中,设三角形ABC 的顶点坐标分别为(0,),(,0),(,0)A a B b C c ,点(0,)P p 在线段OA 上(异于端点),设,,,a b c p 均为非零实数,直线,BP CP 分别交,AC AB 于点E ,F ,一同学已正确算出OE 的方程:11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程:__________________________. 14.(四川·高考真题(理))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是______.15.(2017·北京·高考真题(理))三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点Bi 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Qi 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是_________.②记pi 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是_________.16.(2022·安徽·合肥市第六中学模拟预测(理))已知点P 是x 轴上的任意一点,(0,2)A -,(3,0)B -,则2||||AP BP +的最小值为_________.四、解答题17.(2022·全国·高三专题练习)已知一直线经过点()1,2,并且与点()2,3和()0,5-的距离相等,求此直线的方程.18.(2022·全国·高三专题练习)已知直线l :120(R)kx y k k -++=∈,直线l 与两坐标轴围成一个等腰直角三角形,求此时直线l 的方程.19.(2022·全国·高三专题练习)已知在ABC 中,AB AC =,120A ∠=︒,(0,2)A ,边BC 所在的直线方程10y --=,求边AB 、AC 所在的直线方程.20.(2023·全国·高三专题练习)已知两曲线3y x ax =+和2y x bx c =++都经过点()1,2P ,且在点P 处有公切线.(1)求a ,b ,c 的值;(2)求公切线与坐标轴围成的三角形的面积;21.(2022·全国·高三专题练习)已知(4,3)A -、(2,1)B -和直线:4320l x y +-=,若坐标平面内存在一点P ,使PA PB =,且点P 到直线l 的距离为2,求点P 的坐标.22.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线1210:l mx y -+=,直线()21:10l x m y ---=(1)若12l l //,求m ;(2)当01m <<时,设直线12,l l 的斜率分别为12,k k ,求211k k -的最小值.专题9.1 直线与直线方程(真题测试)一、单选题1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D【解析】【分析】 设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===,依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++, 所以30.530.30.7254k +-=,故30.9k =, 故选:D2.(2020·山东·高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( )A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=【答案】D【解析】【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.3.(2020·山东·高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是() A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】D【解析】【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.4.(山东·高考真题)如下图,直线l 的方程是( )A 0y -=B 20y --=C 310y --=D .10x -=【答案】D【解析】【分析】 由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解.【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=, 所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=.故选:D5.(2020·全国·高考真题(文))点(0,﹣1)到直线()1y k x =+距离的最大值为( )A .1BC D .2 【答案】B【解析】【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.6.(2018·北京·高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .4【答案】C【解析】【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +. 【详解】22cos sin 1θθ+=∴,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.7.(全国·高考真题(理))等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )A .3B .2C .13-D .12- 【答案】A【解析】【详解】,,设底边为 由题意,到所成的角等于到所成的角于是有,再将A 、B 、C 、D 代入验证得正确答案是A .8.(四川·高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A .B .C .D .【答案】B【解析】【详解】 试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()14πθ≤+≤PA PB +≤.选B. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.二、多选题9.(2023·全国·高三专题练习)下列四个命题中,错误的有( )A .若直线的倾斜角为θ,则sin 0θ>B .直线的倾斜角θ的取值范围为0θπ≤<C .若一条直线的倾斜角为θ,则此直线的斜率为tan θD .若一条直线的斜率为tan θ,则此直线的倾斜角为θ【答案】ACD【解析】【分析】根据倾斜角与斜率的定义判断即可.【详解】解:因为直线的倾斜角的取值范围是0,,即[)0,θπ∈,所以sin 0θ≥, 当2πθ≠时直线的斜率tan θk ,故A 、C 均错误;B 正确;对于D :若直线的斜率4tan3k π==3π,故D 错误; 故选:ACD 10.(2023·全国·高三专题练习)过点(2,3)P ,并且在两轴上的截距互为相反数的直线方程为( ) A .320x y -=B .10x y -+=C .50x y +-=D .4250x y -+=【答案】AB【解析】【分析】根据题意,分直线l 过原点和不过原点两种情况讨论求解即可.【详解】解:若直线l 过原点,则直线的方程为y kx =,将点(2,3)P 代入得32k ,所以直线方程为32y x =,即320x y -=; 若直线l 不过原点,根据题意,设直线方程为1x y a a-=, 将点(2,3)P 代入得1a =-,故直线l 的方程为10x y -+=;所以直线l 的方程为:320x y -=或10x y -+=.故选:AB .11.(2022·全国·高三专题练习)下列说法正确的是( )A .直线()32y ax a a R =-+∈必过定点()3,2B .直线32y x =-在y 轴上的截距为2C 10y -+=的倾斜角为60°D .过点()1,2-且平行于直线230x y -+=的直线方程为20x y +=【答案】AC【解析】【分析】将直线方程化为()()320x a y -+-=,即可求出直线过定点坐标,从而判断A ,令0x =求出y ,即可判断B ,求出直线的斜率即可得到倾斜角,从而判断C ,根据两直线平行斜率相等求出直线方程即可判断D ;【详解】解:对于A ,()32y ax a a R =-+∈,即()()320x a y -+-=,令3020x y -=⎧⎨-=⎩,即32x y =⎧⎨=⎩,所以直线()32y ax a a R =-+∈必过定点(3,2),故A 正确; 对于B ,对于直线32y x =-,令0x =得2y =-,所以直线32y x =-在y 轴上的截距为2-,故B 错误;对于C ,10y -+=,即1y +,所以斜率k =60︒,故C 正确;对于D ,过点(1,2)-且平行于直线230x y -+=的直线方程为:[]12(1)2y x -=--,即250x y -+=,故D 错误, 故选:AC .12.(2022·山东省实验中学模拟预测)对于平面直角坐标系内的任意两点()11,P x y ,()22,Q x y ,定义它们之间的一种“距离”为1212PQ x x y y =-+-‖‖.已知不同三点A ,B ,C 满足AC BC AB +=‖‖‖‖‖‖,则下列结论正确的是( )A .A ,B ,C 三点可能共线B .A ,B ,C 三点可能构成锐角三角形 C .A ,B ,C 三点可能构成直角三角形D .A ,B ,C 三点可能构成钝角三角形 【答案】ACD 【解析】 【分析】取两定点为A ,C ,再设任意点B ,然后利用给定定义逐项分析、计算判断作答. 【详解】令点(0,0),(1,0)C A ,设点(,)B t s ,则有||||1,||||||||,|||||1|||AC BC t s AB t s ==+=-+, 由AC BC AB +=‖‖‖‖‖‖得:1|||1|t t +=-, 当0,0s t =<时,A ,B ,C 三点共线,且有1|||1|t t +=-成立,A 正确; 当0s ≠时,则A ,B ,C 三点不共线,若0=t ,有90ACB ∠=,且1|||1|t t +=-成立,ABC 为直角三角形,C 正确; 若0t <,显然ACB ∠是钝角,且1|||1|t t +=-成立,ABC 为钝角三角形,D 正确; 若0t >,1|||1|t t +=-不成立,显然A ,B ,C 三点不可能构成锐角三角形,B 不正确. 故选:ACD 三、填空题13.(2008·江苏·高考真题)在平面直角坐标系中,设三角形ABC 的顶点坐标分别为(0,),(,0),(,0)A a B b C c ,点(0,)P p 在线段OA 上(异于端点),设,,,a b c p 均为非零实数,直线,BP CP 分别交,AC AB 于点E ,F ,一同学已正确算出OE 的方程:11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程:__________________________.【答案】1111()()0x y c b p a -+-=【解析】【详解】本小题考查直线方程的求法.画草图,由对称性可猜想1111()()0x y c b p a -+-=.事实上,由截距式可得直线:1x yAB a b+=,直线,两式相减得1111()()0x y c b p a-+-=,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求的直线OF 的方程.14.(四川·高考真题(理))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是______. 【答案】5 【解析】 【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,2||52AB PA PB ⨯≤=.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一. 15.(2017·北京·高考真题(理))三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点Bi 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Qi 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是_________. ②记pi 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是_________.【答案】 Q 1 p 2 【解析】 【详解】试题分析:作图可得11A B 中点的纵坐标比2233,A B A B 中点的纵坐标大,所以Q 1,Q 2,Q 3中最大的是1Q ,分别作123,,B B B 关于原点的对称点123,,B B B ''',比较直线112233,,A B A B A B '''的斜率(即为第i 名工人在这一天中平均每小时加工的零件数),可得22A B '最大,所以p 1,p 2,p 3中最大的是2.p 【考点】图象的应用,实际应用问题【名师点睛】本题考查了根据实际问题分析和解决问题的能力,以及转化与化归的能力,因为第i 名工人加工总的零件数是i i A B +,比较总的零件数的大小,即可转化为比较2i i A B +的大小,而2i iA B +表示i i A B 中点连线的纵坐标,第二问也可转化为i i A B 中点与原点连线的斜率.16.(2022·安徽·合肥市第六中学模拟预测(理))已知点P 是x 轴上的任意一点,(0,2)A -,(3,0)B -,则2||||AP BP +的最小值为_________.【答案】3+3 【解析】 【分析】如图,过B 点作倾斜角为6π的直线BM ,过点P 作PE BM ⊥,则1||||2PE PB =,从而得1||||||||||2AP BP AP PE AE +=+≥,然后利用点到直线的距离公式求出A 到直线BM 的距离,进而可求出2||||AP BP +的最小值,【详解】如图,过B 点作倾斜角为6π的一条直线:3)BM y x =+,过点P 作PE BM ⊥于E ,则||1||2PE PB =,即1||||2PE PB =,所以1||||||||||2AP BP AP PE AE +=+≥,A 到直线BM 的距离d =因此2||||AP BP +的最小值为3+故答案为:3+四、解答题17.(2022·全国·高三专题练习)已知一直线经过点()1,2,并且与点()2,3和()0,5-的距离相等,求此直线的方程.【答案】420x y --=或1x = 【解析】 【分析】当直线斜率存在时,设出方程,由点到直线的距离解出斜率即可;斜率不存在时检验满足条件即可. 【详解】假设所求直线的斜率存在,则可设其方程为()21y k x -=-,即20kx y k --+=.,即17k k -=-,解得4k =,则直线方程420x y --=.又所求直线的斜率不存在时,方程为1x =,适合题意.∴所求直线的方程为420x y --=或1x =. 18.(2022·全国·高三专题练习)已知直线l :120(R)kx y k k -++=∈,直线l 与两坐标轴围成一个等腰直角三角形,求此时直线l 的方程.【答案】30x y -+=或10x y ++=【解析】 【分析】根据直线l 与两坐标轴围成一个等腰直角三角形,可得1k =或1k =-,再代入直线方程可得结果. 【详解】由120(R)kx y k k -++=∈得12y kx k =++,斜率为k , 因为直线l 与两坐标轴围成一个等腰直角三角形, 所以1k =或1k =-,当1k =时,直线l 的方程为30x y -+=, 当1k =-时,直线l 的方程为10x y ++=.综上所述:直线l 的方程为30x y -+=或10x y ++=.19.(2022·全国·高三专题练习)已知在ABC 中,AB AC =,120A ∠=︒,(0,2)A ,边BC 所在的直线方程10y --=,求边AB 、AC 所在的直线方程.【答案】边AB 、AC 所在的直线方程分别是0x =, 2y =+或边AB 、AC 所在的直线方程分别是2y x =+,0x =. 【解析】 【分析】根据等腰三角形的性质,结合直线夹角公式、直线的点斜式方程进行求解即可. 【详解】因为AB AC =,120A ∠=︒,所以ABC 是等腰三角形,且30ABC ACB ∠=∠=︒,10y --=60︒. 当过(0,2)A 的直线不存在斜率时,此时该直线方程为0x =,10y --=的夹角为30,符合题意; 当过(0,2)A 的直线存在斜率k 时,所以有tan 30k ︒⇒=2y =+,所以边AB 、AC 所在的直线方程分别是0x =, 2y x =+,或者边AB 、AC 所在的直线方程分别是2y x =+,0x =. 20.(2023·全国·高三专题练习)已知两曲线3y x ax =+和2y x bx c =++都经过点()1,2P ,且在点P 处有公切线.(1)求a ,b ,c 的值;(2)求公切线与坐标轴围成的三角形的面积; 【答案】(1)1,2,1ab c ===-(2)12 【解析】 【分析】(1)先求导,根据两曲先都经过点()1,2P ,且在点P 处有公切线求解;(2)由(1)得到公切线方程24(1)y x -=-,分别令0x =,0y =,再利用面积公式求解. (1)解:两函数3y x ax =+和2y x bx c =++的导数分别为: 23'=+y x a 和2y x b '=+,由题意121232a b c a b +=⎧⎪++=⎨⎪+=+⎩,解得121a b c =⎧⎪=⎨⎪=-⎩;(2)由(1)知公切线方程为24(1)y x -=-, 即420x y --=,令0x =得2y =-,令0y =得12x =, 所以所求面积为1112222S =⨯⨯=.21.(2022·全国·高三专题练习)已知(4,3)A -、(2,1)B -和直线:4320l x y +-=,若坐标平面内存在一点P ,使PA PB =,且点P 到直线l 的距离为2,求点P 的坐标.【答案】(1,4)-或278,77⎛⎫- ⎪⎝⎭【解析】 【分析】根据PA PB =,可知点P 在AB 的垂直平分线上,求出AB 的垂直平分线方程,根据P 到直线l 的距离为2,列出方程即可求解. 【详解】设点P 的坐标为(,)a b .∵(4,3)A -,(2,1)B -,所以线段AB 的中点M 的坐标为(3,2)-.而AB 所在直线的斜率31142AB k -+==--, ∴线段AB 的垂直平分线方程为23y x +=-,即50x y --=. ∵点(,)P a b 在直线50x y --=上,∴50a b --=……①; 又点(,)P a b 到直线4320x y +-=的距离为22=,即43210a b +-=±……②.联立①②,解得1,4,a b =⎧⎨=-⎩或27,78.7a b ⎧=⎪⎪⎨⎪=-⎪⎩故所求点P 的坐标为(1,4)-或278,77⎛⎫- ⎪⎝⎭.故答案为(1,4)-或278,77⎛⎫- ⎪⎝⎭22.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线1210:l mx y -+=,直线()21:10l x m y ---= (1)若12l l //,求m ;(2)当01m <<时,设直线12,l l 的斜率分别为12,k k ,求211k k -的最小值. 【答案】(1)2m =;(2)3+【解析】 【分析】(1)直接由直线一般式方程的平行公式求出m ,代入直线方程检验是否重合即可; (2)先表示出12,k k ,通过211k k -()2111m m m m ⎛⎫=++- ⎪-⎝⎭结合基本不等式即可求出最小值. (1)由题意知:[](1)21m m ⋅--=-⨯,解得2m =或1m =-,又1m =-时,1:210l x y --+=,2:210l x y +-=,12,l l 重合,舍去,故2m =. (2)由题意知121,21m k k m ==-,又01m <<,则10m ->,则211k k -()2121211111m m m m m m m m ⎛⎫=-=+=++- ⎪---⎝⎭2(1)3331m m m m -=++≥+=+-2(1)1m m m m -=-,即2m =. 故211k k -的最小值为3+。

9.1 直线方程和两条直线的位置关系-5年3年模拟北京高考

9.1 直线方程和两条直线的位置关系-5年3年模拟北京高考

9.1 直线方程和两条直线的位置关系五年高考考点1直线及其方程 1.(2013湖南,8,5分)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB ⊥异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P(如图).若光线QR 经过△ABC的重心,则AP 等于 ( )2.A 1.B 38.c 34.D2.(2012重庆.3,5分)对任意的实数k ,直线1+=kx y 与圆2x 22=+y 的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心 3.(2010重庆.8)直线233+=x y 与圆心为D 的圆))2,0[(,sin 31cos 33πθθθ∈⎪⎩⎪⎨⎧+=+=y x 交于A 、B 两点,则直线AD 与BD 的倾斜角之和为 ( )π67.A π45.B π34.C π35.D4.(2011安徽,15,5分)在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y )为整点.下列命题中正确的是 (写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k 与b 都是无理数,则直线y = kx + b 不经过任何整点; ③直线L 经过无穷多个整点,当且仅当L 经过两个不同的整点;④直线y=kx +b 经过无穷多个整点的充分必要条件是:k 与b 都是有理数; ⑤存在恰经过一个整点的直线. 5.(2010北京,19,14分)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称, P 是动点,且直线AP 与BP 的斜率之积等于⋅-31(1)求动点P 的轨迹方程;(2)设直线AP 和BP 分别与直线x=3交于点M 、N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.考点2 两条直线的位置关系1.(2013课标全国虬12.5分)已知点),0,1(),0,1(B A -),1,0(C 直线)0(>+=a b ax y 将△ABC 分割为面积相等的两部分,则b 的取值范围是 ( ))1,0.(A )21,221.(-B )31,221.(-c )21,31[⋅D2.(2013辽宁.9,5分)已知点).,(),,0(),0,0(3a a B b A O 若△OAB 为直角三角形,则必有 ( )3.a b A = a a b B 1.3+= 0)1)((33=---⋅a a b a b C 0|1|||.33=--+-aa b a b D 智力背景李群和李代数 李(1842—1899),挪威数学家、法国科学院院士、英国皇家学会会员及其他科学机构的成员.李的主要贡献在以他的名字命名的李群和李代数方面,在1888年至1893年间,他出版了3卷 的专著《变换群论》,后人为纪念他的贡献,将连续群改为“李群”,为研究李群,他还创立了所谓的“李代数”.李代数现已成为现代代数学的重要分支.此外,李在代数不变量理论、微分几何学、分析基础和函数论等基础数学方面也有建树.3.(2012浙江.3,5分)设,R a ∈则”“1=a 是“直线-+y ax l 2:101=与直线04)1(:2=+++y a x l平行”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.(2010安徽,19,13分)已知椭圆E 经过点A(2,3),对称轴为坐标轴,焦点21F F 、在x 轴上,离心率⋅=21e (1)求椭圆E 的方程;(2)求21AF F ∠的角平分线所在直线L 的方程;(3)在椭圆E上是否存在关于直线L 对称的相异两点?若存在,请找出;若不存在,说明理由.解读探究知识清单1.直线的倾斜角与斜率2.两条直线的斜率与它们平行、垂直的关系智力背景欧拉失明之后(一) 1771年彼得堡失火,殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火 之中,紧急关头,为他做家务的一个工人冒着生 命危险, 冲进火中把欧拉抢救出来,欧拉的书库及大量研究成果全部化为灰烬沉重的打击仍然没有使欧拉倒下.他发誓要把损失夺回来.欧拉在完全失明之前, 左眼还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容, 由他人做笔录.3.直线方程的几种形式4.两条直线的交点坐标设两条直线的方程为++=++y B x A l C y B x A l 2221111:,0:,02=C 则这两条直线的⑩ 就是方程组⎩⎨⎧=++=++0,0222111C y B x A C y B x A 的解.(1)若方程组有唯一解,则这两条直线 ,此解就是(2)若方程组无解,则这两条直线 ,此时这两条直线 ,反之,亦成立. 5.距离【知识拓展】符合特定条件的某些直线构成一个直线系,常见的直线系方程有如下几种: (1)过定点),(00y x M 的直线系方程为⋅-=-)(00x x k y y(2)和直线0=++C By Ax 平行的直线系方程为++By Ax ).(0C C C =/= (3)和直线0=++C By Ax 垂直的直线系方程为+-Ay Bx .0=C(4)经过两相交直线0111=++C y B x A 和0222=++C y B x A 的交点的直线系方程为+++111C y B x A 0)(222=++C y B x A λ(这个直线系方程中不包括直线).0222=++C y B x A知识清单答案突破方法方法1.直线的倾斜角与斜率例1 (2012山东济宁二模.5,5分)直线L 经过A(2,1),))(,1(2R m m B ∈两点,那么直线L 的倾斜角α的取值范围是( )πα<≤0.A παππα<<≤≤240.或B 40.πα≤≤C 24παπ<≤⋅D 或παπ<<2解题思路解析 直线L 的斜率为,1121122≤-=--=m m k 又直线L 的倾斜角为α,则有,1tan ≤α即0tan <α 或,1tan 0≤≤α所以2ππα<<或,40πα≤≤故选B . 答案 B【方法点拨】 求倾斜角α的取值范围的一般步骤是:方法2 两条直线的平行与垂直例2 (2012广西南宁二模.8,5分)已知直线L 的倾斜角为,43π直线1l 经过点),1,()2,3(-a B A 且1l与L 垂直,直线012:2=++by x l 与直线1l 平行,则a+b 等于 ( )4.-A 2.-B 0.C 2.D智力背景欧拉失明之后(二) 欧拉完全失明之后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,欧拉的记忆和心算能力是罕见的,他能够复述青年时代笔记的内容,高等数学一样可以用 心算去完成,有一次,欧拉的两个学生分别把一个很复杂的收敛级数的17项加起来,算到第50位数字时,结果相差一个单位.解题思路解析 由题意知L 的斜率为-1,则1l 的斜率为=AB k ,1.0,13)1(2==---a a 由,//21l l 得,2,12-==-b b所以=+b a ,2-故选B .答案B【方法点拨】 1.判定两直线平行的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若,21k k =且,21b b =/则两直线平行;若斜率都不存在,还要判定是否重合.(2)直接用以下方法,可避免对斜率是否存在进行讨论:设直线,0:,0:22221111=++=++C y B x A l C y B x A l0//122121=-⇔B A B A l l 且.01221=/-C B C B2.判定两直线垂直的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若,121-=⋅k k 则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为O ,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论:设直线+=++x A l C y B x A l 221111:0:,21222,0A A l l C y B l ⇔⊥=+.021=+B B方法3 距离问题例3 若动点A 、B 分别在直线07:1=-+y x l 和5:2-+y x l 0=上移动,则AB 的中点M 到原点的距离的最小值为( )23.A 22.B 33.C 24.D解题思路解析 依题意知AB 的中点M 的集合为与直线-+y x l :107=和05:2=-+y x l 距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离,设点M 所在直线的方程为x ,0=++m y 根据平行线间的距离公式得m m m |2|5|2|7|⇒+=+⇒+=+|5|71m ,6-=m 即,06=-+y x 根据点到直线的距离公式,得M 到原点的距离的最小值为.232|6|=-答案 A【方法点拨】 距离公式的应用方法运用点到直线的距离公式时,需把直线方程化为一般式,运用两平行线间的距离公式时,需先把两平行线方程中x ,y 的系数化为相同的形式.方法4 对称问题对称包括中心对称和轴对称两种情形.其中,中心对称是中点坐标公式的运用.轴对称与中点坐标公式和斜率间的关系有关.例4(2012宁夏固原二模,14,4分)若m>0,n>0,点(-m ,n )关于直线01=-+y x 的对称点在直线02=+-y x 上,那么nm 41+的最小值等于 解题思路解析 由题意知(-m ,n )关于直线01=-+y x 的对称点为(1 - n,l + m). 依题意可知,02)1(1=++--m n 即.2=+n m于是⨯=++=+21)41)((2141n m n m n m ≥++)45(n m m n ⋅=⨯+⨯29)225(21 答案 29【方法点拨】 常见的对称问题求解方法: (1)中心对称①若点),(11y x M 与N (x ,y )关于P( a ,b)对称,则由中点坐标公式得⎩⎨⎧⋅-=-=112,2y b y x a x②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用,//21l l 由点斜式得到所求直线方程.(2)轴对称①点关于直线的对称若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴L 上,而且连结2P P l 的直线垂直于对称轴L ,由方程组⎪⎩⎪⎨⎧-=-=++++),()(,0)2()2(21212121x x B y y A C y y B x x A可得到点1P 关于L 对称的点2P 的坐标),(22y x (其中=/A ).,021x x =/ ②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.智力背景欧拉失明之后(三) 欧拉为了确定究竟谁计算得对,用心算进行了金部运算,最后把错误找了出 来.欧拉在失明的17年中,还解决了使牛顿头痛的月亮(月球运行)问题和很多复杂的分析问题.欧拉的风格是很高尚的,拉格朗日是稍后于欧拉的大数学家,他从19岁起就和欧拉通信讨论等周问题的一般解法,从而引起了变分法的诞生.三年模拟A 组 2011-2013年模拟探究专项基础测试时间:30分钟 分值:35分 一、选择题(每题5分,共10分)1.(2013北京丰台5月.7)直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于l ,那么b 的取值范围是 ( )]2,2.[-A ),2[]2,(+∞--∞⋅ B ]2,0()0,2.[ -C ),.(+∞-∞D2.(2013河北秦皇岛一模,8)若直线L 与两直线7,1--=y x y 0=分别交于M ,N 两点,且MN 的中点是P(l ,-1),则直线L 的斜率是( )32.-A 32.B 23.-c 23.D 二、填空题(每题5分,共15分)3.(2013江苏启东4月,11)21,l l 是分别经过A(l ,1),B(O ,-1)两点的两条平行直线,当21,l l 间的距离最大时,直线1l 的方程是4.(2013河南商丘一模.14)已知实数x ,y 满足,82=+y x 当≤23≤x 时,则xy的最大值为____;最小值为5.(2012天津河西5月模拟,13)过点P(2,3),并且在两坐标轴上截距相等的直线方程是 三、解答题(共10分)6.(2013山东威海5月.9)如图,函数x x x f 2)(+=的定义域为).,0(+∞设点P 是函数图象上任一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N . (1)证明:∣PM ∣.∣PN ∣为定值;(2)0为坐标原点,求四边形OMPN 面积的最小值.B 组 2011-2013年模拟探究专项提升测试时间:45分钟 分值:50分 一、选择题(每题5分,共20分)1.(2013福建泉州一模.5)若点(m ,n)在直线01034=-+y x 上,则22n m +的最小值是( )2.A 22.B 4.C 32.D2.(2013陕西安康5月.6)点P 到点)0,1(A 和直线x= -1的距离相等,且P 到直线y=x 的距离等于,22这样的点P 共有( )A .1 个 B.2个 C.3.个 D.4个3.(2012湖南岳阳二模.6)直线L 通过两直线02457=-+y x 和x-y=0的交点,且点(5,1)到L 的距离为,10则L 的方程是( )043.=++y x A 043.=+-y x B 043.=--y x C 043.=--y x D4.(2013河南洛阳二模,7)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线by ax l +:122:,22=+=y x l 平行的概率为,1P 相交的概率为,2P 则复数i P p l 2+所对应的点P 与直线22:2=+y x l 的位置关系是( )A.P 在直线2l 的右下方B.P 在直线2l 的右上方C.P 在直线2l 上D.P 在直线2l 的左下方 二、填空题(共5分)5.(2012辽宁通化三模.14)若两平行直线+=--x y x 6,01230=+c ay 之间的距离为,13132则c 的值是智力背景流行数学家 法国数学家伽罗华创立了具有划时代意义的数学分支——群论.1829年,他把第一批论文交给法国科学院,但无音讯.1830年2月,他把详细论文寄给傅立叶,但傅立叶在当年5月就去世 了.1831年,伽罗华关于群论的重要论文,使泊松十分难以理解,以至于建议科学院否定它.1832年5月30日,临死前一夜,伽罗华委托他的朋友薛伐里叶保存他的重大研究成果,伽罗华死后14年,法国数学家刘维尔首次把伽罗华的成果发表在他主编的《数学杂志》上.三、解答题(共25分)6.(2013江西上饶一模.20)已知集合=A },123|),{(+=--a x y y x =-+-=y a x a y x B )1()1){(,{(2 },15求a 为何值时,.∅=B A7.(2013广东韶关=模.20)有一个附近有进出水管的容器,每单位时间进出的水量是一定的,设从某时刻开始10分钟内只进水,不出水,在随后的30分钟既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若40分钟后只放水不进水,求 y 与x 的函数关系.。

2025年高考数学一轮复习9.1直线的方程【课件】

2025年高考数学一轮复习9.1直线的方程【课件】
A.4条
B.2条
C.3条
D.1条
【解析】选B.当截距为0时,设直线方程为y=kx,将P(1,2)代入y=kx,求得k=2,

故方程为y=2x;当截距不为0,截距相等时,设方程为 + =1,

1 2
将P(1,2)代入,即 + =1,解得a=3,故方程为x+y=3.

)
3.(选择性必修一人AP65例5变条件)已知直线l过点(2,-1),且在x轴上的截距为3,则直
即y=x+1,易知4=3+1,故直线必过点(3,4).
3
(4)若直线的斜率为 ,则这条直线必过(1,1)与(5,4)两点.(
4
×
)
3
3
3
提示:(4)不妨取y= x,满足直线的斜率为 ,但显然该直线y= x不过(1,1)与(5,4)两点.
4
4
4
2.(忽视截距为零的情形致误)过点P(1,2),且在两坐标轴上截距相等的直线有(
非负数.
3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.
常用结论
1.经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=
(x-x1)(y2-y1)表示;
2.识记几种特殊位置的直线方程
(1)x轴:y=0;
(2)y轴:x=0;
(3)平行于x轴的直线:y=b(b≠0);
3
则实数a的值是(
A. 3
)
B.- 3
C.
3
3
【解析】选A.因为直线l的方向向量是e=(-1,a),

所以直线l的斜率为k= =-a,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【3年高考】(新课标)2016版高考数学一轮复习 9.1直线方程及
两条直线的位置关系
1.(2013辽宁,9,5分)已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有( )
A.b=a3
B.b=a3+
C.(b-a3)=0
D.|b-a3|+=0
2.(2012浙江,3,5分)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
3.(2012重庆,3,5分)对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )
A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心
4.(2013湖南,8,5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点.光线从点P出发,经BC,CA反射后又回到点P(如图).若光线QR经过△ABC的重心,则AP等于( )
A.2
B.1
C.
D.
5.(2014广东,10,5分)曲线y=e-5x+2在点(0,3)处的切线方程为.
6.(2014江苏,11,5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.
7.(2014四川,14,5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|P A|·|PB|的最大值是.
1.C △OAB为直角三角形,则a、b≠0,∠A=90°或∠B=90°.
当∠A=90°时,有b=a3;
当∠B=90°时,有·=-1,得b=a3+.
故(b-a3)=0,选C.
2.A 由l1∥l2,得a(a+1)-2=0,解得a=1或a=-2,代入检验符合,即“a=1”是“l1∥l2”的充分不必要条件,故选A.
3.C 直线y=kx+1恒过定点(0,1),此点在圆x2+y2=2内,且直线不过圆心,故选C.
4.D 以AB所在直线为x轴,AC所在直线为y轴建立如图所示的坐标系,由题可知
B(4,0),C(0,4),A(0,0),则直线BC的方程为x+y-4=0,
设P(t,0)(0<t<4),由对称知识可得点P关于直线BC的对称点P1的坐标为(4,4-t),点P关于y轴的对称点P2的坐标为(-t,0),根据反射定理可知直线P1P2就是光线RQ所在直线.由P1、P2两点坐标可得直线P1P2的方程为y=·(x+t),设△ABC的重心为G,易知G.因为重心G在光线RQ上,所以有=,即3t2-4t=0.
所以t=0或t=,因为0<t<4,所以t=,即AP=,故选D.
5.答案5x+y-3=0
解析y'=-5e-5x,曲线在点(0,3)处的切线斜率k=y'|
x=0=-5,故切线方程为y-3=-5(x-0),即5x+y-3=0.
6.答案-3
解析∵y=ax2+,∴y'=2ax-,
由题意可得解得
∴a+b=-3.
7.答案 5
解析易知A(0,0),B(1,3),且PA⊥PB,∴|PA|2+|PB|2=|AB|2=10,∴|PA|·|PB|≤=5(当且
仅当|PA|=|PB|时取“=”).。

相关文档
最新文档