沪科版八年级上学期期末综合测试题
沪科版八年级数学上册试题 期末综合测试卷(含解析)
期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,4)C.(5,4)D.(5,0)2.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的( )A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影ΔABC部分面积S=( )cm2.A.1B.2C.3D.44.如图,顺次连接同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数为()A.25°B.30°C.35°D.40°5.如图,点P是∠AOB内部一点,点P′,P″分别是点P关于OA,OB的对称点,且P′P″=8cm,则△PMN的周长为()A.5cm B.6cm C.7cm D.8cm6.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE 的长度是()A.6B.2C.3D.47.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t 之间的函数关系如图所示.下列说法中正确的有( )①A、B两地相距120千米;②出发1小时,货车与小汽车相遇③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A .1个B .2个C .3个D .4个8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 3A 2022的面积是( )A .504m 2B .10092m 2C .505m 2D .10112m 29.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a ,a <1,n >0,若△ABC 是等腰直角三角形,且AB =BC ,则m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >310.已知:如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90° ,AB =AC ,AD=AE ,点C 、D 、E 三点在同一直线上,连接BD ,BE ;以下四个结论:①BD=CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180° ;其中结论正确的个数有( )A .1B .2C .3D .4二.填空题(共6小题,满分18分,每小题3分)11.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是____________.12.函数y =(k −1)x −3(k 是常数,k ≠1)的图象上有两个点A (x 1,y 1),B (x 2,y 2),且(x 1−x 2)(y 1−y 2)<0,则k 的取值范围为______.13.在平面直角坐标系中,点A (2,m )在直线y =−2x +1上,点A 关于y 轴对称的点B 恰好落在直线y =kx +1上,则k 的值为___.14.如图,ΔABC 中,∠ACB =90°,AC =6,BC =8.点P 从A 点出发沿A →C →B 路径向终点B点运动;点Q从B点出发沿B→C→A路径向终点A点运动.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.点P运动________秒时,ΔPEC与ΔQFC全等.15.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,ΔA1B1A2,ΔA2B2A3,ΔA3B3A4,……均为等边三角形,若O A1=2,则ΔA6B6A7的边长为___________.16.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB于点E,∠B=2∠BAC,∠ACD+∠BAC=60°,若AB的长度比CD的长度多2,则BE的长为_______________.三.解答题(共9小题,满分72分)17.(6分)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式|a+b−c|+|b−a−c|=_______.(2)若∠B=∠A+18°,∠C=∠B+18°,求△ABC的各内角度数;18.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作∠CBA的角平分线BD,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在上图中,若BD=10cm,求DC的长19.(6分)已知△ABC三个顶点坐标分别为A(2,5),B(-1,2),C(4,0),在直角坐标系中,正方形网格的单位长度为1.(1)若△ABC内部一点P(a,b),直角坐标系中有点P'(a−3,b−5),请平移△ABC,使点P与点P'重合,画出平移后的△A'B'C';(2)直接写出△A'B'C'的三个顶点的坐标;(3)求出△ABC在平移过程中扫过的面积.20.(8分)已知一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),与坐标轴的交点分别是A 、B 、C 、D .(1)直接写出方程组{ax −y =−6y +x =b的解;(2)求△PCD 的面积;(3)请根据图象直接写出当y 1>y 2时x 的取值范围.21.(8分)如图,在△ABC 中,已知∠1=∠2,BE =CD .(1)证明:AB=AC;(2)AB=5,AE=2,求CE的长.22.(9分)A校和B校分别有库存电脑12台和6台,现决定支援给C校10台和D校8台,从A校运一台电脑到C校的运费是40元,到D校是80元;从B校运一台电脑到C校的运费是30元,到D校是50元.设A校运往C校的电脑为x台,总运费为W元.(1)写出W关于x的函数关系式;(2)从A、B两校调运电脑到C、D两校有多少种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?23.(9分)如图1,在ΔABC中,过点B作BD⊥AB,且BD=AB,连接CD.(问题原型)(1)若∠ACB=90°,且AC=BC=8,过点D作的ΔBCD的BC边上的高DE,易证△ABC≌△BDE,从而得到ΔBCD的面积为______.(变式探究)(2)如图2,若∠ACB=90°,BC=a,用含a的代数式表示△BCD的面积,并说明理由.(拓展应用)(3)如图3,若AB=AC,BC=16,则△BCD的面积为______.24.(10分)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠ADC=90°. E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法:延长FD到点G,使DG=BE.连接AG.先证明△ABE≌△ADG,再证△AEF≌△AGF,可得出结论,他的结论应是.【灵活运用】(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°, F、F分别是BC、CD上的点.且EF=BE+FD,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.25.(10分)如图,△ABC为等边三角形,点D是△ABC外一点,连接AD,BD,CD,AB与CD 相交于点G,且∠DAC+∠DBC=180°.图1 图2(1)请求出∠ADB的度数;(2)请写出AD,BD,CD之间的数量关系,并说明理由;(3)如图2,点E为CD的中点,连接BE并延长,交AC于点F,当BF与CD的夹角∠FEC=60°时,△ABC的面积为12,直接写出△CEF的面积.答案解析一.选择题1.D【分析】根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.【详解】解:将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).故选:D.2.C【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【详解】解:注水量一定,即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.A.容器的底面积大,中,小,则函数图象的走势是平缓,稍陡,陡,故此选项不符合题意;B.容器的底面积小,大,中,则函数图象的走势是陡,平缓,稍陡,故此选项不符合题意;C.容器的底面积中,大,小,则函数图象的走势是稍陡,平缓,陡,故此选项符合题意;D.容器的底面积小,中,大,则函数图象的走势是陡,稍陡,平缓,故此选项不符合题意;故选:C.3.C【分析】根据三角形面积公式由点D为BC的中点得到SΔABD =SΔADC=12SΔABC=6,同理得到SΔEBD=SΔEDC=12SΔABD=3,则SΔBEC=6,然后再由点F为EC的中点得到SΔBEF=12SΔBEC=3.【详解】解:∵点D为BC的中点,∴SΔABD =SΔADC=12SΔABC=6,∵点E为AD的中点,∴SΔEBD =SΔEDC=12SΔABD=3,∴SΔBEC =SΔEBD+SΔEDC=6,∵点F为EC的中点,∴SΔBEF =12SΔBEC=3,即阴影部分的面积为3.故选:C.4.B【分析】首先根据三角形的外角性质得∠ADC=∠A+∠C+∠ABC,从而求出∠ABC,最后根据角平分线的定义即可解决问题.【详解】解:∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120∘=40∘+20∘+∠ABC,∴∠ABC=60∘,∵BE平分∠ABC,∴∠ABE=12∠ABC=30∘,故选:B.5.D【分析】根据点P′,P″分别是P关于OA,OB的对称点,得到PP′被OA垂直平分,PP″被OB垂直平分,根据线段垂直平分线的性质得到MP=MP′,NP=NP″,即可得出△PMN的周长.【详解】∵点P′,P″分别是P关于OA,OB的对称点,∴PP′被OA垂直平分,PP″被OB垂直平分,∴MP=MP′,NP=NP″,∴△PMN的周长=MN+MP+NP=MN+MP′+NP″=P′P″=8(cm).故选:D.6.D【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD=∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD=DF ,根据平行线的性质得到BE=ED ,EA=ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD 平分∠BAC ,AD ⊥BD ,∴∠BAD=∠FAD ,∠ADB=∠ADF=90°,在△BAD 和△FAD 中,{∠BAD =∠FADAD =AD ∠ADB =∠ADF =90°,∴△BAD ≌△FAD (ASA ),∴∠ABD=∠F ,∵DE ∥AC ,∴∠EDB=∠F ,∠EDA=∠FAD ,∴∠ABD=∠EDB ,∠EDA=∠EAD ,∴BE=ED ,EA=ED ,∴BE=EA=ED ,∴DE=12AB=12×8=4,故选:D .7.D【分析】根据图象中t =0 时,s =120 可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1 时,s =0可判断②;由图象t =1.5 和t =3的实际意义,得到货车和小汽车的速度,从而可判断④;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断③,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①正确;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷ 1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故④正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故③正确.∴正确的说法有①②③④四个.故选:D.8.B【分析】从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,则第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),点A2020的坐标(1010,0),则点A2022的坐标(1011,1),点A3的坐标(2,1),则A3A2022=1009(m),则△OA3A2023的底边为A3A2022,高为1m,则根据三角形面积公式就可以求得.【详解】解:从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,2023÷4=505…2,∴第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),∴点A2020的坐标(1010,0),∴点A2022的坐标(1011,1),∵点A3的坐标(2,1),则A3A2022=1009(m),∴△OA3A2022的面积是12×1×1009=10092m2,故选:B.9.B【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a ,即可求解.【详解】解:如图,过点C 作CD ⊥x 轴于D ,∵点A (0,2),∴AO =2,∵△ABC 是等腰直角三角形,且AB =BC ,∴∠ABC =90°=∠AOB =∠BDC ,∴∠ABO+∠CBD =90°∠ABO+∠BAO =90°,∴∠BAO =∠CBD ,在△AOB 和△BDC 中,{∠AOB =∠BDC∠BAO =∠CBD AB =BC,∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB+BD =2+a =m ,∴2<m <3,故选:B .10.D【分析】①由AB =AC ,AD =AE 利用等式的性质得到夹角相等,从而得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD =CE ,本选项正确;②由三角形ABD 与三角形ACE 全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC =45°,进而得到∠ACE +∠DBC =45° ,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD⊥CE,本选项正确;④利用周角减去两个直角可得答案;【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即:∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵△BAD≌△CAE∴∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°即:BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°∴∠BAE+∠DAC=360°−90°−90°=180°,本此选项正确;故选:D.二.填空题11.(-1,-2)或(7,-2)##(7,-2)或(-1,-2)【分析】根据点B与点A的位置关系分类讨论,分别求解即可.【详解】解:∵AB∥x轴,A的坐标为(3,−2),并且AB=4,∴点B的纵坐标为−2,若点B在点A的左侧,则点B的坐标为(3-4,-2)=(-1,-2)若点B在点A的右侧,则点B的坐标为(3+4,-2)=(7,-2)故答案为:(-1,-2)或(7,-2).12.k<1【分析】先根据(x1−x2)(y1−y2)<0可得出{x1−x2>0y1−y2<0或{x1−x2<0y1−y2>0两种情况讨论求解即可.【详解】解:∵点A(x1,y1),B(x2,y2)在函数y=(k−1)x−3(k是常数,k≠1)的图象上,且(x1−x2)(y1−y2)<0,∴{x1−x2>0 y1−y2<0或{x1−x2<0 y1−y2>0∴函数值y随x的增大而减小,∴k−1<0解得,k<1故答案为:k<113.2【分析】根据直线y=−2x+1的解析式求出m,再求出点A关于y轴的对称点,再将对称点带入y=kx+1求出k.【详解】解:点A(2,m)在直线y=−2x+1上,∴m=−3,点 A(2,-3)关于y轴对称的点为(-2,-3),∴−3=−2k+1,∴k=2,故答案为:2.14.1或3.5或12【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,解方程即可.【详解】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6−t,QC=8−3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵ΔPCE≅ΔCQF,∴PC=CQ,即6−t=8−3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t−6,QC=3t−8,∵由①知:PC=CQ,∴t−6=3t−8,t=1;t−6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6−t=3t−8,t= 3.5;④当Q到A点停止,P在BC上时,如图4,AC=PC,t−6=6时,解得t=12.⑤P和Q都在BC上的情况不存在,因为P的速度是每秒1,Q的速度是每秒3;答:点P运动1或3.5或12秒时,以P、E、C为顶点的三角形上以O、F、C为顶点的三角形全等.故答案为:1或3.5或12.15.64【分析】由等边三角形的性质得到∠BA1A2=60°,A1B1=A1A2,再由三角形外角的性质求1出∠AB1O=30°,则A1B1=A1A2=O A1,同理得A2B2=A2A3=O A2=2O A1,A3B3=A3A4= 122⋅O A1,A4B4=A4A5=23⋅O A1,由此得出规律A n B n=A n A n+1=2n-1⋅O A1=2n,即可求解.【详解】解:∵ΔAB1A2为等边三角形,1∴∠BA1A2=60°,A1B1=A1A2,1∴∠AB1O=∠B1A1A2-∠MON=60°-30°=30°,1∴∠AB1O=∠MON,1∴AB1=O A1,1∴AB1=A1A2=O A1,1同理可得AB2=A2A3=O A2=2O A1,2∴AB3=A3A4=O A3=2O A2=22⋅O A1,3A4B4=A4A5=O A4=2O A3=23⋅O A1,…∴AB n=A n A n+1=2n-1⋅O A1=2n,n∴ΔAB6A7的边长:A6B6=26=64,6故答案为:64.16.1【分析】在AE上截取EF=BE,连接CF,则CE垂直平分BF,结合题意推出AF=CF,过点F作FM ⊥AC,交AC于点M,过点C作CN⊥AD,交AD的延长线于点N,则有∠AMF=∠N=90°,AC=2AM,进而得出AM=CN,根据题意及三角形外角性质推出∠MAF=∠NCD,利用ASA判定△AFM ≌△CDN,根据全等三角形的性质得到AF=CD,结合题意即可得解.【详解】解:在AE上截取EF=BE,连接CF,∵CE⊥AB,∴CE垂直平分BF,∴BC=FC,∴∠B=∠BFC,∵∠B=2∠BAC,∴∠BFC=2∠BAC,∵∠BFC=∠BAC+∠ACF,∴∠ACF=∠BAC ,∴AF=CF ,过点F 作FM ⊥AC ,交AC 于点M ,过点C 作CN ⊥AD ,交AD 的延长线于点N ,则有∠AMF=∠N=90°,AC=2AM ,∵∠CAD=30°,∠N=90°,∴AC=2CN ,∴AM=CN ,∵∠ACD+∠BAC=60°,∴∠ACD=60°-∠BAC ,∴∠CDN=∠ACD+∠CAD=60°-∠BAC+30°=90°-∠BAC ,∴∠NCD=90°-∠CDN=90°-(90°-∠BAC )=∠BAC ,∴∠MAF=∠NCD ,在△AFM 和△CDN 中,{∠MAF =∠NCDAM =CN ∠AMF =∠N,∴△AFM ≌△CDN (ASA ),∴AF=CD ,∵AB 的长度比CD 的长度多2,∴AB- CD=AB- AF=2BE=2,∴BE=1,故答案为:1.三.解答题17.(1)解:∵在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴a +b >c ,b −a <c ,∴a +b −c >0,b −a −c <0,∴|a +b −c|+|b −a −c|=a +b −c −(b −a −c )=a +b −c −b +a +c=2a,故答案为:2a;(2)解:∵∠B=∠A+18°,∠C=∠B+18°,∴∠C=∠A+18°+18°=∠A+36°,∵∠A+∠B+∠C=180°,∴∠A+∠A+18°+∠A+36°=180°,解得∠A=42°,故∠B=42°+18°=60°,∠C=60°+18°=78°,故△ABC的各内角度数分别为42°,60°,78°.18.(1)如图所示:(2)∵△ABC中,∠C=90°,∠A=30°∴∠ABC=90°-∠A=90°-30°=60°∵BD平分∠ABC∴∠DBC=12×60∘=30∘∵△DBC中,∠C=90°,∠CBD=30°∴CD=12BD=12×10=5cm答:CD长5cm19.(1)解:由题意可知,只需要将点A、B、C的坐标分别向左平移3个单位长度,向下平移5个单位长度,画出图形即可,△A'B'C'如图所示:(2)解:坐标内同一个图形中点的坐标的平移方式一致,故A'(−1,0),B'(−4,−3),C'(1,−5)(3)解:如图,△ABC在平移过程中扫过的面积为△ABC的面积与四边形B B'C'C的面积和,即8×10−2×12×3×5−12×2×5−3×3−12×3×3−12×2×5=41.5,即△ABC在平移过程中扫过的面积为41.520.(1)解:∵一次函数y1=ax+6和y2=﹣x+b的图象交于点P(1,2),∴方程组{ax −y =−6y +x =b 的解为{x =1y =2;(2)∵一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),∴{a+6=2−1+b =2 ,解得{a =−4b =3 ,∴y 1=﹣4x+6,y 2=﹣x+3,当y =0时,0=﹣4x +6,解得x =32,当y =0时,0=﹣x+3,解得x =3,∴C (32,0),D (3,0),∴CD =32,∴S △PCD =12×32×2=32.即△PCD 的面积为32;(3)根据图象可知当在P 点左边时y 1>y 2,∴y 1>y 2时x 的取值范围为x <1.21.(1)证明:在△ABE 和△ACD 中,∵{∠A =∠A∠1=∠2BE =CD,∴△ABE ≌△ACD ,∴AB =AC .(2)解:∵△ABE ≌△ACD ,∴AB =AC ,∵AB =5,AE =2,∴CE =AC -AE =5-2=3.22.(1)解:设A校运往C校的电脑为x台,则A校运往D校的电脑为(12−x)台,从B校运往C校的电脑为(10−x)台,运往D校的电脑为8−(12−x)=(x−4)台,由题意得,W=40x+80(12−x)+30(10−x)+50(x−4),=−20x+1060,由{12−x≥010−x≥0x−4≥0解得4≤x≤10,所以,W=1060−20x(4≤x≤10);(2)∵4≤x≤10∴0≤x−4≤6共有7种调运方案,即B到D的可以是0,1,2,3,4,5,6这7种情况.(3)∵k=−20<0,∴W随x的增大而减小,∴当x=10时,W最小,最小值为:−20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.23.解:(1)∵在△ABC中,∠ACB=90°,过点B作BD⊥AB且过点D作的△BCD的BC边上的高DE,∴∠DEB=∠ACB =∠ABD =90°∴∠ABC+∠DBE =90°∵∠DBE+∠BDE =90°∴∠ABC =∠BDE .在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠ABC =∠BDE AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =8∴S ΔBCD =12CB ⋅DE =12×8×8=32故答案为:32(2)S ΔBCD =12a 2理由:过点D 作DE ⊥CB 延长线于点E ∴∠DEB=∠ACB =90°∵BD ⊥AB ,∠1+∠2=90°∵∠2+∠A =90°∴∠A =∠1.在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠A =∠1AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =a ∴S ΔBCD =12CB ⋅DE =12a 2(3)如图3中,∵AB =AC∴BF =12BC =12×8=4.过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E,∴∠AFB=∠E =90°,∴∠FAB+∠ABF =90°.∵∠ABD=90°,∴∠ABF+∠DBE =90°,∴∠FAB =∠EBD .在△AFB 和△BED 中,{∠AFB =∠E∠FAB =∠EBD AB =BD,∴△AFB ≌△BED(AAS),∴BF =DE =4.∵S △BCD =12BC ⋅DE ,∴S △BCD =12×8×4=16∴△BCD 的面积为16.故答案为:1624.解:(1)∠BAE+∠FAD=∠EAF .理由:如图1,延长FD 到点G ,使DG=BE ,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°−1∠DAB.2证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1∠DAB.225.(1)解:∵四边形ACBD,∴∠DAC+∠DBC+∠ADB+∠ACB=360°.∵△ABC为等边三角形,∴∠ACB=60°.又∵∠DAC +∠DBC =180°,∴∠ADB =120°.(2)AD +BD =CD ,理由如下:如图,延长BD 至点H ,使得DH =AD ,连接AH .∵由(1)可知∠ADB =120°,∴∠ADH =60°.又∵DH =AD ,∴△ADH 为等边三角形.∴∠HAD =60°.AD =AH =DH .∵△ABC 为等边三边形,∴∠HAD +∠DAB =∠BAC +∠DAB .即∠HAB =∠DAC .在△HAB 与△DAC 中,{AH =AD ∠HAB =∠DAC AB =AC ∴△HAB ≅△DAC(SAS),∴CD =BH .又∵BH =BD +DH =BD +AD ,∴AD +BD =CD .(3)由(1)可知∠ABD=∠ACG,∵∠DGB=∠AGC,∴∠BDG=∠CAG=60°,∵∠CEF=∠BED=60°,∴△BDE是等边三角形,∴BE=DE,∵DE=EC,∴BE=EC,∵∠BEC=120°,∴∠EBC=∠ECB=30°,∵∠ABC=∠ACB=60°,∴∠ABF=∠CBF=30°,∠ACE=∠BCE=30°,∵BA=BC,∴BF⊥AC,AF=CF,∴EC=2EF,∴BE=2EF,∵△ABC 的面积为12,∴S△CEF =13S△BCF=16S△ABC=2.。
沪科版八年级上册数学期末测试卷(参考答案)
沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在平面直角坐标系中,点( ,)关于轴对称的点的坐标是()A.(,)B.(,)C.(,)D.(,)2、点M(2,-1)向上平移2个单位长度得到的点的坐标是()A.(2,0)B.(2,1)C.(2,2)D.(2,)3、在同一平面直角坐标系中,函数y=mx+m与y= (m≠0)的图象可能是()A. B. C. D.4、如图,函数=2 和= +4的图象相交于点A(,3),则不等式2 <+4的解集为()A. <B. <3C. >D. >35、把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有()( 1 )∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A.1个B.2个C.3个D.46、平面直角坐标系y轴上有一点P(m-1,m+3),则P点坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(0,4)7、如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S=12,DF=2,AC=3,则AB的长是()△ABCA.2B.4C.7D.98、如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.9、如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=4,则图中阴影部分的面积为()A. +B. +2C. +D.2 +10、下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等; C.等腰三角形的底角可以是直角; D.直角三角形的两锐角互余.11、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-212、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)13、如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为( )A.60°B.75°C.85°D.95°14、函数y=﹣中的自变量x的取值范围是()A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠115、如图,在中,.若,,则的度数是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是________.(填写序号)17、如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=________.18、如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为________.19、如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=14cm,BC=12cm,S=52cm2,则DE=________ cm.△ABC20、如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为________.21、如图,和都是等腰直角三角形,若,,,则________.22、已知:如图,△ABC是等边三角形,延长AC到E,C为线段AE上的一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC.以下五个结论:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;结论正确的有________(把你认为正确的序号都填上)23、三角形两边的长分别是3和4,第三边的长是方程的根,则该三角形的周长为________.24、如图,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为________.25、在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y= 上,则k值可以是________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图.AB=AD,∠ABC=∠ADC,求证:BC=DC.28、如图,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图,连接AE和GC. 你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.29、C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明:AC+DE=CE.30、已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、D6、D8、D9、B10、C11、C12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
沪科版八年级数学上册期末测试卷及答案
沪科版数学八年级上册期末测试卷及答案一、选择题(本大题共10小题,共40分)1. 点,1(P )2-关于y 轴对称的点的坐标是( )A. (1,2)B. (-1,2)C. (-1,-2)D. (-2,1)2. 有一个角是的等腰三角形,其它两个角的度数是( )A. 36°,108°B. 36°,72°C. 72°,72°D. 36°,108°或72°,°72°3. 点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为( )A. (4,-3)B. (3,-4)C. (-3,-4)或(3,-4)D. (-4,-3)或(4,-3)4. 若三条线段中3=a ,5=b ,c 为奇数,那么由a 、b 、c 为边组成的三角形共有( )A. 1个B. 3个C. 无数多个D. 无法确定5. 在同一直角坐标系中,若直线3+=kx y 与直线b x y +-=2平行,则( )A.2-=k ,3≠bB.2-=k ,3=bC.2-≠k ,3≠bD.2-≠k ,3=b6. 当0>k ,0<b 时,函数b kx y +=的图象大致是( ) A. B. C. D.7. 有以下四个命题:其中正确的个数为( )(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A. 1B. 2C. 3D. 48. 如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为( )A. 3<PNB. 3>PNC. 3≥PND. 3≤PN9. 如图,将矩形纸片ABCD 折叠,使点D 与点B重合,点C 落在C '处,折痕为EF ,若1=AB ,2=BC ,则△ABE 和F C B '的周长之和为( )A. 3B. 4C. 6D. 810.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离 其中是真命题的个数有( )A. 0个B. 1个C. 2个D. 3个二、填空题(每题5分,共20分)11.命题“有两边相等的三角形是等腰三角形”的题设是________________,结论是________________,它的逆命题是__________________.12.如图,等边△ABC的边长为1 cm,D,E分别是AB,AC上的点,将△ABC 沿直线DE折叠,点A落在A′处,且A′在△ABC外部,则阴影部分的周长为________cm.13.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,…每个正方形四条边上的整点的个数.按此规律推算出正方形A2 019B2 019C2 019D2 019四条边上的整点共有________个.三、解答题(15~17题每题6分,其余每题12分,共90分)15.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1的坐标:A1________,B1________;(3)S△A1B1C1=________.16.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.17.将一张长方形纸条ABCD按如图所示折叠,若∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.18.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数y=kx+b的图象经过点B(-2,-1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数表达式;(2)求C点的坐标;(3)求△AOD的面积.19.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF ⊥AC交AC的延长线于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE,BE的长.20.如图,直线l:y=-12x+2与x轴、y轴分别交于A,B两点,在y轴上有一点C(0,4),动点M从A点出发以每秒1个单位的速度沿x轴向左移动.(1)求A,B两点的坐标;(2)求△COM的面积S与点M的移动时间t之间的函数表达式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.21.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系图象如图①中的点状图所示(5月份及以后每月的销售额都相等),而经销成本p(万元)与销售额y(万元)之间的函数关系图象如图②中的线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数表达式;(2)分别求该公司3月、4月的利润;(利润=销售额-经销成本)(3)问:把3月作为第1个月开始往后算,最早到第几个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?22.(1)如图①,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕着点A按逆时针方向旋转到如图②的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.23.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,α与β之间的数量关系是________,证明你的结论;(2)如图②,点D在线段BC的延长线上移动时,α与β之间的数量关系是____________,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形,此时α与β之间的数量关系是____________.沪科版数学八年级上册期末测试卷参考答案1. C2. D3. D4. B5. A6. D7. B8. C9.C10.A二、11.一个三角形有两条边相等;这个三角形是等腰三角形;等腰三角形有两条边相等12.313.≥214.16 152三、15.解:(1)略(2)(0,-4);(-2,-2)(3)716.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.17.(1)解:∵∠GEF=∠FEC=64°,∴∠BEG=180°-64°×2=52°∵AD∥BC,∴∠1=∠BEG=52°.(2)证明:∵AD∥BC,∴∠GFE=∠FEC,∴∠GEF=∠GFE,∴GE=GF,∴△EFG是等腰三角形.18.解:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),∴2m=2,∴m=1.把点A(1,2)和点B(-2,-1)的坐标代入y=kx+b,得k+b=2,-2k+b=-1,解得k=1,b=1,则一次函数表达式是y=x +1.(2)在y=x+1中,令x=0,则y=1,所以点C(0,1).(3)在y=x+1中,令y=0,所以x=-1.则△AOD的面积=12×1×2=1.19.解:(1)连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE =DF ,∠BED =∠CFD =90°.∵DG ⊥BC 且平分BC ,∴BD =CD .在Rt △BED 与Rt △CFD 中,BD =CD ,DE =DF ,∴Rt △BED ≌Rt △CFD (HL ),∴BE =CF .(2)在△AED 和△AFD 中,∠AED =∠AFD =90°,∠EAD =∠F AD , AD =AD ,∴△AED ≌△AFD (AAS ),∴AE =AF .设BE =x ,则CF =x ,∵AB =5,AC =3,AE =AB -BE ,AF =AC +CF ,∴5-x =3+x ,解得x =1,∴BE =1,AE =AB -BE =5-1=4.20.解:(1)在y =-12x +2中,当x =0时,y =2.当y =0时,-12x +2=0,解得x =4,所以A (4,0),B (0,2).(2)当0<t ≤4时,OM =4-t ,S =12OM ·OC =12(4-t )×4=-2t +8;当t >4时,OM =t -4,S =12OM ·OC =12(t -4)×4=2t -8.(3)因为△COM ≌△AOB ,所以OM =OB =2,当0<t ≤4时,OM =4-t =2,所以t =2.当t >4时,OM =t -4=2,所以t =6.所以当t =2或6时,△COM ≌△AOB ,此时M 点的坐标是(2,0)或(-2,0).21.解:(1)设经销成本p 与销售额y 之间的函数表达式为p =ky +b (k ≠0),则⎩⎨⎧100k +b =60,200k +b =110,解得⎩⎪⎨⎪⎧k =12,b =10.∴p =12y +10(100≤y ≤200). (2)利润=销售额-经销成本=y -⎝ ⎛⎭⎪⎫12y +10=12y -10.由题图①知,当x =3时,y =150;当x =4时,y =175.∴3月份的利润为12×150-10=65(万元),4月份的利润为12×175-10=77.5(万元).(3)设最早到第x 个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,用原线下销售方式每月销售所获的利润为12×100-10=40(万元),5月份及以后用线上方式销售每月的利润为12×200-10=90(万元),依题意,得[65+77.5+90(x-2)]-40x≥200,解得x≥4.75.∵x是整数,∴x至少取5.答:最早到第5个月,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.22.解:(1)猜想:BD+CE=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=120°,又∵∠AEC=60°,∴∠ECA+∠CAE=120°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=60°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴BD+CE=AE+AD=DE.(2)猜想:CE-BD=DE.证明:∵在正三角形ABC中,∠BAC=60°,∴∠DAB+∠CAE=60°,∵∠AEC=120°,∴∠ECA+∠CAE=60°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠CEA=120°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴CE-BD=AD-AE=DE.23.解:(1)α+β=180°证明:∵∠DAE=∠BAC,∴∠DAE-∠DAC=∠BAC-∠DAC,∴∠CAE=∠BAD.∵在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°.(2)α=β理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,即α=β.(3)图略,α=β。
沪科版八年级上册数学期末测试卷(含解析)
沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、△ABC中,∠ABC=30°,边AB=10,边AC可以从4,5,7,9,11取一值.满足这些条件的互不全等三角形的个数是()A.6B.7C.5D.42、若点在第二象限内,则点()在()A. 轴正半轴上B. 轴负半轴上C. 轴正半轴上D. 轴负半轴上3、下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、104、下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.5、圆的周长公式为C=2πr,下列说法正确的是()A.π是自变量B.π和r都是自变量C.C、π是变量D.C、r 是变量6、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是( )A. B. C. D.7、小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:① 的距离为120米;②乙的速度为60米/分;③ 的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有()个A.1B.2C.3D.48、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是()A.6B.5C.10D.89、下列图形中阴影部分面积相等的是()A.①②B.②③C.①④D.③④10、如图所示,为的切线,切点为点A,交于点C,点D在上,若的度数是32°,则的度数是( )A.29°B.30°C.32°D.45°11、下列图形中,对称轴最多的是()A.正方形B.线段C.圆D.等腰三角形12、如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P ,能表示这个一次函数图象的方程是()A. B. C. D.13、如图(1),在矩形ABCD中,动点P从点B出发,沿着BC、CD、DA运动到点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图(2)所示,则△ABC的周长为()A.9B.6C.12D.714、用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,,则该等腰三角形的腰长为()A.4cmB.6cmC.4cm或6cmD.4cm或8cm15、如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D. (m-2)二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD 的中点,若AD=10,则CP的长为________.17、如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△AʹBʹCʹ,连接AʹC,则△AʹBʹC的周长为________.18、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,△ADE的顶点D在BC上运动,且∠DAE=90°,∠ADE=∠B,F为线段DE的中点,连接CF,在点D运动过程中,线段CF长的最小值为________.19、如图,直线y=mx﹣4m(m<0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针转90°得到△COD,E为AB中点,F为CD中点,连接EF,G为EF 中点,连接OG.若OG=,则m的值为________ .20、如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为________.21、如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;② ;③∠ADF=2∠ECD;④;⑤CE=DF.其中正确结论的序号是________.22、现以A(0,4),B(﹣3,0),C(3,0)三点为顶点画平行四边形,则第四个顶点D的坐标为________.23、如图,在中,AB=AC=10,BC=12,AD=8,A D⊥BC.若P、Q分别是AD 和AC上的动点,则PC+PQ的最小值是________.24、已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=________.25、若点(a,-2)与点(-3,b)关于x轴对称,则a+b= ________三、解答题(共5题,共计25分)26、如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠A=56°,求∠EDF.27、如图,已知.相交于点.求证:.28、如图,E是□ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.29、在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.30、在△ABC中,AB=AC,AB边上的中线CD把三角形的周长分成6和15的两部分,求三角形腰和底的长.参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、B5、D6、B7、C8、B10、A11、C12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
沪科版数学八年级上册期末测试题及答案
沪科版数学八年级上册期末测试题(时间:120分钟分值:120分)一、选择题(共10小题,每小题4分,满分40分)1.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5)D.(2,﹣5)2.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,2)3.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.34.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定()A.小于直角B.等于直角C.大于直角D.不能确定5.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(4分)如图,若△ABC≌△DEF,∠E=()A.30°B.62°C.92°D.88°8.(4分)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC =12cm,AC=9cm,那么BD的长是()A.7cm B.9cm C.12cm D.无法确定9.(4分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件不可以是()A.AB=CD B.OB=OD C.∠A=∠C D.∠B=∠D 10.(4分)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对B.3对C.2对D.1对二、填空题(共6小题,每小题4分,满分24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,那么∠ACE 的大小是_____度.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=.15.(4分)如图,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有对全等三角形.16.(4分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.三、解答题(共4小题,满分36分)17.(8分)下列句子是命题吗?若是,把它改写成“如果……那么……”的形式,并写出它的逆命题,同时判断原命题和逆命题的真假.(1)一个角的补角比这个角的余角大多少度?(2)垂线段最短,对吗?(3)等角的补角相等.(4)两条直线相交只有一个交点.(5)同旁内角互补.(6)邻补角的角平分线互相垂直.18.(9分)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.19.(9分)如图,点B、C、E、F在同一直线上,AB∥DE,∠A=∠D,BF=CE求证:AB=DE.20.(10分)如图所示,已知线段a、b、h(h<b).求作△ABC,使BC=a,AB=b,BC 边上的高AD=h.(要求:写出作法,并保留作图痕迹)参考答案一、选择题。
沪科版八年级数学第一学期期末综合测试卷
沪科版八年级数学第一学期期末综合测试卷时间:100分钟 满分:100分一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a 是整数,点A(2a +1,2+a )在第二象限,则a 的值是( )A .-1B .0C .1D .22.已知在△ABC 中,∠A =70°-∠B ,则∠C =( )A .35°B .70°C .110°D .140°3.下列图形是轴对称图形的有 ( )A .2个B .3个C .4个D .5个 4.若一次函数y =kx +b ,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值( ) A .增加4 B .减小4 C .增加2D .减小2 5.如图,已知点P 到BE 、BD 、AC 的距离恰好相等,则P 点的位置:①在∠B 的平分线上; ②在∠DAC 的平分线上; ③在∠ECA 的平分线上; ④恰好是∠B 、∠DAC 、∠ECA 的三条角平分线的交点; 上述结论中正确的个数是( )A .1个 B.2个 C.3个 D.4个6.如图,直线y 1=x 2与y 2=-x +3相交于点A ,若y 1<y 2,那么( ) A .x >3 B .x <2 C .x >1 D .x <17.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .SSSB .ASAC .AASD .SAS8.如图,E ,B ,F ,C 四点共线,且EB =CF ,∠A =∠D ,增加下列条件中的一个仍不能证明△ABC ≌△DEF ,这个条件是( )A .AB =DE B . DF ∥AC C .∠E =∠ABCD . AB ∥DE 9.如图,AD 是△ABC 的中线,E ,F 分别是AD 及AD 延长线上的点,且DE =DF ,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④∠BAD =∠CAD .其中正确的有( )A . 1个B . 2个C . 3个D . 4个10.如图,在△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,当∠EPF 在△ABC 内绕点P 旋转时,下列结论错误..的是( ) A .AE =CFB .△EPF 为等腰直角三角形C .EF =APD .2S 四边形AEPF =S △ABC二、填空题:本大题共5小题,每小题4分,共20分。
沪科版八年级数学上期末试卷及答案(六套)
(3)ACE BD八年级数学(上学期)期末试题(一)姓名__________得分________一、填空题:(本题满分30分,每小题3分)1、若点(x ,y)的坐标满足y =2x - , 则这个点在 ____ 象限或_____。
2、点(5,-3)左平移3个单位,下平移2个单位坐标后的坐标是_______3、如图(1), 直线L, m 的解析式分别是 ___________________________4、某长途汽车客运公司规定按如图方法收取旅客行李费,问:旅客最多可免费携带行李_______kg ?5、函数 y =1x -+ (x-2)°中,x 的取值范围是_______________. 6、若10个数的平方和是370,方差是33那么这10个数的平均数为_______ 7、在∆ABC 中,BC = 10,AB = 6, 那么 AC 的取值范围是______________. 8、说明“对应角相等的两个三角形全等“是假命题的反例是______________________________________________________________ 9、腰长为12cm ,底角为15︒的等腰三角形的面积为____________。
10、上图(3),在∆ABC 中,∠ACB = 90︒,∠B= 30︒, DE 垂直平分BC ,BD = 5, 则∆ACD 的周长为_________。
二、选择题:(本题满分18分,每小题3分)1、若 y -1 与 2x +3 成正比例,且 x = 2 时, y = 15,则 y 与 x 间的函数解析式是 ( )A :y =2x +3B :y = 4x + 7C :y =2x +2D :y =2x +152、若函数y = ax + b ( a ≠0) 的图象如图(4)所示不等式ax + b ≥0的解集是 ( )x(4)o 2y = ax+b2yAEBC D(5)ABD Cx (百元)y (元)3 5 3050200A:≤C:x = 2 D:x ≥-ba3∠∠∠D =∠E = 35︒, 那么∠A = ()A:35︒B:45︒C:40︒D:50︒4、下列命题是真命题的是:()A:面积相等的两个三角形全等B:三角形的外角和是360︒C:有一个角是30︒的等腰三角形底角为75︒D:角平分线上的点到角的两边上的点的距离相等5、直线y = x , y = 3 , x = - 1所围成的三角形面积是()A:9 B:5 C:6 D:86、三角形三内角平分线的交点到()距离相等A:三顶点B:三边C:三边中点D:三条高三、证明题:(本题满分16分,每小题8分)1、已知:如图,在三角形ABC中AB = AC ,O是三角形ABC内一点,且OB = OC,求证:AO ⊥BC2、如图,在∆ABC中,AB = AC, ∠BAC =120︒,且BD = AD,求证:CD = 2BD四、(本题满分20分,每小题10分)1、下图是某企业职工养老保险个人月缴费y(元),随个人月工资x (百元)变化的图象:请你根据图象解答问题:(1)张工程师5月份工资3500元,这个月他应缴养老金多少元?(2) 李师傅5月份缴养老金80元?他这个 月工资多少元?2、已知等腰三角形周长为24cm ,若底边长为y(cm),一腰长为x(cm), (1) 写出y 与x 的函数关系式 (2) 求自变量x 的取值范围 (3) 画出这个函数的图象五、作图题(本题满分8分)求作一点P ,使PC = PD, 并且使点P 到AOB 两边的距离相等 (保留痕迹,不写作法)六、(本题满分8分)一组数据从小到大排列为a, 3, 4, 6, 7, 8, b ,其平均数为6,极差是8,求这组数据的方差 答案:一、1、第二象限 原点2、 (2,-5)3、L :y = x +3 m : y = - 2x4、 305、 x > 1且 x ≠ 26、 27、 4< x < 168、边长不等的两个等边三角形 9、 36 10、 15二、 1、B 2、B 3、C 4、B 5、D 三、提示:1、证明AO 是等腰三角形的顶角平分线2、利用直角三角形中30︒角所对的边等于斜边的一半四、1、(1)200 (2) 10002、(1)y = -2x + 24 (2)6< x < 12 五、作∠AOB 的平分线与CD 的垂直平分线相交,交点为P六、 6沪科版八年级数学第一学期期末测试题(二)一、认真选一选(本题共10小题,每题3分,共30分)1、函数12+=x y 中自变量x 的取值范围是 【 】 A .21≥x B. 0≥x C. 21-≥x D. 21->x 2、已知点P (a,-b )在第一象限,则直线y=ax+b 经过的象限为 【 】 A .一、二、三象限 B..一、三、四象限 C .二、三、四象限D .一、二、四象限3、下列一次函数中,y 的值随着x 的值增大而减小的是 【 】A.y=x B.y=x+1 C.y=x-1 D.y=-x+14、一个等腰三角形,周长为9,其余各边均为整数,则腰长为【】A.4或3或2 B. 4或3 C.4 D.35、如图,已知点P到BE、BD、AC的距离恰好相等,则P点的位置:①在∠B的平分线上②在∠DAC的平分线上③在∠ECA的平分线上④恰好是∠B、∠DAC、∠ECA的三条角平分线的交点。
沪科版八年级数学上册期末试卷及答案六套
(3)ACE BD八年级数学(上学期)期末试题(一)姓名__________得分________一、填空题:(本题满分30分,每小题3分)1、若点(x ,y)的坐标满足y =2x - , 则这个点在 ____ 象限或_____。
2、点(5,-3)左平移3个单位,下平移2个单位坐标后的坐标是_______3、如图(1), 直线L, m 的解析式分别是 ___________________________4、某长途汽车客运公司规定按如图方法收取旅客行李费,问:旅客最多可免费携带行李_______kg ?5、函数 y =1x -+ (x-2)°中,x 的取值范围是_______________. 6、若10个数的平方和是370,方差是33那么这10个数的平均数为_______ 7、在∆ABC 中,BC = 10,AB = 6, 那么 AC 的取值范围是______________. 8、说明“对应角相等的两个三角形全等“是假命题的反例是______________________________________________________________ 9、腰长为12cm ,底角为15︒的等腰三角形的面积为____________。
10、上图(3),在∆ABC 中,∠ACB = 90︒,∠B= 30︒, DE 垂直平分BC ,BD = 5, 则∆ACD 的周长为_________。
二、选择题:(本题满分18分,每小题3分)1、若 y -1 与 2x +3 成正比例,且 x = 2 时, y = 15,则 y 与 x 间的函数解析式是 ( )A :y =2x +3B :y = 4x + 7C :y =2x +2D :y =2x +152、若函数y = ax + b ( a ≠0) 的图象如图(4)所示不等式ax + b ≥0的解集x(4) oy = ax+b22 yAEBCD(5)ABD C y (元)是 ( )A :B :x ≤C :x = 2D :x ≥ - b a3,若量得∠∠D =∠E = 35︒, 那么∠A = ( ) A :35︒ B : 45︒ C :40︒ D :50︒ 4、下列命题是真命题的是: ( )A : 面积相等的两个三角形全等B :三角形的外角和是360︒C : 有一个角是30︒的等腰三角形底角为75︒D :角平分线上的点到角的两边上的点的距离相等5、直线y = x , y = 3 , x = - 1所围成的三角形面积是 ( ) A :9 B : 5 C :6 D :86、三角形三内角平分线的交点到( )距离相等A :三顶点B :三边C :三边中点D :三条高三、证明题:(本题满分16分,每小题8分)1、已知:如图,在三角形ABC 中AB = AC ,O 是三角形ABC 内一点,且OB = OC , 求证:AO ⊥ BC2、如图,在∆ABC 中,AB = AC, ∠BAC =120︒,且BD = AD, 求证:CD = 2BD四、(本题满分20分,每小题10分)1、下图是某企业职工养老保险个人月缴费y(元),随个人月工资x (百元)变化的图象:请你根据图象解答问题:(1) 张工程师5月份工资3500元,这个月他应缴养老金多少元?(2) 李师傅5月份缴养老金80元?他这个 月工资多少元?2、已知等腰三角形周长为24cm ,若底边长为y(cm),一腰长为x(cm), (1) 写出y 与x 的函数关系式 (2) 求自变量x 的取值范围 (3) 画出这个函数的图象五、作图题(本题满分8分)求作一点P ,使PC = PD, 并且使点P 到AOB 两边的距离相等 (保留痕迹,不写作法)六、(本题满分8分)一组数据从小到大排列为a, 3, 4, 6, 7, 8, b ,其平均数为6,极差是8,求这组数据的方差答案: 一、1、第二象限 原点2、 (2,-5)3、L :y = x +3 m : y = - 2x4、 305、 x > 1且 x ≠ 26、 27、 4< x < 168、边长不等的两个等边三角形 9、 36 10、 15二、 1、B 2、B 3、C 4、B 5、D 三、提示:1、证明AO 是等腰三角形的顶角平分线2、利用直角三角形中30︒角所对的边等于斜边的一半四、1、(1)200 (2) 10002、(1)y = -2x + 24 (2)6< x < 12 五、作∠AOB 的平分线与CD 的垂直平分线相交,交点为P六、 6沪科版八年级数学第一学期期末测试题(二)一、认真选一选(本题共10小题,每题3分,共30分)1、函数12+=x y 中自变量x 的取值范围是 【 】 A .21≥x B. 0≥x C. 21-≥x D. 21->x 2、已知点P (a,-b )在第一象限,则直线y=ax+b 经过的象限为 【 】 A .一、二、三象限 B..一、三、四象限 C .二、三、四象限D .一、二、四象限3、下列一次函数中,y的值随着x的值增大而减小的是【】A.y=x B.y=x+1 C.y=x-1 D.y=-x+1 4、一个等腰三角形,周长为9,其余各边均为整数,则腰长为【】A.4或3或2 B. 4或3 C.4 D.35、如图,已知点P到BE、BD、AC的距离恰好相等,则P点的位置:①在∠B的平分线上②在∠DAC的平分线上③在∠ECA的平分线上④恰好是∠B、∠DAC、∠ECA的三条角平分线的交点。
沪科版(2024)八年级全一册物理第一学期期末学业质量测试卷(含答案)
沪科版(2024)八年级全一册物理第一学期期末学业质量测试卷一、选择题(每题2分,共28分)题序1234567891011121314 答案1.下列估值,符合实际的是()A.一张纸的厚度约为1 mmB.一个成年人正常步行时的速度约为5 m/sC.一名初中生所受重力约为500 ND.一个鸡蛋的质量约为0.5 kg2.运动会上,负责摄影的无人机完全同步跟拍小点的长跑过程,小点感觉无人机像悬停在自己左前方一样,他选择的参照物是()A.无人机B.小点自己C.终点计时员D.观众席上加油的同学3.春晚西安分会场上,现代演员带领千余人与古代的“李白”齐诵《将进酒》。
关于其中的物理知识,下列说法正确的是()A.朗诵时,朗诵者的声带振动产生声音B.真空中,声音的传播速度约为340 m/sC.可依据音调区分“李白”和其他演员的声音D.朗诵者的声音很大是因为声音的频率很高4.小明课间漫步在校园的林荫大道上,看到树荫下有许许多多的光斑,下列光现象中与光斑形成原理相同的是()5.图中画出了光线通过透镜(图中未画出)的情形,其中凸透镜是()6.晋江草庵寺是世界现存唯一摩尼教寺庙遗址。
寺内存有我国唯一的摩尼光佛石像,如图所示,佛像面部呈淡青色,是利用岩石中不同的天然颜色精巧构设。
佛像背后十八道佛光,意在象征“光明”。
下列关于摩尼光佛石像说法正确的是()(第6题)A.摩尼光佛石像是光源B.佛像表面粗糙发生了镜面反射C.佛像的面部与手部颜色不同是因为反射了不同颜色的光D.我们能够看到佛像是因为光的折射7.小明用金属管自制乐器,如图所示。
敲击不同长度的金属管,能发出“do(1)”“re(2)”“mi(3)”“fa(4)”“sol(5)”“la(6)”“si(7)”。
他演奏童谣《数鸭子》中的“鸭”时,应敲击的金属管是()A.a B.b C.e D.f(第7题)(第8题) 8.篆刻是中国传统技艺的重要组成部分。
如图所示是用篆刻刀在质地均匀的印章上刻字的过程,下列说法正确的是()A.篆刻完成前后,印章的质量不变B.篆刻完成前后,印章的密度变小C.将刻好的印章拿到太空中,其质量增大D.将刻好的印章拿到太空中,其密度不变9.如图所示,小明在实验室探究凸透镜成像规律的过程中,烛焰在光屏上刚好成清晰的像,下列说法正确的是()A.该透镜的焦距是20 cmB.此时光屏上成倒立、缩小的实像,与照相机成像的原理相同C.蜡烛烧短后,将光屏下移可使像成在光屏中央D.将蜡烛移至40 cm刻度处,移动光屏,光屏上不能呈现像(第9题)(第10题)(第12题) 10.影视剧拍摄过程中,为了防止演员受伤,砸向演员的道具石头一般是用泡沫塑料制成的。
沪科版八年级数学上册期末试卷及答案六套
(3)ACE BD八年级数学(上学期)期末试题(一)姓名__________得分________一、填空题:(本题满分30分,每小题3分)1、若点(x ,y)的坐标满足y =2x - , 则这个点在 ____ 象限或_____。
2、点(5,-3)左平移3个单位,下平移2个单位坐标后的坐标是_______3、如图(1), 直线L, m 的解析式分别是 ___________________________4、某长途汽车客运公司规定按如图方法收取旅客行李费,问:旅客最多可免费携带行李_______kg ?5、函数 y =1x -+ (x-2)°中,x 的取值范围是_______________. 6、若10个数的平方和是370,方差是33那么这10个数的平均数为_______ 7、在∆ABC 中,BC = 10,AB = 6, 那么 AC 的取值范围是______________. 8、说明“对应角相等的两个三角形全等“是假命题的反例是______________________________________________________________ 9、腰长为12cm ,底角为15︒的等腰三角形的面积为____________。
10、上图(3),在∆ABC 中,∠ACB = 90︒,∠B= 30︒, DE 垂直平分BC ,BD = 5, 则∆ACD 的周长为_________。
二、选择题:(本题满分18分,每小题3分)1、若 y -1 与 2x +3 成正比例,且 x = 2 时, y = 15,则 y 与 x 间的函数解析式是 ( )A :y =2x +3B :y = 4x + 7C :y =2x +2D :y =2x +152、若函数y = ax + b ( a ≠0) 的图象如图(4)所示不等式ax + b ≥0的解集x(4) oy = ax+b22 yAEBCD(5)ABD C y (元)是 ( )A :B :x ≤C :x = 2D :x ≥ - b a3,若量得∠∠D =∠E = 35︒, 那么∠A = ( ) A :35︒ B : 45︒ C :40︒ D :50︒ 4、下列命题是真命题的是: ( )A : 面积相等的两个三角形全等B :三角形的外角和是360︒C : 有一个角是30︒的等腰三角形底角为75︒D :角平分线上的点到角的两边上的点的距离相等5、直线y = x , y = 3 , x = - 1所围成的三角形面积是 ( ) A :9 B : 5 C :6 D :86、三角形三内角平分线的交点到( )距离相等A :三顶点B :三边C :三边中点D :三条高三、证明题:(本题满分16分,每小题8分)1、已知:如图,在三角形ABC 中AB = AC ,O 是三角形ABC 内一点,且OB = OC , 求证:AO ⊥ BC2、如图,在∆ABC 中,AB = AC, ∠BAC =120︒,且BD = AD, 求证:CD = 2BD四、(本题满分20分,每小题10分)1、下图是某企业职工养老保险个人月缴费y(元),随个人月工资x (百元)变化的图象:请你根据图象解答问题:(1) 张工程师5月份工资3500元,这个月他应缴养老金多少元?(2) 李师傅5月份缴养老金80元?他这个 月工资多少元?2、已知等腰三角形周长为24cm ,若底边长为y(cm),一腰长为x(cm), (1) 写出y 与x 的函数关系式 (2) 求自变量x 的取值范围 (3) 画出这个函数的图象五、作图题(本题满分8分)求作一点P ,使PC = PD, 并且使点P 到AOB 两边的距离相等 (保留痕迹,不写作法)六、(本题满分8分)一组数据从小到大排列为a, 3, 4, 6, 7, 8, b ,其平均数为6,极差是8,求这组数据的方差答案: 一、1、第二象限 原点2、 (2,-5)3、L :y = x +3 m : y = - 2x4、 305、 x > 1且 x ≠ 26、 27、 4< x < 168、边长不等的两个等边三角形 9、 36 10、 15二、 1、B 2、B 3、C 4、B 5、D 三、提示:1、证明AO 是等腰三角形的顶角平分线2、利用直角三角形中30︒角所对的边等于斜边的一半四、1、(1)200 (2) 10002、(1)y = -2x + 24 (2)6< x < 12 五、作∠AOB 的平分线与CD 的垂直平分线相交,交点为P六、 6沪科版八年级数学第一学期期末测试题(二)一、认真选一选(本题共10小题,每题3分,共30分)1、函数12+=x y 中自变量x 的取值范围是 【 】 A .21≥x B. 0≥x C. 21-≥x D. 21->x 2、已知点P (a,-b )在第一象限,则直线y=ax+b 经过的象限为 【 】 A .一、二、三象限 B..一、三、四象限 C .二、三、四象限D .一、二、四象限3、下列一次函数中,y的值随着x的值增大而减小的是【】A.y=x B.y=x+1 C.y=x-1 D.y=-x+1 4、一个等腰三角形,周长为9,其余各边均为整数,则腰长为【】A.4或3或2 B. 4或3 C.4 D.35、如图,已知点P到BE、BD、AC的距离恰好相等,则P点的位置:①在∠B的平分线上②在∠DAC的平分线上③在∠ECA的平分线上④恰好是∠B、∠DAC、∠ECA的三条角平分线的交点。
沪科版八年级上册数学期末测试卷及含答案
沪科版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8C.4D.62、下列图形中,是轴对称图形而不是中心对称图形的是( )A. B. C. D.3、下列四个图形中,轴对称图形的个数是()A.1B.2C.3D.44、如图,在等边△ABC中,BD=CE,将线段AE沿AC翻折,得到线段AM,连结EM交AC于点N,连结DM、CM.以下说法:①AD=AM ②∠MCA=60°③CM=2CN,④MA=DM其中正确的有()A.1个B.2个C.3个D.4个5、如图所示,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是∠ACB外角平分线与∠ABC平分线交点,E是∠ABC,∠ACB外角平分线交点.若∠BOC = 120°,则∠D的度数为( )A.15°B.20°C.25°D.30°6、如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF度数是()A.80°B.70°C.60°D.不确定7、一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF :S圆=3:4π以上结论正确的有()A.1个B.2个C.3个D.4个8、如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求。
八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(一)
八年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2.已知正比例函数y=(k+3)x,若y随x的增大而减小,则k的取值范围是() A.k>-3B.k<-3C.k>3D.k<33.函数y=x-2x-3的自变量x的取值范围是()A.x≠3B.x>0且x≠3C.x≥0且x≠3D.x≥2且x≠3 4.若长度分别是a,5,9的三条线段能组成一个三角形,则a的值可以是() A.15B.14C.8D.45.若点M(2-a,3a+6)到两坐标轴的距离相等,则点M的坐标为() A.(6,-6)B.(3,3)C.(-6,6)或(-3,3)D.(6,-6)或(3,3)6.下列命题:①内错角相等;②两个锐角的和是钝角;③a,b,c是同一平面内的三条直线,若a∥b,b∥c,则a∥c;④a,b,c是同一平面内的三条直线,若a⊥b,b⊥c,则a∥c,其中真命题的个数是()A.1个B.2个C.3个D.4个7.如图,已知∠1=∠2,添加一个条件,使得△ABC≌△ADC,下列条件添加错误的是()(第7题)A .∠B =∠D B .BC =DC C .AB =AD D .∠3=∠48.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.下列说法错误的是()A .该汽车的蓄电池充满电时,电量是60千瓦时B .蓄电池剩余电量为35千瓦时时汽车已行驶了150千米C .当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时D .25千瓦时的电量,汽车能行驶150km(第8题)(第9题)(第10题)9.如图,△ABC 的面积是2,AD 是△ABC 的中线,AF =13AD ,CE =12EF ,则△CDE 的面积为()A.29 B.16 C.23 D.4910.如图,在等边三角形ABC 中,BD 是中线,点P ,Q 分别在AB ,AD 上,且BP =AQ =QD =1,动点E 在BD 上,则PE +QE 的最小值...为()A .2B .3C .4D .5二、填空题(本大题共4小题,每小题5分,满分20分)11.如果点A (-3,a )和点B (b ,2)关于x 轴对称,那么ab 的值是____________.(第12题)12.如图,在△ABC 中,BD 是一条角平分线,CE 是AB 边上的高线,BD ,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=_______________________________________.13.在一次函数y=1x+3的图象上,到y轴的距离等于2的点的坐标是2____________.(第14题)14.如图,△ADB,△BCD都是等边三角形,E,F分别是AB,AD上两个动点,满足AE=DF.BF与DE交于点G,连接CG.(1)∠EGB的度数是____________;(2)若DG=3,BG=5,则CG=____________.三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移5个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是什么?(第15题) 16.从①∠1+∠2=180°,②∠3=∠A,③∠B=∠C三个条件中选出两个作为题设,另一个作为结论可以组成三个命题.从中选择一个真命题,写出已知、求证,并证明.如图,已知:________,求证:________.(填序号)(第16题)证明:四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=kx+b的图象经过点(-2,10),(3,0)和(1,m).(1)求m的值;(2)当-4≤y≤8时,求x的取值范围.18.如图,在Rt△ABC中,∠C=90°,请用尺规作图:(不要求写作法,保留作图痕迹)(1)在线段AB上找一点E,使得E点到边BC的距离与到边AC的距离相等.(2)在线段BC 上找一点D ,使得S △ABD =S △ACD.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.下面是某数学兴趣小组在项目学习课上的方案策划书,请仔细阅读,并完成相应的任务.项目课题探究用全等三角形解决“不用直接测量,得到高度”的问题问题提出墙上点A 处有一灯泡,在无法直接测量的情况下,如何得到灯泡的高度(即OA 的长,灯泡的大小忽略不计)?项目图纸解决过程①标记测试直杆的底端点D ,测量OD 的长度.②找一根长度大于OA 的直杆,使直杆斜靠在墙上,且顶端与点A 重合.③使直杆顶端缓慢下滑,直到∠DCO =∠ABO .④记下直杆与地面的夹角∠ABO .项目数据……任务:(1)由于项目记录员粗心,记录排乱了“解决过程”,正确的顺序应是()A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①(2)请你说明他们作法的正确性.20.如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.(1)求证:AC=BD;(2)AC与BD相交于点P,求∠APB的度数.(第20题)六、(本题满分12分)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式(k-3)x+b>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线,交y=3x于点N,当MN=2DO时,求M点的坐标.(第21题)七、(本题满分12分)22.要从甲、乙两仓库向A,B两地运送水泥.已知甲仓库可运出100t水泥,乙仓库可运出80t水泥.A地需70t水泥,B地需110t水泥.两仓库到A,B两地的路程和运费如下表:路程/km运费/[元/(t·km)]甲仓库乙仓库甲仓库乙仓库A地2015 1.2 1.2B地252010.8(1)设从甲仓库运往A地水泥x t,求总运费y关于x的函数表达式,并画出图象.(2)当从甲仓库运往A地多少吨水泥时,总运费最省?最省的总运费是多少?八、(本题满分14分)23.如图,△ABC是边长为12cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,其中点P运动的速度是1cm/s,点Q 运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t的值;若不能,请说明理由.(3)当t为何值时,△BPQ是直角三角形?(第23题)答案一、1.A 2.B3.C4.C5.D6.B7.B8.D9.A 10.B 思路点睛:作点P 关于BD 的对称点P ′,连接P ′Q 交BD 于E ,此时PE+EQ 的值最小.二、11.612.40°13.(2,4)或(-2,2)14.(1)60°(2)8三、15.解:(1)如图,△A 1B 1C 1即为所求.(第15题)(2)如图,△A 2B 2C 2即为所求.(3)(m -5,-n ).16.解:(答案不唯一)①②;③∵∠1+∠2=180°,∴AD ∥EF ,∴∠3=∠D .∵∠3=∠A ,∴∠A =∠D ,∴AB ∥CD ,∴∠B =∠C .四、17.解:(1)∵一次函数y =kx +b 的图象经过点(-2,10),(3,0),∴2k +b =10,k +b =0,=-2,=6,∴一次函数的表达式为y =-2x +6,∴m =-2×1+6=4.(2)∵-2<0,∴y 随x 的增大而减小.当y =-4时,-4=-2x +6,解得x =5;当y =8时,8=-2x +6,解得x =-1.∴当-4≤y ≤8时,x 的取值范围为-1≤x ≤5.18.解:(1)如图,点E 为所作.(第18题)(2)如图,点D为所作.五、19.解:(1)D(2)在△ABO和△DCO ∠AOB=∠DOC,∠ABO=∠DCO,AB=DC,∴△ABO≌△DCO,∴OA=OD.即测量OD的长度,就等于OA的长度,即点A的高度.20.(1)证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD.∵OA=OB,OC=OD,∴△AOC≌△BOD,∴AC=BD.(2)解:设AC与BO交于点M,则∠AMO=∠BMP.∵△AOC≌△BOD,∴∠OAC=∠OBD,∴180°-∠OAC-∠AMO=180°-∠OBD-∠BMP,∴∠APB=∠AOM=60°.六、21.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(-2,6)和(1,3),-2k+b=6,k+b=3,k=-1,b=4.(2)x<1.(3)由(1)知,直线AB的表达式为y=-x+4,当x=0时,y=-x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,-m+4),N(m,3m),∴MN=3m-(-m+4)=4m-4.∵MN=2DO,∴4m-4=8,解得m=3,∴M点坐标为(3,1).11七、22.解:(1)由题意得y =1.2×20x +1×25×(100-x )+1.2×15×(70-x )+0.8×20×[80-(70-x )]=-3x +3920,即所求的函数表达式为y =-3x +3920,其中0≤x ≤70,其图象如图所示.(第22题)(2)当x =70时,y 的值最小.∴当从甲仓库运往A 地70t 水泥时,总运费最省,最省的总运费为3710元.八、23.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由如下:∵AB =BC =AC =12cm ,∴当点Q 到达点C 时,t =122=6,∴AP =6×1=6(cm),∴点P 为AB 的中点.∵△ABC 是等边三角形,∴AC =BC ,∴PQ ⊥AB .(2)能.∵△BPQ 是等边三角形,∴BP =PQ =BQ .由题意得AP =t cm ,BQ =2t cm ,∴BP =(12-t )cm ,∴2t =12-t ,解得t =4.∴当t =4时,△BPQ 是等边三角形.(3)易知AP =t cm ,BQ =2t cm ,BP =(12-t )cm.当∠BQP =90°时,∵∠PBQ =60°,∴∠BPQ =30°,∴BQ =12BP ,即2t =12(12-t ),解得t =2.4;当∠BPQ =90°时,同理可得12×2t =12-t ,解得t =6.综上所述,当t =2.4或t =6时,△BPQ 是直角三角形.。
沪科版2022-2023学年八年级上学期期末达标检测数学试卷(含解析)
沪科版八年级上学期数学期末达标检测一、选择题(本大题共10小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1. 在平面直角坐标系中,点在( )A. 轴的正半轴上B. 轴的负半轴上C. 轴的正半轴上D. 轴的负半轴上2. 将某图形的各顶点的横坐标减去,纵坐标保持不变,可将该图形( )A. 横向向右平移个单位B. 横向向左平移个单位C. 纵向向上平移个单位D. 纵向向下平移个单位3. 函数中自变量的取值范围是( )A. 且B.C.D.4. 下列图形中,与关于直线成轴对称的是( )A. B. C. D.5. 如图,将三角尺的直角顶点放在直尺的一边上,,,则的度数等于( )A. B.C. D.6. 已知方程组的解为,则直线与直线的交点在平面直角坐标系中位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列命题真命题的个数有( )经过一点有且只有一条直线与已知直线平行;直线外一点与直线上各点连接的所有线段中,垂线段最短;若,则;同位角相等.A. 个B. 个C. 个D. 个8. 一个三角形的三边长分别为,,,另一个三角形的三边长分别为,,,若这两个三角形全等,则( )A. B. C. D.9. 在同一平面直角坐标系中,一次函数与的图象可能是( )A. B. C. D.10. 如图,直线是中边的垂直平分线,点是直线上的一动点.若,,,则周长的最小值是( )A. B. C. D.二、填空题(本大题共4小题,共20分)11. 把命题“垂直于同一条直线的两条直线平行”改写成“如果那么”的形式是.12. 如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是.13. 已知一次函数中,自变量的取值范围是,函数值的取值范围是,则这个一次函数的解析式为.14. 如图,在边长为的等边三角形中,点是与平分线的交点,过点的直线分别与边,交于点,点关于的对称点为点,连接,,分别与交于点,,连接,,的度数为______,若,则的长为______.三、解答题(本大题共9小题,共90分。
沪科版八年级上册数学期末测试卷(综合知识)
沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列选项中,阴影部分面积最小的是()A. B. C.D.2、将AD与BC两边平行的纸条ABCD按如图所示折叠,则∠1的度数为()A.72°B.45°C.56°D.60°3、以下四种作边AC上的高,其中正确的作法是()A. B. C.D.4、如图,将的三边扩大一倍得到(顶点均在格点上),如果它们是以点P为位似中心的位似图形,则点的P坐标是()A. B. C. D.5、△ABC中,等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或106、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7、在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形8、若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函数y=mx2﹣mx ()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣9、如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°10、如图,AC是△ABC和△ADC的公共边,要判定△ABC≌△ADC,还需要补充的条件不能是()A.AB=AD,∠1=∠2,B.AB=AD,∠3=∠4C.∠1=∠2,∠3=∠4D.∠1=∠2, ∠B=∠D11、如图,,,垂足分别为点,点,、相交于点O,,则图中全等三角形共有()A.2对B.3对C.4对D.5对12、若三角形的三边分别为3、4、a,则a的取值范围是()A.a>7B.a<7C.1<a<7D.3<a<613、在等腰三角形ABC中,∠A与∠B度数之比为5∶2,则∠A的度数是()A.100°B.75°C.150°D.75°或100°14、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.15、如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°二、填空题(共10题,共计30分)16、圆的对称轴有________条.17、将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=________.18、如图,在平面直角坐标系中,将沿轴向右滚动到的位置,再到的位置…依次进行下去,若已知点,,则点的坐标为________.19、对于函数,有下列性质:①它的图象过点,② 随的增大而减小,③与轴交点为,④它的图象不经过第二象限,其中正确的序号是________(请填序号).20、如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=________.21、已知等腰直角三角形ABC中,∠C=90°,AC=BC=4,点D在直线AC上,且CD=2,连接BD,作BD的垂直平分线交三角形的两边于E、F,则EF的长为________ .22、已知△ABC为等边三角形,BD为△ABC的高,延长BC至E,使CE=CD=1,连接DE,则BE=________,∠BDE=________ .23、为鼓励居民节约用电,某市自以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.该市一位同学家2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.如果该同学家4月份用电410千瓦时,那么电费为________ 元.24、在中,,,M,N是边上两个动点,若,边上分别存在点P,Q使得,则线段的最小值为________.25、球桌为如图所示的长方形ABCD,小球从A沿45°角击出,恰好经过5次碰撞到B处,则AB:BC=________.三、解答题(共5题,共计25分)26、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.27、如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE,垂足为F.线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=________.28、如图,P是∠AOB内部的一点,PE⊥OA,PF⊥OB垂足分别为E,F.PE=PF.Q是OP上的任意一点,QM⊥OA,QN⊥OB,垂足分别为点M和N,QM 与QN相等吗?请证明.29、在□ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.30、如图,A、B、C、D在同一条直线上,AC=BD,AE=DF,BE=CF.求证:AE∥DF.参考答案一、单选题(共15题,共计45分)1、C3、B4、D5、C6、D7、C8、B9、B10、A11、C12、C13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末综合测试题一、选择题1.测量是科学研究的基础和前提,测量的真实性和精确程度直接决定了研究的成败。
在下列关于测量的几种说法中,选出你认为最优的一项()A.测量前要观察测量工具的量程,以选择合适的测量工具B.测量前要观察测量工具的分度值,以满足测量精度的要求C.测量前要观察零刻度,以确定是否有磨损D.测量前上述三种做法都是必要的2.如图1所示是小明用刻度尺测量一条形金属片长度的情形,该刻度尺的分度值和金属片的长度分别是()A.1 cm、5.50 cm B.1 cm、8.30 cmC.1 mm、8.30 cm D.1 mm、2.80 cm3.“飒爽英姿五尺枪,曙光初照演兵场。
中华儿女多奇志,不爱红装爱武装。
”国庆60周年的天安门庆典上,中国的女民兵方队表现出色(如图2所示),赢得了党和国家领导人的高度评价。
假定这一列队伍行进速度是3m/ s,经过天安门正前方200m 的阅兵界线,从队伍第一人踏上界线到最后一人离开界线共需95s,则这列队伍长A.485mB.200mC.85mD.285m4.上海世博会会况采用了地球同步卫星直播,同步卫星虽绕地球转动,但是地球上的人却觉得它在地球上空静止不动,这是因为所选的参照物是()A.地球B.月亮C.太阳D.三者均可5. 如图3所示,在探究“声音是由物体振动产生的”实验中,将正在发声的音叉紧靠悬线下的乒乓球,发现乒乓球被多次弹开.这样做是为了( )A.使音叉的振动尽快停下来B.把音叉的微小振动放大,便于观察C.延长音叉的振动时间D.使声波被多次反射形成回声6.火车进站后,工人师傅常用小铁锤来敲打车轮或敲打车轮上的钢板,由声音来判断它是否断裂,这种判断依据的是声音的()A.音调B.音色C.响度D.频率7.关于声现象,下列说法正确的是()A.声音在空气和铁棒中的传播速度相同B.声音可以在真空中传播C.一切正在发声的物体都在振动D.男女同学说话时的音调都是相同的8.下列成语所反映的情景中,属于光的折射现象的是( )A.镜花水月 B.坐井观天 C.海市蜃楼 D.立竿见影9.如图4所示四个图像,其中一个是福娃在竖直放置的平面镜中的像,正确的是()10.下面关于一些光现象的说法中,不符合客观实际的是()A.小孔成像说明了光沿直线传播B.看到物体成的虚像时,没有光线射入我们的眼晴C.湖水中形成的倒影是光的反射现象D.斜看水中的物体,看到物体的位置比实际位置高11.关于四种光学仪器的成像情况,以下说法正确的是( )A.幻灯机成倒立、放大的实像B.潜望镜成正立、缩小的虚像C.照相机成正立、缩小的实像D.放大镜成正立、放大的实像12.如图5所示是李明同学拍摄的某酒店大楼风景照片,下面说法正确的是()A.要想使大楼的像更大一些,李明应当向大楼靠近一些,同时将镜头调节到靠近底片一些,再拍摄B.大楼在空气中发生了镜面反射,人们在各个方向都可以看到它C.大楼在底片上的像是倒立、缩小的实像D.要想使大楼的像更大一些,李明应当离大楼远一些,同时将底片调节到远离镜头一些,再拍摄13.人眼的晶状体相当于凸透镜。
针对如图6所示的成像情况,下列判断正确的是()A.属于近视眼,应配戴凹透镜B.属于近视眼,应配戴凸透镜C.属于远视眼,应配戴凹透镜D.属于远视眼,应配戴凸透镜14.下列有关力的叙述中正确的是()A.人站在地板上不受地板的弹力B.一定范围内的弹性形变都能产生弹力C.弹簧的长度越大,弹力越大D.物体的形变越大,弹力越大15.关于力的认识.下列说法中错误的是( )A.力是物体对物体的作用B.力能使物体发生形变或改变物体运动状态C.物体间力的作用是相互的D.只有相互接触的物体才会产生力的作用16.滑板运动已经成为年轻人最流行、最持久的时尚运动.它由板面、滑板支架(滑板桥)和四个滑板轮等部分组成(如图7所示),板面上表面粗糙,则()A.滑板上表面粗糙是为了减小人与板面之间的摩擦B.滑板上表面粗糙是为了增大人与板面之间的摩擦C.滑板上表面粗糙是为了减小板轮与地面间的摩擦D.滑板上表面粗糙是为了增大板轮与地面间的摩擦17.一物块被一个水平方向的力F紧压在竖直墙壁上静止不动,这个物块没有掉下来的原因是()A.它受到地球对它的重力的作用B.它受到力F的作用C.它受到墙壁对它的水平向右方向的作用力D.它受到墙壁对它的摩擦力的作用18.如图8所示,A、B两个弹簧测力计,所挂的物体重力均为10N,在滑轮摩擦不计的情况下,当砝码处于静止状态时,A、B两个弹簧测力计的示数分别是()A.10N,20NB. 0N,10NC.10N,0ND. 10N,10N二、填空题19._________和_________是现代物理学的奠基人,如图9所示的两位科学家,其中_______的名字被作命名为物理量________的单位。
20.北宋著名的文学家苏东坡在《赤壁怀古》一诗词中,有“大江东去,浪淘尽,千古风流人物……”的名句,其中“大江东去”是以___________为参照物的。
若以顺水漂流的小船为参照物,那么江水是___________的。
21.北京奥运会的“祥云”火炬长72______;骑车上学的速度是5________.22.在08年北京奥运会上,我国蝶泳运动员刘子歌在女子200m比赛中,以2分04秒18的成绩打破世界记录勇夺金牌(如图10甲所示),这也是我国游泳队在本届奥运会上夺得的唯一一枚金牌。
在比赛过程中,刘子歌游泳的速度约是______m/s.而在男子_______m决赛中,牙买加飞人博尔特却以19秒30的成绩率先冲线(如图10乙所示),并打破了由美国人迈克尔·约翰保持的19秒32的世界记录。
23.在吹笛子时,笛子内有一段空气柱,吹奏时空气柱振动发声,抬起不同的手指,就会改变______________,从而改变声音的__________,就能吹奏出优美的乐曲。
24.爱动脑筋的王小虎,将喝饮料的吸管剪成不同的长度,并用胶带把底部密封好,将它们按长短不同依次排在一起,如图11所示。
对着管口吹气,由于空气柱的________就会发出声音,管子的长短不同,发出的声音的_________(选填“音调”、“响度”或“音色”)就不同,这样就做成了一个小吸管乐器,这个吸管乐器从左到右的音调排列是由______到_______的。
25.演奏会上,人们能分辨出二胡和小提琴的声音,这是因为它们的_________不同,声音都是由物体的振动产生的,如图12所示的小球用细线吊着,它在来回的摆动过程中,我们却听不到它发出的声音,其原因是____________________________。
演奏弦乐时,手指在弦上的位置不断变化,这是为了改变琴声的 _____。
26.如图13所示的“皮影戏”是我国的民间艺术,演员只要在屏幕和灯光之间抖动栓在道具“武将”上的细线,屏幕上就能出现生动活泼的“武将”形象,这其中所涉及的光学知识主要有:_____________________________。
27.“桂林山水甲天下”,山中有水,水中有山……,从物理学的角度看,山在水中的倒影是_____像(选填“实”或“虚”),像的成因是_______,山在水中的像的高度与水的深度______关(选填“有”或“无”)。
28.小明家的写字台上铺有一块厚厚的玻璃板,有一次,他不慎在上面滴了一滴清水,结果发现台板下的报纸上的文字变大了。
这是由于此时水滴相当于一个_________,报纸上的文字经过水滴的_______作用后形成了一个放大的_____(选填“虚”或“实”)像。
29.在检查视力时,医生让小王观察前方平面镜中的视力表来确定视力。
实际上,视力表在小王的后方,他在镜中看到的是视力表_____立、等大的虚像。
若小王的眼睛到虚像的距离为5m ,眼睛到平面镜的距离为2.3m ,则他的眼睛到实际的视力表的距离为_______m。
30.每年的6月6日是全国爱眼日,目的是让人们注意要保护自己的眼睛。
(1)眼球好象一架照相机,晶状体和角膜的共同作用相当于一个透镜。
视网膜上成的像是像(填“实”或“虚”)。
(2)要科学用眼,注意用眼卫生。
读书时,眼睛与书本的距离应保持cm。
(3)矫正近视眼,要配戴近视眼镜。
近视镜是透镜。
如图14所示的眼镜的镜片是_______透镜,这种眼镜可以用于矫正______眼。
31.如图15所示,主要表示力可以改变物体运动状态的是____图;主要表示力可以改变物体形状的是______图.32.用手使劲掰弯臂力棒,感到手臂有疼痛的感觉,这说明物体间力的作用是________的,臂力棒变弯了,表明力可以使物体发生___________。
33.重力为300N的木箱放在水平的地面上,当木箱向右沿水平方向匀速运动时,受到的摩擦力是重力的0.4倍,那么木箱受到的摩擦力是_____N,方向是向_________的。
34.如图16所示,质量为10kg的物体挂在弹簧测力计的右端,则物体的重力是________N,在物体静止时,弹簧测力计的示数是_______N.(g=10N/kg)三、作图题35.隐形飞机在战争中的有夺取制空权的极大优势,地面雷达是靠发射电磁波并接收其回波来确定飞机方位的,电磁波与光遵循相同的传播规律,隐形飞机是一个庞然大物,它是如何“隐身”的呢?(1)请你画出图17中的反射光线。
(2)根据反射光线的特点,你能猜想出隐身飞机在外形上有怎样的特点?36.请完成图18中的光路图。
37.如图19所示,质量均匀的小球从斜面上滚下,请在图中画出小球所受重力的示意图。
四、实验探究题38.光明中学的科学兴趣小组的同学们在探究“音调与频率的关系”实验时,做了如下实验,请你根据下列步骤,写出所能听到或看到的现象,并简要说明你的理由。
实验材料:一张有弹性的塑料片,一辆自行车。
实验步骤:(1)把自行车直起来,一手转动脚踏板,另一手拿塑料片,让塑料片的一端接触自行车后轮的辐条(注意一定不要把手伸进去),先慢慢转动,会看到______________,听到____________________,原因是__________________________________________________;(2)加快转动,你会看到_________________,听到__________________________,再加快转动,你将会看到_______________,听到_________________,原因是___________________________;(3)实验结论是:_____________________________________________。
39.在用焦距为10cm的凸透镜来探究成像规律的实验中.(1)如图20所示,将蜡烛、凸透镜、光屏依次放在光具座上.点燃蜡烛后,调节凸透镜和光屏的高度,使它们的中心与烛焰中心大致在同一高度.其目的是使像成在______________________________.(2)当烛焰距凸透镜15cm时,移动光屏,可在光屏上得到一个清晰的倒立、_________(选填“放大”或“缩小”)的实像.(3)把图中的凸透镜看作眼睛的晶状体,光屏看作视网膜.给“眼睛”戴上远视眼镜,使烛焰在“视网膜”上成一清晰的像.若取下远视眼镜,为使光屏上得到清晰的像,应将光屏___________(选填“远离”或“靠近”)透镜。