四川高三数学理大一轮复习练习13.4数学归纳法
高考数学专题复习题:数学归纳法
高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。
高三数学一轮复习 数学归纳法巩固与练习
巩固1.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( )A .一切正整数命题成立B .一切正奇数命题成立C .一切正偶数命题成立D .以上都不对解析:选B.本题证的是对n =1,3,5,7,…命题成立,即命题对一切正奇数成立.2.在数列{a n }中,a n =1-12+13-14+…+12n -1-12n,则a k +1=( ) A .a k +12k +1B .a k +12k +2-12k +4C .a k +12k +2D .a k +12k +1-12k +2解析:选D.a 1=1-12,a 2=1-12+13-14,…,a n =1-12+13-14+…+12n -1-12n,a k =1-12+13-14+…+12k -1-12k ,所以,a k +1=a k +12k +1-12k +2. 3.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为f (k ),则f (k +1)与f (k )的关系是( )A .f (k +1)=f (k )+k +1B .f (k +1)=f (k )+k -1C .f (k +1)=f (k )+kD .f (k +1)=f (k )+k +2解析:选C.当n =k +1时,任取其中1条直线,记为l ,则除l 外的其他k 条直线的交点的个数为f (k ),因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为已知任何三条直线不过同一点,所以上面的k 个交点两两不相同,且与平面内其他的f (k )个交点也两两不相同,从而平面内交点的个数是f (k )+k =f (k +1).4.用数学归纳法证明当n ∈N *时1+2+22+23+…+25n -1是31的倍数时,当n =1时原式为________,从k →k +1时需增添的项是____________.解析:把n =k ,n =k +1相比较即可得出.答案:1+2+22+23+24 25k +25k +1+25k +2+25k +3+25k +45.用数学归纳法证明1+2+3+…+n 2=n 4+n 22时,当n =k +1时左端在n =k 时的左端加上________.解析:n =k 时左端为1+2+3+…+k 2,n =k +1时左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2.答案:(k 2+1)+(k 2+2)+…+(k +1)26.数列{a n }满足S n =2n -a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)用数学归纳法证明(1)中的猜想.解:(1)a 1=1,a 2=32,a 3=74,a 4=158,由此猜想a n =2n-12n -1(n ∈N *). (2)证明:当n =1时,a 1=1,结论成立.假设n =k (k ≥1,且k ∈N *)时,结论成立,即a k =2k -12k -1, 那么n =k +1(k ≥1,且k ∈N *)时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k=2+a k -a k +1.∴2a k +1=2+a k ,∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k , 这表明n =k +1时,结论成立.∴a n =2n -12n -1(n ∈N *). 练习1.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,第二步归纳假设应写成( )A .假设n =2k +1(k ∈N *)正确,再推n =2k +3正确B .假设n =2k -1 (k ∈N *)正确,再推n =2k +1正确C .假设n =k (k ∈N *)正确,再推n =k +1正确D .假设n =k (k ≥1)正确,再推n =k +2正确解析:选B.首先要注意n 为奇数,其次还要使n =2k -1能取到1,故选B.2.用数学归纳法证明等式1+3+5+…+(2n -1)=n 2(n ∈N *)的过程中,第二步假设n=k 时等式成立,则当n =k +1时应得到( )A .1+3+5+…+(2k +1)=k 2B .1+3+5+…+(2k +1)=(k +1)2C .1+3+5+…+(2k +1)=(k +2)2D .1+3+5+…+(2k +1)=(k +3)2解析:选B.∵n =k +1时,等式左边=1+3+5+…+(2k -1)+(2k +1)=k 2+(2k +1)=(k +1)2.故选B.3.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:选C.当n =1时,左端=1+a +a 2.4.下列代数式(其中k ∈N *)能被9整除的是( )A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )解析:选D.(1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立.5.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,则a 、b 、c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c 解析:选A.∵等式对一切n ∈N *均成立,∴n =1,2,3时等式成立,即⎩⎪⎨⎪⎧ 1=3(a -b )+c 1+2×3=32(2a -b )+c1+2×3+3×32=33(3a -b )+c整理得⎩⎪⎨⎪⎧ 3a -3b +c =118a -9b +c =781a -27b +c =34,解得a =12,b =c =14. 6.在数列{a n } 中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1(n -1)(n +1) B.12n (2n +1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析:选C.由a 1=13,S n =n (2n -1)a n , 得S 2=2(2×2-1)a 2,即a 1+a 2=6a 2,∴a 2=115=13×5,S 3=3(2×3-1)a 3, 即13+115+a 3=15a 3. ∴a 3=135=15×7,a 4=17×9.故选C . 7.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是________.解析:当n =k (k ∈N *)时,左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k ) ·(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1). 答案:2(2k +1)8.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________.解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案:f (k +1)=f (k )+(2k +1)2+(2k +2)29.数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是________.解析:计算出a 1=1,a 2=4,a 3=9,a 4=16.可猜想a n =n 2.答案:n 210.对于n ∈N *,用数学归纳法证明:1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1=16n (n +1)(n +2). 证明:设f (n )=1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1.(1)当n =1时,左边=1,右边=1,等式成立;(2)设当n =k 时等式成立,即1·k +2·(k -1)+3·(k -2)+…+(k -1)·2+k ·1=16k (k +1)(k +2), 则当n =k +1时,f (k +1)=1·(k +1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-2]·3+[(k +1)-1]·2+(k +1)·1=f (k )+1+2+3+…+k +(k +1)=16k (k +1)(k +2)+12(k +1)(k +1+1) =16(k +1)(k +2)(k +3). ∴由(1)(2)可知当n ∈N *时等式都成立.11.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a n 2(n ∈N *)且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上.解:(1)由P 1的坐标为(1,-1)知a 1=1,b 1=-1.∴b 2=b 11-4a 12=13. a 2=a 1·b 2=13. ∴点P 2的坐标为(13,13) ∴直线l 的方程为2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立.②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立,则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1=b k 1-4a k 2(2a k +1) =b k 1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,命题也成立.由①②知,对n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.12.已知正项数列{a n }和{b n }中,a 1=a (0<a <1),b 1=1-a .当n ≥2时,a n =a n -1b n ,b n =b n -11-a 2n -1. (1)证明:对任意n ∈N *,有a n +b n =1;(2)求数列{a n }的通项公式.解:(1)证明:用数学归纳法证明.①当n =1时,a 1+b 1=a +(1-a )=1,命题成立;②假设n =k (k ≥1且k ∈N *)时命题成立,即a k +b k =1,则当n =k +1时,a k +1+b k +1=a kb k +1+b k +1=(a k +1)·b k +1=(a k +1)·b k 1-a k 2=b k 1-a k =b k b k=1. ∴当n =k +1时,命题也成立.由①、②可知,a n +b n =1对n ∈N *恒成立.(2)∵a n +1=a n b n +1=a n b n 1-a n 2=a n (1-a n )1-a n 2=a n 1+a n, ∴1a n +1=1+a n a n =1a n+1, 即1a n +1-1a n=1. 数列{1a n }是公差为1的等差数列,其首项为1a 1=1a , 1a n =1a +(n -1)×1,从而a n =a 1+(n -1)a .。
高三数学数学归纳法练习题及答案
高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。
通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。
在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。
下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。
练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。
假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。
然后,我们需要证明当n=k+1时,等式也成立。
即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。
根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。
我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。
将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。
由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。
化简该式子: k(k + 1) + 2(k+1)。
再进一步化简: (k+1)(k + 2) / 2。
可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。
因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。
练习题二:证明:对于任意正整数n,2^n > n^2。
答案二:同样使用数学归纳法进行证明。
首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。
假设当n=k时,2^k > k^2 成立。
高考数学一轮复习方法之数学归纳法
高考数学一轮复习方法之数学归纳法
减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
常见数学归纳法及其证明方法
(一)第一数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤(1)证明当n取第一个值时命题成立,对于一般数列取值为1,但也有特殊情况,
(2)假设当n=k(k[n的第一个值],k为自然数)时命题成立,证明当n=k+1时命题也成立。
(二)第二数学归纳法
对于某个与自然数有关的命题,
(1)验证n=n0时P(n)成立,
(2)假设no
综合(1)(2)对一切自然数n(n0),命题P(n)都成立,
(三)螺旋式数学归纳法
P(n),Q(n)为两个与自然数有关的命题,
假如(1)P(n0)成立,
(2)假设P(k)(kn0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(n0),P(n),Q(n)都成立,
(四)倒推数学归纳法(又名反向数学归纳法)
(1)对于无穷多个自然数命题P(n)成立,
(2)假设P(k+1)成立,并在此基础上推出P(k)成立,
综合(1)(2),对一切自然数n(n0),命题P(n)都成立,
总而言之:归纳法是由一系列有限的特殊事例得出一般结论的推理方法。
归纳法分为完全归纳法和不完全归纳法完全归纳法:数学归纳法就是一种不完全归纳法,在数学中有着重要的地位!
数学归纳法的全部内容就是这些,查字典数学网更多精彩内容请考生持续关注。
高考数学一轮复习高效作业:《数学归纳法》(理)
时间:45分钟满分:100分班级:________姓名:________ 学号:________ 得分:________一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(2014·白山一模)欲用数学归纳法证明:对于足够大的正整数n,总有2n>n3,那么验证不等式成立所取的第一个n的最小值应该是( )A.1 B.9C.10 D.n>10,且n∈N*解析:210=1024>103.故应选C.答案:C2.(2014·平顶山一模)用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程中,第二步假设当n=k(k∈N*)时等式成立,则当n=k+1时应得到( )A.1+2+22+…+2k-2+2k-1=2k+1-1B.1+2+22+…+2k+2k+1=2k-1-1+2k+1C.1+2+22+…+2k-1+2k+1=2k+1-1D.1+2+22+…+2k-1+2k=2k-1+2k解析:由n=k到n=k+1等式的左边增加了一项,故选D.答案:D3.(2014·常州一模)用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N*)能被9整除”,要利用归纳假设证n=k+1(k∈N*)时的情况,只需展开( )A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3解析:假设n=k(k∈N*)时,k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设证明,只需将(k+3)3展开,让其出现k3即可.故应选A.答案:A4.(2014·洛阳一模)凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n +1)为( )A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2解析:边数增加1,顶点也相应增加1个,它与它不相邻的n-2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n-1条.故选C.答案:C5.(2014·温州一模)数列{a n }中,已知a 1=1,当n≥2,且n ∈N *时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .3n -2B .n 2C .3n -1D .4n -3解析:计算出a 1=1,a 2=4,a 3=9,a 4=16.可猜a n =n 2(n ∈N *).故应选B. 答案:B6.(2014·山师附中质检)设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k 2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是( )A .若f(3)≥9成立,则当k≥1时,均有f(k)≥k 2成立 B .若f(5)≥25成立,则当k≤5时,均有f(k)≥k 2成立 C .若f(7)<49成立,则当k≥8时,均有f(k)<k 2成立 D .若f(4)=25成立,则当k≥4时,均有f(k)≥k 2成立解析:对于A ,若f(3)≥9成立,由题意只可得出当k≥3时,均有f(k)≥k 2成立,故A 错;对于B ,若f(5)≥25成立,则当k≥5时均有f(k)≥k 2成立,故B 错;对于C ,应改为“若f(7)≥49成立,则当k≥7时,均有f(k)≥k 2成立”,故选D.答案:D二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上) 7.(2014·上海调研)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72;….则可得出第n 个式子为____________________________.解析:各式的左边是第n 个正整数到第3n -2个连续正整数的和.右边是奇数的平方,故可得出第n 个式子是:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *).答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)8.(2014·粤西北九校联考)设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+(n -1)2+n 2+(n -1)2+…+22+12,用数学归纳法证明S n =n 2n+13时,第二步从“k”到“k+1”应添加的项为________.解析:由S 1,S 2,…,S n 可以发现由n =k 到n =k +1时,中间增加了两项(k +1)2+k 2(n ,k ∈N +).答案:(k +1)2+k 29.(2014·江西八校联合模拟)若f(n)=12+22+32+…+(2n)2,则f(k +1)与f(k)的递推关系式是________.解析:∵f(k)=12+22+…+(2k)2,∴f(k +1)=12+22+…+(2k)2+(2k +1)2+(2k +2)2, ∴f(k +1)=f(k)+(2k +1)2+(2k +2)2. 答案:f(k +1)=f(k)+(2k +1)2+(2k +2)210.(2014·怀化二模)已知数组:⎝ ⎛⎭⎪⎫12,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,⎝ ⎛⎭⎪⎫14,23,32,41,…,⎝ ⎛⎭⎪⎫1n ,2n -1,3n -2,…,n -12,n 1,….记该数组为:(a 1),(a 2,a 3),(a 4,a 5,a 6),…,则a 200=________.解析:通过观察数组可以发现,第n 组数中共有n 个数,每个数的分子与分母的和等于n +1,又因为1+2+…+19=190<200,故a 200应是第20组中的第10个数,故应为1011.答案:1011三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.(2014·海口二模)对于n ∈N *,用数学归纳法证明:1·n+2·(n-1)+3·(n-2)+…+(n -1)·2+n·1=16n(n +1)(n +2).证明:设左边=1·n+2·(n-1)+3·(n-2)+…+(n -1)·2+n·1. 右边=16n(n +1)(n +2)(1)当n =1时,左边=1,右边=1,等式成立;(2)设当n =k 时等式成立,即1·k+2·(k-1)+3·(k-2)+…+(k -1)·2+k·1=16k(k +1)(k +2),则当n =k +1时,f(k +1)=1·(k+1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-2]·3+[(k +1)-1]·2+(k +1)·1=f(k)+1+2+3+…+k +(k +1) =16k(k +1)(k +2)+12(k +1)(k +1+1) =16(k +1)(k +2)(k +3). 12.(2014·湘潭二模)求证:12+13+14+…+12n -1>n -22(n≥2且n ∈N *).证明:(1)当n =2时,12>0,不等式成立.(2)假设n =k(k≥2且k ∈N *)时,原不等式成立. 即12+13+14+15+…+12k -1>k -22, 则当n =k +1时,左边=12+13+14+…+12k -1+12k -1+1+12k -1+2+…+12k -1+2k -1>k -22+12k -1+1+12k -1+2+…+12k -1+2k -1>k -22+12k +12k +…+12k =k -22+2k -12k =k -12=k +1-22.∴当n =k +1时,原不等式也成立.由(1)(2)知,原不等式对n≥2的所有的正整数都成立,即12+13+14+…+12n -1>n -22(n≥2且n ∈N *)成立.13.(2014·威海一模)设数列{a n }满足a n +1=a 2n -na n +1,n ∈N *. (1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥2时,证明n ∈N *,有a n ≥n+1. 解:(1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5. 由此猜想a n 的一个通项公式为: a n =n +1(n ∈N *).(2)证明:①当n =1时,a 1≥2,不等式成立.②假设当n =k(k ∈N *且k≥1)时不等式成立,即a k ≥k+1, 那么当n =k +1时,a k +1=a k (a k -k)+1≥(k+1)(k +1-k)+1=k +2, 也就是说,当n =k +1时,a k +1≥(k+1)+1. 根据①和②,对于所有k ∈N *, 都有a n ≥n+1.。
高考数学一轮复习 134数学归纳法课件 理
证明
(1)当n=2时,右边=ttaann2αα
-2=
1-t2an2α-2=
2tan2α 1-tan2α
=tan α·tan 2α=左边,等式成立.
(2)假设当n=k(k∈N*且k≥2)时,等式成立,即
tan α·tan 2α+tan 2α·tan 3α+…+tan(k-1)α·tan kα=ttaannkαα-k,
则当n=k+1时, 1×1 3+3×1 5+…+2k-112k+1+2k+112k+3 =2k+k 1+2k+112k+3=2kk+2k1+32k++13 =22kk+2+132kk++13=2kk++13=2k+k+11+1, 所以当n=k+1时,等式也成立. 由(1)(2)可知,对一切n∈N*等式都成立.
第4讲 数学归纳法
【2013 年高考会这样考】 1.数学归纳法的原理及其步骤. 2.能用数学归纳法证明一些简单的数学命题. 【复习指导】 复习时要抓住数学归纳法证明命题的原理,明晰其内在的联系, 把握数学归纳法证明命题的一般步骤,熟知每一步之间的区别 联系,熟悉数学归纳法在证明命题中的应用技巧.
基础梳理 1.归纳法 由一系列有限的特殊事例得出一般结论 的推理方法,通常叫做 归纳法.根据推理过程中考查的对象是涉及事物的全体或部分 可分为 完全 归纳法和 不完全 归纳法.
考向三 用数学归纳法证明不等式
【例 3】►用数学归纳法证明:对一切大于 1 的自然数,不等式
1+131+15·…·1+2n1-1> 2n2+1均成立. [审题视点] 本题用数学归纳法证明不等式,在推理过程中用放 缩法,要注意放缩的“度”.
证明
(1)当
n=2
时,左边=1+13=43;右边=
5 2.
高考第一轮复习数学:131数学归纳法-教案(含习题及答案).
※第十三章 极限●络体系总览数学归纳法 应用极限数列的极限 函数的极限四则运算法则无穷等比数列函数的连续性●考点目标定位1.数学归纳法、极限 要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学 (2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则,会求某些数列与函数的极限.(4)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值的性质. ●复习方略指南极限的概念和方法是近代数学的核心内容,微积分学的基本概念、基本方法在现代实践中越来越多的被应用,并在现代数学及相关研究中不断得到进一步的发展.本章的主要内容由两部分组成,一是数学归纳法,二是极限.学习极限时要注意数列极限和函数极限的联系和区别、函数的极限与函数连续性的渐进性.13.1 数学归纳法●知识梳理1.数学归纳法的定义:由归纳法得到的与自然数有关的数学2.数学归纳法的应用:①证恒等式;②整除性的证明;③探求平面几何中的问题;④探求数列的通项;⑤不等式的证明.特别提示(1)用数学归纳法证题时,两步缺一不可;(2)证题时要注意两凑:一凑归纳假设;二凑目标. ●点击双基1.设f (n )=11+n +21+n +31+n +…+n21(n ∈N *),那么f (n+1)-f (n )等于 A.121+n B.221+n C.121+n +221+n D.121+n -221+n 解析:f (n+1)-f (n )=21+n +31+n +…+n 21 +121+n +221+n -(11+n +21+n +…+n 21)=121+n +221+n -11+n =121+n -221+n . 答案:D2.(2004年太原模拟题)若把正整数按下图所示的规律排序,则从2002到2004年的箭头方向依次为A .B .D .C .123456789101112…解析:2002=4×500+2,而a n =4n 是每一个下边不封闭的正方形左、上顶点的数. 答案:D3.凸n 边形有f (n )条对角线,则凸n+1边形有对角线条数f (n+1)为A.f (n )+n+1B.f (n )+nC.f (n )+n -1D.f (n )+n -2解析:由n 边形到n+1边形,增加的对角线是增加的一个顶点与原n -2个顶点连成的 n -2条对角线,及原先的一条边成了对角线.答案:C4.用数学归纳法证明“(n+1)(n+2)·…·(n+n )=2n·1·3·…·(2n -1)”,从“k 到k+1”左端需增乘的代数式为A.2k+1B.2(2k+1)C.112++k k D.132++k k解析:当n=1时,显然成立.当n=k 时,左边=(k+1)(k+2)·…·(k+k ), 当n=k+1时,左边=(k+1+1)(k+1+2)·…·(k+1+k )(k+1+k+1) =(k+2)(k+3)·…·(k+k )(k+1+k )(k+1+k+1) =(k+1)(k+2)·…·(k+k )1)22)(12(+++k k k =(k+1)(k+2)·…·(k+k )2(2k+1).答案:B5.(2004年春季上海,8)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图形中有_________个点.解析:观察图形点分布的变化规律,发现第一个图形只有一个中心点;第二个图形中除中心外还有两边,每边一个点;第三个图形中除中心点外还有三个边,每边两个点;…;依次类推,第n 个图形中除中心外有n 条边,每边n -1个点,故第n 个图形中点的个数为n (n -1)+1.答案:n 2-n+1 ●典例剖析【例1】 比较2n 与n 2的大小(n ∈N *).剖析:比较两数(或式)大小的常用方法本题不适用,故考虑用归纳法推测大小关系,再用数学归纳法证明.解:当n=1时,21>12,当n=2时,22=22,当n=3时,23<32,当n=4时,24=42,当n=5时,25>52,猜想:当n ≥5时,2n >n 2. 下面用数学归纳法证明:(1)当n=5时,25>52成立.(2)假设n=k (k ∈N *,k ≥5)时2k >k 2,那么2k+1=2·2k=2k+2k>k 2+(1+1)k>k 2+C 0k +C 1k +C 1-k k =k 2+2k+1=(k+1) 2.∴当n=k+1时,2n >n 2.由(1)(2)可知,对n ≥5的一切自然数2n >n 2都成立.综上,得当n=1或n ≥5时,2n >n 2;当n=2,4时,2n =n 2;当n=3时,2n <n 2.评述:用数学归纳法证不等式时,要恰当地凑出目标和凑出归纳假设,凑目标时可适当放缩.深化拓展当n ≥5时,要证2n>n 2,也可直接用二项式定理证:2n=(1+1)n=C 0n +C 1n +C 2n +…+C 2-n n +C 1-n n +C n n >1+n+2)1(-n n +2)1(-n n =1+n+n 2-n >n 2. 【例2】 是否存在常数a 、b 、c 使等式1·(n 2-12)+2(n 2-22)+…+n (n 2-n 2)=an 4+bn 2+c对一切正整数n 成立?证明你的结论.剖析:先取n=1,2,3探求a 、b 、c 的值,然后用数学归纳法证明对一切n ∈N*,a 、b 、c 所确定的等式都成立.解:分别用n=1,2,3代入解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧=++=++=++.0,41,411898134160c b a c b a c b a c b a下面用数学归纳法证明.(1)当n=1时,由上可知等式成立; (2)假设当n=k+1时,等式成立,则当n=k+1时,左边=1·[(k+1)2-12]+2[(k+1)2-22]+…+k [(k+1)2-k 2]+(k+1)[(k+1)2-(k+1)2]=1·(k 2-12)+2(k 2-22)+…+k (k 2-k 2)+1·(2k+1)+2(2k+1)+…+k (2k+1)=41k 4+(-41)k 2+(2k+1)+2(2k+1)+…+k (2k+1)=41(k+1)4-41(k+1)2. ∴当n=k+1时,等式成立. 由(1)(2)得等式对一切的n ∈N*均成立. 评述:本题是探索性【例3】(2003年全国)设a 0为常数,且a n =3n -1-2a n -1(n ∈N*).证明:n ≥1时,a n =51[3n+(-1)n -1·2n]+(-1)n·2n·a 0.剖析:给出了递推公式,证通项公式,可用数学归纳法证.证明:(1)当n=1时,51[3+2]-2a 0=1-2a 0,而a 1=30-2a 0=1-2a 0. ∴当n=1时,通项公式正确.(2)假设n=k (k ∈N*)时正确,即a k =51[3k +(-1)k -1·2k ]+(-1)k ·2k·a 0, 那么a k+1=3k-2a k =3k-52×3k +52(-1)k ·2k +(-1)k+1·2k+1a 0 =53·3k +51(-1)k ·2k+1+(-1)k+1·2k+1·a 0 =51[3k+1+(-1)k ·2k+1]+(-1)k+1·2k+1·a 0.∴当n=k+1时,通项公式正确. 由(1)(2)可知,对n ∈N*,a n =51[3n +(-1)n -1·2n ]+(-1)n ·2n·a 0.评述:由n=k 正确⇒n=k+1时也正确是证明的关键.深化拓展本题也可用构造数列的方法求a n . 解:∵a 0为常数,∴a 1=3-2a 0.由a n =3n -1-2a n -1, 得n n a 33=-1132--n n a +1, 即n n a 3=-32·113--n n a +31. ∴n n a 3-51=-32(113--n n a -51). ∴{n n a 3-51}是公比为-32,首项为513230--a 的等比数列.∴n na 3-51=(54-32a 0)·(-32)n -1. ∴a n =(54-32a 0)·(-2)n -1×3+51×3n=51[3n +(-1)n -1·2n ]+(-1)n ·2n·a 0. 注:本题关键是转化成a n+1=ca n +d 型. ●闯关训练 夯实基础 1.如果A.P (n )对n ∈N*成立B.P (n )对n >4且n ∈N*成立C.P (n )对n <4且n ∈N*成立D.P (n )对n ≤4且n ∈N*不成立解析:由题意可知,P (n )对n=3不成立(否则n=4也成立).同理可推得P (n )对n=2,n=1也不成立.答案:D2.用数学归纳法证明“1+21+31+…+121-n <n (n ∈N*,n >1)”时,由n=k (k >1)不等式成立,推证n=k+1时,左边应增加的项数是A.2k -1B.2k -1C.2kD.2k +1解析:左边的特点:分母逐渐增加1,末项为121-n ;由n=k ,末项为121-k 到n=k+1,末项为1211-+k =kk 2121+-,∴应增加的项数为2k.答案:C3.观察下表: 12 3 43 4 5 6 74 5 6 7 8 9 10 ……设第n 行的各数之和为S n ,则∞→n lim 2n S n =__________.解析:第一行1=12,第二行2+3+4=9=33,第三行3+4+5+6+7=25=52,第四行4+5+6+7+8+9+10=49=72.归纳:第n 项的各数之和S n =(2n -1)2,∞→n lim 2n S n =∞→n lim(nn 12-)2=4. 答案:44.如图,第n 个图形是由正n+2边形“扩展”而来(n=1,2,3,…),则第n -2个图形中共有____________个顶点.解析:观察规律:第一个图形有32+3=(1+2)2+(1+2);第二个图形有(2+2)2+(2+2)=42+4;第三个图形有(3+2)2+(3+2)=52+5; …第n -2个图形有(n+2-2)2+(n+2-2)=n 2+n 个顶点.答案:n 2+n5.已知y=f (x )满足f (n -1)=f (n )-lga n -1(n ≥2,n ∈N )且f (1)=-lga ,是否存在实数α、β使f (n )=(αn 2+βn -1)lga 对任何n ∈N *都成立,证明你的结论.解:∵f (n )=f (n -1)+lga n -1,令n=2,则f (2)=f (1)+f (a )=-lga+lga=0. 又f (1)=-lga , ∴⎩⎨⎧=+=+.1420αββα∴⎪⎪⎩⎪⎪⎨⎧-==.21,21βα ∴f (n )=(21n 2-21n -1)lga. 证明:(1)当n=1时,显然成立.(2)假设n=k 时成立,即f (k )=(21k 2-21k -1)lga , 则n=k+1时,f (k+1)=f (k )+lga k=f (k )+klga=(21k 2-21k -1+k )lga=[21(k+1)2-21(k+1)-1]lga. ∴当n=k+1时,等式成立.综合(1)(2)可知,存在实数α、β且α=21,β=-21,使f (n )=(αn 2+βn -1)lga 对任意n ∈N*都成立.培养能力6.已知数列{bn }是等差数列,b1=1,b1+b2+…+b10=100. (1)求数列{bn }的通项公式bn ;(2)设数列{a n }的通项a n =lg (1+nb 1),记S n 为{a n }的前n 项和,试比较S n 与21lg bn +1的大小,并证明你的结论. 解:(1)容易得bn =2n -1.(2)由bn =2n -1, 知S n =lg (1+1)+1g (1+31)+…+lg (1+121-n )=lg (1+1)(1+31)·…·(1+121-n ). 又211gb n +1=1g 12+n , 因此要比较S n 与211gb n +1的大小,可先比较(1+1)(1+31)·…·(1+121-n )与12+n 的大小.取n=1,2,3可以发现:前者大于后者,由此推测 (1+1)(1+31)· …· (1+121-n )>12+n . ① 下面用数学归纳法证明上面猜想:当n=1时,不等式①成立.假设n=k 时,不等式①成立,即 (1+1)(1+31)·…·(1+121-k )>12+k . 那么n=k+1时,(1+1)(1+31)·…·(1+121-k )(1+121+k )>12+k (1+121+k ) =1212)1(2+++k k k .又[1212)1(2+++k k k ]2-(32+k )2=121+k >0,∴1212)1(2+++k k k >32+k =.1)1(2++k∴当n=k+1时①成立.综上所述,n ∈N*时①成立. 由函数单调性可判定S n >211gb n +1. 7.平面内有n 条直线,其中无任何两条平行,也无任何三条共点,求证:这n 条直线把平面分割成21(n 2+n+2)块. 证明:(1)当n=1时,1条直线把平面分成2块,又21(12+1+2)=2, (2)假设n=k 时,k ≥1命题成立,即k 条满足题设的直线把平面分成21(k 2+k+2)块,那么当n=k+1时,第k+1条直线被k 条直线分成k+1段,每段把它们所在的平面块又分成了2块,因此,增加了k+1个平面块.所以k+1条直线把平面分成了21(k 2+k+2)+k+1= 21[(k+1) 2+(k+1)+2]块,这说明当n=k+1时, 探究创新8.(2004年重庆,22)设数列{a n }满足a 1=2,a n+1=a n +na 1(n=1,2,…). (1)证明a n >12+n 对一切正整数n 都成立;(2)令b n =na n (n=1,2,…),判定b n 与b n+1的大小,并说明理由.(1)证法一:当n=1时,a 1=2>112+⨯,不等式成立. 假设n=k 时,a k >12+k 成立,当n=k+1时,a k+12=a k 2+21k a +2>2k+3+21k a >2(k+1)+1,∴当n=k+1时,a k+1>1)1(2++k 成立.综上,由数学归纳法可知,a n >12+n 对一切正整数成立. 证法二:当n=1时,a 1=2>3=112+⨯结论成立. 假设n=k 时结论成立,即a k >12+k , 当n=k+1时,由函数f (x )=x+x 1(x >1)的单调递增性和归纳假设有 a k+1=a k +ka 1>12+k +121+k =12112+++k k =1222++k k =124842+++k k k >12)12)(32(+++k k k =32+k .∴当n=k+1时,结论成立.因此,a n >12+n 对一切正整数n 均成立.(2)解:n n b b 1+=n a n a n n 11++=(1+21n a )1+n n <(1+121+n )1+n n =1)12()1(2+++n n n n =12)1(2++n n n =2141)21(2+-+n n <1. 故b n+1<b n . ●思悟小结1.用数学归纳法证明问题应注意:(1)第一步验证n=n 0时,n 0并不一定是1.(2)第二步证明的关键是要运用归纳假设,特别要弄清由k 到k+1时 (3)由假设n=k 时2.归纳、猜想、论证是培养学生观察能力、归纳能力以及推理论证能力的方式之一.●教师下载中心 教学点睛1.数学归纳法中的归纳思想是比较常见的数学思想,因此要重视.2.数学归纳法在考试中时隐时现,且较隐蔽,因此在复习中应引起重视.只要与自然数有关,都可考虑数学归纳法,当然主要是恒等式、等式、不等式、整除问题、几何问题、三角问题、数列问题等联系得更多一些.拓展题例【例1】 是否存在正整数m ,使得f (n )=(2n+7)·3n+9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.解:由f (n )=(2n+7)·3n+9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m=36. 下面用数学归纳法证明:(1)当n=1时,显然成立.(2)假设n=k 时, f (k )能被36整除,即f (k )=(2k+7)·3k+9能被36整除;当n=k+1时,[2(k+1)+7]·3k+1+9=3[(2k+7)·3k +9]+18(3k -1-1),由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除.这就是说,当n=k+1时,f (n )也能被36整除.由(1)(2)可知对一切正整数n 都有f (n )=(2n+7)·3n+9能被36整除,m 的最大值为36.【例2】 如下图,设P 1,P 2,P 3,…,P n ,…是曲线y=x 上的点列,Q 1,Q 2,Q 3, …,Q n ,…是x 轴正半轴上的点列,且△OQ 1P 1,△Q 1Q 2P 2,…,△Q n -1Q n P n ,…都是正三角形,设它们的边长为a 1,a 2,…,a n ,…,求证:a 1+a 2+…+a n =1n (n+1). 证明:(1)当n=1时,点P 1的交点,∴可求出P 1(31,33).∴a 1=|OP 1|=32.而31×1×2=32,(2)假设n=k (k ∈N*)时命题成立,即a 1+a 2+…+a k =31k (k+1),则点Q k 的坐标为(31k (k+1),0),∴直线Q k P k+1的方程为y=3[x -31k (k+1)].代入y=x ,解得P k+1点的坐标为)).1(33,3)1((2++k k∴a k+1=|Q k P k+1|=33(k+1)·32=32(k+1).∴a 1+a 2+…+a k +a k+1=31k (k+1)+32(k+1)=31(k+1)(k+2).∴当n=k+1时, 由(1)(2)可知,评述:本题的关键是求出P k+1的纵坐标,再根据正三角形高与边的关系求出|Q k P k+1|.。
高考数学一轮复习学案:13.3 数学归纳法(含答案)
高考数学一轮复习学案:13.3 数学归纳法(含答案)13.3数学归纳法数学归纳法最新考纲考情考向分析1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.以了解数学归纳法的原理为主,会用数学归纳法证明与数列有关或与不等式有关的等式或不等式在高考中以解答题形式出现,属高档题.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行1归纳奠基证明当n取第一个值n0n0N*时命题成立;2归纳递推假设当nkkn0,kN*时命题成立,证明当nk1时命题也成立只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1用数学归纳法证明问题时,第一步是验证当n1时结论成立2所有与正整数有关的数学命题都必须用数学归纳法证明3用数学归纳法证明问题时,归纳假设可以不用4不论是等式还是不等式,用数学归纳法证明时,由nk到nk1时,项数都增加了一项5用数学归纳法证明等式“12222n22n31”,验证n1时,左边式子应为122223.6用数学归纳法证明凸n边形的内角和公式时,n03.题组二教材改编2P99B组T1在应用数学归纳法证明凸n边形的对角线为12nn3条时,第一步检验n等于A1B2C3D4答案C解析凸n边形边数最小时是三角形,故第一步检验n3.3P96A组T2已知an满足an1a2nnan1,nN*,且a12,则a2______,a3______,a4______,猜想an______.答案345n1题组三易错自纠4用数学归纳法证明1aa2an11an21aa1,nN*,在验证n1时,等式左边的项是A1B1aC1aa2D1aa2a3答案C解析当n1时,n12,左边1a1a21aa2.5对于不等式n2n1,nN*.1证明当x1且x0时,1xp1px;2数列an满足a11pc,an1p1pancpa1pn.证明anan11pc.证明1当p2时,1x212xx212x,原不等式成立假设当pkk2,kN*时,不等式1xk1kx成立则当pk1时,1xk11x1xk1x1kx1k1xkx21k1x.所以当pk1时,原不等式也成立综合可得,当x1,且x0时,对一切整数p1,不等式1xp1px均成立2方法一当n1时,由题设知a11pc成立假设当nkk1,kN*时,不等式ak1pc成立由an1p1pancpa1pn易知an0,nN*.则当nk1时,ak1akp1pcpapk11pcpka1.由ak1pc0得1c,即ak11pc.所以当nk1时,不等式an1pc也成立综合可得,对一切正整数n,不等式an1pc均成立再由an1an11pcapn1可得an1an1pc,nN*.方法二设fxp1pxcpx1p,x1pc,则xpc,并且fxp1pcp1pxpp1p1cxp0,x1pc.由此可得,fx在1pc,上单调递增,因而,当x1pc时,fxf1pc1pc.当n1时,由a11pc0,即1pac 可知a2p1pa111pcapa111pc1pa11pc,从而a1a21pc.故当n1时,不等式anan11pc成立假设当nkk1,kN*时,不等式akak11pc成立,则当nk1时,fakfak1f1pc,即有ak1ak21pc.所以当nk1时,原不等式也成立综合可得,对一切正整数n,不等式anan11pc均成立思维升华数学归纳法证明不等式的适用范围及关键1适用范围当遇到与正整数n有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法2关键由nk时命题成立证nk1时命题也成立,在归纳假设使用后可运用比较法.综合法.分析法.放缩法等来加以证明,充分应用基本不等式.不等式的性质等放缩技巧,使问题得以简化跟踪训练xx衡水调研若函数fxx22x3,定义数列xn如下x12,xn1是过点P4,5,Qnxn,fxnnN*的直线PQn与x轴的交点的横坐标,试运用数学归纳法证明2xn0,使x0nN*猜想an的通项公式,并用数学归纳法加以证明解分别令n1,2,3,得2a1a211,2a1a2a222,2a1a2a3a233,an0,a11,a22,a33,猜想ann.由2Sna2nn,可知,当n2时,2Sn1a2n1n1,,得2ana2na2n11,即a2n2ana2n11.当n2时,a222a2121,a20,a22.假设当nkk2,kN*时,akk,那么当nk1时,a2k12ak1a2k12ak1k21,即ak1k1ak1k10,ak10,k2,ak1k10,ak1k1,即当nk1时也成立annn2,显然当n1时,也成立,故对于一切nN*,均有ann.命题点3存在性问题的证明典例设a11,an1a2n2an2bnN*1若b1,求a2,a3及数列an的通项公式;2若b1,问是否存在实数c使得a2nf1a2,即1ca2k2a2.再由fx在,1上为减函数,得cfca2n2,所以a2n1a22n12a2n121.解得a2n114.综上,由知存在c14使得a2n0,ana2n0,0an1,故数列an 中的任何一项都小于1.2由1知0a1111,那么a2a1a21a1122141412,由此猜想an1n.下面用数学归纳法证明当n2,且nN*时猜想正确当n2时已证;假设当nkk2,且kN*时,有ak1k成立,那么1k12,ak1aka2kak122141k122141k1k2k1k2k1k211k1,当nk1时,猜想正确综上所述,对于一切nN*,都有an1n.归纳猜想证明问题典例12分数列an满足Sn2nannN*1计算a1,a2,a3,a4,并由此猜想通项公式an;2证明1中的猜想思维点拨1由S1a1算出a1;由anSnSn1算出a2,a3,a4,观察所得数值的特征猜出通项公式2用数学归纳法证明规范解答1解当n1时,a1S12a1,a11;当n2时,a1a2S222a2,a232;当n3时,a1a2a3S323a3,a374;当n4时,a1a2a3a4S424a4,a4158.2分由此猜想an2n12n1nN*4分2证明当n1时,a11,结论成立5分假设当nkk1且kN*时,结论成立,即ak2k12k1,那么当nk1时,7分ak1Sk1Sk2k1ak12kak2akak1,2ak12ak.9分ak12ak222k12k122k112k.当nk1时,结论成立11分由知猜想an2n12n1nN*成立12分归纳猜想证明问题的一般步骤第一步计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论;第二步验证一般结论对第一个值n0n0N*成立;第三步假设当nkkn0,kN*时结论成立,证明当nk1时结论也成立;第四步下结论,由上可知结论对任意nn0,nN*成立。
高考数学大一轮复习 13.4 数学归纳法试题(含解析)新人教A版
高考数学大一轮复习 13.4 数学归纳法试题(含解析)新人教A 版一、选择题1.用数学归纳法证明命题“当n 是正奇数时,x n +y n能被x +y 整除”,在第二步时,正确的证法是( ).A .假设n =k (k ∈N +),证明n =k +1命题成立B .假设n =k (k 是正奇数),证明n =k +1命题成立C .假设n =2k +1(k ∈N +),证明n =k +1命题成立D .假设n =k (k 是正奇数),证明n =k +2命题成立解析 A 、B 、C 中,k +1不一定表示奇数,只有D 中k 为奇数,k +2为奇数. 答案 D2.用数学归纳法证明“2n>n 2+1 对于n ≥n 0 的正整数 n 都成立”时,第一步证明中的起始值 n 0 应取( ) A .2B .3C .5D .6解析 分别令 n 0=2,3,5, 依次验证即可. 答案 C3.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法的证明过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *且k ≥1)时,不等式成立,即k 2+k <k +1,则当n =k +1时,k +12+k +1=k 2+3k +2<k 2+3k +2+k +2=k +22=(k +1)+1,∴当n =k +1时,不等式成立,则上述证法( ). A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法. 答案 D4.利用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a≠1,n∈N *)”时,在验证n =1成立时,左边应该是( )A 1B 1+aC 1+a +a 2D 1+a +a 2+a 3解析当n =1时,左边=1+a +a 2,故选C. 答案 C5.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( ). A .k 2+1 B .(k +1)2C.k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析 ∵当n =k 时,左侧=1+2+3+…+k 2, 当n =k +1时,左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2, ∴当n =k +1时,左端应在n =k 的基础上加上 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2. 答案 D6.下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k)解析 (1)当k =1时,显然只有3(2+7k)能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n)能被9整除, 那么3(2+7n +1)=21(2+7n)-36.这就是说,k =n +1时命题也成立. 由(1)(2)可知,命题对任何k ∈N *都成立. 答案 D7.用数学归纳法证明1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,则当n =k +1时,左端应在n =k 的基础上加上( ). A.12k +2B .-12k +2C.12k +1-12k +2D.12k +1+12k +2解析 ∵当n =k 时,左侧=1-12+13-14+…+12k -1-12k ,当n =k +1时,左侧=1-12+13-14+…+12k -1-12k +12k +1-12k +2.答案 C 二、填空题8.对大于或等于2的自然数 m 的n 次方幂有如下分解方式: 22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11, 43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析 依题意得 n 2=10×1+192=100,∴n =10. 易知 m 3=21m +m m -12×2,整理得(m -5)(m +4)=0, 又 m ∈N *,所以 m =5, 所以m +n =15. 答案 159.用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)10.如下图,在杨辉三角形中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是________________.1 1 1 12 1 13 3 1 14 6 4 1…解析 所有数字之和S n =20+2+22+…+2n -1=2n-1,除掉1的和2n -1-(2n -1)=2n-2n . 答案 2n-2n11.在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=115;当n =3时,a 1+a 2+a 3=15a 3, 即a 3=114(a 1+a 2)=135;当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=127(a 1+a 2+a 3)=163.∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=17×9,故猜想a n =12n -12n +1. 答案 a n =12n -12n +112.用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.解析 ∵n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 答案 2k +1 三、解答题13.用数学归纳法证明下面的等式 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12.证明 (1)当n =1时,左边=12=1, 右边=(-1)0·1×1+12=1, ∴原等式成立.(2)假设n =k (k ∈N *,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k k +12.那么,当n =k +1时,则有 12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k -1k k +12+(-1)k ·(k +1)2=(-1)k·k +12[-k +2(k +1)]=(-1)kk +1k +22,∴n =k +1时,等式也成立, 由(1)(2)得对任意n ∈N *有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12.14.已知数列{a n }中,a 1=a (a >2),对一切n ∈N *,a n >0,a n +1=a 2n2a n -1.求证:a n >2且a n +1<a n .证明 法一 ∵a n +1=a 2n2a n -1>0,∴a n >1,∴a n -2=a 2n -12a n -1-1-2=a n -1-222a n -1-1≥0,∴a n ≥2.若存在a k =2,则a k -1=2, 由此可推出a k -2=2,…,a 1=2, 与a 1=a >2矛盾,故a n >2. ∵a n +1-a n =a n 2-a n2a n -1<0,∴a n +1<a n .法二 (用数学归纳法证明a n >2)①当n =1时,a 1=a >2,故命题a n >2成立; ②假设n =k (k ≥1且k ∈N *)时命题成立,即a k >2,那么,a k +1-2=a 2k2a k -1-2=a k -222a k -1>0.所以a k +1>2,即n =k +1时命题也成立. 综上所述,命题a n >2对一切正整数成立.a n +1<a n 的证明同上.15.已知数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围.解析 (1)a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4⎝ ⎛⎭⎪⎫b n +23,又a 1=1,故b 1=1a 1-2=-1, 所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1,得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. (ⅰ)当n =1时,a 2=c -1a 1>a 1,命题成立;(ⅱ)设当n =k (k ≥1且k ∈N *)时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k=a k +1.故由(ⅰ)(ⅱ)知当c >2时,a n <a n +1. 当c >2时,因为c =a n +1+1a n >a n +1a n,所以a 2n -ca n +1<0有解, 所以c -c 2-42<a n <c +c 2-42,令α=c +c 2-42,当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )<13(α-a n )<132(α-a n -1)< (1)3n (α-1).当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3,与已知矛盾. 因此c >103不符合要求.所以c 的取值范围是⎝⎛⎦⎥⎤2,103.16.是否存在常数a 、b 、c 使等式12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立,若存在,求出a 、b 、c 并证明;若不存在,试说明理由. 解析 假设存在a 、b 、c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立.当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19.解方程组⎩⎪⎨⎪⎧a b +c =1,a 4b +c =3,3a 9b +c =19.解得⎩⎪⎨⎪⎧a =13,b =2,c =1.证明如下:①当n =1时,由以上知存在常数a ,b ,c 使等式成立. ②假设n =k (k ∈N *)时等式成立,即12+22+32+…+k 2+(k -1)2+…+22+12=13k (2k 2+1);当n =k +1时,12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12=13k (2k 2+1)+(k +1)2+k 2 =13k (2k 2+3k +1)+(k +1)2 =13k (2k +1)(k +1)+(k +1)2 =13(k +1)(2k 2+4k +3) =13(k +1)[2(k +1)2+1]. 即n =k +1时,等式成立.因此存在a =13,b =2,c =1使等式对一切n ∈N *都成立.。
高考数学一轮复习 133 数学归纳法及其应用课时作业 新人教A版
第3讲 数学归纳法及其应用基础巩固题组(建议用时:40分钟)一、选择题1.已知f(n)=1n +1n +1+1n +2+…+1n2,则 ( ) A .f(n)中共有n 项,当n =2时,f(2)=12+13B .f(n)中共有n +1项,当n =2时,f(2)=12+13+14C .f(n)中共有n2-n 项,当n =2时,f(2)=12+13D .f(n)中共有n2-n +1项,当n =2时,f(2)=12+13+14答案 D2.用数学归纳法证明不等式1n +1+1n +2+…+12n >1324(n>2)的过程中,由n =k 到n =k +1时,不等式的左边( ) A .增加了一项:12(k +1)B .增加了两项:12k +1,12(k +1)C .增加了两项:12k +1,12(k +1),又减少了一项:1k +1D .增加了一项:12(k +1),又减少了一项:1k +1解析 当n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2.故选C. 答案 C3.数列{an}中,已知a1=1,当n≥2时,an -an -1=2n -1,依次计算a2,a3,a4后,猜想an 的表达式是 ( )A .3n -2B .n2C .3n -1D .4n -3解析 计算出a1=1,a2=4,a3=9,a4=16.可猜an =n2,故应选B.答案 B4.某个命题与正整数有关,如果当n =k(k ∈N*)时该命题成立,那么可以推出n =k +1时该命题也成立.现已知n =5时该命题成立,那么 ( )A .n =4时该命题成立B .n =4时该命题不成立C .n ≥5,n ∈N*时该命题都成立D .可能n 取某个大于5的整数时该命题不成立解析 显然A ,B 错误,由数学归纳法原理知C 正确,D 错.答案 C5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N*)能被9整除”,利用归纳法假设证明n =k +1时,只需展开 ( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析 假设n =k 时,原式k3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k3即可.故应选A.答案 A二、填空题6.在数列{an}中,a1=13,且Sn =n(2n -1)an ,通过求a2,a3,a4,猜想an 的表达式为________. 解析 当n =2时,13+a2=(2×3)a2,∴a2=13×5.当n =3时,13+115+a3=(3×5)a3,∴a3=15×7.故猜想an =1(2n -1)(2n +1). 答案 an =1(2n -1)(2n +1)7.用数学归纳法证明:“1+12+13+…+12n -1<n(n ∈N*,n>1)”时,由n =k(k>1)不等式成立,推理n =k +1时,左边应增加的项数是________.解析 当n =k 时,要证的式子为1+12+13+…+12k -1<k ;当n =k +1时,要证的式子为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +1.左边增加了2k 项. 答案 2k8.(2015·九江模拟)已知f(n)=1+12+13+…+1n (n ∈N*),经计算得f(4)>2,f(8)>52,f(16)>3,f(32)>72,则其一般结论为________. 解析 因为f(22)>42,f(23)>52,f(24)>62,f(25)>72,所以当n≥2时,有f(2n)>n +22.故填f(2n)>n +22(n≥2,n ∈N*).答案 f(2n)>n +22(n≥2,n ∈N*) 三、解答题9.(2014·陕西卷改编)设函数f(x)=ln(1+x),g(x)=xf ′(x),x ≥0,其中f′(x)是f(x)的导函数.令g1(x)=g(x),gn +1(x)=g(gn(x)),n ∈N*,求gn(x)的表达式.解 由题设得,g(x)=x 1+x (x≥0).由已知得,g1(x)=x 1+x ,g2(x)=g(g1(x))=x1+x 1+x 1+x=x 1+2x , g3(x)=x 1+3x ,…,可得gn(x)=x 1+nx. 下面用数学归纳法证明.①当n =1时,g1(x)=x 1+x,结论成立. ②假设n =k(k≥2且k ∈N*)时结论成立,即gk(x)=x 1+kx.那么,当n =k +1时, gk +1(x)=g(gk(x))=gk (x )1+gk (x )=x1+kx 1+x 1+kx=x 1+(k +1)x , 即结论成立.由①②可知,结论对n ∈N*成立.10.已知f(n)=1+123+133+143+…+1n3,g(n)=32-12n2,n ∈N*. (1)当n =1,2,3时,试比较f(n)与g(n)的大小;(2)猜想f(n)与g(n)的大小关系,并给出证明.解 (1)当n =1时,f(1)=1,g(1)=1,所以f(1)=g(1);当n =2时,f(2)=98,g(2)=118,所以f(2)<g(2); 当n =3时,f(3)=251216,g(3)=312216,所以f(3)<g(3). (2)由(1)猜想f(n)≤g(n),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k(k≥3)时不等式成立,即1+123+133+143+…+1k3<32-12k2.那么,当n =k +1时,f(k +1)=f(k)+1(k +1)3<32-12k2+1(k +1)3. 因为12(k +1)2-⎣⎡⎦⎤12k2-1(k +1)3 =k +32(k +1)3-12k2=-3k -12(k +1)3k2<0, 所以f(k +1)<32-12(k +1)2=g(k +1). 由①②可知,对一切n ∈N*,都有f(n)≤g(n)成立.能力提升题组(建议用时:25分钟)11.用数学归纳法证明2n>2n +1,n 的第一个取值应是 ( )A .1B .2C .3D .4解析 ∵n =1时,21=2,2×1+1=3,2n>2n +1不成立;n =2时,22=4,2×2+1=5,2n>2n +1不成立;n =3时,23=8,2×3+1=7,2n>2n +1成立.∴n 的第一个取值应是3.答案 C12.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k +1)2成立”.那么,下列命题总成立的是 ( )A .若f(1)<1成立,则f(10)<100成立B .若f(2)<4成立,则f(1)≥1成立C .若f(3)≥9成立,则当k≥1时,均有f(k)≥k 2成立D .若f(4)≥16成立,则当k≥4时,均有f(k)≥k 2成立解析 选项A ,B 的答案与题设中不等号方向不同,故A ,B 错;选项C 中,应该是k≥3时,均有f(k)≥k 2成立;选项D 符合题意.答案 D13.设平面内有n 条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n 条直线交点的个数,则f(4)=________;当n>4时,f(n)=________(用n 表示).解析 f(3)=2,f(4)=f(3)+3=2+3,f(5)=f(4)+4=2+3+4,f(6)=f(5)+5=2+3+4+5,猜想f(n)=2+3+4+…+(n -1)=(n +1)(n -2)2(n>4). 答案 5 12(n +1)(n -2) 14.(2014·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*).(1)若b =1,求a2,a3及数列{an}的通项公式;(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 解 (1)法一 a2=2,a3=2+1.再由题设条件知(an +1-1)2=(an -1)2+1.从而{(an -1)2}是首项为0,公差为1的等差数列,故(an -1)2=n -1,即an =n -1+1(n ∈N*).法二 a2=2,a3=2+1,可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想an =n -1+1.下面用数学归纳法证明上式:当n =1时结论显然成立.假设n =k 时结论成立,即ak =k -1+1,则ak +1=(ak -1)2+1+1=(k -1)+1+1=(k +1)-1+1.这就是说,当n =k +1时结论成立.综上可知,an =n -1+1(n ∈N*).(2)设f(x)=(x -1)2+1-1,则an +1=f(an).令c =f(c),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明加强命题a2n<c<a2n +1<1.当n =1时,a2=f(1)=0,a3=f(0)=2-1,所以a2<14<a3<1,结论成立.假设n =k 时结论成立,即a2k<c<a2k +1<1.易知f(x)在(-∞,1]上为减函数,从而c =f(c)>f(a2k +1)>f(1)=a2,即1>c>a2k +2>a2.再由f(x)在(-∞,1]上为减函数得c =f(c)<f(a2k +2)<f(a2)=a3<1.故c<a2k +3<1,因此a2(k +1)<c<a2(k +1)+1<1.这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14.。
高三数学第一轮复习--数学归纳法
高三数学第一轮复习--数学归纳法高三数学第一轮复习每日一练数学归纳法A卷班级____姓名_______座号___一、选择题:1、用数学归纳法证明“凸n边形的对角线的条数是f(n)n(n3)”的第一步中n所取的数字是(C)2(A)1(B)2(C)3(D)42、设f(n)1111(nN),则f(n1)f(n)(D)n1n2n32n111111A.B.C.D.2n12n22n12n22n12n2二、填空题:3、设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=_____5____;当n4时f(n).(用n表示)4、如图,OA,2,3,)的直角边AnAn1n,A11,直角三角形OAnAn1(n1记anOAn(n1,2,3,),则数列{an}的通项公式为.三、解答题5、用数学归纳法证明:6、已知数列{bn}是等差数列,b1=1,b1+b2++b10=145(1)求数列{bn}的通项公式bn;A45└A3A2┌OA6A112nn(n1);1335(2n1)(2n1)2(2n1)222(2)设数列{an}的通项an=loga(1+的大小,并证明你的结论11)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与logabn+1bn3眉山网站建设好玩的游戏PPTV破解版代发外链高三数学第一轮复习每日一练数学归纳法B卷班级____姓名_______座号___一、选择题:1、某个命题与正整数n有关,如果当nk(kN)时命题成立,那么可推得当nk1时命题也成立.现已知当n5时该命题不成立,那么可推得A.当n=6时该命题不成立()B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立2、用数学归纳法证明“(n1)(n2)(nn)2n12(2n1)”(nN)时,从“nk到nk1”时,左边应增乘的式子是A.2k1B.2(2k1)C.()D.2k1k12k2k1二、填空题:an,其中a、b、c均为正数,那么an与an1的大小是bnc*4、在数列{an}中,满足Sn=2n-an,n∈N计算a1,a2,a3,a4,并由此猜想an 的表达式为.3、已知数列an的通项公式为an=三、解答题5、已知数列an中,a74,an13an4.7an(Ⅰ)是否存在自然数m,使得当nm 时,an2;当nm时,an2?(Ⅱ)是否存在自然数p,使得当np时,总有an1an1an?26、设数列{xn}:x13312,xnxn1,其中n2,nN,1682111n求证:对nN都有(Ⅰ)0xn;(Ⅱ)xnxn1;(Ⅲ)xn()222眉山网站建设好玩的游戏PPTV破解版代发外链高三数学第一轮复习每日一练合情推理与演绎推理A卷班级____姓名_______座号___一、选择题:1、对于任意的两个实数对(a,b)和(c,d),规定:(a,b)(c,d),当且仅当ac,bd;运算“”为:(a,b)(c,d)(acbd,bcad);运算“”为:(a,b)(c,d)(ac,bd),设p,qR,若(1,2)(,p)q(5,0),则(1,2)(p,q)()A.(4,0)B.(2,0)C.(0,2)D.(0,4),aa2,a2a3a4,a3a4a5a6,,2、已知数列1则数列的第k项是(D)A.akak1a2kB.ak1aka2k1C.ak1aka2kD.ak1aka2k2二、填空题:n(n1)3、如果一个凸多面体n棱锥,那么这个凸多面体的所有顶点所确定的直线共有2__条.n(n2)(n1)2这些直线中共有f(n)对异面直线,则f(4)=12;f(n)=.4、在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等此数列bn中,若b91,则有等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4 数学归纳法一、选择题1.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是( ).A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案 D2.用数学归纳法证明“2n>n2+1 对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取( ) A.2 B.3 C.5 D.6解析分别令n0=2,3,5, 依次验证即可.答案 C3.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即k2+k<k+1,则当n=k+1时, k+1 2+ k+1 =k2+3k+2< k2+3k+2 + k+2 =k+2 2=(k+1)+1,∴当n=k+1时,不等式成立,则上述证法( ).A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,不是数学归纳法.答案 D4.利用数学归纳法证明“1+a+a2+…+a n+1=1-a n+21-a(a≠1,n∈N*)”时,在验证n=1成立时,左边应该是( )A 1B 1+aC 1+a+a2D 1+a+a2+a3解析当n=1时,左边=1+a+a2,故选C.答案 C5.用数学归纳法证明1+2+3+…+n2=n4+n22,则当n=k+1时左端应在n=k的基础上加上( ).A.k2+1B.(k+1)2C.(k+1)4+(k+1)22D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2解析∵当n=k时,左侧=1+2+3+…+k2,当n=k+1时,左侧=1+2+3+…+k2+(k2+1)+…+(k+1)2,∴当n=k+1时,左端应在n=k的基础上加上(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.答案 D6.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1 C.2(2+7k+1) D.3(2+7k)解析 (1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N*都成立.答案 D7.用数学归纳法证明1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n,则当n=k+1时,左端应在n=k的基础上加上( ).A.12k +2B .-12k +2C.12k +1-12k +2D.12k +1+12k +2解析 ∵当n =k 时,左侧=1-12+13-14+…+12k -1-12k ,当n =k +1时,左侧=1-12+13-14+…+12k -1-12k +12k +1-12k +2.答案 C 二、填空题8.对大于或等于2的自然数 m 的n 次方幂有如下分解方式: 22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11, 43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________. 解析 依题意得 n 2=10× 1+192=100,∴n =10. 易知 m 3=21m +m m -12×2,整理得(m -5)(m +4)=0, 又 m ∈N *, 所以 m =5, 所以m +n =15. 答案 159.用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)10.如下图,在杨辉三角形中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是________________.1 1 1 12 1 13 3 1 14 6 4 1…解析 所有数字之和S n =20+2+22+…+2n -1=2n -1, 除掉1的和2n -1-(2n -1)=2n -2n . 答案 2n -2n11.在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=115;当n =3时,a 1+a 2+a 3=15a 3, 即a 3=114(a 1+a 2)=135;当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=127(a 1+a 2+a 3)=163. ∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=17×9,故猜想a n=12n-1 2n+1.答案a n=12n-1 2n+112.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真.解析∵n为正奇数,假设n=2k-1成立后,需证明的应为n=2k+1时成立.答案 2k+1三、解答题13.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n-1·n2=(-1)n-1n n+12.证明 (1)当n=1时,左边=12=1,右边=(-1)0·1× 1+12=1,∴原等式成立.(2)假设n=k(k∈N*,k≥1)时,等式成立,即有12-22+32-42+…+(-1)k-1·k2=(-1)k-1k k+12.那么,当n=k+1时,则有12-22+32-42+…+(-1)k-1·k2+(-1)k(k+1)2=(-1)k-1k k+12+(-1)k·(k+1)2=(-1)k·k+12[-k+2(k+1)]=(-1)k k+1 k+22,∴n=k+1时,等式也成立,由(1)(2)得对任意n∈N*有12-22+32-42+…+(-1)n-1·n2=(-1)n-1n n+12.14.已知数列{a n}中,a1=a(a>2),对一切n∈N*,a n>0,a n+1=a2 n2 a n-1. 求证:a n>2且a n+1<a n.证明法一∵a n+1=a2n2 a n-1>0,∴a n>1,∴a n-2=a2n-12 a n-1-1-2=a n-1-2 22 a n-1-1≥0,∴a n≥2.若存在a k=2,则a k-1=2,由此可推出a k-2=2,…,a1=2,与a1=a>2矛盾,故a n>2.∵a n+1-a n=an2-a n2 a n-1<0,∴a n+1<a n.法二(用数学归纳法证明a n>2)①当n=1时,a1=a>2,故命题a n>2成立;②假设n=k(k≥1且k∈N*)时命题成立,即a k>2,那么,a k+1-2=a2k2 a k-1-2=a k-2 22 a k-1>0.所以a k+1>2,即n=k+1时命题也成立.综上所述,命题a n>2对一切正整数成立.an+1<a n的证明同上.15.已知数列{a n}中,a1=1,a n+1=c-1an .(1)设c=52,b n=1an-2,求数列{b n}的通项公式;(2)求使不等式a n<a n+1<3成立的c的取值范围.解析(1)a n+1-2=52-1an-2=an-22a n,1an+1-2=2a nan-2=4an-2+2,即b n+1=4b n+2.b n+1+23=4⎝⎛⎭⎪⎫bn+23,又a1=1,故b1=1a1-2=-1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1,得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. (ⅰ)当n =1时,a 2=c -1a 1>a 1,命题成立;(ⅱ)设当n =k (k ≥1且k ∈N *)时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k=a k +1.故由(ⅰ)(ⅱ)知当c >2时,a n <a n +1. 当c >2时,因为c =a n +1+1a n >a n +1a n,所以a 2n -ca n +1<0有解, 所以c -c 2-42<a n <c +c 2-42,令α=c +c 2-42,当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )<13(α-a n )<132(α-a n -1)< (1)3n (α-1).当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3,与已知矛盾. 因此c >103不符合要求. 所以c 的取值范围是⎝ ⎛⎦⎥⎤2,103. 16.是否存在常数a 、b 、c 使等式12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立,若存在,求出a 、b 、c 并证明;若不存在,试说明理由.解析 假设存在a 、b 、c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立. 当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19.解方程组⎩⎨⎧a b +c =1,a 4b +c =3,3a 9b +c =19.解得⎩⎪⎨⎪⎧a =13,b =2,c =1.证明如下:①当n =1时,由以上知存在常数a ,b ,c 使等式成立. ②假设n =k (k ∈N *)时等式成立,即12+22+32+…+k 2+(k -1)2+…+22+12=13k (2k 2+1);当n =k +1时,12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12 =13k (2k 2+1)+(k +1)2+k 2 =13k (2k 2+3k +1)+(k +1)2 =13k (2k +1)(k +1)+(k +1)2 =13(k +1)(2k 2+4k +3) =13(k +1)[2(k +1)2+1]. 即n =k +1时,等式成立.因此存在a =13,b =2,c =1使等式对一切n ∈N *都成立.。