苏教版初中数学八年级下册期中试卷(2019-2020学年江苏省盐城市建湖县
江苏省2019-2020学年八年级数学下学期期中测试卷一(含答案)
江苏省2019-2020学年下学期期中测试卷八年级数学一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个4.若把一个分式中的m、n同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A.2mm n+B.m nm n+-C.2m nm+D.m nm n-+5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B.12C.34D.16.点O是矩形ABCD的对角线AC的中点,E是BC边的中点,8AD=,3OE=,则线段OD的长为()A.5 B.6 C.8 D.10二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.若分式12020xx--有意义,则x的取值范围是.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是.9.方程11233xx x--=--的解是.10.如图,在Rt ABC∆中,90BAC∠=︒,且6BA=,8AC=,点D是斜边BC上的一个动点,过点D分别作DM AB⊥于点M,DN AC⊥于点N,连接MN,则线段MN的最小值为.第10题图第12题图11.在PC机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为cm.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.第13题图第14题图14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是 .15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 .16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 .三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷--18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =.19.解方程:2533322 x xx x--+=--.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1),估计摸一次球能摸到黑球的概率是;袋中黑球的个数约为只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.21.如图,平行四边形ABCD中,8B∠=︒,G是CD的中点,E=,60BC cmAB cm=,12是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?25.如图,在由边长为1的小正方形组成的56∆的三个顶点均在格点上,⨯的网格中,ABC请按要求解决下列问题:(1)通过计算判断ABC∆的形状;(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出ABCDY 的面积.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是.性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD==的性质进行探究,以下判断正确的有(填序号).①AC BD⊥;②AC、BD互相平分;③AC平分BAD∠和BCD∠;④ABC ADC∠=∠;⑤180BAD BCD∠+∠=︒;⑥筝形ABCD的面积为12AC BD⨯.(3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由. 判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).期中测试卷(解析版)一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.【解答】A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况【解答】A、调查某航空公司飞行员实力的达标率是准确度要求高的调查,适于全面调查;B、调查乘坐飞机的旅客是否携带了违禁物品是准确度要求高的调查,适于全面调查;C、调查某品牌圆珠笔芯的使用寿命如果普查,所有笔芯都报废,这样就失去了实际意义,适宜抽样调查;D、调查你组6名同学对太原市境总面积的知晓情况,人数少,适宜全面调查.故选:C.3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球; ③13个人中至少有两个人的生日是在同一个月份; ④射击运动员射击一次,命中靶心; ⑤水中捞月; ⑥冬去春来.其中是必然事件的有( ) A .1个B .2个C .3个D .4个【解答】①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件; ③13个人中至少有两个人的生日是在同一个月份,是必然事件; ④射击运动员射击一次,命中靶心,是随机事件; ⑤水中捞月,是不可能事件; ⑥冬去春来,是必然事件; 故选:B .4.若把一个分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A .2m m n+B .m nm n+- C .2m nm + D .m nm n-+ 【解答】A 、22(3)333m m m n m n=++,故分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,故符合题意;B 、3333m n m nm n m n ++=--,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意; C 、2233(3)3m n m n m m ++=,把一个分式中的m 、n 同时扩大3倍,分式的值也扩大13倍,故不符合题意;D 、3333m n m nm n m n--=++,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意, 故选:A .5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )A .0B .12C .34D .1【解答】掷一枚质地均匀的硬币,前3次都是正面朝上,则掷第4次时正面朝上的概率是12; 故选:B .6.点O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8AD =,3OE =,则线段OD 的长为( )A .5B .6C .8D .10【解答】Q 在矩形ABCD 中,8AD =,3OE =,O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8BC AD ∴==,26AB OE ==,90B ∠=︒,22226810AC AB BC ∴=++=, Q 点O 为AC 的中点,90ADC ∠=︒,152OD AC ∴==, 故选:A .二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上) 7.若分式12020x x --有意义,则x 的取值范围是 2020x ≠ .【解答】由题意得:20200x -≠, 解得:2020x ≠, 故答案为:2020x ≠.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是 100 .【解答】为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是100. 故答案为:1009.方程11233x x x--=--的解是 6x = . 【解答】方程整理得:11233xx x --=--, 去分母得:12(3)1x x --=-, 去括号得:1261x x -+=-, 移项合并得:6x -=-, 解得:6x =,经检验6x =是分式方程的解, 故答案为:6x =10.如图,在Rt ABC ∆中,90BAC ∠=︒,且6BA =,8AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为245.【解答】90BAC ∠=︒Q ,且6BA =,8AC =,2210BC BA AC ∴+,DM AB ⊥Q ,DN AC ⊥,90DMA DNA BAC ∴∠=∠=∠=︒,∴四边形DMAN 是矩形,MN AD ∴=,∴当AD BC ⊥时,AD 的值最小,此时,ABC ∆的面积1122AB AC BC AD =⨯=⨯, 245AB AC AD BC ∴==g , MN ∴的最小值为245; 故答案为:245. 11.在PC 机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是扇形统计图.【解答】根据题意,得要反映出磁盘“已用空间”与“可用空间”占“整个磁盘空间”的百分比,需选用扇形统计图.故答案为:扇形统计图.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为 3 cm.【解答】Q菱形ABCD的面积为26cm,BD的长为4cm,∴1462AC⨯⨯=,解得:3AC=,故答案为:3.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:66121.5x x+=.【解答】小明通过AB时的速度是x米/秒,根据题意得:66121.5x x+=,故答案为:66121.5x x+=.14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是13.【解答】51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是2163=, 故答案为:13.15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 34︒ .【解答】Q 四边形ABDE 是矩形, 90BAE E ∴∠=∠=︒, 62ADE ∠=︒Q , 28EAD ∴∠=︒, AC CD ⊥Q , 90C E ∴∠=∠=︒AE AC =Q ,AD AD =,Rt ACD Rt AED(HL)∴∆≅∆ 28EAD CAD ∴∠=∠=︒, 90282834BAF ∴∠=︒-︒-︒=︒,故答案为:34︒.16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 ( 1.5,0)-或( 3.5,0)-或(6.5,0) .【解答】Q 点Q 在x 轴上,点P 在直线AB 上,以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,当11A C 为平行四边形的边时, 112PQ AC ∴==,P Q 点在直线25y x =+上,∴令2y =时,252x +=,解得 1.5x =-,令2y =-时,252x +=-,解得 3.5x =-,∴点Q 的坐标为( 1.5,0)-,( 3.5,0)-,当11A C 为平行四边形的对角线时, 11A C Q 的中点坐标为(3,2),P ∴的纵坐标为4,代入25y x =+得,425x =+, 解得0.5x =-, (0.5,4)P ∴-,11A C Q 的中点坐标为:(3,2),∴直线PQ 的解析式为:42677y x =-+, 当0y =时,即426077x =-+,解得: 6.5x =,故Q 为( 1.5,0)-或( 3.5,0)-或(6.5,0). 故答案为( 1.5,0)-或( 3.5,0)-或(6.5,0).三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷-- 【解答】1(1)122xx x x ++÷-- (1)(1)12(1)1x x x x x+-+-=-g21121x x -+=g221x x=g 2x =.18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =. 【解答】原式211(1)(1)1(2)a a a a a --+-=--g22(1)(1)1(2)a a a a a -+-=--g12a a +=-, 当2020a =时,原式202012021202022018+==-. 19.解方程:2533322x x x x --+=-- 【解答】去分母,得:253(2)33x x x -+-=-, 去括号,得:253633x x x -+-=-, 移项,合并,得:28x =, 系数化为1,得:4x =,经检验,当4x =时,20x -≠,即4x =是原分式方程的解, 所以原方程的解是4x =.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近 (精确到0.1),估计摸一次球能摸到黑球的概率是 ;袋中黑球的个数约为 只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.【解答】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4,Q摸到黑球的频率会接近0.4,∴黑球数应为球的总数的25,∴估计袋中黑球的个数为250205⨯=只,故答案为:0.4,0.4,20;(2)设放入黑球x个,根据题意得:200.6 50xx+=+,解得25x=,经检验:25x=是原方程的根,故答案为:25;21.如图,平行四边形ABCD中,8AB cm=,12BC cm=,60B∠=︒,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).【解答】(1)证明:Q四边形ABCD是平行四边形,//AD BC∴,DEG CFG∴∠=∠,GDE GCF∠=∠.G Q 是CD 的中点,DG CG ∴=,在EDG ∆和FCG ∆中,DEG CFG GDE GCF DG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EDG FCG AAS ∴∆≅∆. ED FC ∴=. //ED CF Q ,∴四边形CEDF 是平行四边形.(2)①当8AE cm =时,四边形CEDF 是矩形.理由如下: 作AP BC ⊥于P ,如图所示: 8AB cm =Q ,60B ∠=︒, 30BAP ∴∠=︒, 142BP AB cm ∴==, Q 四边形ABCD 是平行四边形,60CDE B ∴∠=∠=︒,8DC AB cm ==,12AD BC cm ==, 8AE cm =Q , 4DE cm BP ∴==,在ABP ∆和CDE ∆中,AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩,()ABP CDE SAS ∴∆≅∆, 90CED APB ∴∠=∠=︒,∴平行四边形CEDF 是矩形(有一个角是直角的平行四边形是矩形),故当8AE cm =时,四边形CEDF 是矩形; 故答案为:8.②当4AE cm =时,四边形CEDF 是菱形.理由如下: 4AE cm =Q ,12AD cm =. 8DE cm ∴=.8DC cm =Q ,60CDE B ∠=∠=︒.CDE∴∆是等边三角形.DE CE∴=.∴平行四边形CEDF是菱形(有一组邻边相等的平行四边形是菱形).故当4AE cm=时,四边形CEDF是菱形;故答案为:4.22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?【解答】(1)这次调查的总人数是:5226%200÷=(人),故答案为:200;(2)选择B的学生有:2005234165840----=(人),补全的条形统计图如右图所示,扇形统计图中E所对应的圆心角是:58 360104.4200︒⨯=︒,故答案为:104.4;(3)341700289200⨯=(人),答:选择C有289人.23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.【解答】(1)如图1,ABCDY即为所求;(2)如图2,正方形AECF即为所求,其面积为222(26)40+=.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?【解答】设两种机器人需要x 小时搬运完成,9006001500kg kg kg +=Q ,A ∴型机器人需要搬运900kg ,B 型机器人需要搬运600kg . 依题意,得:90060030x x -=, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.25.如图,在由边长为1的小正方形组成的56⨯的网格中,ABC ∆的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断ABC ∆的形状;(2)在图中确定一个格点D ,连接AD 、CD ,使四边形ABCD 为平行四边形,并求出ABCD Y 的面积.【解答】(1)由题意可得,22125AB =+=,222425AC =+=,22345BC =+=, 222(5)(25)255+==Q ,即222AB AC BC +=,ABC ∴∆是直角三角形.(2)过点A 作//AD BC ,过点C 作//CD AB ,直线AD 和CD 的交点就是D 的位置,格点D 的位置如图,ABCD ∴Y 的面积为:52510AB AC ⨯=⨯=.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD ==的性质进行探究,以下判断正确的有 (填序号). ①AC BD ⊥;②AC 、BD 互相平分;③AC 平分BAD ∠和BCD ∠;④ABC ADC ∠=∠;⑤180BAD BCD ∠+∠=︒;⑥筝形ABCD 的面积为12AC BD ⨯. (3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由.判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .【解答】(1)因为两组邻边分别相等的四边形是筝形,所以菱形或正方形符合题意. 故答案是:菱形或正方形;(2)正确的有①③④⑥.故答案为:①③④⑥;(3)选①.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.选③.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.BAC DAC ∴∠=∠,BCA DCA ∠=∠.AC ∴平分BAD ∠和BCD ∠.选④.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.ABC ADC ∴∠=∠.选⑥.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.∴筝形ABCD 的面积为12AC BD ⨯. (4)当筝形ABCD 满足90ADC ∠=︒时,四边形PNDM 是正方形.理由如下: PM AD ⊥Q ,PN CD ⊥,90PMD PND ∴∠=∠=︒.又90ADC ∠=︒Q ,∴四边形MPND 是矩形.Q 在筝形ABCD 中,AB BC =,AD CD =,同(3)得:()ABD CBD SSS ∆≅∆,ADB CDB ∴∠=∠.又PM AD ⊥Q ,PN CD ⊥,PM PN ∴=.∴四边形MPND 是正方形.故答案为:90ADC ∠=︒;(5)一条对角线垂直且平分另一条对角线的四边形是筝形.理由如下:如图1:若AC 垂直平分BD ,则AB AD =,BD CD =,∴四边形ABCD 是筝形.故答案为:一条对角线垂直且平分另一条对角线的四边形是筝形.(答案不唯一)27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).【解答】(1)①延长FD 到G ,使得DG DF =,连接BG 、EG .(或把CFD ∆绕点D 逆时针旋转180︒得到)BGD ∆, CF BG ∴=,DF DG =,DE DF ⊥Q ,EF EG ∴=.在BEG ∆中,BE BG EG +>,即BE CF EF +>. ②若90A ∠=︒,则90EBC FCB ∠+∠=︒, 由①知FCD DBG ∠=∠,EF EG =, 90EBC DBG ∴∠+∠=︒,即90EBG ∠=︒, ∴在Rt EBG ∆中,222BE BG EG +=, 222BE CF EF ∴+=;(2):①F Q 是AD 的中点,AF FD ∴=,Q 在ABCD Y 中,2AD AB =,AF FD CD ∴==,DFC DCF ∴∠=∠,//AD BC Q ,DFC FCB ∴∠=∠,DCF BCF ∴∠=∠, 12DCF BCD ∴∠=∠,故此选项正确; ②延长EF ,交CD 延长线于M , Q 四边形ABCD 是平行四边形, //AB CD ∴,A MDF ∴∠=∠,F Q 为AD 中点,AF FD ∴=,在AEF ∆和DFM ∆中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF DMF ASA ∴∆≅∆,FE MF ∴=,AEF M ∠=∠, CE AB ⊥Q ,90AEC ∴∠=︒,90AEC ECD ∴∠=∠=︒,FM EF =Q ,FC EF FM ∴==,故②正确; ③EF FM =Q ,EFC CFM S S ∆∆∴=,MC BE >Q ,2BEC EFC S S ∆∆∴<故2BEC CEF S S ∆∆=错误;④设FEC x ∠=,则FCE x ∠=, 90DCF DFC x ∴∠=∠=︒-, 1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒-, 90AEF x ∠=︒-Q ,3DFE AEF ∴∠=∠,故此选项正确. 故答案为①②④.。
江苏省2019-2020八年级下学期期中考试数学试题5
精选资料江苏省 八年级放学期期中考试数学试题一、 (每小 3分,共 24分)1.民 剪 在我国有着悠长的 史,以下 案是中心 称 形的是()AB CD2.以下 方式,你 最适合的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()A . 市 上某种白酒的塑化的含量,采纳普 方式B .认识我市每日的流 人口数,采纳抽 方式C . 鞋厂生 的鞋底能蒙受的弯折次数,采纳普 方式D .游客上 机前的安 ,采纳抽 方式3、今日我 全区1500 名初二学生参加数学考 , 从中抽取300 名考生的数学成行剖析, 在 中, 本指的是 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 300 名考生的数学成B . 300C .1500 名考生的数学成x 2y2D . 300 名考生4、以下各式:1 1 x , 4x , ,1 a, 5x 2 ,此中分式共有⋯⋯⋯⋯⋯⋯( )53 2b yA .5 个B .4 个C .3 个D .2 个5、 次 矩形四 的中点所得的四 形是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.矩形B. 菱形C. 正方形D . 以上都不6 、把分式 xy中的 x 和 y都 大 本来的 2 倍, 分式的··············()x3yA .不B . 大 本来的2 倍C . 小 本来的1 D . 大 本来的4 倍27、如 , □ABCD 中, EF 角 的交点 O 分 与 CD 、 AB 交于点 E 、F , AB=4,AD=3,OF=1.3 , 四 形 BCEF 的周()DECOAFB(第 7题)(第18 题)8.如 , 手操作:1, a 的 方形 片(<a<l ),如 那 折一下,剪下一个2等于 方形 度的正方形(称 第一次操作) ;再把剩下的 方形如 那 折一下,剪下一个 等于此 方形 度的正方形(称 第二次操作) ;这样频频操作下去.若在第n 此操作后, 剩下的 方形 正方形, 操作 止.当n = 3 , a 的 ( )A .2B .3或2C .3D .3或334 354 5二、填空(每空 2 分,共 26 分.)9、当 x _________时, 1存心义;若分式x 2- 4的值为零,则x 的值为 ______.x+1 x+210、 以下 4 个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必定事件是 ,不行能事件是.(将事件的序号填上即可)11、若菱形的两条对角线分别为 2 和 3,则此菱形的面积是.1a 2- 2a12、计算 m ÷n · n=;化简2=.13、4- aABCD ,P 、R 分别是 BC 和 DC 上的动点, E 、 F 分别是 PA 、 PR 的中 如图,已知矩形 点.假如 DR=3 ,AD=4 ,则 EF 的长为 ________.14、 如图, □ ABCD 的对角 线订交于点 O ,且 AB ≠AD ,过 O 作 OE ⊥ BD 交 BC 于点 E .若□ ABCD 的周长为 10cm ,则 CDE 的周长为cm .A DEFR BPC第13题 第14题 第16题 第18题15、 x 2 3有增根,那么增根为 ________。
2019-2020年八年级数学下学期期中检测试题 苏科版
2019-2020年八年级数学下学期期中检测试题 苏科版一、选择题(每小题3分,共24分)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 2.分式中的x ,y 都扩大5倍,则该分式的值 ( ) A .不变 B .扩大5倍 C .缩小5倍 D .扩大10倍3.下列各式:()22214151 ,, ,,232x x y a x x b yπ-+--其中分式共有 ( )A .2个B .3个C .4个D .5个4.下列结论正确的是( )A .如果a >b ,则ac 2>bc 2B .分式 一定等于C .若ab=cd ,则D .连续两个奇数的平方差都能被8整除第6题 第7题5.已知反比例函数的图象如图所示,则一次函数的图象经过( )A . 一、二、三象限B .二、三、四象限C .一、二、四象限D .一、三、四象限 6.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD=BC ,∠PEF=30°,则∠PFE 的度数是 ( )A .15°B .20°C .25°D .30°7.如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为 ( )A .78°B .75°C .60°D .45° 8、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( ) (A ) (B ) (C ) (D )二、填空题(每空2分,共24分)9.当分式的值为0时,的值为__ _.10.写出一个含有字母的分式(要求:不论取任何实数,该分式都有意义) . 11.当时,分式无意义;当时,此分式的值为0,则= . 12、若关于的分式方程无解,则 . 13.如果,那么.14.如图,ABCD 是对角线互相垂直的四边形,且OB=OD ,请你添加一个适当的条件 ,使ABCD 成为菱形(只需添加一个即可).第14题 第15题 第16题15.如图,在周长为20cm 的▱ABCD 中,AB≠AD,AC ,BD 相交于点O ,OE⊥BD 交AD 于E ,则△ABE 的周长为 cm .16.以边长为2的正方形的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于18.如图,在长方形ABCD 中,E 是AD 的中点,F 是CE 的中点,若△BDF 的面积为6平方厘米,则长方形ABCD 的面积是 平方厘米.第17题 第18题 19、若41(2)(1)21a m na a a a -=++-+-,则 m= n=三、解答题(本大题共有5题,共52分) 21.(10分)计算:; (1) (2)22214()244x x x x x x x x+---÷--+.22.(6分)先化简,再求值:2211()1121x x x x x x x +++÷---+,其中x =2.23、(本题6分)先化简:并任选一个你喜欢的数代入求值.24.(8分)如图,P是正方形对角线上一点,PE⊥BC,PF⊥DC,求证:⑴AP=EF;⑵AP⊥EF.25、解下列分式方程(每小题5分,共10分)①②26.(12分)某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.(1)列出原计划种植亩数(亩)与平均每亩产量(万斤)之间的函数关系式,并写出自变量的取值范围;(总产量 = 亩数平均每亩产量)(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了8万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?参考答案一选择题(每题3分,共24分)二题空题(每空2分,共24分)21 ( 1 )(2)22. 123. (a不为0,1的值均可)24略25.(1) (2) 无解26 (1)(2)设原计划亩产量x万斤()解得经检验是原方程得解答。
苏科版2019-2020学年八年级数学第二学期期中测试题及答案
八年级数学下册期中测试卷(考试时间:120分钟,满分120分)一、选择题(每小题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.去年济川中学有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量3.反比例函数2yx的图象位于( ).A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限4.下列说法正确的是( )(1)抛一枚硬币,正面一定朝上;(2)掷一颗骰子,点数一定不大于6;(3)为了解一种灯泡的使用寿命,宜采用普查的方法;(4)“明天的降水概率为80%”,表示明天会有80%的地方下雨.A. 1个B. 2个C. 3个D. 4个5. 顺次连接矩形四边中点所组成的四边形是( )A.平行四边形B.菱形C.矩形D.以上图形都不是6. 如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°第6题第6题第7题第8题7. 在矩形ABCD中,已知AD=4,AB=3,P是AD上任意一点,PE⊥BD于E,PF⊥AC于F,则PE+PF的值为( ).A.3 B.245C.5 D.1258.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对二、填空题(每空3分,共30分)9. “一个有理数的绝对值是负数”是 .(填 “必然事件”或“不可能事件”或“随机事件”) 10. 一个四边形的边长依次是a 、b 、c 、d ,且满足22(a )(b )0c d -+-=,则这个四边形是 .11. 已知P 1(﹣1,y 1)、P 2(1,y 2)、P 3(2,y 3)是反比例函数y=的图象上的三点,则y 1、y 2、y 3的大小关系是(用“<”连接) 新- 课-标 -第 -一-网 12.如图,在菱形ABCD 中,∠BAD =60°,BD =4,则菱形ABCD 的周长是___________.第12题 第13题 第14题 第16题 13.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为___________.14. 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,除此以外小方格地面完全相同.一只自由飞行的小鸟,将随意落在图中所示的方格地面上,则小鸟落在草坪上的概率为 .15. 要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设这个三角形中 .16. 如图,090,Rt ABC ACB ∆∠=在中,D 、E 、F 分别是AB 、BC 、CA 的中点,若5CD cm =,则EF .17.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .18.如图,在平面直角坐标系xoy 中,一次函数24y x =-的图象经过正方形OABC 的顶点和C ,则正方形OABC的面积为 . 第18题 三、解答题:(共66分)19.(本题6分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO . 求证:四边形ABCD 是平行四边形.20.(本题共6分)已知y=y 1+y 2,若y 1与x -1成正比例,y 2与x+1成反比例,当x=0时,y=-5;当x=2时,y=1. (1) 求y 与x 的函数关系式; (2) 求当x=-2时,y 的值.21.(本题8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别 为A(﹣2,2),B(0,5),C(0,2).(1) 画△A 1B 1C ,使它与△ABC 关于点C 成中 心对称;(2) 平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),画出平移后对应的△A 2B 2C 2;(3) 若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,则旋转中心的坐标为______.22.(本题8分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1) 图1中“统计与概率”所在扇形的圆心角为 度; (2) 图2、3中的a = ,b = ;23. (本题8分)一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数n 200 300 400 500 600 700 800 1000 摸到红球次数 m 151221289358429497568 701 摸到红球频率m n0.75 0.74 0.72 0.72 0.72 0.71ab图1 45%5%实践与综合应统计与概率数与代数空间与图形40%67a 44数与式函数数与代数(内容)图2课时数方程(组)与不等式(组)A 一次方程B 一次方程组C 不等式与不等式组D 二次方程E 分式方程 图318b12A BC D369121518方程(组) 与不等式(组)课时数133EP N M GE D C B A O (1) 表格中a= ,b= ;(2) 估计从袋子中摸出一个球恰好是红球的概率约为 ;(精确到0.1) (3) 如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?24. (本题8分)如图,在平面直角坐标系中,正比例函数y=3x 与反比例函数y =的图象交于A ,B 两点,点A 的横坐标为2,AC ⊥x 轴,垂足为C ,连接BC . (1) 求反比例函数的表达式; (2) 求△ABC 的面积;25.(本题10分)如图,菱形ABCD 的边长为48cm ,∠A=60°,动点P 从点A 出发,沿着线路AB ﹣BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC ﹣CB ﹣BA 做匀速运动.(1) 求BD 的长; (2) 已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s .经过12秒后,P 、Q 分别到达M 、N 两点,试判断△AMN的形状,并说明理由,同时求出△AMN 的面积; (3) 设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 为直角三角形,试求a 的值.26.(本题满分12分)如图,正方形OEFG 绕着边长为a 的正方形ABCD 的对角线的交点O旋转,边OE 、OG 分别交边AD 、AB 于点M 、N . (1) 求证:OM =ON ;(2) 问四边形OMAN 的面积是否随着a 的变化而变化?若不变,请用a 的代数式表示出来,若变化,请说明理由;(3) 试探究PA 、PN 、BN 三条线段之间有怎样的数量关系,并写出推理过程.参考答案一、CCBA BDDA二、9.不可能事件10.平行四边形11. y1<y3<y2 12.1613.45014.15.三角形的三个内角都大于60016.517.150或75018.三、19.略20. (1)(2)-3 (3分+3分)21.(1)(2)略(3)(0,-2) (3分+3分+2分)22.(1)36 (2分) (2)60,14 (2分+2分) (3)27 (2分)23.(1)0.71 0.71 (2分+2分)(2)0.7 (2分) (3)6(2分)24.(1)(2)12 (4分+4分)25.(1)48(2分)(2)直角三角形(1分)理由(2分)面积(2分)(3)4, 12, 24(共3分,对一个1分)26.(1)略(3分)(2)不变,(2分+2分)(3)理由略(2分+3分)。
江苏省2019-2020八年级下学期期中考试数学试题7
江苏省 八年级下学期期中考试数学试题(考试时间:120分钟 试卷总分:150分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求的,请将正确选项前的字母代号填写在答题纸...相应位置上......) 1.下列四个图形中,是中心对称图形的是 ( ▲ )2.下列调查适合采用“普查”的是 ( ▲ ) A .了解在校大学生的主要娱乐方式 B .了解某个班级学生的体重 C .一批灯泡的使用寿命 D .调查《新闻联播》电视栏目的收视率3.100个白色乒乓球中有20个被染红,随机抽取20个球,下列结论正确的是(▲) A .红球一定刚好4个 B .红球不可能少于4个 C .红球可能多于4个 D .抽到的白球一定比红球多4.如果把分式yx xy中的x 和y 都扩大2倍,则分式的值 ( ▲ )A .扩大为4倍;B .扩大为2倍;C .不变;D .缩小2倍 5.已知,在□ABCD 中,若∠A+∠C =200°,则∠B 的度数是 (▲) A.100° B.160° C.80° D.60° 6.已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数的图象上,则y 1、y 2、y 3的大小关系是 ( ▲ ) A . y 3<y 1<y 2 B . y 1<y 2<y 3 C . y 2<y 1<y 3 D . y 3<y 2<y 1 7.如图,已知E 是□ABCD 的边CD 的中点,AD 、BE 的延长线相交于点F ,若DF =3,DE =2,则□ABCD 的周长为 ( ▲ ) A.5 B.7 C.10 D.14第8题图第7题图8.如图,正方形ABCD 的面积为16,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ▲ )A .8B .3C .4D .32 二.填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题纸相应位置上.........) 9.某校为了解该校1300名毕业生的数学考试成绩,从中抽查了130名考生的数学成绩.在这次调查中,样本容量是 ▲ .10.“任意打开一本200页的数学书,正好是第35页”,这是___▲____事件. 11.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为31,那么袋中共有 ▲ 个球.12.若分式22+-x x 的值为0,则x = ▲ .13.若2,3a b =则a a b=+ ▲ . 14.□ABCD 的周长为30,对角线AC 、BD 相交于点O ,若△AOB 的周长比△BOC 的周长少3,则AB = ▲ .15.若菱形的对角线的长的比为3:4,周长为20,则这个菱形的面积为 ▲ . 16.顺次连接四边形ABCD 各边中点E 、F 、G 、H ,得到四边形EFGH ,只要添加 ▲ 条件,就能保证四边形EFGH 是矩形.17.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是 ▲ . 18.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =3x-(x <0)的图象于点B ,以AB 为边作平行四边形ABCD ,其中C 、D在x 轴上,则平行四边形ABCD 的面积为 ▲ .第18题图三、解答题(本大题共10小题,共96分.请在答题纸指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.) 19. (本题8分) (1)化简:221b a a b a b a b ⎛⎫-÷⎪--+⎝⎭; (2)解方程:21122x x x=--- .20.(本题8分)先化简:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,然后请在33<<-x 中择一个你喜欢的整数..代入求值.21.(本题8分)正方形网格中(网格中的每个小正方形边长是1),ABC ∆的顶点均在格点上,请在所给的直角坐标系中解答下列问题:⑴ 作出ABC ∆绕点A 逆时针旋转90°的11AB C ∆,再作出11AB C ∆关于原点O 成中心对称的122A B C ∆.⑵ 点1B 的坐标为 ,点2C 的坐标 为 .⑶ ABC ∆经过怎样的旋转可得到122A B C ∆,23.(本题10分)某市八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中随机抽取了200名学生的得分进行统计.请你根据不完整的表格,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;(3)若将得分转化为等级,规定50≤x <60评为“D ”,60≤x <70评为“C ”,70≤x <90评为“B ”,90≤x <100评为“A ”.估计这3000名学生中,有多少学生得分等级为A ?24.(本题10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF . (1)线段BD 与CD 有何数量关系,为什么?(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.成绩 x 分 频数 频率 50≤x <60 10 60≤ x <70 16 0.08 70≤ x <800.2 80≤ x <9062 0.31 90≤ x <10072 0.36 F ABD C EABCDEFA ′B ′25.(本题10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元. (1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?26.(本题10分)如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B′处,点A 落在点A′处,已知AD=10,CD=4,B′D=2. (1)求证:B ′E =BF ;(2)求AE 的长.27.(满分12分)如图,一次函数411+=x k y 与反比例函数22k y x=的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C . (1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ; (3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点。
江苏省2019-2020年八年级下学期期中考试数学试卷9
江苏省2019-2020年八年级下学期期中考试数学试卷一、细心选择(本大题共8小题,每小题3分,共24分.)1.下列调查中:①调查你所在班级同学的年龄情况;②检测无锡的空气质量;③为保证“风云二号08星”成功发射,对其零部件进行检查;④对乘坐某航班的乘客进行安检.其中适合采用抽样调查的是( ▲ ) A .① B . ② C . ③ D . ④2. 每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了10%进行调查.在这次调查中,样本容量是( ▲ ) A .500 B. 10% C .50 D.53. 下列约分正确的是 ( ▲ )A.632a a a = B.a x a b x b+=+ C.22a b a b a b +=++ D.1x y x y --=-+ 4. 分式nm nn m mn n m m -+-+,,2)(的最简公分母是 (▲ ) A.)()(2n m n m -+ B.)()(3n m n m -+ C.))((n m n m -+ D.222)(n m - 5.已知x-y ≠0,且2x-3y=0,则分式2x yx y--的值为 ( ▲ ) A .-6 B. -1 C .2 D. 4 6.已知□ABCD 中,∠B=4∠A ,则∠D=(▲ ) A .18° B .36° C .72° D .144°7.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ,②AD =BC ,③OA =OC ,④OB =OD ,从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( ▲ ) A .3种 B .4种 C .5种 D .6种8.如图,Rt △ABC 中,∠C=90°,AC =12,BC=5,分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABDE 、ACFG 、BCIH,四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则S 1+S 2+S 3+ S 4 等于 ( ▲ ) A .60 B .90 C .144 D . 169 二、精心填空(本大题共9小题,每空2分,共22分.)9.某班50名学生在适应性考试中,分数段在90-100分的频率为0.1,则该班在这个分数段的学生有 ▲ 人.10.现有一个不透明的布袋中装有6个小球,分别为1个黑球、2个白球和3个红球,现从中随机摸出3个球.请写出一个不可能事件: ▲ .11.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才所想数字,把乙所猜数字记为b ,且a 、b 分别取0、1、2,若a 、b 满足1a b -≤,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,得出“心有灵犀”的概率为 ▲ . 12. 当x ▲ 时,分式5x -2有意义;若分式x -3x +4的值为0,则x = ▲ .S 4S1S 3A CB D E F G H I S 2第8题13.不改变分式的值,将分式12231223x yx y -+的分子、分母的各项系数化为整数得 ▲ ; 计算111m m m+--的结果为 ▲ . 14. 观察:111a m=-,a 2=1﹣,a 3=1﹣,a 4=1﹣,…,则a 2015= ▲ (用含m 的代数式表示).15.如图,将△ABC 沿它的中位线MN 折叠后,点A 落在点A ’处,若∠A=30°,∠B=115°,则∠A ’NC= ▲ °.16.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=1,则图中阴影部分的面积为▲ .17.如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm,BC=10cm,则折痕EF 的最大值是 ▲ .三、用心解答(本大题共54分) 18.(本题8分,每小题4分)计算:⑴ 3155m m m-+⑵ 211a a a ---19.(本题6分)先化简,再求值:222a b b a b a b a b +-+--,将32a b =代入求值.20.(本题8分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 ▲ 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数; (4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?第15题第16题第17题ACB E F DB‘21.(本题6分)如图所示的正方形网格中,△AB C的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.(提醒:每个小正方形边长为1个单位长度)22.(本题8分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?23.(本题8分)如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.24.(本题10分)在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD 与∠POD重叠部分的面积为y.①求当t=4,8,14时,y的值.②求y关于t的函数解析式.(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.①P,Q两点在第__▲____秒相遇;正方形ABCD的边长是__▲____.②点P的速度为__▲____单位长度/秒;点Q的速度为___▲___单位长度/秒.八年级数学参考答案及评分标准一、细心选择(本大题共8小题,每小题3分,共24分.)1、B ;2、C ;3、D ;4、A ;5、D ;6、D ;7、B ;8、B . 二、精心填空(本大题共9小题,每空2分,共22分.)9、5; 10、 摸到3个黑球(答案不唯一); 11、79; 12、≠2 3; 13、3434x y x y -+ 1;14、11m -; 15、 110; 16、3 17三.用心解答(本大题共54分)解答应写出演算步骤.18、⑴原式=151555m m m-+(2分) ⑵原式= 2(1)(1)11a a a a a +---- (2分) =51 (4分) =11-a (4分) 19、原式=2222222a b b a b a b +---(2分) =222a ab - (4分) 代入计算得95,计算正确再得2分.20、(1)200(2分) (2)图形正确(4分)(图略)(3)C 级所占圆心角度数:360°⨯15%=54°(6分) (4)达标人数约有8000⨯(25%+60%)=6800(人)(8分)21、⑴图略(2分) (2)图略(4分) (3)5.5<x<8(6分)22、(1)∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线.∴DE ∥BC. (2分) 又∵EF ∥AB ,∴四边形DBFE 是平行四边形. (4分)(2)当AB=BC 时,四边形DBEF 是菱形.理由如下:(5分)∵D 是AB 的中点,∴BD=AB.∵DE 是△ABC 的中位线,∴DE=BC. ∵AB=BC ,∴BD=DE.又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形.(8分) 23、(1)答:AE ⊥GC ;(1分)证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,(2分)∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(4分)答:成立;(5分)证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,(6分)∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(8分)24.解:(1)∵正方形ABCD的边长为12,∴S正方形ABCD=122=144.∵O是AD的中点,∴OA=OD=6.①(Ⅰ)当t=4时,如图1①.∵AP=2×4=8,OA=6,∴S△OAP=×AP×OA=24,∴y=S正方形ABCD﹣S△OAP=144﹣24=120;(1分)(Ⅱ)当t=8时,如图1②.∵AB+BP=2×8=16,AB=12,∴BP=4,∴CP=12﹣4=8,∴y=(OD+CP)×CD=×(6+8)×12=84;(2分)(Ⅲ)当t=14时,如图1③.∵AB+BC+CP=2×14=28,AB=BC=CD=12,∴DP=12×3﹣28=8,∴y=S△ODP=×DP×OD=24;(3分)②分三种情况:(Ⅰ)当0≤t≤6时,点P在边AB上,如图1①.∵AP=2t,OA=6,∴S△OAP=×AP×6=6t,(4分)∴y=S正方形ABCD﹣S△OAP=144﹣6t;(Ⅱ)当6<t≤12时,点P在边BC上,如图1②.∵AB+BP=2t,AB=CD=12,∴CP=24﹣2t,∴y=(OD+CP)×CD=×(6+24﹣2t)×12=180﹣12t;(5分)(Ⅲ)当12<t≤18时,点P在边CD上,如图1③.∵AB+BC+CP=2t,AB=BC=CD=12,∴DP=36﹣2t,∴y=S△ODP=×DP×OD=108﹣6t.(6分)综上可知,y=;(2)①∵t=0时,S=S正方形ABCD=16,∴正方形ABCD的边长=4.(7分)∵t=4时,S=0,∴P,Q两点在第4秒相遇;(8分)②∵S与t的函数图象由5段组成,∴P,Q相遇于C点,∵时间相同时,速度之比等于路程之比,而点P运动的路程=点Q运动的路程的2倍,∴点P的速度=点Q的速度的2倍.设点Q的速度为a单位长度/秒,则点P的速度为2a单位长度/秒.∵t=4时,P,Q相遇于C点,正方形ABCD的边长为4,∴4(a+2a)=4×3,∴a=1.故点P的速度为2单位长度/秒,点Q的速度为1单位长度/秒.(10分)。
苏科版2019-2020学年初二数学第二学期期中测试卷及答案
八年级数学下册期中测试卷(考试时间:120分钟,满分120分)一、选择题(每小题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.去年济川中学有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量3.反比例函数2yx的图象位于( ).A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限4.下列说法正确的是( )(1)抛一枚硬币,正面一定朝上;(2)掷一颗骰子,点数一定不大于6;(3)为了解一种灯泡的使用寿命,宜采用普查的方法;(4)“明天的降水概率为80%”,表示明天会有80%的地方下雨.A. 1个B. 2个C. 3个D. 4个5. 顺次连接矩形四边中点所组成的四边形是( )A.平行四边形B.菱形C.矩形D.以上图形都不是6. 如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°第6题第6题第7题第8题7. 在矩形ABCD中,已知AD=4,AB=3,P是AD上任意一点,PE⊥BD于E,PF⊥AC于F,则PE+PF的值为( ).A.3 B.245C.5 D.1258.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对二、填空题(每空3分,共30分)9. “一个有理数的绝对值是负数”是 .(填 “必然事件”或“不可能事件”或“随机事件”) 10. 一个四边形的边长依次是a 、b 、c 、d ,且满足22(a )(b )0c d -+-=,则这个四边形是 .11. 已知P 1(﹣1,y 1)、P 2(1,y 2)、P 3(2,y 3)是反比例函数y=的图象上的三点,则y 1、y 2、y 3的大小关系是(用“<”连接) 新- 课-标 -第 -一-网 12.如图,在菱形ABCD 中,∠BAD =60°,BD =4,则菱形ABCD 的周长是___________.第12题 第13题 第14题 第16题 13.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为___________.14. 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,除此以外小方格地面完全相同.一只自由飞行的小鸟,将随意落在图中所示的方格地面上,则小鸟落在草坪上的概率为 .15. 要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设这个三角形中 .16. 如图,090,Rt ABC ACB ∆∠=在中,D 、E 、F 分别是AB 、BC 、CA 的中点,若5CD cm =,则EF .17.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .18.如图,在平面直角坐标系xoy 中,一次函数24y x =-的图象经过正方形OABC 的顶点和C ,则正方形OABC的面积为 . 第18题 三、解答题:(共66分)19.(本题6分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO . 求证:四边形ABCD 是平行四边形.20.(本题共6分)已知y=y 1+y 2,若y 1与x -1成正比例,y 2与x+1成反比例,当x=0时,y=-5;当x=2时,y=1. (1) 求y 与x 的函数关系式; (2) 求当x=-2时,y 的值.21.(本题8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别 为A(﹣2,2),B(0,5),C(0,2).(1) 画△A 1B 1C ,使它与△ABC 关于点C 成中 心对称;(2) 平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),画出平移后对应的△A 2B 2C 2;(3) 若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,则旋转中心的坐标为______.22.(本题8分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1) 图1中“统计与概率”所在扇形的圆心角为 度; (2) 图2、3中的a = ,b = ;23. (本题8分)一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数n 200 300 400 500 600 700 800 1000 摸到红球次数 m 151221289358429497568 701 摸到红球频率m n0.75 0.74 0.72 0.72 0.72 0.71ab图1 45%5%实践与综合应统计与概率数与代数空间与图形40%67a 44数与式函数数与代数(内容)图2课时数方程(组)与不等式(组)A 一次方程B 一次方程组C 不等式与不等式组D 二次方程E 分式方程 图318b12A BC D369121518方程(组) 与不等式(组)课时数133EP N M GE D C B A O (1) 表格中a= ,b= ;(2) 估计从袋子中摸出一个球恰好是红球的概率约为 ;(精确到0.1) (3) 如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?24. (本题8分)如图,在平面直角坐标系中,正比例函数y=3x 与反比例函数y =的图象交于A ,B 两点,点A 的横坐标为2,AC ⊥x 轴,垂足为C ,连接BC . (1) 求反比例函数的表达式; (2) 求△ABC 的面积;25.(本题10分)如图,菱形ABCD 的边长为48cm ,∠A=60°,动点P 从点A 出发,沿着线路AB ﹣BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC ﹣CB ﹣BA 做匀速运动.(1) 求BD 的长; (2) 已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s .经过12秒后,P 、Q 分别到达M 、N 两点,试判断△AMN的形状,并说明理由,同时求出△AMN 的面积; (3) 设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 为直角三角形,试求a 的值.26.(本题满分12分)如图,正方形OEFG 绕着边长为a 的正方形ABCD 的对角线的交点O旋转,边OE 、OG 分别交边AD 、AB 于点M 、N . (1) 求证:OM =ON ;(2) 问四边形OMAN 的面积是否随着a 的变化而变化?若不变,请用a 的代数式表示出来,若变化,请说明理由;(3) 试探究PA 、PN 、BN 三条线段之间有怎样的数量关系,并写出推理过程.参考答案一、CCBA BDDA二、9.不可能事件10.平行四边形11. y1<y3<y2 12.1613.45014.15.三角形的三个内角都大于60016.517.150或75018.三、19.略20. (1)(2)-3 (3分+3分)21.(1)(2)略(3)(0,-2) (3分+3分+2分)22.(1)36 (2分) (2)60,14 (2分+2分) (3)27 (2分)23.(1)0.71 0.71 (2分+2分)(2)0.7 (2分) (3)6(2分)24.(1)(2)12 (4分+4分)25.(1)48(2分)(2)直角三角形(1分)理由(2分)面积(2分)(3)4, 12, 24(共3分,对一个1分)26.(1)略(3分)(2)不变,(2分+2分)(3)理由略(2分+3分)。
苏科版2019-2020学年度第二学期八年级期中检测数学试卷
试卷第1页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前苏科版2019-2020学年度第二学期八年级期中检测数学试卷题号 一 二 三 总分 得分评卷人 得分一、单选题1.(3分)下列四个图案中,不是中心对称图案的是( )A .B .C .D .2.(3分)我市七年级有10000名学生参加某项考试,为了了解这些学生的考试成绩,从中抽取了500名考生的考试成绩进行统计分析.下列说法:①这10000名学生的考试成绩是总体;②每个学生的考试成绩是个体;③抽取的500名考生的考试成绩是总体的一个样本;④样本容量是10000.正确的有( )个. A .4B .3C .2D .13.(3分)某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人4.(3分)单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的( )试卷第2页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .40%B .70%C .76%D .96%5.(3分)下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰6.(3分)小李掷一枚硬币,连续8次正面都朝上,请问他第9次掷硬币时,出现正面朝上的概率是( ). A .0B .1C .D .7.(3分)如图,矩形ABCD 被对角线AC 、BD 分成四个小三角形,这四个小三角形的周长之和是68,10AC =.则矩形ABCD 的周长是( )A .48B .38C .28D .148.(3分)如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( )A .4.5B .5C .6D .99.(3分)从下面四个条件中任意选两个,能使四边形ABCD 是平行四边形选法有( ) ①AB//CD ;②AB =CD ;③BC//AD ;④BC =AD A .2种B .3种C .4种D .5种10.(3分)如图,ABC V 中,18BC =.若BD AC ⊥于D 点,CE AB ⊥于E 点,,F G 分则为BC 、DE 的中点,若10ED =,则FG 的长为( )试卷第3页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .56B .106C .8D .9评卷人 得分二、填空题11.(4分)“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).12.(4分)如图是当前对生活垃圾的常见三种处理方式,本图中的有关数据宜用__________统计图表示.13.(4分)如图所示的折线统计图分别表示我市A 、B 两县在4月份的日平均气温,记该月A 、B 两县的日平均气温为12C ︒的天数分别是a 天和b 天,则a b +=__________.14.(4分)某工厂的产品每50件装为一箱,现质检部门对100箱产品进行质量检查,每箱中的次品数见表: 次品数 0 1 2 3 4 5 箱数5014201042试卷第4页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………该工厂规定:一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的 产品箱.若在这100箱中随机抽取一箱,抽到质量不合格的产品箱概率为_______15.(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).16.(4分)工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.这依据的道理是:_______________________________.17.(4分)如图,在菱形ABCD 中,AC 、BD 交于点O ,AC =4,菱形ABCD 的面积为45,E 为AD 的中点,则OE 的长为___.18.(4分)如图所示,在正方形ABCD 中,以AB 为边向正方形外作等边三角形ABE ,连接CE 、BD 交于点G ,连接AG ,那么∠AGD 的底数是_____度.试卷第5页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分三、解答题19.(10分)下面第一排表示十张扑克牌的不同情况,任意摸一张.请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.20.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?21.(12分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A ”,则收费2元,若指针指向字母“B ”,则奖励3元;若指针指向字母“C ”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?试卷第6页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………22.(12分)如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长.23.(14分)如图,△ABC 的中线BD ,CE 交于点O ,F ,G 分别是BO ,CO 的中点. (1)填空:四边形DEFG 是 四边形. (2)若四边形DEFG 是矩形,求证:AB =AC .(3)若四边形DEFG 是边长为2的正方形,试求△ABC 的周长.参考答案1.C2.B3.D4.C5.D6.C7.C8.A9.C10.A11.不可能12.扇形13.1214.4 2515.小于16.对角线相等的平行四边形是矩形.17.3 218.6019.见解析.20.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.21.商人盈利的可能性大.22.3cm.23.(1)平行;(2)见解析;(3).答案第1页,总1页。
2019-2020学年八年级数学下学期期中试题 苏科版
A .B .C .D . 2019-2020学年八年级数学下学期期中试题 苏科版(考试时间120分钟 满分150分) 2016.04 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.. 下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ )2.下列事件中最适合使用普查方式收集数据的是( ▲ )A .了解全市每天丢弃的废旧电池数B .了解某班同学的身高情况C .了解50发炮弹的杀伤半径D .了解我省农民的年人均收入情况 3. 为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,以下说法正确的是 ( ▲ )A .1 000名学生是是总体B .抽取的50名学生是样本容量C .每位学生的身高是个体D .被抽取的50名学生是总体的一个样本 4. 事件A:某射击运动员射击一次,命中靶心;事件B :明天太阳从西边升起;C .13名同学中至少有两名同学的出生月份相同.3个事件的概率分别记为 P (A ) 、 P (B )、 P (C ),则 P (A ) 、 P (B )、 P (C )的大小关系正确的是( ▲ )A. P (B ) < P (A ) <P (C )B. P (C ) < P (B ) <P (A )C. P (A ) < P (B ) <P (C )D. P (A ) < P (C ) <P (B ) 5. 把分式yx y 3 中的x 和y 都扩大3倍,分式的值( ▲ ) A .扩大3倍 B .扩大9倍 C .不变 D .缩小3倍6. 如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是( ▲ )A .平行四边形B .矩形C .菱形D .梯形7. 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,如果△CDM 的周长是40cm ,则平行四边形ABCD 的周长是( ▲ )A .40cmB .60cmC .70cmD .80cm 8.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,H 是AF 的中点,那么CH的长是( ▲ )A .2.5 B.5 C.2 D.5二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接第7题第6题 第8题填写在答题卡相应位置.......上) 9. □ABCD 中,∠B=80°,∠C= ▲ ° 10.若分式33--x x 的值为0,则x = ▲ .11. 如果53)12(5)12(3=--a a 成立,则a 的取值范围是 ▲12. 在一个不透明的口袋里装有1个红球,2个白球和n 个黄球,这些球除颜色外其余都相同.若从该口袋中任意摸出1个球,摸到白球的可能性大于黄球的可能性,则n 等于 ▲ . 13. 2016年扬州体育中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一班参加坐位体前屈的人数是14. 将4个数a bc d ,,,排成2行、2列,两边各加一条竖直线记成a b c d,定义a bcda b d c =-,上述记号就叫做2阶行列式.则22824x x --= ▲ . 15.如图,在矩形纸片ABCD 中,AB =2 cm ,点E 在BC 上,且AE EC =.若将纸片沿AE折叠,点B 恰好与AC 上的点B '重合,则AC = ▲ cm.16. 某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:00 从这个袋中随机摸出一个球,是白球的概率约为 ▲ .17. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB=90°,若AB=5,BC=8,则EF 的长为___▲__.18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是 ▲(第15题) (第17题) (第18题)三、解答题(本大题共10题,共96分.解答应写出必要的文字说明、证明过程或演算步骤) 19.计算(10分)(1) 22244a a a +-- (2)112++-x x x20. (8分)粗心的小明在计算1a b+减去一个分式时,误将减号抄成了加号,算得的结果为223b a ba --,请你帮他算出正确的结果,并取一组合适的a 、b 的值代入求值.21. (8分)如图,在平面直角坐标系中, A (0,4),B (-3,0). (1)①画出线段AB 关于y 轴对称线段AC ;②将线段AC 绕点C 顺时针旋转一个角,得到对应线段CD ,使得AD//x 轴,请画出线段CD ; (2)判断四边形ABCD 的形状 ▲ ;(3)若直线kx y =平分四边形ABCD 的面积,请直接写出实数k 的值.22.(10分) “低碳环保,你我同行”.两年来,扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A .每天都用;B .经常使用;C .偶尔使用;D .从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:情况(1)本次活动共有 ▲ 位市民参与调查; (2)补全条形统计图和扇形统计图;(3)扇形统计图中A 项所对应的圆心角的度数为 ▲ (4)根据统计结果,若该区有46万市民,请估算每天都用....公共自行车的市民约有多少人?23.(8分)已知线段AB 、BC, ∠ABC=90°,求作矩形ABCD. 小王同学的作图痕迹如图1,请你写出他的作法;请你再设计另一种尺规作图的方法作出所求图形,保留痕迹,不必写作法.24. (8分)在三只乒乓球上,分别写有三个不同的正整数(用a 、b 、c 表示),三只乒乓球除标的数字不同外,其余都相同,将三只乒乓球放在一个不透明的盒中搅拌均匀,无放回的从中依次摸出2只乒乓球,将球上面的数字相加求和.当和为偶数时,记为事件A ,当和为奇数时,记为事件B.(1)设计一组a 、b 、c 的值,使得事件A 为必然发生的事件.(2)设计一组a 、b 、c 的值,使得事件B 发生的概率大于事件A 发生的概率.25. (10分)已知:如图,在□ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?并说明理由. 注:(直角三角形中30°角所对直角边等于斜边的一半).26(10分)观察下面的变形规律:111111111;;;12223233434=-=-=-⨯⨯⨯… 解答下列问题:(1)若n 为正整数,请你猜想1(1)n n += ▲ ;(2)证明你的猜想; (3)计算:1111;12233420152016+++⋅⋅⋅⨯⨯⨯⨯27.(12分)如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B ′的位置,AB ′与CD 交于点E .A D G CB FE(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.28.(12分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的16;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.邗江区八年级期中数学测试卷答案二、填空题(每空3分,计30分) 9、100 ; 10、-3 ; 11、12a ≠12、1 ; 13、14 ; 14、22x + 15、4 ; 16、0,6 17、 1.5 ; 18、(63,32) 三、解答题(共96分)19、计算(每小题5分,共10分) 解:(1) 原式=22244a a a --- -------------2分 =2(2)(2)a a a -+-- -------4分=12a + --------5分 (2)原式= 2(1)(1)11x x x x x -++-- …………2分 =2211x x x +--…………4分= 2211x x -- ………………5分2213()a b a b a b a b ----=+-=222ba -………3分22221221a a b a b a b a b a b a b----==-+---………6分代入求值,其中a b ≠± ……………8分 21、(1)图略………………………2分情况AB C D 28%15%52% (2)平行四边形………4分 (3)43………8分22.(1)200; ……………………………2分 (2)(3)18 …8 分(4)46×5%=2.3(万人). 。
江苏省2019-2020八年级下学期期中考试数学试题6
江苏省2019-2020八年级下学期期中考试数学试题 6精选资料江苏省 八年级放学期期中考试数学试题(满分: 100 分,时间: 120 分钟 )一、选择题 ( 本大题共8 小题,每题 2 分,共 16分,每题仅有一个答案正确)1.以下图形中,既是轴对称图形又是中心对称图形的是(▲ )A .角B .等边三角形C .平行四边形D .矩形2.以下检查中,合适采纳全面检查(普查 )方式的是 (▲)A .对某食质量量的检查.B .对数学课本中印刷错误的检查.C .对学校成立英语角见解的检查.D .对公民保护环境意识的检查 .3.以下各式正确的选项是 ( ▲ )n n ay y 2a x a 1n naA . m m aB .xx 2C . b x b 1aD . m ma4.以下命题中,正确的个数是 (▲)①13 个人中起码有2 人的诞辰是同一个月是必定事件②为认识我班学生的数学成绩,从中抽取 10名学生的数学成绩是整体的一个样本③一名篮球运动员投篮命中概率为 0.7,他投篮 10 次,必定会命中 7 次④ 小颖在装有 10 个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频次在 0.6 邻近颠簸,据此预计黑球约有6 个.A . 1B . 2C . 3D .45.四边形 ABCD 中,对角线 AC 、 BD 订交于点 O ,以下条件不可以判断这个四边形是平行四边形的是( ▲)A . AB//DC , AD//BCB .AB//DC ,AD=BCC . AO=CO , BO=DOD . AB=DC , AD=BCFAADEFOEBBDCC第 5 题第 6 题第 8 题6. 如图,在△ ABC 中, E 、D 、 F 分别是 AB 、BC 、CA 的中点,AB=AC= 5, BC=8 ,则四边形 AEDF ?的面积是 ( ▲ )A .10B . 12C .6D .207.在 500 个数据中,用合适的方法抽取50 个为样本进行统计,频次散布表中54.5~ 57.5 这一组的频次是 0.15,那么预计整体数 据在 54.5~57.5 之间的约有 (▲)A .150个B .75 个C .60 个D .15 个8.如图, E 、F 分别是正方形ABCD 的边 CD 、AD 上的点,且 CE=DF ,AE 、BF 订交于点 O ,以下结论:(1)AE=BF ; (2)AE ⊥BF ; (3)AO=OE ; (4) S AOBS 四边形 DEOF 中正确的有 (▲)A .4 个B .3个C .2 个D .1 个二、填空题 (此题共 10 小题,每题 2分,共 20 分)9.当 x = ___ ▲ ___时,分式x1无心义.x 1江苏省2019-2020八年级下学期期中考试数学试题6精选资料(2),10.y11y x y2(2)y2 2 y 1 ()11.若分式1的正数,x 的范是▲.x212.某班在大活中抽了10 名学生每分跳次数,获得以下数据(位:次 ):88,9l,93,102,108,117,121,130,146,188.跳次数在90~ 110 一的率是▲.AA E DDF第 14题第 16题B E C第H17 题B C来描绘数据 .13. 小明想认识自己一学期数学成的化,用▲14.如 Y ABCD中,∠ ABC 的均分交 AD 于 E,DC=4,DE=2, Y ABCD的周长_▲__.15. E、 F、 G、 H 分四形 ABCD 各的中点,增添_ ▲ _条件,四形EFGH 菱形。
2019-2020学年盐城中学八年级(下)期中数学试卷(含答案解析)
2019-2020学年盐城中学八年级(下)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.下列汉字或字母中,不是中心对称图形的是()A. B. C. D.2.下列二次根式中,是最简二次根式的是()D. √3x2+y2A. √8B. √2x2yC. √ab23.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A. 3次B. 4次C. 5次D. 6次4.在一次射击中,运动员命中的环数是7,8,8,9,9,其中8是()A. 平均数B. 中位数C. 众数D. 既是众数又是中位数5. 2.如图,AB,CD分别为两圆的弦,AC,BD为两圆的公切线且相交于P点。
若PC=2,CD=3,DB=6,则△PAB的周长为何()A. 6B. 9C. 12D. 146.在一次比赛中,有8位同学参加了“8进4”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解8位参赛同学成绩的()A. 平均数B. 加权平均数C. 众数D. 中位数二、填空题(本大题共10小题,共30.0分)7.当x______时,√2x−10有意义.8.如图,实数a在数轴上表示如图所示,化简√a2−2a+1−|a|=______.9.根据下列条件,求字母x的取值范围:√x2−2x+1=1−x:______.10.如图,点D、E、F是△ABC三边的中点,点M、N、P是△DEF三边的中点,将△FPM与△ECD涂成阴影,假设△ABC内任意一点被取到的机会均等,那么在△ABC内随机取一个点,这个点恰好落在阴影部分的概率为______ .11.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B′落在AC上,在B′C′上取点F,使B′F=AB.则∠FBB′的度数为______°.12.菱形的对角线长分别为6和8,则此菱形的周长为______ ,面积为______ .13.如图,矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE垂足为F.则sin∠FDC等于______.14.在▱ABCD中,如果∠A=57°,那么∠C的度数是______.15.某招聘考试分笔试和面试两种,其中按笔试60%、面试40%计算加权平均数,作为总成绩李明笔试成绩90分,面试成绩85分,那么李明的总成绩为分.16.如图,在矩形ABCD中,AB=2BC,将矩形ABCD沿直线AF对折,使B点落在CD边上的E点处,则∠CFE=______ .三、解答题(本大题共9小题,共72.0分)17.计算:12−√3−4√12+(√48−√24)÷√6.18.在▱ABCD中,E、F是DB上的两点,且AE//CF,若∠AEB=115°,∠ADB=35°,求∠BCF的度数.19.【初步认识】(1)如图①,将△ABO绕点O顺时针旋转90°得到△MNO,连接AM、BM,求证△AOM∽△BON.【知识应用】(2)如图②,在△ABC中,∠BAC=90°,AB=√2,AC=3√2,将△ABC绕着点A旋转得到△ADE,连接DB、EC,直线DB、EC相交于点F,线段AF的最大值为______.【拓展延伸】(3)如图③,在等边△ABC中,点E在△ABC内部,且满足AE2=BE2+CE2,用直尺和圆规作出所有的点E(保留作图的痕迹,不写作法).20.已知:a(a−1)−(a2−b)=−5.求:代数式a2+b2−ab的值.221.如图,在平面直角坐标系中,点O为坐标原点,AB//OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.(1)在t=3时,M点坐标______,N点坐标______;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.22.绿色出行是对环境影响最小的出行方式,“共享单车”已成为长春市的一道亮丽的风景线.某社会实践活动小组为了了解“共享单车”的使用情况,对本校师生在7月6日至7月10日使用单车的情况进行了问卷调查.以下是根据调查结果绘制的统计图的一部分:请根据以上信息解答下列问题:(1)7月7日使用“共享单车”的师生有______人;(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的师生做了进一步调查,每个人都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢mobike的师生有36人.求喜欢ofo的师生人数.23.①√12+3√113−√513−23√48②√3−(√3)2+|√3−2|−√27+(cos60°+1)024.如图,已知在梯形ABCD中,AD//BC,AB=AD=5,tan∠DBC=34.点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF//CD,与BC相交于点F,连接CE.设BE=x,y=S△ECFS△BCD.(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.25.如图,Rt△ABC中,∠BAC=90°,点E是BC的中点,AD平分∠BAC,BD⊥AD于点D.(1)求证:∠ADE=∠BDE;(2)若,,求的值;(3)过点C作CG⊥AD于点G,交AB于点F,求证:DE=BF.【答案与解析】1.答案:A解析:解:A、“由”不是中心对称图形,故本选项符合题意;B、“Z”是中心对称图形,故本选项不符合题意;C、“H”是中心对称图形,故本选项不符合题意;D、“中”是中心对称图形,故本选项不符合题意.故选:A.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:D解析:解:A.√8=2√2,可化简;B.√2x2y=|x|√2y,可化简;C.√ab2=√2ab2,可化简;D.√3x2+y2不能化简,符合最简二次根式的条件,是最简二次根式;故选:D.判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.本题主要考查了最简二次根式.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.答案:B解析:解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.根据题意作出图形,直接写出答案即可.本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.4.答案:D解析:解:平均数是:(7+8+8+9+9)÷5=8.2,数据按从小到大顺序排列为7,8,8,9,9,所以中位数是8;数据8和9都出现了两次,出现次数最多,所以众数是8和9;则此题中8既是众数数又是中位数.故选:D.根据中位数、众数和平均数的意义求解,即可得出答案.此题考查了中位数、众数、平均数;平均数是指在一组数据中所有数据之和再除以数据的个数;在一组数据中出现次数最多的数据叫做这一组数据的众数,注意众数不止一个;中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).5.答案:D解析:由切线长定理可求得PA=PB,PC=PD;根据PC、DB的长,即可求出PA、PB的长;易证得△APB∽△DPC,因此两三角形的周长比等于相似比,由此可求出△PAB的周长.解:根据切线长定理可得:PD=PC=2,DB=6∴AP=BP=4∵PA=PB,PC=PD,即∵∠APB=∠DPC∴△ABP∽△CDP易得△CDP的周长是7,所以△PAB的周长是2×7=14.故选D.6.答案:D解析:解:由于总共有8个人,且他们的分数互不相同,第4名和第5名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数的多少.故选:D.8人成绩的中位数是第4名和第5名同学的成绩的平均数.参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.答案:≥5解析:解:∵√2x−10有意义,∴2x−10≥0,解得x≥5,故答案为:≥5.根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围.本题主要考查了二次根式有意义的条件,解题时注意:二次根式中的被开方数是非负数.8.答案:1−2a解析:解:由数轴可知,0<a<1,则a−1<0,则√a2−2a+1−|a|=|a−1|−|a|=1−a−1=1−2a,故答案为:1−2a.根据数轴确定a的范围,根据二次根式的性质解答即可.本题考查的是二次根式的化简、数轴与实数,掌握二次根式的性质是解题的关键.9.答案:x≤1解析:解:∵2−2x+1=1−x≥0,∴x≤1,故答案为:x≤1.依据二次根式的非负性,即可得到x的取值范围.本题主要考查了二次根式的性质与化简,利用二次根式的非负性是解决问题的关键.10.答案:516解析:解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴DE//AB,且DE=12AB,∴△CDE∽△CBA,∴S△CDE=14S△CBA,同理,S△FPM=14S△FDE=116S△CBA,∴S△FPM+S△CDE=516S△CBA,则S阴影S△CBA=516.故答案为:516.由D、E分别是BC、AC的中点知DE是△ABC的中位线,证△CDE∽△CBA得S△CDE=14S△CBA,同理S△FPM=14S△FDE=116S△CBA,继而知S△FPM+S△CDE=516S△CBA,据此可得答案.本题考查了三角形中位线定理和几何概率.几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.答案:15解析:解:如图,连接BB′,∵四边形ABCD是矩形,∴∠ABC=90°,∵将矩形ABCD绕点A旋转得到矩形AB′C′D′,∴AB=AB′,∠ABC=∠AB′C′=90°,∵AC=2AB,∴AC=2AB′=AB′+B′C,∴AB′=B′C,∵∠ABC=90°,∴BB′=AB′=CB′=AB,∴△ABB′是等边三角形,∴∠AB′B=60°,∴∠BB′F=150°,∵B′F=AB,∴BB′=B′F,∴∠B′BF=∠B′FB=15°,故答案为:15.连接BB′,由矩形的性质可得∠ABC=90°,由旋转的性质可得AB=AB′,∠ABC=∠AB′C′=90°,由直角三角形的性质可得BB′=AB′=CB′=AB,可证△ABB′是等边三角形,可得∠AB′B=60°,由等腰三角形的性质可求解.本题考查了旋转的性质,矩形的性质,等边三角形的性质,熟练运用这些性质进行推理是本题的关键.12.答案:20;24解析:解:如图,AC=6,BD=8,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=3,OB=12BD=4,∴AB=√OA2+OB2=5,∴菱形的周长是:4AB=4×5=20,面积是:12AC⋅BD=12×6×8=24.故答案为:20,24.由菱形的对角线长分别为6和8,根据菱形的面积等于对角线积的一半,可求得菱形的面积,由勾股定理可求得AB的长,继而求得周长.此题考查了菱形的性质以及勾股定理.此题比较简单,注意掌握数形结合思想的应用.13.答案:√53解析:解:在△ABE和△DFA中{∠B=∠AFD ∠BEA=∠FAD AE=AD∴△ABE≌△DFA(AAS).∴DF=AB.在Rt△ABE中,AE=BC=3,所以AB=√9−4=√5.所以DF=√5.∵∠FDC+∠ADF=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF.sin∠FDC=sin∠DAF=DFAD =√53.故答案为√5.3利用勾股定理可求AB值,再证明△ABE≌△DFA,得到DF=AB,转化∠FDC=∠DAF,在Rt△ADF 中求解三角函数值即可.本题以矩形为背景主要考查了解直角三角形、全等三角形的判定和性质,解题的关键是转化角求解.14.答案:57°解析:解:∵在▱ABCD中,∠A=57°,∴∠C=∠A=57°.故答案为57°.根据平行四边形的对角相等即可求解.本题考查了平行四边形的性质,掌握平行四边形的对角相等是解题的关键.15.答案:88解析:解析:试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:∵笔试按60%、面试按40%计算,∴总成绩是:90×60%+85×40%=88(分)。
2019-2020学年江苏省盐城中学八年级(下)期中数学试卷(附答案详解)
2019-2020学年江苏省盐城中学八年级(下)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.下列四个交通标志图案中,是中心对称图形的为()A. B. C. D.2.下列属于最简二次根式的是()A. 1√2B. √5 C. √8 D. √133.矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等4.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m,方差分别是s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁5.顺次连结一个平行四边形的各边中点所得四边形的形状是()A. 平行四边形B. 矩形C. 菱形D. 正方形6.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是()A. 平均数B. 方差C. 中位数D. 众数二、填空题(本大题共10小题,共30.0分)7.若√x−2在实数范围内有意义,则x的取值范围为______.8.化简√(−2)2=______ .9.若√3与最简根式√a+1是同类二次根式,则a=______.10.在△ABC中,点D、E分别是AB、AC的中点,BC=6,则DE=______.11.如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD的大小为______度.12.菱形的两条对角线长分别为3和4,则菱形的面积是______.13.矩形ABCD的对角线AC、BD交于点O,∠AOD=120°,AC=6,则△ABO的周长为______.14.如图,平行四边形中,∠ADC=118°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=______度.15.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是______分.16.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为______.三、解答题(本大题共9小题,共72.0分)17.(1)√8−√18+√32;(2)(√1+√27)×√3.318.如图,▱ABCD中,点E、F在对角线AC上,且AE=CF.求证:四边形BEDF是平行四边形.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(−4,3),B(−1,2),C(−2,1)(1)画出△ABC关于原点O对称的△A1B1C1,并写出点B1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°得到的△A2B2C2,并写出点A2的坐标.20.已知x=√6+√2,y=√6−√2,求x2+2xy+y2的值.21.如图,BD是△ABC的角平分线,过点D作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)如果∠A=80°,∠C=30°,求∠BDE的度数.22.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民;(2)求本次调查获取的样本数据的平均数______,中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?23.阅读下列解题过程:1√2+1=√2−1(√2+1)(√2−1)=√2−11√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2(1)化简:1√11+√10;(2)观察上面的解题过程,请你猜想一规律:直接写出式子1√n+√n−1=______.(3)利用这一规律计算:(1√2+1+1√3+√2+⋯+1√2020+√2019)(√2020+1).24.已知矩形ABCD,AB=6,BC=10,以BC所在直线为x轴,AB所在直线为y轴,建立如图所示的平面直角坐标系,在CD边上取一点E,将△ADE沿AE翻折,点D恰好落在BC边上的点F处.(1)求线段EF长;(2)在平面内找一点G,①使得以A、B、F、G为顶点的四边形是平行四边形,请直接写出点G的坐标;②如图2,将图1翻折后的矩形沿y轴正半轴向上平移m个单位,若四边形AOGF为菱形,请求出m的值并写出点G的坐标.25.【问题情境】(1)同学们我们曾经研究过这样的问题:已知正方形ABCD,点E在CD的延长线上,以CE为一边构造正方形CEFG,连接BE和DG,如图1所示,则BE和DG的数量关系为______,位置关系为______.【继续探究】(2)若正方形ABCD的边长为4,点E是AD边上的一个动点,以CE为一边在CE的右侧作正方形CEFG,连接DG、BE,如图2所示,①请判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;②连接BG,若AE=1,求线段BG长.爱动脑筋的小丽同学是这样做的:过点G作GH⊥BC,如图3,你能按照她的思路做下去吗?请写出你的求解过程.【拓展提升】(3)在(2)的条件下,点E在AD边上运动时,利用图2,则BG+BE的最小值为______.答案和解析1.【答案】B【解析】解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.根据中心对称图形的定义进行判断.本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.【答案】B【解析】解:√2=√22,故不是最简二次根式,A选项错误;√5是最简二次根式,故C选项正确;√8=2√2故不是最简二次根式,C选项错误;√1 3=√33故不是最简二次根式,D选项错误.故选:B.根据最简二次根式的定义可判定求解.本题主要考查最简二次根式,属于基础题.3.【答案】A【解析】解:∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.此题考查了矩形与菱形的性质.注意熟记定理是解此题的关键.4.【答案】D【解析】解:∵s 甲2=0.60,s 乙2=0.62,s 丙2=0.58,s 丁2=0.45,∴s 丁2<s 丙2<s 甲2<s 乙2,∴成绩最稳定的是丁.故选:D .直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.此题主要考查了方差,正确理解方差的意义是解题关键.5.【答案】A【解析】【分析】本题考查了中点四边形,平行四边形的判定和三角形的中位线定理的应用,属于中档题. 连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等,则新四边形是平行四边形.【解答】解:顺次连接平行四边形ABCD 各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF =12BD 且GF//BD ,EH =12BD 且EH//BD ,∴EH =FG ,EH//FG ,∴四边形EFGH 是平行四边形.故选:A .6.【答案】C【解析】【分析】本题考查了方差、中位数、平均数和众数的概念.利用平均数、中位数、方差和众数的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和众数都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:C.7.【答案】x≥2【解析】【分析】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.根据二次根式有意义的条件可得x−2≥0,再解即可.【解答】解:由题意得:x−2≥0,解得:x≥2,故答案为:x≥2.8.【答案】2【解析】解:√(−2)2=2.故答案为:2.直接利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.9.【答案】2【解析】解:根据题意得a+1=3,解得a=2,故答案为:2.根据同类二次根式的概念得出关于a的方程,解之可得.本题主要考查同类二次根式,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.【解析】解:如图,∵在△ABC中,点D、E分别是AB、AC的中点,BC,∴DE=12∵BC=6,∴DE=3,故答案为:3.BC,代入求出即可.根据三角形的中位线定理得出DE=12BC是解此题本题考查了三角形的中位线性质,能根据三角形的中位线性质得出DE=12的关键.11.【答案】30【解析】解:∵将△OAB绕点O逆时针旋转70°到△OCD,∴∠DOB=70°,∵∠AOB=40°,∴∠AOD=∠BOD−∠AOB=30°,故答案为:30.由旋转的性质可得∠DOB=70°,即可求解.本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键.12.【答案】6【解析】解:∵菱形的两条对角线长分别为3和4,×3×4=6.∴菱形的面积=12故答案为:6.根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.【解析】解:∵四边形ABCD是矩形,∴OA=12AC=3,OB=12BD,AC=BD=6,∴OA=OB=3,∵∠AOD=120°,∴∠AOB=60°,∴△ABO是等边三角形,∴AB=OA=3,∴△ABO的周长=OA+AB+OB=3OA=9;故答案为:9.根据矩形的性质得出OA=OB=3,再证明△OAB是等边三角形,即可求出结果.本题考查了矩形的性质以及等边三角形的判定与性质;证明三角形是等边三角形是解决问题的关键.14.【答案】62【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,DC//AB,∵∠ADC=118°,DF⊥BC,∴∠ADF=90°,则∠EDH=28°,∵BE⊥DC,∴∠DEH=90°,∴∠DHE=∠BHF=90°−28°=62°.故答案为:62.直接利用平行四边形的性质以及结合三角形内角和定理得出答案.此题主要考查了平行四边形的性质以及三角形内角和定理,正确得出∠EDH=28°是解题关键.15.【答案】77【解析】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分).故答案为:77.根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.此题考查了加权平均数,解题的关键是熟记加权平均数的计算方法.16.【答案】4913【解析】【分析】本题考查了轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用轴对称的性质.由折叠及轴对称的性质可知,BF垂直平分线段AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ABF中利用面积法可求出AH的长,可进一步求出AG的长,即可求GE的长.【解答】解:设折痕BF与AE交于点H,如图,∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,BF垂直平分线段AG,∴AH=GH,且∠AHB=∠GHB=90°,∴∠FAH+∠AFH=90°,又∵∠FAH+∠AED=90°,∴∠AFH=∠AED,又∠FAB=∠D=90°,AD=AB,∴△ABF≌△DAE(AAS),∴AF=DE=5,在Rt△ABF中,BF=√AB2+AF2=√122+52=13,S△ABF=12AB⋅AF=12BF⋅AH,∴12×5=13×AH,∴AH=6013,∴AG=2AH=12013,∵AE=BF=13,∴GE=AE−AG=13−12013=4913,故答案为:4913.17.【答案】解:(1)原式=2√2−3√2+4√2=3√2;(2)原式=√13×3+3√3×√3=1+9=10.【解析】(1)直接化简二次根式进而合并得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.18.【答案】证明:连接BD交AC于O,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO∵AE=CF,∴AO−AE=CO−CF.即EO=FO.∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形).【解析】本题中,在连接BD交AC于O,则可知OB=OD,OA=OC,又AE=CF,所以OE=OF,然后依据对角线互相平分的四边形是平行四边形即可证明.此题主要考查了平行四边形的判定,要求对平行四边形的所有判定都要掌握.19.【答案】解:(1)如图所示,△A1B1C1即为所求,B1(1,−2).(2)如图所示,△A2B2C2即为所求,A2(3,4).【解析】(1)分别作出三角形三顶点原点O对称的对应点,再顺次连接可得;(2)分别作出三角形三顶点原点O顺时针方向旋转90°得到的对应点,再顺次连接可得.本题主要考查作图−旋转变换,熟练掌握旋转变换的定义和性质是解题的关键.20.【答案】解:x2+2xy+y2=(x+y)2,当x=√6+√2,y=√6−√2时,原式=(√6+√2+√6−√2)2=(2√6)2=24.【解析】直接将原式分解因式,进而把已知代入得出答案.此题主要考查了二次根式的化简求值,正确掌握相关运算法则是解题关键.21.【答案】(1)证明:∵DE//BC,DF//AB∴四边形DEBF是平行四边形∵DE//BC∴∠EDB =∠DBF∵BD 平分∠ABC∴∠ABD =∠DBF =12∠ABC ∴∠ABD =∠EDB∴DE =BE 且四边形BEDF 为平行四边形∴四边形BEDF 为菱形;(2)解:∵∠A =80°,∠C =30°,∴∠ABC =180°−80°−30°=70°,∵四边形BEDF 为菱形,∴∠EDF =∠ABC =70°,∴∠BDE =12∠EDF =35°.【解析】(1)由题意可证BE =DE ,四边形BEDF 是平行四边形,即可证四边形BEDF 为菱形;(2)由三角形内角和定理求出∠ABC =70°,由菱形的性质即可得出答案.本题考查了菱形的性质与判定、平行四边形的判定等知识;熟练掌握菱形的性质与判定是本题的关键.22.【答案】50 26分 8分【解析】解:(1)4+10+15+11+10=50(人):(2)(6×4+7×10+8+15+9×11+10×10)÷50=26(分),将成绩从小到大排列后处在第25、26位的两个数都是8分,因此中位数是8分, 故答案为:26分,8分;(3)2000×1050=400人,答:该小区2000名居民中获一等奖的有400人.(1)从条形统计图中的人数相加,可求出调查人数;(2)根据“加权平均数”的计算方法进行计算即可:(3))样本估计总体,样本中“一等奖”占1050,估计总体2000人的1050是获“一等奖”人数. 考查扇形统计图的意义和制作方法,样本估计总体是统计中常用的方法.23.【答案】√n−√n−1【解析】解:(1)1√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10;(2)1√n+√n−1=√n−√n−1;故答案为:√n−√n−1;(3)(1√2+1+1√3+√2+⋯+1√2020+√2019)(√2020+1)=(√2−1+√3−√2+⋯+√2020−√2019)(√2020+1)=(√2020−1)(√2020+1)=2020−1=2019.(1)直接利用已知运算法则计算得出答案;(2)直接利用已知运算法则计算得出答案;(3)直接利用运算规律结合二次根式的性质得出答案.此题主要考查了二次根式的混合运算,正确掌握二次根式的性质是解题关键.24.【答案】解:(1)∵四边形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折叠性质得:EF=DE,AF=AD=10,∴CE=CD−DE=CD−EF=6−EF,由勾股定理得:BF=OF=√AF2−OA2=√102−62=8,∴FC=OC−OF=10−8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6−EF)2+22,解得:EF=103;(2)①如图1所示:当AB为平行四边形的对角线时,AG=BF=8,AG//BF,∴点G的坐标为:(−8,6);当AF为平行四边形的对角线时,AG=BF=8,AG//BF,∴点G的坐标为:(8,6);当BF为平行四边形的对角线时,FG=AB,=6,FG//AB,∴点G的坐标为:(8,−6);综上所述,点G的坐标为(−8,6)或(8,6)或(8,−6);②∵四边形AOGF为菱形,∴OA=AF=10,∴矩形ABCD平移距离m=OA−AB=10−6=4,即OB=4,设FG交x轴于H,如图2所示:∵OA//FG,BC//x轴,∴∠FBO=∠BOH=∠OHF=90°,∴四边形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10−4=6,∴点G的坐标为:(8,−6).【解析】(1)由矩形的性质得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折叠性质得EF=DE,AF=AD=10,则CE=6−EF,由勾股定理求出BF=OF=8,则FC=OC−OF=2在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三种情况,当AB为平行四边形的对角线时;当AF为平行四边形的对角线时;当BF为平行四边形的对角线时,分别去点G的坐标即可;②由菱形的性质得OA=AF=10,则矩形ABCD平移距离m=OA−AB=4,即OB=4,设FG交x轴于H,证出四边形OBFH是矩形,得FH=OB=4,OH=BF=8,则HG=6,即可得出答案.本题是四边形综合题目,考查了矩形的判定与性质、坐标与图形性质、平行四边形的性质、勾股定理、折叠变换的性质、平移的性质等知识;本题综合性强,熟练掌握矩形的性质和折叠的性质是解题的关键.25.【答案】DG=BE DG⊥BE4√10【解析】解:(1)如图1中,延长GD交BE于J.∵四边形ABCD是正方形,四边形CEFG是正方形,∴BC=CD,∠BCD=∠DCG=90°,CE=CG,∴△BCE≌△DCG(SAS),∴BE=DG,∠BEC=∠CGD,∵∠BEC+∠EBC=90°,∴∠DGC+∠EBC=90°,即∠GJB=90°,∴DG⊥BE,故答案为:DG=BE,DG⊥BE.(2)①结论:DG=BE,DG⊥BE.理由:如图,延长BE,GD交于点H,∵四边形ABCD是正方形,四边形CEFG是正方形,∴BC=CD,∠BCD=∠ECG=90°,CE=CG,∴∠BCE=∠DCG,∴△BCE≌△DCG(SAS),∴∠EBC=∠CDG,BE=DG,∵∠CDG+∠CDH=180°,∵∠EBC+∠BCD+∠CDH+∠DHE=360°,∴∠DHE=90°,∴DG⊥BE.②如图3,过点G作GH⊥BC,交BC延长线于点H,∵AE=1,AD=4,∴DE=3,∵∠ECG=∠DCH=90°,∴∠ECD=∠GCH,又∵EC=CG,∠EDC=∠H=90°,∴△ECD≌△GCH(AAS),∴DE=GH=3,CH=CD=4,∴BH=BC+CN=8,∴BG=√BH2+GH2=√82+32=√73.(3)如图4中,由(2)可知,CH=4,作点D关于直线GH的对称点T,连接BT,GT.在Rt△ABT中,∵∠A=90°,AB=4,AT=12,∴BT=√AB2+AT2=√42+122=4√10∵BE=DG,DG=GT,∴BE+BG=BG+GT,∵GB+GT≥BT,∴BE+BG≥4√10,∴BE+BG的最小值为4√10,故答案为4√10.(1)由“SAS”可证△BCE≌△DCG,可得结论.(2)①延长BE,GD交于点H,由“SAS”可证△BCE≌△DCG,可得∠EBC=∠CDG,由四边形内角和定理可求∠DHE=90°,可得结论.②过点G作GH⊥BC,交BC延长线于点H,由“AAS”可证△ECD≌△GCH,可得DE= GH=3,CH=CD=4,由勾股定理可求解.(3)说明点G的运动轨迹是直线GH,直线GH与直线CD之间的距离为4,作点D关于直线GH的对称点T,连接BT,GT.在Rt△ABT中,可得BT=√AB2+AT2=√42+122= 4√10.根据GB+GT≥BT求解即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轴对称最短问题等知识,解题的关键是正确寻找全等三角形解决问题,学会利用轴对称解决最值问题,属于中考压轴题.第21页,共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江苏省盐城市建湖县八年级(下)期中数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内)1.(3分)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.2.(3分)下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0B.ax2+bx+c=0C.x2﹣2x﹣3=0D.x2﹣2y﹣1=03.(3分)下列式子为最简二次根式的是()A.B.C.D.4.(3分)用配方法解一元二次方程x2﹣6x﹣2=0以下正确的是()A.(x﹣3)2=2B.(x﹣3)2=11C.(x+3)2=11D.(x+3)2=2 5.(3分)如果a=,b=﹣2,那么a与b的关系是()A.a+b=0B.a=b C.a=D.a>b6.(3分)如图,▱ABCD的周长为22cm,对角线AC、BD交于点O,过点O与AC垂直的直线交边AD于点E,则△CDE的周长为()A.8cm B.9cm C.10cm D.11cm7.(3分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.BD=DF C.AC=BF D.CF⊥BF8.(3分)如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在题中横线上)9.(2分)要使代数式有意义,字母x必须满足的条件是.10.(2分)计算的结果是.11.(2分)与最简二次根式是同类二次根式,则a=.12.(2分)如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.13.(2分)如图,在正方形ABCD中,△ABE为等边三角形,连接DE,CE,延长AE交CD于F点,则∠DEF的度数为.14.(2分)当a<0时,化简|﹣2a|结果是.15.(2分)如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为.16.(2分)若关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,则k的取值范围是.17.(2分)已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于.18.(2分)如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度.三、解答题(本大题共有9小题,共76分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤)19.(12分)计算:(1)×;(2)•(x≥0,y≥0);(3)(﹣+4)÷.20.(6分)已知x=2+,y=2﹣,求x2+xy+y2的值.21.(12分)用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,﹣1)、B (﹣1,0)、C(0,﹣3)(1)点A关于坐标原点O对称的点的坐标为.(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,A1A的长为.23.(7分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF 求证:AC、EF互相平分.24.(7分)已知:如图,AC、BD相交于点O,且点O是AC、BD的中点,点E在四边形ABCD的形外,且∠AEC=∠BED=90°.求证:四边形ABCD是矩形.25.(8分)已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.26.(8分)如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.27.(10分)在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).(1)求证:EO平分∠AEB;(2)猜想线段OE与EB、EA之间的数量关系为(直接写出结果,不要写出证明过程);(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.2019-2020学年江苏省盐城市建湖县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内)1.(3分)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,不是轴对称图形,此选项错误;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0B.ax2+bx+c=0C.x2﹣2x﹣3=0D.x2﹣2y﹣1=0【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点评】此题主要考查了一元二次方程的定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3.(3分)下列式子为最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A.符合最简二次根式的条件,是最简二次根式;B.=|a|,可以化简;C.,可以化简;D.,可以化简;故选:A.【点评】本题主要考查了最简二次根式.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(3分)用配方法解一元二次方程x2﹣6x﹣2=0以下正确的是()A.(x﹣3)2=2B.(x﹣3)2=11C.(x+3)2=11D.(x+3)2=2【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.【解答】解:∵x2﹣6x﹣2=0,∴x2﹣6x=2,则x2﹣6x+9=2+9,即(x﹣3)2=11,故选:B.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.(3分)如果a=,b=﹣2,那么a与b的关系是()A.a+b=0B.a=b C.a=D.a>b【分析】先利用分母有理化得到a=﹣(﹣2),从而得到a与b的关系.【解答】解:∵a===﹣(﹣2),而b=﹣2,∴a=﹣b.故选:A.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.6.(3分)如图,▱ABCD的周长为22cm,对角线AC、BD交于点O,过点O与AC垂直的直线交边AD于点E,则△CDE的周长为()A.8cm B.9cm C.10cm D.11cm【分析】由平行四边形的性质可得AB=CD,AD=BC,AO=CO,可得AD+CD=11cm,由线段垂直平分线的性质可得AE=CE,即可求△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm.【解答】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AO=CO,又∵EO⊥AC,∴AE=CE,∵▱ABCD的周长为22cm,∴2(AD+CD)=22cm∴AD+CD=11cm∴△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm故选:D.【点评】本题考查了平行四边形的性质,线段垂直平分线的性质,熟练运用平行四边形的性质是本题的关键.7.(3分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.BD=DF C.AC=BF D.CF⊥BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°,∴∠EBF=2∠EBC=2×45°=90°,∴菱形BECF是正方形.故选项A正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项C错误,符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项D正确,但不符合题意.故选:C.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关定理是解题关键.8.(3分)如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5B.C.D.【分析】如图,连接AC交OB于K,连接AE,作AH⊥OC于H.由A、C关于OB对称,推出AE=EC,推出EC+ED=AE+ED,根据垂线段最短可知:当A、E、D共线,且与AH重合时,EC+ED的值最小,最小值为AH的长;【解答】解:如图,连接AC交OB于K,连接AE,作AH⊥OC于H.∵四边形ABCO是菱形,∴AC⊥OB,AK=3,OK=4,∴OA=OC=5,∵A、C关于OB对称,∴AE=EC,∴EC+ED=AE+ED,根据垂线段最短可知:当A、E、D共线,且与AH重合时,EC+ED的值最小,最小值为AH的长,∵•AC•OK=•OC•AH,∴AH=∴EC+ED的最小值为,故选:D.【点评】本题考查轴对称﹣最短问题、菱形的性质、勾股定理垂线段最短等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题.二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在题中横线上)9.(2分)要使代数式有意义,字母x必须满足的条件是x≥5.【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥5.故答案是:x≥5.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2分)计算的结果是6.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:=2=2×3=6.故答案为:6.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.11.(2分)与最简二次根式是同类二次根式,则a=3.【分析】首先化简二次根式,再根据同类二次根式定义可得2a﹣3=3,再解即可.【解答】解:==4,∵与最简二次根式是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.【点评】此题主要考查了同类二次根式,关键是掌握把二次根式化为最简二次根式后被开方数相同的二次根式称为同类二次根式.12.(2分)如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是BE=DF(答案不唯一).【分析】根据平行四边形的判定添加条件即可.【解答】解:如图,连接AC交BD于点O,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形,∴可增加BE=DF,故答案为:BE=DF(答案不唯一).【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的对角线互相平分是解题的关键.13.(2分)如图,在正方形ABCD中,△ABE为等边三角形,连接DE,CE,延长AE交CD于F点,则∠DEF的度数为105°.【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED 的度数,再根据平角定义即可求得∠DEF的度数.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ABE为等边三角形,∴AE=BE=AB,∠EAB=60°,∴AE=AD,∠EAD=∠BAD﹣∠BAE=30°,∴∠AED=∠ADE=(180°﹣30°)=75°,∴∠DEF=180°﹣∠AED=180°﹣75°=105°.故答案为105°.【点评】本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.14.(2分)当a<0时,化简|﹣2a|结果是﹣3a.【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【解答】解:∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.(2分)如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为40°.【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【解答】解:∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点评】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.16.(2分)若关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,则k的取值范围是k<﹣1.【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【解答】解:根据题意得△=(2k+4)2﹣4k2<0,解得k<﹣1.故答案为k<﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17.(2分)已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于2021.【分析】根据根与系数的关系以及方程的解的定义即可求出答案.【解答】解:由题意可知:a2﹣2a=2020,由根与系数的关系可知:a+b=2,∴原式=a2﹣2a+2a+2b﹣3,=2020+2(a+b)﹣3=2020+2×2﹣3=2021,故答案为:2021.【点评】本题考查一元二次方程,解题的关键是熟练运用根与系数的关系,本题属于基础题型.18.(2分)如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度2.【分析】延长DM交AB于E,证明△AME≌△CMD,根据全等三角形的性质得到AE=CD=3,DM=ME,求出BE,根据三角形中位线定理计算即可.【解答】解:延长DM交AB于E,∵AB∥CD,∴∠C=∠A,在△AME和△CMD中,,∴△AME≌△CMD(ASA)∴AE=CD=3,DM=ME,∴BE=AB﹣AE=4,∵DM=ME,DN=NB,∴MN是△DEB的中位线,∴MN=BE=2,故答案为:2.【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.三、解答题(本大题共有9小题,共76分,请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤)19.(12分)计算:(1)×;(2)•(x≥0,y≥0);(3)(﹣+4)÷.【分析】(1)(2)利用二次根式的乘法法则运算;(3)利用二次根式的除法法则运算.【解答】解:(1)原式=××=6;(2)原式==3xy;(3)原式=﹣+4=4﹣3+4=1+4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(6分)已知x=2+,y=2﹣,求x2+xy+y2的值.【分析】先计算出x+y和xy,再利用完全平方公式得到x2+xy+y2=(x+y)2﹣xy,然后利用整体代入的方法计算.【解答】解:∵x=2+,y=2﹣,∴x+y=4,xy=1,∴x2+xy+y2=(x+y)2﹣xy=42﹣1=15.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.21.(12分)用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【解答】解:(1)x2﹣4x﹣5=0,分解因式得:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,解得:x1=1,x2=5.(2)y(y﹣7)=14﹣2y,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.(3)2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x1=,x2=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,﹣1)、B (﹣1,0)、C(0,﹣3)(1)点A关于坐标原点O对称的点的坐标为(3,1).(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,A1A的长为.【分析】(1)根据对称性即可得点A关于坐标原点O对称的点的坐标;(2)根据旋转的性质即可将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,进而可得A1A的长.【解答】解:(1)∵A(﹣3,﹣1),∴点A关于坐标原点O对称的点的坐标为(3,1).故答案为:(3,1);(2)如图,△A1B1C即为所求,A1A的长为:=.故答案为:.【点评】本题考查了作图﹣旋转变换,解决本题的关键是掌握旋转的性质.23.(7分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF 求证:AC、EF互相平分.【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【解答】证明:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,(3分)又∵DF=BE,∴AF=CE,(4分)又∵AF∥CE,∴四边形AECF为平行四边形,(6分)∴AC、EF互相平分.(7分)【点评】本题考查了平行四边形的性质和判定,是中考常见题型,比较简单.24.(7分)已知:如图,AC、BD相交于点O,且点O是AC、BD的中点,点E在四边形ABCD的形外,且∠AEC=∠BED=90°.求证:四边形ABCD是矩形.【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,得到AC=BD,即可得出结论.【解答】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC的中点,∴EO=AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.25.(8分)已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【分析】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣k﹣3+3k=0,然后解关于k的方程即可;(2)计算判别式的值得到△=(k﹣3)2≥0,然后根据判别式的意义得到结论.【解答】(1)解:把x=1代入方程x2﹣(k+3)x+3k=0得1﹣k﹣3+3k=0,解得k=1;(2)证明:△=(k+3)2﹣4•3k=(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.26.(8分)如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.【解答】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=BD,FH=CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.【点评】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.27.(10分)在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).(1)求证:EO平分∠AEB;(2)猜想线段OE与EB、EA之间的数量关系为OE=EB+EA(直接写出结果,不要写出证明过程);(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.【分析】(1)延长EA至点F,使AF=BE,连接OF,由SAS证得△OBE≌△OAF,得出OE=OF,∠BEO=∠AFO,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA证得△ABE≌△ADH,△ABE≌△BCF,△ADH≌△DCG,△DCG≌△CBF,得出FG=EF=EH=HG,再由∠F=∠H=∠AEB=90°,由此可得出结论.【解答】(1)证明:延长EA至点F,使AF=BE,连接OF,如图1所示:∵四边形ABCD是正方形,∴∠BOA=90°,OB=OA,∵∠AEB=90°,∴∠OBE+∠OAE=360°﹣90°﹣90°=180°,∵∠OAE+∠OAF=180°,∴∠OBE=∠OAE,在△OBE与△OAF中,,∴△OBE≌△OAF(SAS),∴OE=OF,∠BEO=∠AFO,∴∠AEO=∠AFO,∴∠BEO=∠AEO,∴EO平分∠AEB;(2)解:OE=EB+EA,理由如下:由(1)得:△OBE≌△OAF,∴OE=OF,∠BOE=∠AOF,∵∠BOE+∠AOE=90°,∴∠AOF+∠AOE=90°,∴∠EOF=90°,∴△EOF是等腰直角三角形,∴2OE2=EF2,∵EF=EA+AF=EA+EB,∴2OE2=(EB+EA)2,∴OE=EB+EA,故答案为:OE=EB+EA;(3)证明:∵CF⊥EB,DH⊥EA,∴∠F=∠H=∠AEB=90°,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠EAB+∠DAH=90°,∠EAB+∠ABE=90°,∠ADH+∠DAH=90°,∴∠EAB=∠HDA,∠ABE=∠DAH.在△ABE与△ADH中,,∴△ABE≌△ADH(ASA),∴BE=AH,AE=DH,同理可得:△ABE≌△BCF,△ADH≌△DCG,△DCG≌△CBF,∴BE=CF,AE=BF,AH=DG,DH=CG,DG=CF,CG=BF,∴CG+FC=BF+BE=AE+AH=DH+DG,∴FG=EF=EH=HG,∵∠F=∠H=∠AEB=90°,∴四边形EFGH为正方形.【点评】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.。