可控硅调速电路
可控硅调压电路图
![可控硅调压电路图](https://img.taocdn.com/s3/m/7e491ed26137ee06eff9185f.png)
可控硅调压电路图可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。
这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。
这台调压器的输出功率达100W,一般家用电器都能使用。
1:电路原理:可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。
从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。
当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。
在交流电的正半周时,整流电压通过R4、W1对电容C充电。
当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。
这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。
可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。
当交流电通过零点时,可控硅自关断。
当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。
2:元器件选择调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。
D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。
SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。
可控硅在单相电机中的调速电路
![可控硅在单相电机中的调速电路](https://img.taocdn.com/s3/m/a7a27c5a55270722192ef7f0.png)
可控硅在单相电机中的调速电路发布时间:2009-12-09 09:44本文介绍一种简易电机调速电路,不用机械齿轮转化来变速,改善了机械设备使用的效率。
此简易电子调速电路适用于220V市电的单相电动机,电机额定电流在6.5A以内,功率在1kW左右,适用于家庭电风扇、吊扇电机及其它单相电机,若电路加以修改,则可作调光、电磁振动调压、电风扇温度自动变速器等用途。
其电路如图1所示。
硅二极管VD1~VD4构成一个桥式全波整流电路,电桥与电机串联在电路中,电桥对可控硅VS提供全波整流电压。
当VS接通时,电桥呈现本电机串联的低阻电路。
当图1中A点为负半周时,电流经电机、VD1、VS、R1、VD3构成回路,当B 点为正半周时电流经VD2、VS、R1、VD4、电机M构成回路,电机端得到的是交变电流。
电机两端的电压大小主要决定于可控硅VS的导通程度,只要改变可控硅的导通角,就可以改变VS的压降,电机两端的电压也变化,达到调压调速的目的,电机端电压Um=U1-UVD1-Uvs-UR1-UVD3,上式中,UVD1、UVD3的压降均很小,而反馈UR1也不大,故电机端电压就简化为Um=U1-Uvs。
可控硅VS的触发脉冲靠一只简单的单结晶体管VS电路产生,电容器C2通过电阻R4、R5充电到稳压管DW的稳定电压UZ,当C2充电到单结晶体管的峰点电压时,单结晶体管就触发,输出脉冲而使可控硅导通。
在单结晶体管发射极电压充分衰减后,单结晶体管就断开,VS一经接通,那么a、b两点之间的电压就下降到稳压管DW的稳定电压UZ以下,电容器C2再充电就依赖于点a到b点间的电压,因稳压管的电压已经降低到它的导通区域以外,点a到b点的电压取决于电动机的电流、R1和VS导通时的电压降。
这样,当VS导通时,电容器C2的充电电流取决于电动机的电流,在这种情况下便得到了反馈,这就使得电动机在低速时转矩所受损失的问题得到补救。
反馈电阻R1的数值经过实验得出,因此,VS在导通周期的时间内,电容C2便不能充电到足以再对单结晶体管触发的高压,然而,电容C2会充电到电动机电流所决定的某一数值。
双向可控硅mac97a6详解及其的应用电路
![双向可控硅mac97a6详解及其的应用电路](https://img.taocdn.com/s3/m/be8cac2326d3240c844769eae009581b6ad9bd11.png)
双向可控硅mac97a6详解及其的应用电路引言:双向可控硅mac97a6是一种常用的功率半导体器件,它在电力控制和调节中扮演着重要的角色。
它具有双向触发特性,可以用来控制交流电路中的功率开关。
在本文中,我们将深入探讨双向可控硅mac97a6的基本原理、特性及其在电路中的应用。
一、双向可控硅mac97a6的基本原理1. 双向可控硅mac97a6的结构:双向可控硅mac97a6是由两个晶闸管反向并联组成,其结构简单而有效。
它的触发特性使得它能够在正负半周均能进行导通和关断。
2. 双向可控硅mac97a6的工作原理:当双向可控硅mac97a6的控制端处于导通状态时,只有当施加的触发脉冲正负半周达到一定电压时,双向可控硅mac97a6才能导通,实现功率的控制和变换。
3. 双向可控硅mac97a6的特性:双向可控硅mac97a6具有较高的工作频率、耐高压、低功耗等特点,使得它在电路中具有广泛的应用前景。
二、双向可控硅mac97a6的应用电路1. 交流电路中的应用:双向可控硅mac97a6常常被用在交流电路中,如交流调压器、交流调速器等。
它通过对电压进行控制,使得交流电路在不同负载条件下能够自动调节输出电压和频率,实现电力的高效利用。
2. 电磁场中的应用:双向可控硅mac97a6还可以被应用在电磁场控制中,如变压器、感应加热等设备中。
通过对电路的控制,可以实现电磁场的精确调节,保证设备的稳定运行。
三、个人观点和理解双向可控硅mac97a6作为一种重要的功率半导体器件,在电力控制和调节领域具有重要的地位。
它的双向触发特性使得它能够适用于不同的电路和场合,实现精确的功率控制和调节。
在未来,随着电力电子技术的不断发展,双向可控硅mac97a6的应用领域将会进一步拓展,为电力系统的稳定运行和高效利用提供更多可能。
总结本文从双向可控硅mac97a6的基本原理、特性到其在电路中的应用进行了全面的阐述,希望能够为读者提供一个深入了解和掌握这一重要器件的机会。
常用可控硅调速调光电路
![常用可控硅调速调光电路](https://img.taocdn.com/s3/m/01d0fcdab14e852458fb5714.png)
常用可控硅调速调光电路(图)
典型的120V可控硅调光器电路图另一种120V可控硅调光器电路图
用于230V白炽灯的大功率双向晶闸管调光器电路图
可控硅应用电路举例
1. 可控硅应用电路_直流可控硅触发电路:如图G2是一个电视机常用的过压保护电路,当E+电压过高时A点电压也变高,当它高于稳压管DZ的稳压值时DZ道通,可控硅D受触发而道通将E+短路,使保险丝RJ熔断,从而起到过压保护的作用。
2. 可控硅应用电路_相位可控硅触发电路:相位触发电路实际上是交流触发电路的一种,如图G3,这个电路的方法是利用RC回路控制触发信号的相位。
当R值较少时,RC时间常数较少,触发信号的相移A1较少,因此负载获得较大的电功率;当R值较大时,RC时间常数较大,触发信号的相移A2较大,因此负载获得较少的电功率。
这个典型的电功率无级调整电路在日常生活中有很多电气产品中都应用它。
用氖灯触发的大功率双向可控硅调光器电路图
简易单向晶闸管调光器电路图
D1和D2分别对电源的正半波及负半波进行整流后对C1或C2充电,RW1用来调节触发时间,由于调节后的移相量不同,就可以达到改变输出电压的目的。
本电路利用了电容器在正弦波交流电路中的电压与电流相位差最大为90°这一原理,实际使用中比常规的RC串联电路更稳定。
可控硅同步电路
![可控硅同步电路](https://img.taocdn.com/s3/m/ce717861cdbff121dd36a32d7375a417876fc14c.png)
可控硅同步电路可控硅同步电路是一种常用于电力电子领域的电路。
可控硅是一种具有二极管特性的电子元件,其导通状态可以通过控制电流或电压来实现。
可控硅同步电路采用了多个可控硅元件的组合,通过控制不同的可控硅元件的导通时间,可以实现对电路中电流的控制,从而实现对电力的输送和转换。
可控硅同步电路常用于交流电调节和转换电路。
在交流电调节中,可控硅同步电路能够实现对正弦交流电压的调节,从而实现对负载的电流和功率的控制。
在转换电路中,可控硅同步电路可以将交流电转换为直流电,实现电能的转换和储存。
可控硅同步电路的基本工作原理是通过对可控硅元件的控制电压和控制电流进行调节,使其处于导通或截止状态。
当可控硅处于导通状态时,电路中的电流流过可控硅,完成电力输送;当可控硅处于截止状态时,电路中的电流不再流过可控硅,实现电力的断开。
可控硅同步电路通常包括触发电路和控制电路两部分。
触发电路用于控制可控硅的导通和截止时间,控制电路用于调节触发电路输入的控制电压和控制电流。
触发电路的常用方式有电流触发和电压触发两种。
电流触发主要通过控制输入电流的大小和时间来实现可控硅的导通,电压触发则通过控制输入电压的大小和时间来实现可控硅的导通。
在实际应用中,可控硅同步电路常用于不同类型的电力电子装置,如交流调压器、交流功率调节器、交流电力变换装置等。
这些装置广泛应用于电力调节、电力传输和电力转换等领域。
可控硅同步电路能够实现对电流和功率的精确控制,提高电力系统的稳定性和效率。
总结起来,可控硅同步电路是一种重要的电力电子技术,通过对可控硅元件的控制,实现对电流和功率的调节。
可控硅同步电路在电力调节、电力传输和电力转换等领域有着广泛的应用,为电力系统的稳定运行和高效运转提供了有力支持。
可控硅调光电路工作的原理
![可控硅调光电路工作的原理](https://img.taocdn.com/s3/m/a49e7c22aaea998fcc220e47.png)
分析下可控硅调光电路工作的原理
上面是一个双向可控硅的调光电路
昨天有一个朋友不是太明白,所以我就写一个工作原理说明。
一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一定时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。
当C23上电压充到约为33V左右的时候,DB1导通,可控硅也导通,可控硅导通后,灯泡中有电流流过,灯泡就亮了,随着DB1导通,C23上电压被完全放掉,DB1又截止。
可控硅也随之截止,灯泡熄灭,C23上又进行刚开始一样的循环,因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的。
充放电时间越短,灯泡就越亮,HE HE,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉.如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上,当然是要求不高的情况下。
这个电路的优点是元件少,成本低,性价比高,缺点是,对电源干扰比较大,噪声大,驱动电动机时候在较小的时候可能会发热比较大。
浅析双向可控硅在可逆直流调速电路中的应用
![浅析双向可控硅在可逆直流调速电路中的应用](https://img.taocdn.com/s3/m/2c74521da300a6c30c229f18.png)
( ian El c r ni X ’ e t o c Engi e r ng s a c n tt t ne i Re e r h I s iu e,X iⅡ, 10 00) ’ z 7 1
A b t ac : T w o— a sr t w y SCR a e n i e tb e D C pe d g c n be us d i nv r i l s e ove ni icu t t e a e r ng c r i O r pl c t o SCR s n ppo ie par le w i o st a l l, t hus dr m atc ly s m plf i g ha c r ui. Si e t has a ia l i iy n t t ic t nc i on y l one ga e,an t d bot h pos tv nd n gatve pul e an t i ii e a e i s s c rgge t O c r i t onduc , t rgge icu t t he t i r c r i c esgne n a fe bl a an be d i d i l xi e w y. Ke ywo ds: w o— ay SCR SC R t i ge ic t r t w r g r c r ui
Lo
.
.
, ,
… 7
r
0
…
“
一
T
图 2
双 向 可 控 硅 的 四 种 门 极 触 发 方 式
由于 双 向 可 控 硅 在 可 逆 直 流 调 速 电路 中可 代 替 两 个 反 并 联 的 普 通 可 控 硅 , 此 可 以大 大 因 简 化 电路 ; 且 由于 只有 一 个 门极 , 且 正 脉 冲或 负 脉 冲都 能 使 它 触 发 导 通 , 以它 的 触 发 电 并 而 所 路 的 设 计 比较 灵 活 。
双向可控硅调光电路原理
![双向可控硅调光电路原理](https://img.taocdn.com/s3/m/ba42dbc5541810a6f524ccbff121dd36a32dc42d.png)
双向可控硅调光电路原理双向可控硅调光电路原理双向可控硅(Bidirectional Thyristor)是一种新型的电子元件,它可以实现正、反向导通,具有精准的调光功能。
而双向可控硅调光电路则是基于双向可控硅元件设计的调光电路,具有多种特点。
一、双向可控硅的结构和工作原理1. 双向可控硅的结构双向可控硅的结构与双向三极管类似,它由四个区域组成,分别是P-N-P-N结构,中心是n型层,周围则是p型和n型区域。
两端分别为主极和控制极。
2. 双向可控硅的工作原理(1)正向值区:当主极为正的时候,两端p-n结的整体结构呈现出正向偏置。
在该偏压下,n型区周围的电子会向两端流动,从而让该区域形成一个导电通路,使得主极和控制极之间出现通流现象。
(2)反向值区:当主极为负的时候,电子会从两端p-n结中央流向中心n型区。
由于n型区周围的电子和空穴在这种情况下不存在导通状态,所以主极和控制极之间不存在电流。
二、双向可控硅调光电路的原理1. 双向可控硅调光电路的结构双向可控硅调光电路主要包括三个部分:电源部分、调光触发电路和双向可控硅开关电路。
2. 双向可控硅调光电路工作流程(1)电源部分:将交流电输入到整流电路中,将电流转换成直流电。
随后,将转换后的直流电连接到调光触发电路和双向可控硅开关电路中。
(2)调光触发电路:将调光电位信号经过处理后,发送到双向可控硅开关电路的控制端。
双向可控硅开关电路会根据调光电位信号的强弱控制功率的大小。
(3)双向可控硅开关电路:根据调光触发电路控制出发信号来控制双向可控硅的开、关状态,从而控制灯光亮度的大小。
三、优点和应用1. 优点双向可控硅调光电路有以下优点:(1)有极高的功率控制精度,精度可达到1%。
(2)由于控制电压较低,所以没有使用特定的调光开关,是一种经济、有效的调光方案。
(3)调光调速响应较快,自身加热小,冷却方式灵活。
2. 应用双向可控硅调光电路可以用于家庭照明、舞台照明、公共场所照明、广告牌照明等场合。
可控硅触发电路原理详解
![可控硅触发电路原理详解](https://img.taocdn.com/s3/m/de1a0bce85868762caaedd3383c4bb4cf7ecb7fb.png)
可控硅触发电路原理详解:
可控硅触发电路的原理是利用可控硅的导通和关断特性,通过控制触发信号的相位和占空比等参数,实现对主电路中可控硅的精确控制,从而达到调整电压、电流等参数的目的。
可控硅触发电路通常由电源、控制信号输入、触发脉冲输出等部分组成。
当控制信号输入端接收到一个控制信号时,该信号会被整形、放大,并通过触发脉冲输出端输出一个与可控硅导通和关断特性相匹配的脉冲信号。
这个脉冲信号的宽度、幅度和相位等参数可以通过调整电路中的电阻、电容等元件来改变。
当可控硅触发电路输出的脉冲信号加到可控硅的门极和阴极之间时,可控硅将开始导通。
随着脉冲信号的宽度增加,可控硅的导通时间也会延长,从而使得主电路中的电流增加。
相反,当脉冲信号的宽度减小时,可控硅的导通时间会缩短,主电路中的电流也会减小。
另外,通过调整触发脉冲的相位和占空比等参数,还可以实现主电路中可控硅的精确控制。
例如,在交流电机控制中,通过改变触发脉冲的相位,可以改变电机转子的旋转角度,从而实现电机的调速和正反转控制。
双向可控硅工作原理及作用
![双向可控硅工作原理及作用](https://img.taocdn.com/s3/m/822af325773231126edb6f1aff00bed5b8f37343.png)
双向可控硅工作原理及作用
1双向可控硅
双向可控硅,也称作双向可控电晶体或双向可控半导体,是一种在特定电压范围内可实现正反两个方向的可控开关的电子器件,是相对于普通半导体开关具有更高功能、可靠性和灵敏度的半导体开关。
2工作原理
双向可控硅是带有整流脉冲宽度调整控制功能的集成电路,其基本电路为交流调速电路,主要除了有正反向开关外,还具有减弱脉冲宽度调整、变频调速及外界控制动作等功能。
当双向可控硅电路正向偏压时,可控硅的正向偏持材料使其正向电流的输出受到影响,电路的开关是通路,这样双向可控硅的正向电流就可以输出。
当双向可控硅电路逆向偏压时,可控硅的多量程二极管可使其逆向电流输出;此时,可控硅的正向电流停止,这样双向可控硅的逆向电流就可以输出。
3作用
双向可控硅主要用于电力调频变频调速中,是一种高紫外发射管,它可以高效地将模拟电流转换成数字信号,从而控制电机的转速、大小和方向。
其特别应用于汽车及其汽油机中用于控制排放,也可以应用于工业控制系统,用于控制流体流量、压力和温度。
综上所述,双向可控硅不仅可提高调速系统的性能,还可以提高调速质量,提高输出功率,减少变频调速系统的损耗,节省能源消耗,控制精度,保障工程安全,是不可缺少的核心元件。
可控硅电机调速电路
![可控硅电机调速电路](https://img.taocdn.com/s3/m/df47702111661ed9ad51f01dc281e53a580251d1.png)
本文介绍一种简易电机调速电路,本文介绍一种简易电机调速电路,不用机械齿轮转化来变速,不用机械齿轮转化来变速,不用机械齿轮转化来变速,改善了机械设备使改善了机械设备使用的效率。
用的效率。
此简易电子调速电路适用于此简易电子调速电路适用于220V 市电的单相电动机,市电的单相电动机,电机额定电流在电机额定电流在6.5A 以内,以内,功率在功率在1kW 左右,左右,适用于家庭电风扇、适用于家庭电风扇、适用于家庭电风扇、吊扇电机及其它单相电机,吊扇电机及其它单相电机,吊扇电机及其它单相电机,若电路若电路加以修改,加以修改,则可作调光、则可作调光、则可作调光、电磁振动调压、电磁振动调压、电磁振动调压、电风扇温度自动变速器等用途。
电风扇温度自动变速器等用途。
电风扇温度自动变速器等用途。
其电路其电路如图1所示。
所示。
硅二极管硅二极管VD1~VD4构成一个桥式全波整流电路,电桥与电机串联在电路中,电桥对可控硅VS 提供全波整流电压。
当VS 接通时,电桥呈现本电机串联的低阻电路。
当图1中A 点为负半周时,电流经电机、点为负半周时,电流经电机、VD1VD1VD1、、VS VS、、R1R1、、VD3构成回路,当B B 点为正半周时电流经点为正半周时电流经VD2VD2、、VS VS、、R1R1、、VD4VD4、电机、电机M 构成回路,电机端得到的是交变电流。
电机两端的电压大小主要决定于可控硅VS 的导通程度,只要改变可控硅的导通角,就可以改变VS 的压降,电机两端的电压也变化,达到调压调速的目的,速的目的,电机端电压电机端电压Um=U1-UVD1-Uvs-UR1-UVD3Um=U1-UVD1-Uvs-UR1-UVD3,,上式中,上式中,UVD1UVD1UVD1、、UVD3的压降均很小,而反馈UR1也不大,故电机端电压就简化为Um=U1-Uvs Um=U1-Uvs。
可控硅可控硅VS 的触发脉冲靠一只简单的单结晶体管VS 电路产生,电容器C2通过电阻R4R4、、R5充电到稳压管DW 的稳定电压UZ UZ,当,当C2充电到单结晶体管的峰点电压时,电压时,单结晶体管就触发,单结晶体管就触发,单结晶体管就触发,输出脉冲而使可控硅导通。
可控硅控制电路图解及制作13例
![可控硅控制电路图解及制作13例](https://img.taocdn.com/s3/m/d5865ee032d4b14e852458fb770bf78a65293a11.png)
可控硅控制电路图解及制作13例可控硅是可控硅整流器的简称。
可控硅有单向、双向、可关断和光控几种类型。
它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。
单向可控硅是一种可控整流电子元件,能在外部控制信号作用下由关断变为导通,但一旦导通,外部信号就无法使其关断,只能靠去除负载或降低其两端电压使其关断。
单向可控硅是由三个PN结PNPN 组成的四层三端半导体器件与具有一个PN结的二极管相比,单向可控硅正向导通受控制极电流控制;与具有两个PN结的三极管相比,差别在于可控硅对控制极电流没有放大作用。
可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。
以上两个条件必须同时具备,可控硅才会处于导通状态。
另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。
可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。
简易单向可控硅12V触摸开关电路触摸一下金属片开,SCR1导通,负载得电工作。
触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J放电,维持继电器吸合约4秒钟,故电路动作较为准确。
如果将负载换为继电器,即可控制大电流工作的负载。
可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,活动导入以可控硅实际应用案例的展示,以激发学生的活动兴趣。
可控硅控制电路的制作13例1:可调电压插座电路如图,可用于调温(电烙铁)、调光(灯)、调速(电机),使用时只要把用电器的插头插入插座即可,十分方便。
V1为双向二极管2CTS,V2为3CTSI双向可控硅,调节RP可使插座上的电压发生变化。
2:简易混合调光器根据电学原理可知,电容器接入正弦交流电路中,电压与电流的最大值在相位上相差90°。
可控硅功率调节器原理
![可控硅功率调节器原理](https://img.taocdn.com/s3/m/27f25402ce84b9d528ea81c758f5f61fb6362865.png)
可控硅功率调节器原理
可控硅功率调节器是一种用于调节交流电的功率输出的装置。
它采用了可控硅(又称晶闸管)作为主要控制元件。
可控硅是一种具有双向导通能力的电子开关,它可以在控制信号的作用下,将交流电进行周期性控制。
可控硅功率调节器的工作原理是利用可控硅的导通和截止特性,通过改变可控硅的触发角来控制电压和电流的输出。
当控制信号为触发脉冲时,可控硅工作于导通状态,使得电压或电流得以通过;当控制信号为截止脉冲时,可控硅工作于截止状态,使得电压或电流无法通过。
可控硅功率调节器由触发电路、保护电路和负载组成。
触发电路通过控制信号的触发脉冲来控制可控硅的导通和截止,从而改变电压或电流的输出。
保护电路用于保护可控硅免受过电流和过压的损害,保证可控硅的正常工作。
负载则是需要输出功率调节的设备或系统。
在实际应用中,可控硅功率调节器可以实现电压调整、电流调整和功率调整。
通过改变控制信号的触发角,可以控制导通时间和截止时间的比例,进而改变电压或电流的幅值,实现对功率的精确调节。
可控硅功率调节器在工业控制、电力调节和变频调速等领域中有着广泛的应用。
可控硅调压原理
![可控硅调压原理](https://img.taocdn.com/s3/m/e58031b2aff8941ea76e58fafab069dc50224780.png)
可控硅调压原理可控硅是一种半导体器件,它可以通过控制触发角来实现对交流电的调压调速。
在工业控制系统中,可控硅调压技术被广泛应用于电动机的调速、电炉的温度控制、电磁铁的控制等领域。
本文将对可控硅调压原理进行简要介绍,希望能够对读者有所帮助。
首先,我们来了解一下可控硅的基本结构和工作原理。
可控硅是一种四层三端口的器件,它的主要结构包括阳极、阴极和控制端。
当控制端施加一个触发脉冲时,可控硅将导通,并开始导通电流。
而一旦导通后,可控硅将一直保持导通状态,直到电流下降到零或者直流电压变为负值。
这种特性使得可控硅可以用来实现对交流电的调压控制。
其次,我们来看一下可控硅调压的原理。
在交流电路中,可控硅可以通过改变触发角来控制电压的大小。
触发角是指在每个交流周期内,可控硅开始导通的相位角度,通常用α表示。
当触发角为0时,可控硅将在每个交流周期的起始阶段就开始导通,此时输出电压为最大值。
而当触发角为π时,可控硅将在每个交流周期的中点才开始导通,此时输出电压为零。
因此,通过改变触发角,可以实现对输出电压的调节。
最后,我们来分析一下可控硅调压的优点和应用。
可控硅调压技术具有调节范围广、响应速度快、效率高等优点,因此在工业控制系统中得到了广泛的应用。
例如,通过控制可控硅的触发角,可以实现对电动机的调速控制,从而满足不同工况下的需求。
同时,可控硅调压技术还可以应用于电炉的温度控制、电磁铁的控制等领域,为工业生产提供了便利。
总之,可控硅调压技术是一种在工业控制领域应用广泛的调压技术,它通过改变触发角来实现对交流电的调压调速。
在实际应用中,我们可以根据具体的控制需求,灵活运用可控硅调压技术,从而提高工业生产的效率和质量。
希望本文对读者对可控硅调压原理有所帮助。
双向可控硅的工作原理及原理图
![双向可控硅的工作原理及原理图](https://img.taocdn.com/s3/m/a2d0c203bf1e650e52ea551810a6f524cdbfcb47.png)
双向可控硅的工作原理及原理图双向可控硅(Bilateral Switch Thyristor,简称BST)是一种半导体器件,具有双向导通能力,可用于交流电路的控制。
本文将详细介绍双向可控硅的工作原理及原理图。
一、双向可控硅的工作原理双向可控硅由两个PN结组成,分别为正向PN结和反向PN结。
其工作原理如下:1. 正向导通:当正向电压施加在正向PN结上时,处于正向偏置状态,正向PN结的P区和N区形成导电通道,电流可以流过。
此时,双向可控硅处于导通状态。
2. 正向关断:当正向电压施加在正向PN结上时,如果电压低于正向PN结的导通电压,正向PN结处于关断状态,电流无法流过。
此时,双向可控硅处于关断状态。
3. 反向导通:当反向电压施加在反向PN结上时,处于反向偏置状态,反向PN结的P区和N区形成导电通道,电流可以流过。
此时,双向可控硅处于导通状态。
4. 反向关断:当反向电压施加在反向PN结上时,如果电压低于反向PN结的导通电压,反向PN结处于关断状态,电流无法流过。
此时,双向可控硅处于关断状态。
通过控制正向PN结和反向PN结的导通和关断状态,可以实现双向可控硅的双向导通和关断。
二、双向可控硅的原理图下面是双向可控硅的原理图示例:```┌───┐──►│ A │──────┐└───┘ │▼┌───┐│ ││ BST ││ │└───┘│▼┌───┐│ │──►│ ││ │└───┘```在上述原理图中,A端和K端分别代表双向可控硅的两个引脚。
通过控制A端和K端的电压,可以控制双向可控硅的导通和关断状态。
三、实际应用举例双向可控硅在实际电路中有广泛的应用,以下举例说明其中两种常见的应用:1. 交流电压控制:双向可控硅可以用于交流电路的控制。
通过控制双向可控硅的导通和关断,可以实现对交流电路的开关控制。
例如,可以将双向可控硅用于灯光控制,实现对灯光的亮度调节。
2. 交流电压调整:双向可控硅还可以用于交流电压的调整。
交流220伏单相电机可控硅调速注意事项
![交流220伏单相电机可控硅调速注意事项](https://img.taocdn.com/s3/m/05b1c95d54270722192e453610661ed9ad5155af.png)
交流220伏单相电机可控硅调速注意事项使用可控硅进行交流电机调速时,有几个注意事项需要考虑:
1.电机类型和适用范围:确保可控硅调速器与你所使用的交流电机兼容,并且能够满足电机的功率需求。
不同类型和规格的电机可能需要不同的可控硅调速器。
2.额定电压和频率:确保可控硅调速器的额定电压和频率与供电网的电压和频率匹配,以确保正常运行并防止损坏电机。
3.选型和安装:选择适当型号的可控硅调速器,并按照其说明书中的指导进行安装。
确保调速器的冷却和散热良好,并且安装在通风良好的位置,以防止过热。
4.过载保护:可控硅调速器应该配备过载保护功能,以防止电机因过载而损坏。
确保调速器的过载保护设置合理,并且在超载情况下及时停机。
5.电源电路和接线:正确连接可控硅调速器和电机的电源线路,并确保接线正确牢固。
特别要注意接地,以确保安全。
6.调速范围和稳定性:了解可控硅调速器的调速范围和性能稳定性,并根据实际需要进行调节和优化。
7.维护和保养:定期检查和维护可控硅调速器和电机,包括清洁和检查连接部分、散热器等,以确保其正常运行和延长使用寿命。
8.安全操作:使用前确保了解可控硅调速器的安全操作规程和注意事项,避免发生安全事故。
总的来说,使用可控硅进行交流电机调速需要谨慎选择、安装
和操作,以确保电机正常、稳定地工作,并且能够满足实际需求。
可控硅调光电路及工作原理!
![可控硅调光电路及工作原理!](https://img.taocdn.com/s3/m/39a49fff7d1cfad6195f312b3169a4517723e504.png)
可控硅调光电路及⼯作原理!可控硅调光电路⼯作原理!上⾯是⼀个双向可控硅的调光电路...⼯作原理说明...⼀接通电源,220V经过灯泡VR4 R19对C23充电...由于电容⼆端电压是不能突变的...充电需要⼀定时间的...充电时间由VR4和R19⼤⼩决定...越⼩充电越快...越⼤充电越慢...当C23上电压充到约为33V左右的时候...DB1导通..可控硅也导通...可控硅导通后...灯泡中有电流流过...灯泡就亮了... 随着DB1导通...C23上电压被完全放掉...DB1⼜截⽌...可控硅也随之截⽌...灯泡熄灭 (23)⼜进⾏刚开始⼀样的循环...因为时间短⼈眼有暂留的现象,所以灯泡看起来是⼀直亮的...充放电时间越短...灯泡就越亮...HE HE..反之...R20 C24能保护可控硅...如果⽤在阻性负载上可以省掉.如果是⽤在感性负载,⽐如说电动机上就要加上去....这个电路也可以⽤于电动机调速上...当然是要求不⾼的情况下...这个电路的优点是元件少,成本低,性价⽐⾼...缺点是...对电源⼲扰⽐较⼤,噪声⼤...驱动电动机时候在较⼩的时候可能会发热⽐较⼤...可控硅相当于可以控制的⼆极管,当控制极加⼀定的电压时,阴极和阳极就导通了。
可控硅分单向可控硅和双向可控硅两种,都是三个电极。
单向可控硅有阴极(K)、阳极(A)、控制极(G)。
双向可控硅等效于两只单项可控硅反向并联⽽成。
即其中⼀只单向硅阳极与另⼀只阴极相边连,其引出端称T2极,其中⼀只单向硅阴极与另⼀只阳极相连,其引出端称T2极,剩下则为控制极(G)。
1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。
若其中有⼀次测量指⽰为⼏⼗⾄⼏百欧,则必为单向可控硅。
且红笔所接为K 极,⿊笔接的为G极,剩下即为A极。
可控硅调压的工作原理
![可控硅调压的工作原理](https://img.taocdn.com/s3/m/d65eaa955122aaea998fcc22bcd126fff6055d66.png)
可控硅调压的工作原理
可控硅调压器是一种电子控制设备,常用于电力电子变流器、电能调速装置等功率电子设备中。
其主要功能是在交流电路中实现可控的电压调节。
可控硅调压器的工作原理如下:
1. 在电路中串联可控硅,常用双极性结型可控硅。
2. 控制信号通过触发器控制可控硅的触发时刻。
3. 当可控硅的控制信号触发时,它会开始导通,允许电流流过。
4. 一旦可控硅导通,就会形成一个绝缘体到导体的短路,电流将通过可控硅流过。
5. 当电流经过可控硅时,就会产生一个电压降,它决定了电路中的负载所受到的电压。
6. 可控硅的导通角相位可以通过改变触发时刻的延迟时间来调节,从而改变电路中的平均电压值。
可控硅调压器的工作原理是基于可控硅的导通和关断特性。
通过控制可控硅的导通角相位和触发时刻,可以改变负载所受到的电压,从而实现电压的调节。
同时,可控硅调压器具有较高的电压控制精度和响应速度,适用于各种电力电子设备中的电压调节需求。
可控硅电路原理
![可控硅电路原理](https://img.taocdn.com/s3/m/d8117713bf23482fb4daa58da0116c175e0e1e43.png)
可控硅电路原理
可控硅电路由一对反向并联的晶体管和一个双极三层结构的可控硅管组成。
其原理是通过对可控硅管的控制信号进行调节,从而控制电流的通断。
可控硅管是一种具有耐压和耐电流能力较强的电子器件。
它由四层半导体材料构成,具有一个阴极、一个阳极和一个控制极。
其中,两个结构相反的PN结构形成一个“二极管”,而在PNPN结构中间有一个控制极。
当可控硅器件处于关闭状态时,两个结构相反的PN结构之间的势垒会完全封锁电流,不允许
通过。
而当施加一个正向触发电压时,PNPN结构中的电流传
输会被打开,使得电流可以通过。
因此,控制极上的信号决定了电流通断的状态。
可控硅电路常用于各种电子设备和电路中,如调光器、定时器等。
通过精确调节控制极上的触发电压,可控硅电路可以实现电流的精确控制,从而满足不同的需求。
总之,可控硅电路是一种通过调节控制信号来控制电流通断的电子器件。
它由可控硅管和晶体管构成,能够实现电流的精确控制。
这种电路在各种电子设备和电路中具有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控硅调压调速原理
小功率分体机室内风机目前用的是PG调速塑封电机,为单向异步电容运转电动机。
为了满足空调正常的运转,达到制冷、制热能力的平衡,所以必须保证室内风机的转速满足系统的要求,并保持转速的稳定。
因此采用可控硅调压调速的方法来调节风机的转速。
1.电路原理图
2.工作原理简介
可控硅调速是用改变可控硅导通角的方法来改变电动机端电压的波形,从而改变电动机端电压的有效值,达到调速的目的。
当可控硅导通角α1=180°时,电动机端电压波形为正弦波,即全导通状态;(图示两种状态)当可
控硅导通角α1 <180°时,电动机端电压波形如图实
线所示,即非全导通状态,有效值减小;α1越小,
导通状态越少,则电压有效值越小,所产生的磁场越
小,则电机的转速越低。
但这时电动机电压和电流波
形不连续,波形差,故电动机的噪音大,甚至有明显
的抖动,并带来干扰。
这些现象一般是在微风或低风
速时出现,属正常。
由以上的分析可知,采用可控硅
调速其电机转速可连续调节。
3.各元器件作用及注意事项
3.1D15、R28、R29、E9、Z1、R30、C1组成降压、整流、虑波稳压电路,获得相对直流电压
12V,通过光电偶合器PC817给双向可控硅BT131提供门极电压;
3.2R25、C15组成RC阻容吸收网络,解决可控硅导通与截止对电网的干扰,使其符合EMI测试标准;同时防止可控硅两端电压突变,造成无门极信号误导通。
3.3TR1选用1A/400V双向可控硅,TR1有方向性,T1、T2不可接反,否则电路不能正常工作。
3.4L2为扼流线圈,防止可控硅回路中电流突变,保护TR1,由于它是储能元件,在TR1关断和导通过程中,尖峰电压接近50V,R24容易受冲击损坏,因此禁止将L2放置在TR1前端。
3.5C14为风机运行电容,容量分别有1.2,1.5,2.0(μF)耐压450(V) 焊接在主控板上;
3.6R28、R29为降压电阻,发热量很大,要选用11KΩ/3W功率电阻,并避免所有线组接近它。
3.7IC6是光电偶合器,选用PC817;接受主控芯片指令,控制可控硅BT131导通与截至,同时起到主芯片与强电隔离的作用。
3.8 R30可维持电路中的电流,避免出现电流突变现象,C1可滤除高频干扰;目前大部分实际PCB中均无R30、C1。
3.9 Z1选用12V0.5W稳压二极管
3.10 CN6为三针塑封电机插座,1、3、5为插针,为满足爬电距离要求,2、4空闲。